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I

A conjugacy theorem
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Tori

� � � ��

(split algebraic torus)

Divisible, abelian (“torus”)

with dense torsion (“decent”)

in each definable subgroup (“good”)

In affine algebraic groups, maximal tori are conjugate

Theorem In groups with dimension, maximal good tori are
conjugate.
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Existence

Theorem (Wagner)
A torus over a field with dimension, in positive
characteristic, is good.
Which is more than doubtful in characteristic zero.

Corollary (Borovik)
A connected solvable -group acting faithfully on a
nilpotent -group, where the whole thing is equipped with a
notion of dimension, is a good torus.
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Groups with dimension

(I.e.: finite Morley rank)

Conjecture
A simple group with dimension is algebraic.

Finite groups: cardinality
Algebraic groups: dimension
(Link: Lang-Weil,

� � � �� ���� �	 

.)

Free groups: a weak analog (Sela; Feighn, Bestvina)
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Finiteness Theorem

Theorem (Finiteness) Let

�

be a group with dimension,
and

�

a uniform family of good tori. Then the groups in

�

belong to a finite number of conjugacy classes.
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Application

�

transitive on

�

, each involution fixes a unique point, and
the stabilizer of a point contains a normal elementary
abelian subgroup

�

.

Objective:

� � SL � .

But, suppose that:
SL (conjugates of ), with

(cf. [Jaligot, Thése]).

Goal: a contradiction.
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Application (continued)

��� ��� � � �� �
�

� � SL � (conjugates of

�

),

Definition a torus of , a point stabilizer.

Jaligot: if
all proper simple definable sections of are algebraic,

then the tori in are conjugate under the action of .

Cf.: [Altinel/Cherlin, Limoncello, J. Alg to appear]

falls into a finite number of conjugacy classes under
the action of .

forms a single conjugacy class under the action of .

GT – p.8/21



Application (continued)

��� ��� � � �� �
�

� � SL � (conjugates of

�

),

Definition

�

a torus of

�

, a point stabilizer.� � � ��� � � � �

Jaligot: if��� �

all proper simple definable sections of

�

are algebraic,
then the tori in are conjugate under the action of .

Cf.: [Altinel/Cherlin, Limoncello, J. Alg to appear]

falls into a finite number of conjugacy classes under
the action of .

forms a single conjugacy class under the action of .

GT – p.8/21



Application (continued)

��� ��� � � �� �
�

� � SL � (conjugates of

�

),

Definition

�

a torus of

�

, a point stabilizer.� � � ��� � � � �

Jaligot: if��� �

all proper simple definable sections of

�

are algebraic,
then the tori in are conjugate under the action of .

The minimality hypothesis

�� �
is eliminated in two steps . . .

Cf.: [Altinel/Cherlin, Limoncello, J. Alg to appear]

falls into a finite number of conjugacy classes under
the action of .

forms a single conjugacy class under the action of .

GT – p.8/21



Application (continued)

��� ��� � � �� �
�

� � SL � (conjugates of

�

),

Definition

�

a torus of

�

, a point stabilizer.� � � ��� � � � �

Jaligot: if��� �

all proper simple definable sections of

�

are algebraic,
then the tori in are conjugate under the action of .

Cf.: [Altinel/Cherlin, Limoncello, J. Alg to appear]

falls into a finite number of conjugacy classes under
the action of .

forms a single conjugacy class under the action of .

GT – p.8/21



Application (continued)

��� ��� � � �� �
�

� � SL � (conjugates of

�

),

Definition

�

a torus of

�

, a point stabilizer.� � � ��� � � � �

Jaligot: if��� �

all proper simple definable sections of

�

are algebraic,
then the tori in are conjugate under the action of .

Cf.: [Altinel/Cherlin, Limoncello, J. Alg to appear]

falls into a finite number of conjugacy classes under
the action of .

forms a single conjugacy class under the action of .

GT – p.8/21



Application (continued)

��� ��� � � �� �
�
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�

),

Definition

�

a torus of

�

, a point stabilizer.� � � ��� � � � �

Jaligot: if��� �

all proper simple definable sections of

�

are algebraic,
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. . . in between the two steps, we rework Jaligot using
weaker information . . .

forms a single conjugacy class under the action of .
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II

Some details
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Groups with dimension

(Groups of finite Morley rank)
1. rk

� � �

(dimension);

��� � � � �

(multiplicity)
2.

