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Coxeter groups and Dynkin Diagrams

Complex Reflection Groups

Groups of Finite Morley rank

Recognition of Coxeter Groups
(via Ultraproducts)
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I

Coxeter groups and
Dynkin diagrams
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Kaleidoscopes

Finite system of mirrors, closed under reflection

Finite group generated by reflections

Root system: finite system of vectors, closed under
reflection

Crystallographic condition: preserves a lattice
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An example

The symmetric group

� � ��� on

�� � � viewed as

� 	

with � 
 ��

, � � �
�� � � �� 
 �

.

Reflections: transpositions

��� �

.
Associated vectors

� � �� � �� �

.
Root system �� � �� .

Fundamental roots � �� � � � � (elementary transpositions)
correspond to a set of generating reflections.

Angles:

��� ��

or � � �

, mostly the latter.
(Orders of products:

�
or

�

.)

Coxeter-Dynkin diagram:
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Classification

Via root systems

Positive and negative roots
Fundamental roots: � � �� �� with constant sign (and
integer entries, in the crystallographic case).
Obtuse or right angles, mostly the latter.
Dynkin diagram:

Vertices = Fundamental roots
Edges = obtuse angles
Labelled if the angles are not

��� ��

Oriented if the lengths differ (by Dynkin)
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Diagram chasing

What are these things?

Singularities, representations of quivers,
simple complex Lie algebras / simple algebraic groups
Reference: M. Hazewinkel, W. Hesselink, D. Siersma, and
F. D. Veldkamp, The ubiquity of Coxeter-Dynkin diagrams
(an introduction to the

� � � � �

problem) Nieuw Arch.
Wisk. 25:257–307, 1977

Combinatorial data given in the language of group theory.
Maximal notions of symmetry
(Galois, crystallography/chemistry).

Reference: Hermann Weyl, Symmetry

Princeton University Press, Princeton, N. J., 1952, 168 pp.
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Weyl groups

Simple (or reductive) algebraic groups.�

maximal torus,

�

a Borel subgroup. � � � � � � �

(

� � � � � �

): automorphisms of

�

.

Theorem
is a crystallographic Coxeter group, and

� � � �

.

Example:

� � �� � , � �� � �
	 � � , namely permutation
matrices, and

�

consists of upper or lower triangular
matrices.� � � 
 � 
 


(since
�

is conjugate to




under ).

� failure of limited Gaussian elimination.
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Why Coxeter groups

Why Euclidean groups, also in positive characteristic?
Because when you exponentiate modulo �, you do not reduce the
exponent modulo �.

Root groups: Minimal -invariant groups with nontrivial
action.
Structure: , with acting via
Characters: ( , )
Example: elementary matrices .

Calculation: ;
in .

This gives also the crystallographic condition.
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Curtis-Tits Theorem

Structure of simple algebraic groups (Chevalley)

Generated by root subgroups

Non-opposite: relations live in the root system

�
�� � �

Opposite: generate a root

� � � (or
� � � �)

��� �

Theorem (GLS-III.81’) of rank at least three. root
groups. . Then is isogenous to the free
amalgam of all with .

The Dynkin diagram gives the isomorphism types of the Lie

rank two subgroups : ( , , , or ).

SD – p.10/28



Curtis-Tits Theorem

Structure of simple algebraic groups (Chevalley)

Generated by root subgroups

Non-opposite: relations live in the root system

�
�� � �

Opposite: generate a root

� � � (or
� � � �)

��� �

Theorem (GLS-III.81’)

� � �

of rank at least three.

� � root
groups.

��� � � �� � � � 
 � �
. Then

�

is isogenous to the free
amalgam of all

� � with
� � � � �
.

The Dynkin diagram gives the isomorphism types of the Lie

rank two subgroups : ( , , , or ).

SD – p.10/28



Curtis-Tits Theorem

Structure of simple algebraic groups (Chevalley)

Generated by root subgroups

Non-opposite: relations live in the root system

�
�� � �

Opposite: generate a root

� � � (or
� � � �)

��� �

Theorem (GLS-III.81’)

� � �

of rank at least three.

� � root
groups.

��� � � �� � � � 
 � �
. Then

�

is isogenous to the free
amalgam of all

� � with
� � � � �
.

The Dynkin diagram gives the isomorphism types of the Lie

rank two subgroups

� � : (

� � � � � ,

� �,

� �, or

� �).

SD – p.10/28



II

Complex Reflection Groups
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Complex Reflections

Real reflections: semisimple, with eigenvalues

�
�� � � �� 
� � 
 �

.
Complex reflections: semisimple, with eigenvalues� 
� � � �� 
� � �

.

Fully classified (Shephard and Todd, Arjeh Cohen).
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What are they?

Theorem
Let

�

be a finite group of linear transformations on a space
of dimension �. Then

�

is a complex (or real!) reflection
group if and only if the algebra of

�

-invariant polynomials is
generated by � algebraically independent homogeneous
polynomials. In this case, the product of their degrees is the
order of

�

.

E.g.,

� � �� on

��

, symmetric polynomials, �
� � � � � .

They appear also in singularity theory, but with one
exception are not, as yet, “ubiquitous”.

“The quaternionic versions of the Coxeter and Shephard-Todd
groups are still to be defined and classified.” (Arnold)

SD – p.13/28



Recognizing Real Reflection Groups

Theorem finite,

� �

subset, � fixed.

1. The set

�

generates , consists of involutions, and is
closed under conjugation in ;

2. The graph

��� with vertices

�

and edges

��� � �

for
noncommuting pairs

�� � 
 �

is connected;

3. For all sufficiently large prime numbers

�

, has a
faithful representation

��� over the finite field

	 � in which
the elements of

�

operate as “complex” reflections.

