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Algebraicity Conjecture
An infinite simple group
of finite Morley rank

IS
an algebraic group.

I. Ancient History
II. Borovik's program: The 4 types
III. Mixed and Even Type

IV. Odd type



Part I. Ancient History

Lindstrgm

Categoricity = model-completeness for V4.

Morley, Baldwin, Zilber

Categoricity and (finite) Morley rank.



Macintyre

An infinite Np-stable field is

algebraically closed.

Kegel & Wehrfritz

loc. finite Mgroups satisfying min-p
(all p)

(centralizer)-connected

Baldwin-Saxl

Intersections of uniformly definable groups
are uniformly definable.



Uncountable Categoricity: Fine Structure

Zilber If M is uncountably categorical and not
almost strongly minimal then M interprets an
infinite group G which is either:

(a) abelian; or

(b) simple.

Algebraicity Conjecture: A simple group of
finite Morley rank is algebraic.



Two theorems of Zilber

I. If G is a simple group then the following are
equivalent:

A. G is uncountably categorical

B. G has finite Morley rank.

II. If G is a solvable and centerless connected
group then G has two sections K,T" such that:

1. K carries the structure of
the additive group of a field F’';

2. T carries the structure of
a multiplicative subgroup of F

3. T acts on K by conjugation,
via multiplication



A broader view

Zilber Conjecture All structures of dimension
1 occur in nature.

With a little work (Weil, van den Dries, Hrushovski)
this conjecture implies the algebraicity conjec-
ture. However . ..



Hrushovski It's false. There are:

1. A 1-dimensional set on which two incom-
patible field structures coexist.

2. A 1-dimensional set of nonlinear type which
does not involve any infinite group (much
less field!).

(On the other hand .. .)



Part II. Borovik’s program: The Four
Types

Determine the possible 2-Sylow structures in
a minimal counterexample.

Sporadics?

K*: Np-stable, and every proper definable con-
nected simple section is algebraic.

e 2-Sylow® subgroups
e [ he four types

e Bad fields



p-Sylow® structure in algebraic groups

Characteristic p:
unipotent — [bounded exponent, definable]

Model: Strictly upper triangular matrices.

Other characteristics:

semisimple — [divisible abelian]

Model.: Diagonal matrices with entries suitable
roots of unity.
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2-Sylow® structure in groups of FMR

S=U~x"T:
2-Unipotent x 2-torus
with finite intersection

Types
Y # =1
*= 1 | Mixed Odd
=1 | Even | Degenerate

11



Bad fields
(K;T) T < K* proper, infinite.
Poizat
They “appear’ to exist in characteristic O.
wagner

They appear not to exist in characteristic p,
because:

a) The algebraic elements must form an ele-
mentary substructure.

b) There must be only finitely many p-Mersenne
primes.
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Consequences:

1. A simple group definable in a “pure” bad
field of positive characteristic is algebraic.

2. The multiplicative group of a field of
finite Morley rank and positive characteristic is
a good torus in the sense that each subgroup
is the definable closure of its torsion.
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Part III. Mixed Type and Even Type
Theorem [ABC, Jaligot, Altinel]

G simple, FMR, with every definable section
of even type algebraic

Then GG is not of mixed type.

Quasi- T heorem
[..., punch-lines by Berkman and Tent]:

G simple, FMR, even type, with no degen-
erate simple sections

Then G is algebraic.

Reference:

http://www.math.rutgers.edu/cherlin/Eventype
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Altinel’'s Jugendtraum
Can we treat even type absolutely?
Theorem [Weak Solvability]

G simple, FMR, even type, with a weakly
embedded subgroup M.

Then M/O>(M) is of degenerate type.
Remark [Borovik]

X solvable connected QL, faithful on U a
connected abelian 2-group

Then X is a torus.
Proof:

F(UX)=U.
Remark [Altinel]

This X is a good torus.
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Part IV. Odd Type

Borovik Trichotomy: Tame Case

(a) pro < 2; or

(b) proper 2-generated core; or

(¢) Classical involution, and B-conjecture
Berkman: Case (c¢) is algebraic.
Borovik-Nesin (?): Case (b) is algebraic.
Issues:

Remove, or reduce, the dependence on tame-
ness.

Handle the “small” cases of (a).



Elimination of Tameness
B-Conjecture: O(C(2)) = 1.
Tame
—
O(C(2)) is a nilpotent signalizer functor

—
B-conjecture

O(C(#1))NC(7) =0(C()) NC(>%)
Idea: U(C(2)) = unipotent part.
E.g. Up(C(7)).

lonll
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Root subgroups
A is abelian and indecomposable
r(A) =rk(A/rad A), maximal
A/rad A is torsion free
Uo(H) = (root subgroups of H)

Properties of Up

1. If H is solvable, then Uy(H) is nilpotent.
2. Up(H) is a signalizer functor.

3. If all Up(H) = 1, then H is a good torus.
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Tame minimal simple groups of odd type
Theorem [CJ]

G tame minimal simple group FMR, of odd
type, S Sylow 2-subgroup of G, A = w1(S°),
T = Cg°(S°), C = Csz°(A), W = N(T)/T,
(Weyl group). Then pro(G) < 2 and one of:

1. pro(G) = 1:
1a. C not a Borel: then G is PSL>(K)

1b. C a Borel: If W # 1, then C =T is 2-
divisible abelian, |W| = 2, W acts by inversion
on T, and N (T) splits as T'xZ». All involutions
in G are conjugate.

2. pro(G) = 2:

T = C = Cg(A) is nilpotent, |[W| = 3, all in-
volutions of G are conjugate, and G interprets
an algebraically closed field of characteristic 3.
Furthermore . ..
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