� 	 �

:� �� � � � � � �

rk

� � � 	

rk

� � �

� �� � � 	 � � � ��� � � � � 	 �� � � � �
.

3. rk

� � � � � � rk

� � �
	 rk

� � �

.

4.
5. “connected subgroup”:
6. (strongly) generic: rk rk
N.B.: connected, rk rk generic.

7. Saturation: a set of bounded cardinality is finite
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Good tori: Generalities

1.

� � ��� � � � �� � �

Hence:
2. good torus, maximal quotient

3. nilpotent .
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Rigidity

R-I.

� � � � � � � � � � �

.
(Immediate)

R-II. a uniform family

�

of subgroups of
�

is finite.
R-III. a uniform family

�

of homomorphisms

�� � � �

is
finite.

Proofs (II-III):
tor ; so

So finite, q.e.d.

Note: By rigidity II the Finiteness Theorem follows from the
Conjugacy Theorem.

Namely conjugate into one maximal good torus.
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III

The conjugacy theorem

In groups with dimension
maximal good tori are conjugate.
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Generic covering

Lemma (Generic covering)

�

connected,

� � �

,

��� � � � � �

. Then

� �

is generic.

Conjugacy Theorem, proof:
Induction.

��� � � max.

�

connected. Goal:

�� � � � .

1st case: infinite
, , nilpotent.

2nd case: finite. We may suppose that .

. We may suppose that :

: (done)

“Generic covering conjugacy”
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Generic covering, the proof

Lemma

�

connected,

� � �

,

��� � � � � �

. Then
� �

is generic.
W.l.o.g.

�

maximal

1. .

2. .

3 . non-generic in !

4. rk rk rk
rk rk rk rk .

The difficulty is in point #3. We require non-genericity
under certain conditions. Point #2 will be useful . . .
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Nongenericity

Glossary:

� � � � � � �

,

�� � � � � ��
� � �

�

.
Recall that no group

� � �

contains

�

.

Lemma Let

�

be connected,

� � � � � �
a good torus, and

�

a uniform family of subgroups of
�

, where no member of

�

contains

�

.
Then

�

is not generic in

�

.

Imagine for a moment that —how do

you distinguish small and large subsets of a product?

GT – p.16/21



Nongenericity

Glossary:

� � � � � � �

,

�� � � � � ��
� � �

�

.
Recall that no group

� � �

contains

�

.

Lemma Let

�

be connected,

� � � � � �
a good torus, and

�

a uniform family of subgroups of
�

, where no member of

�

contains

�

.
Then

�

is not generic in

�

.

Imagine for a moment that
��� � � � � —how do

you distinguish small and large subsets of a product?

GT – p.16/21



Fubini

I.

� � � � �

generic
iff��� � ��� generic in

� �

is generic in

�

II. (rk constant) is generic
iff

generic in is generic in

Application: groups.
is generic
iff

generic in is generic in

—which implies that the set in question is nonempty.
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Nongenericity

Lemma

�

connected,

� � � � � �

a good torus,
�

a uniform
family of subgroups of

�

, where no group in
�

contains

�

.
Then

�

is not generic in

�

.
Proof We may suppose that

� � �� �

for
� � �

.
We will show that

� � �

is finite for each coset

� � � �

,
so by Fubini

�

is not generic.

We will show that
is finite for each coset .

. , . So .

finite (
So is finite; and each intersection
contains just one element. So is finite.
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Nongenericity

Lemma

�

connected,

� � � � � �

a good torus,
�

a uniform
family of subgroups of

�

, where no group in
�

contains

�

.
Then

�

is not generic in

�

.
Proof We may suppose that

� � �� �

for
� � �

.
We will show that

� � �

is finite for each coset

� � � �

.

�� �
� � � � �

. � � � � �

,

� � �� �
. So

� �
�

�
� � � �

.

