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Kaleidoscopes
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# Finite system of mirrors, closed under reflection
# Finite group generated by reflections

# Root system: finite system of vectors, closed under
reflection
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L

Kaleidoscopes

Finite system of mirrors, closed under reflection T
Finite group generated by reflections

Root system: finite system of vectors, closed under
reflection

Crystallographic condition: preserves a lattice

-

SD — p.4/2



An example

The symmetric group Sym,, on R*~! viewed as
et withecR?, e=(1,...,1).

Reflections: transpositions (ij).
Associated vectors £(e; — ¢;).
Root system e; — e;.

Fundamental roots ¢; 1 — e; (elementary transpositions)
correspond to a set of generating reflections.

Angles: 27/3 or 7 /2, mostly the latter.
(Orders of products: 3 or 2.)

LCoxeter-Dynkin diagram: e—e—e—...—e J
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Classification

Via root systems

Positive and negative roots
Fundamental roots: » = )~ \;r; with constant sign (and
Integer entries, in the crystallographic case).
Obtuse or right angles, mostly the latter.
Dynkin diagram:
Vertices = Fundamental roots
Edges = obtuse angles
Labelled if the angles are not 27/3
Oriented If the lengths differ (by Dynkin)
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Diagram chasing

What are these things?

Singularities, representations of quivers,

simple complex Lie algebras / simple algebraic groups
Reference: M. Hazewinkel, W. Hesselink, D. Siersma, and
F. D. Veldkamp, The ubiquity of Coxeter-Dynkin diagrams
(an introduction to the A — D — E problem) Nieuw Arch.
Wisk. 25:257-307, 1977

Combinatorial data given in the language of group theory.
Maximal notions of symmetry
(Galois, crystallography/chemistry).

Reference: Hermann Weyl, Symmetry
LPrinceton University Press, Princeton, N. J., 1952, 168 pp. J
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Weyl groups

o .

Simple (or reductive) algebraic groups.
T maximal torus, B a Borel subgroup. W = N(T')/T
(T = C(T)): automorphisms of 7.

Theorem
W is a crystallographic Coxeter group, and G = BW B.

Example: G = GL,, W =S, = A,_1, hamely permutation
maitrices, and B consists of upper or lower triangular
matrices.

G = LWU = UWU (since L Is conjugate to U under V).
W = failure of limited Gaussian elimination.
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Why Coxeter groups

o .

Why Euclidean groups, also in positive characteristic?
Because when you exponentiate modulo p, you do not reduce the
exponent modulo p.
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Why Coxeter groups

o .

Why Euclidean groups, also in positive characteristic?
Because when you exponentiate modulo p, you do not reduce the
exponent modulo p.

Root groups: Minimal T-invariant groups with nontrivial
action.

Structure: F,, with T actingvia y : T' — F*

Characters: x(t) =t“ (t = (t1,...,tn), u = (u1,...,uy) € Z")
Example: elementary matrices E;;(a).
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Why Coxeter groups

o .

Why Euclidean groups, also in positive characteristic?
Because when you exponentiate modulo p, you do not reduce the
exponent modulo p.

Root groups: Minimal T-invariant groups with nontrivial
action.

Structure: F,, with T actingvia y : T' — F*

Characters: x(t) =t“ (t = (t1,...,tn), u = (u1,...,uy) € Z")
Example: elementary matrices E;;(a).

Calculation: E;j(a)0t-te) = Ey([t-1t,]a);
x~ (0,...,0,—1,0,...,0,1,0,...,0) ~ ej — ¢; in Z".
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Why Coxeter groups

o .

Why Euclidean groups, also in positive characteristic?
Because when you exponentiate modulo p, you do not reduce the
exponent modulo p.

Root groups: Minimal T-invariant groups with nontrivial
action.

Structure: F,, with T actingvia y : T' — F*

Characters: x(t) =t“ (t = (t1,...,tn), u = (u1,...,uy) € Z")
Example: elementary matrices E;;(a).

Calculation: E;j(a)0t-te) = Ey([t-1t,]a);
x~ (0,...,0,—1,0,...,0,1,0,...,0) ~ ej — ¢; in Z".

This gives also the crystallographic condition.

o -
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Curtis-Tits Theorem

o .

Structure of simple algebraic groups (Chevalley)

#® Generated by root subgroups
# Non-opposite: relations live in the root system (r, s)
#» Opposite: generate a root SLo (or PSLs) L,
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Curtis-Tits Theorem

o .