1. , , .

2. connected

3. Reflection representation over all , without fixed
vectors. (Ubiquitous)

If also has some irreducible reflection representation of
dimension at least (over any field), then is an
irreducible crystallographic Coxeter group.

(Proof later)
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III

Groups of finite Morley rank
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Rank=Dimension

Algebraic Groups: dimension.

�� subsets � �

(dimension of Zariski closure).

Well-behaved on definable sets.

Morley rank: abstract notion of dimension (in general
ordinal valued)

Algebraicity Conjecture: A simple group of finite Morley
rank is algebraic.

Conjectured by Zilber, who now conjectures the opposite,
and has good chances to be right at least once, if not more.
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Recap

Objects
Groups with a dimension

Main question
Are the infinite simple ones algebraic?

Important actors
Involutions

Source of inspiration
Finite group theory

Classification of Finite Simple Ggroups
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Some results

Theorem [ABCJ et al.] A simple group of finite Morley rank of
infinite

�

-rank is algebraic.

Theorem [B

�

CJ et al.] A minimal nonalgebraic simple group of

finite Morley rank has Prüfer

�

-rank at most two.
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Generic Recognition

Theorem [Berkman-Borovik]
Let

�

be a simple

� �

-group of finite Morley rank, and � a
prime. Let

��� be a maximal �-torus in

�

, of Prüfer rank at
least

�

. Assume:

(A)

�

is generated by the subgroups

���� ��� �

for � 
 �� of order �

(B) For every element � of order � in

� � we have:
(B 	) the group

� �
� ��� �

contains no nontrivial �-unipotent
subgroup;

(B �)

��� � ��� � � � � � ��� � ��� � �

.

Then

�

is a Chevalley group over an algebraically closed
field of characteristic other than �.
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Proof

We use root

� � �-subgroups.

�

:

� � �

definable,

�� -invariant, of type

� � � .��� :

� � � �� �

.

� � � ��� � � 
 � �

� � ; � � �
� � � � 
 � �

.

generates .

Pairs from generate Lie rank 2 groups.

is a crystallographic Coxeter group
is closed under conjugation in

is connected
on is a faithful and irreducible on all

nontrivial ( )
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� � �
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IV

Recognition of Coxeter groups
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Recognizing Real Reflection Groups

Theorem finite,

� �

subset, � fixed.

1.

� � � � �

,

��� ,

� � � � .

2.

�� connected

3. Reflection representations

�� over
	 � .

Then one of the following occurs.

��
 �

is dihedral in dimension � � �

, or cyclic of order two;

�� �

is an irreducible crystallographic Coxeter group:

��� ��� ��� � � ( � � �
),

�� ( � � �

), or

�� ( � � �� �

,or

�

);

��� �

is the binary octahedral group in dimension two.

SD – p.22/28



Complex reflection groups

Suppose the group is a complex reflection group which also
has faithful representations over most

� � .

The center acts by scalars:

� 
 � � �

,

� 
 �

:

� acts on

	 �� � 


, this gives an eigenvalue, and � is a scalar.

� � � � �

divides most

� � 
 , hence divides

�

.

After dropping the crystallographic Coxeter groups (and
ignoring a family of imprimitive groups to be treated
separately) we are down to

� �� �
 �� � ��� � � �� �� ��� �� �
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The remainder

# Dim. Name

� � � � � � � �
�
�

4 2

� �
� � 2 [3]

12

� �
� � 2 [2]

23 3

�
� � �

� � � �

2 [2]
24

� �
� � � �

2 [2]
30 4

� � � �
� � �
� � �

2 [2]
33 5

� �
� � �
� �

2 [2]

#23,#24, #30, #33: order must divide

� �� � � � � �

.
E.g. #33:

� � � � � � � �

, [Dirichlet]

� �� 	
� � � � � � � 	 � 
 � � � � � 
 � � � � � 
 � � � � � 
 � � � � 
 �

� � � 
 and

� � � 
 give a factor of

� �

only
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Why complex?

Ultraproducts
Given:

Structures � indexed by a set

�

,

A total finitely additive 2-valued probability measure �

on

�

we define an “average” structure � as

�� �
�

�

Idea: � � � � � � �
�
 �
� � 
 �




�
�

;

� � � � � � 
 �� �� � �
�

�
�

iff
�

�
� � ��
 �� �

�
� � � 
 .

. . . where

�� � �
��
 �
�

is the sequence itself, modulo probable
equality . . . (which was already specified!)

(Example: asymptotic cones, à la van den Dries-Wilkie)
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Łoś’ theorem

Theorem For any first order property

�

,

�

holds in the �-limit
(ultraproduct) iff its probability is one.

Corollary

If something is true of a sequence of models, it is true of their

ultraproduct.
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Application

Theorem
If

�

has irreducible reflection representations with respect
to the finite connected set

�

, over fields of arbitrary large
characteristic, then it has one also in characteristic zero.

Take an ultraproduct of the representations. First, specify:

1. A Language

2. A Theory

Language: Field

�

, Vector space

�

, operators �
� � � �

.
Theory:

(Field,

�

-vector space, linear operators)
multiplication in

�

,

�

acting by reflections
irreducibility
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Classification of groups of even type

1. Treat rank one (uniqueness theorems)

2. Treat rank two (amalgam method)

3. Prove reductivity and semisimplicity for elements of odd
prime order (conditions

� �� � 	)

4. Apply Generic Recognition
(a) Find root

� � �-subgroups
(b) Build a torus and Weyl group optimistically
(c) Show the Weyl group is a crystallographic Coxeter

group, using the action on a torus
i. It is is a complex reflection group by ultraproducts
ii. It is a crystallographic Coxeter group by

Shephard-Todd
(d) Apply Curtis-Tits
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