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Does there exist a

universal countable C-free graph?

Examples

1. Rado graph (no C)

2. Kn-free (Fräıssé)

3. Pn-free [KMP ’88]

4. Bowtie-free [FK]

Non-Examples

1. C4-free

2. Km,n-free [KP ’84]

3. Cn-free [CS]

4. C-free (2-connected,

incomplete) [FK]

5. T -free, bushy tree

[CS]

6. Bridge-free [GK]
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Positive Cases

Few

Varied approaches:

Structure theory, amalgamation, more

Frequently associated with:

ℵ0-categorical theories

Negative Cases

Uniform approach,

essentially model-theoretic:

acl

Thesis

ℵ0-categoricity is the right “dividing line”
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Context

C: Finite collection of finite,

connected graphs

Countable C-free graphs

Universal one?

Main Problems

I. Single constraint: explicit list of “good”

ones

II. General case: Decidability
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Undecidability?

Generalize: Finite relational structures.

Coding: Graphs with a 2-coloring of the ver-

tices

IIA. Is the generalized problem undecidable?

IIB. Can the 2-colored graphs be coded by

graphs?
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Decidability?

There are two types of “good” contraint; path-

like constraints, and sets of constraints closed

under homomorphism.

Is this the whole story?
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Known positive cases

1. A path Pn ∈ C;

2. Augmented path P
+
n ∈ C;

3. Fat paths Kn+
·
K3, K3+·

K3+·
Pn, Km+

·
Pn

(more?)

4. Any class closed under homomorphism

5. . . . or an extension of a known class by such

a class

Example

C a finite collection of cycles

Then there is a universal C-free graph if and

only if C consists of all the odd cycles up to

some length 2N +1.
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The Model-Theoretic Point of View

GC: C-free graphs

EC: existentially complete C-free graphs

Bad example

C: all cycles;

EC: Trees with all vertex degrees infinite

Not an elementary class.
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Theorem

For C a finite set of connected graphs, the class

EC is elementary. and its theory is complete.

Corollary Tfae:

1. There is a universal countable C-free graph;

2. There is a saturated countable graph in EC;

3. The theory of EC is small (|Sn| ≤ ℵ0 all n).

Observation

Most commonly we have the extremes: either

|Sn| = 2ℵ0 for some n, or Sn is finite for all n.

Exception

Tallgren’s augmented paths, with Z-components

(and no additional edges).
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Variant: When is EC ℵ0-categorical?

Thesis. This is the natural question

I*. |C| = 1

II*. Decidability
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acl in EC

acl(A): Union of the finite A-definable sets

Theorem Tfae:

1. EC is ℵ0-categorical;

2. EC is locally finite:

for A finite, acl(A) is finite.

Growth rate problem:

g(n) = max(|acl(A)| : |A| = n)

“Counterexample”:

A “sequence” of equivalence classes

(successor relation →, equivalence relation ∼)

S2 is infinite, acl is trivial.

(Why is this not a counterexample?

Hint: the language involved is irrelevant.)
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Finiteness Lemma

If A is algebraically closed and finite,

and k = max(|C| : C ∈ C), then the type of A is

determined by its k-quantifier existential type.
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Applications

1. If C is closed under homomorphism, then

acl(A) = A for all A;

hence EC is ℵ0-categorical.

2. If EC is ℵ0-categorical, and C′ is closed

under homomorphism, then EC∪C′

is ℵ0-categorical; and gC∪C′ ≤ gC.

3. Unarity

If C consists of “solid” graphs then acl is

unary: acl(A) =
⋃

a∈A

acl(a).

4. Bowtie B:

|acl(a)| ≤ 4 (a computation) and hence

EB is ℵ0-categorical.
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Conjecture. If EC is ℵ0-categorical, then C is

a string of complete graphs.

Conjecture. If EC is small, then C is a nearstring

of complete graphs.
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Homomorphisms

h : G1 → G2 edge preserving.

Hence if h(u) = h(v) then u 6∼ v.

C is closed under homomorphisms if: C ∈ C,
C ։ C′ implies ∃C′′ ∈ C C′′ →֒ C′.

Theorem Tfae:

1. A 6= acl(A);

2. There is C ։ C′ ⊆ G with C ∈ C,

so that C →֒ ⊕AC
′
i.

Proof (1 ⇒ 2):

G1 ⊕A G2, G1 ≃ G2 ≃ G;

C →֒ G1 ⊕A G2 ։ G1; image C′.

Corollary:

Closure under homomorphism implies:

acl(A) = A;

hence ℵ0-categoricity.
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Example: Cycles

C2n collapses to K2—not interesting.

C2n+1 generates C2m+1 for 1 ≤ m ≤ n.

Trivial algebraic closure, nontrivial theory.

Why is the amalgamation method harder here?

—It involves an explict calculation of the type

structure.
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Unarity, growth rates, and other details

Explicit computation of acl

A ⊆ H ⊆ G

cl(A;H): A together with the union of all min-

imal bases B for H over A:

H free over A ∪B, and B minimal.

Lemma cl(A;H) ⊆ acl(A)

Proof: ∆-system lemma

F: {(A,H) : H →֒ C ∈ C, properly}.

Theorem

1. F − cl generates acl;

2. F − cl is locally finite

Problem: length of the iteration.
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Theorem

1. F − cl generates acl;

2. F − cl is locally finite

Proof:

2. F − cl(A) is a definable subset of acl(A)

1. As before, h : C →֒ G1⊕XG2; H = h(C)∩G2.

For applications:

Refine F;

Study the length of F-cl chains.

If C is solid, then F-closure is generated by

unary closures cl(a;H).

Reason: this is where the transition from G1

to G2 takes place.
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Open problems:

1. Coding and decidability

General relational systems and graphs.

2. Sets of 2-connected graphs

Unify Füredi-Komjáth (2-connected graphs)

and Cherlin-Shi (sets of cycles)

3. Trees

Done: bushy trees, bridges,

generalized stars

4. Short solid graphs

Beyond bowties:

Km+
·
Kn (m,n ≥ 4); K3+·

K2+·
K3.

5. Growth rates

gPk
(1) = k? (Known bound: k3k)
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