Structure of simple algebraic groups (Chevalley)

#® Generated by root subgroups
# Non-opposite: relations live in the root system (r, s)
#» Opposite: generate a root SLo (or PSLs) L,

Theorem (GLS-111.81") H ~ X of rank at least three. X, root
groups. Hy = (X4, : r € J). Then H Is isogenous to the free
amalgam of all H; with |J| < 2.
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Curtis-Tits Theorem
L o

Structure of simple algebraic groups (Chevalley)

#® Generated by root subgroups
# Non-opposite: relations live in the root system (r, s)
#» Opposite: generate a root SLo (or PSLs) L,

Theorem (GLS-111.81") H ~ X of rank at least three. X, root

groups. Hy = (X4, : r € J). Then H Is isogenous to the free
amalgam of all H; with |J| < 2.

The Dynkin diagram gives the isomorphism types of the Lie

Lrank two subgroups H: (A1 x A1, As, Bs, Or GGs). J
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Complex Reflection Groups



Complex Reflections

o .

Real reflections: semisimple, with eigenvalues (1,...,1,—1).
Complex reflections: semisimple, with eigenvalues

(1,...,1,0).
Fully classified (Shephard and Todd, Arjeh Cohen).



What are they?

o .

Theorem

Let GG be a finite group of linear transformations on a space
of dimension n. Then G Is a complex (or real!) reflection
group If and only if the algebra of G-invariant polynomials is
generated by n algebraically independent homogeneous
polynomials. In this case, the product of their degrees is the
order of G.

E.g., Sym, on R”, symmetric polynomials, n! = ....

They appear also in singularity theory, but with one
exception are not, as yet, “ubiquitous”.

“The quaternionic versions of the Coxeter and Shephard-Todd
Lgroups are still to be defined and classified.” (Arnold) J
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Recognizing Real Reflection Groups
- -

Theorem W finite, I C W subset, n fixed.

1. The set I generates W/, consists of involutions, and is
closed under conjugation in W,

2. The graph A; with vertices I and edges (i, 7) for
noncommuting pairs ¢, 7 € I IS connected,

3. For all sufficiently large prime numbers /¢, W has a
faithful representation V, over the finite field F, in which
the elements of I operate as “complex” reflections.

o -
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Recognizing Real Reflection Groups
- -

Theorem W finite, I C W subset, n fixed.

1. ICI(W), I<W,{I)=W.
2. A7 connected

3. Reflection representation V, over all IF,, without fixed
vectors. (Ubiquitous)



Recognizing Real Reflection Groups
- -

Theorem W finite, I C W subset, n fixed.

1. ICI(W), I<W,{I)=W.
2. A7 connected

3. Reflection representation V, over all IF,, without fixed
vectors. (Ubiquitous)

Then one of the following occurs.
(a) W is dihedral in dimension n = 2, or cyclic of order two;

(b) W is an irreducible crystallographic Coxeter group:
Am B’n7 C’na Dn (TL 2 3)1 Fn (n — 4)’ or En (n — 67 7’0r 8)1

(¢) Or: W is the binary octahedral group (#12), in dimension

\— two. J
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Recognizing Real Reflection Groups

o .

Theorem W finite, I C W subset, n fixed.

1. ICIW), I<W,{I)=W.

2. A7 connected

3. Reflection representation V, over all IF,, without fixed
vectors. (Ubiquitous)

If W also has some irreducible reflection representation of
dimension at least 3 (over any field), then W is an
irreducible crystallographic Coxeter group.

(Proof later)
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Groups of finite Morley rank



Rank=Dimension

-

Algebraic Groups: dimension.

0 : subsets — N (dimension of Zariski closure).
Well-behaved on definable sets.

Morley rank: abstract notion of dimension (in general
ordinal valued)

Algebraicity Conjecture: A simple group of finite Morley
rank is algebraic.

Conjectured by Zilber, who now conjectures the opposite,
and has good chances to be right at least once, if not more.
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Recap

Objects T
Groups with a dimension

Main question
Are the infinite simple ones algebraic?

Important actors
Involutions

Source of inspiration
Finite group theory
Classification of Finite Simple Ggroups

-
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Some results

=

Theorem [ABCJ et al.] A simple group of finite Morley rank of
Infinite 2-rank is algebraic.

Theorem [B3 CJ et al.] A minimal nonalgebraic simple group of

finite Morley rank has Prufer 2-rank at most two.
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Generic Recognition

-

Theorem [Berkman-Borovik]

Let G be a simple K*-group of finite Morley rank, and p a
prime. Let Ty be a maximal p-torus in G, of Prifer rank at
least 3. Assume:

(A) G Is generated by the subgroups
Ce(z) for x € Ty of order p

(B) For every element x of order p in Ty we have:

(Bs) the group Cg(z) contains no nontrivial p-unipotent
subgroup;

Br) Cg°(r) = F*(Cg°(x)).

Then G Is a Chevalley group over an algebraically closed
Lfield of characteristic other than p. J
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Proof

-

We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € Z>

rr, Wo = <?“L L € Z>.

o -
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We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € Z>

rr, Wo = <?“L L € Z>.
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Proof

-

We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € Z>

rr, Wo = <?“L L € Z>.