� �
�

� � � � �
�

�
� �� � �

�
� � � �� �

So �� � � �
�

� � � � �
�

�

(injectively).

finite (
So is finite; and each intersection
contains just one element. So is finite.
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Nongenericity

Lemma

�

connected,

� � � � � �

a good torus,
�

a uniform
family of subgroups of

�

, where no group in
�

contains

�

.
Then

�

is not generic in

�

.
Proof We may suppose that

� � �� �

for
� � �

.
We will show that

� � �

is finite for each coset

� � � �

.

�� �
� � � � �

. � � � � �

,

� � �� �
. So

� �
�

�
� � � �

.

� �
�

� � � � �
�

�
� �� � �

�
� � � �� �

By symmetry, we conclude �� � � �
�

� � � � �
�

�

.

� �
�

� �
� �
� �
� � �

�
� � �

finite (
So is finite; and each intersection
contains just one element. So is finite.
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Nongenericity

Lemma

�

connected,

� � � � � �

a good torus,
�

a uniform
family of subgroups of

�

, where no group in
�

contains

�

.
Then

�

is not generic in

�

.
Proof We may suppose that

� � �� �

for
� � �

.
We will show that

� � �

is finite for each coset

� � � �

.

�� �
� � � � �

. � � � � �

,

� � �� �
. So

� �
�

�
� � � �

.

� �
�

� � � � �
�

�
� �� � �

�
� � � �� �

� �
�

� �
� �
� �
� � �

�
� � �

�
� � � �
� �
� �

� � � � � �

finite (

� � � � � � � � � �
�

� � �

So is finite; and each intersection
contains just one element. So is finite.
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Nongenericity

Lemma

�

connected,

� � � � � �

a good torus,
�

a uniform
family of subgroups of

�

, where no group in
�

contains

�

.
Then

�

is not generic in

�

.
Proof We may suppose that

� � �� �

for
� � �

.
We will show that

� � �

is finite for each coset

� � � �

.

�� �
� � � � �

. � � � � �

,

� � �� �
. So

� �
�

�
� � � �

.

� �
�

� � � � �
�

�
� �� � �

�
� � � �� �

� �
�

� �
� �
� �
� � �

�
� � �

�
� � � �
� �
� �

� � � � � �

finite (

� � � � � � � � � �
�

� � �

So

� � � �� � � � �

is finite; and each intersection

� � �

contains just one element.

So is finite.
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Nongenericity

Lemma

�

connected,

� � � � � �

a good torus,
�

a uniform
family of subgroups of

�

, where no group in
�

contains

�

.
Then

�

is not generic in

�

.
Proof We may suppose that

� � �� �

for
� � �

.
We will show that

� � �

is finite for each coset

� � � �

.

�� �
� � � � �

. � � � � �

,

� � �� �
. So

� �
�

�
� � � �

.

� �
�

� � � � �
�

�
� �� � �

�
� � � �� �

� �
�

� �
� �
� �
� � �

�
� � �

�
� � � �
� �
� �

� � � � � �

finite (

� � � � � � � � � �
�

� � �

So

� � � �� � � � �

is finite; and each intersection

� � �

contains just one element. So

� � �

is finite.
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. . . and the decent tori

Definition (Connected Frattini)

� � � � � � �� � � �

connected, maximal

�

.

Lemma Let

�

be divisible abelian. Then the following two
conditions are equivalent.
1.

�� � � �

tor

�

2.

� � � � � �

is a good torus.

(

� � � �

):

� �

is a good torus, so

� � � � � �

is as well.

(

� � � �

):

��
� � � � �

tor

�

.
If

��
� 	 �

, then

�
�

� �
maximal connected. But

� � � � � � � � �

, so
� �

is good, contradiction.
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The last word

. . . belongs to Borovik
Theorem Maximal decent tori are conjugate.

In the analysis of (nongenericity), we consider
. . .

The rest is quite formal.
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The last word

. . . belongs to Borovik
Theorem Maximal decent tori are conjugate.

In the analysis of

��� � � � � �

(nongenericity), we consider� � � � � �

. . .

The rest is quite formal.
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Summary

Maximal good tori are conjugate.

Algebraic tori are good, in the Zariski topology.

Algebraic tori with dimension are good in positive
characteristic.

The conjugacy theorem is used in the classification of
groups of finite Morley rank of even type (AC, building
on ABCJ)—along with generic covering lemmas. In fact,
it was abstracted out of that context.
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