® > generates G.

# Pairs from X generate Lie rank 2 groups.
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Proof

-

We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € E>

rr, Wo = <?“L L € Z>.

® > generates G.

# Pairs from X generate Lie rank 2 groups.

#® 1V Is a crystallographic Coxeter group

o -
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Proof

-

We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € Z>

rr, Wo = <?“L L € Z>.

® > generates G.

# Pairs from X generate Lie rank 2 groups.

#® 1V Is a crystallographic Coxeter group
s I Is closed under conjugation in W

o -
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Proof

-

We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € Z>

rr, Wo = <?“L L € Z>.

® > generates G.

# Pairs from X generate Lie rank 2 groups.

#® 1V Is a crystallographic Coxeter group
s I Is closed under conjugation in W
s Aj IS connected
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Proof

-

We use root SLy-subgroups.

Y. L < G definable, Ty-invariant, of type SLs.
Tr: CL(T()). T = <TL L € Z>

rr, Wo = <?“L L € Z>.

® > generates G.

# Pairs from X generate Lie rank 2 groups.

#® 1V Is a crystallographic Coxeter group
s I Is closed under conjugation in W
s Aj IS connected

s Wy on (Tp), is a faithful and irreducible on all
nontrivial Ty[¢] (£ > 2)

o -
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Recognition of Coxeter groups



Recognizing Real Reflection Groups

o .

Theorem W finite, I C W subset, n fixed.

1. ICI(W), I<W,{I)=W.
2. A7 connected
3. Reflection representations V, over F,.

Then one of the following occurs.
(a) W is dihedral in dimension n = 2, or cyclic of order two;

(b) W is an irreducible crystallographic Coxeter group:
An, B, Cn, Dy, (n > 3), F, (n=4), or E, (n =6,7,0r 8);

(c) W is the binary octahedral group in dimension two.

o -
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Complex reflection groups

o -

Suppose the group is a complex reflection group which also
has faithful representations over most F}.

The center acts by scalars:

ze Z(W),i eI
z acts on [z, V], this gives an eigenvalue, and = Is a scalar.
|Z(W)| divides most ¢ — 1, hence divides 2.

After dropping the crystallographic Coxeter groups (and
ignoring a family of imprimitive groups to be treated
separately) we are down to

74, #12, 3723, 424, 3730, #33

o -
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The remainder

o .

# Dim. Name W | ZW)| |r

4 2 23 % 3 2
12 24 % 3 2 2]
23 3 H; 23 %3 %5 2 2
24 24 % 3% 7 2 [2]
30 4 Hy 2632 %52 2 2
33 5 27T x 3% x5 2 2]

#23,#24, #30, #33: order must divide |GL,(¢)|.
E.g. #33: / =2 mod 3", [Dirichlet]
IGLs| =292 —)(2* -1 (22 - 1) (22 - 1)(2-1)
~ 2'—1and 2% -1 give a factor of 3” only .
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Why complex?
- -

Ultraproducts
Given:

# Structures M, indexed by a set X,

# A total finitely additive 2-valued probability measure u
on X

we define an “average” structure A, as lim M,
7!
ldea: M,, = {lim,(ay) : az € M,};
R(lim,, ag, lim, b;) Iff P,(R(ag,bs;)) = 1.
..where lim,(a;) Is the sequence itself, modulo probable
equality ... (which was already specified!)

L(Example: asymptotic cones, a la van den Dries-Wilkie) J
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} 05’ theorem

=

Theorem For any first order property ¢, ¢ holds in the p-limit
(ultraproduct) iff its probability is one.

Corollary

If something is true of a sequence of models, it is true of their

ultraproduct.

-
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Application
Theorem T

If G has irreducible reflection representations with respect
to the finite connected set I, over fields of arbitrary large
characteristic, then it has one also in characteristic zero.

-

Take an ultraproduct of the representations. First, specify:
1. A Language
2. A Theory

Language: Field £, Vector space V, operators M, : V — V.

Theory:
(Field, F-vector space, linear operators)
multiplication in G, I acting by reflections

o -
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Classification of groups of even type

-

1. Treat rank one (unigueness theorems) T
2. Treat rank two (amalgam method)

3. Prove reductivity and semisimplicity for elements of odd
prime order (conditions Bg, Bg)

4. Apply Generic Recognition
(a) Find root S Ly-subgroups
(b) Build a torus and Weyl group optimistically

(c) Show the Weyl group is a crystallographic Coxeter
group, using the action on a torus

I. Itisis a complex reflection group by ultraproducts

Ii. Itis a crystallographic Coxeter group by
Shephard-Todd

~ (d) Apply Curtis-Tits .

SD - p.28/2
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