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Abstract

We discuss two combinatorial problems concerning classes of finite or count-
able structures of combinatorial type. We consider classes determined by
a finite set of finite constraints (forbidden substructures). Questions about
such classes of structures are naturally viewed as algorithmic decision prob-
lems, taking the finite set of constraints as the input. While the two problems
we consider have been studied in a number of natural contexts, it remains
far from clear whether they are decidable in their general form. This broad
question leads to a number of more concrete problems. We discuss twelve
open problems of varying levels of concreteness, and we point to the ”Hairy
Ball Problem” as a particularly concrete problem which we state both in
direct model theoretic terms, and decoded as a completely explicit graph
theoretic problem.
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1. Introduction

1.1. Dichotomies for Combinatorial Structures

We will discuss two problems which concern classes of combinatorial
structures—in the first case finite structures, and in the second case count-
ably infinite ones. The classes we consider are defined by finitely many
constraints provided by “forbidden substructures.”2 Influenced by logic—
complexity theory on the one hand, model theory on the other— we tend
to put these problems in a very broad context, but open questions abound
at all levels. A considerable body of concrete work has been undertaken on
both problems in a number of contexts, but there is a great deal of similar
territory remaining largely unexplored. Our survey includes some new re-
sults that we find clarifying. We have put most of the detailed discussion of
the new results in three Appendices, referring to them as needed in the text,
with an indication of the line of argument. This includes some results to the
effect that “Here there be tygers,” which are intended to justify some of the
restrictions we impose.

One of the aims of general model theory has been to prove a dichotomy for
the behavior of the most general classes of structures: the so-called “struc-
ture/nonstructure” alternative, in Shelah’s parlance. According to this di-
chotomy, when one looks at large infinite models of first order theories, one
either has a coherent structure theory which in the first instance allows one
to estimate the number of models, and to proceed from there to more deli-
cate results, or on the other hand one finds a degree of chaos which can be
expressed in a number of ways, the essential point being that the behavior
of the models in the nonstructured case is more a matter of set theory than
of algebraic structure.

Are there any similar phenomena in the world of finite (or nearly fi-
nite) combinatorics? We will confine ourselves to classes of structures with
very simple definitions, namely with classes defined by finitely many con-
straints of the simplest kind: forbidden substructures. We consider notions
of “tameness” and “wildness” appropriate to this context, and we undertake
to analyze the gap between the tame and the wild.

2Graph theorists and model theorists use the term “substructure” in distinct ways: see

Note 2 in §4. We follow graph theoretic usage here.
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The two notions of tameness with which we will work are the following:
first, well-quasi-order; secondly, the existence of a countable universal object.
If we followed the pattern of model theory exactly, we would be looking to
show that the wild case is extremely wild in some sense; in the first of our
two cases we doubt this, and in the second case, while it seems to be true, it
is not really the point. For us, the natural question at this level is whether
the separation between the tame and wild cases is effective (algorithmically
decidable). Indeed, that is simply a precise way of stating that the two cases
can be clearly separated. For our two interpretations of tameness—and no
doubt, many others—it is completely unclear at this stage whether such a
separation occurs. All one can really say to date is that when one works on
instances of these problems, they seem difficult, and not entirely unlike some
known undecidable problems.

Let us take up these two problems one at a time.

1.2. The WQO Problem

Here we deal with the class Q of all finite structures of a particular com-
binatorial type. This may be the class of (finite) graphs, tournaments, di-
graphs, permutation patterns, matroids, and such. We take a finite subset
C of Q, the forbidden substructures, and consider the subclass QC of struc-
tures in Q containing no substructure isomorphic to any C in C. A note
on terminology: we use the term “substructure” here in much the same way
that graph theorists use the term “subgraph;” and this is not consistent with
standard model theoretic terminology. See Note 2, §4.3 for more on this
point, and also §1.6 and Appendix 3 (§7).

As Q is not actually a set, one may prefer to cut it down by taking all
structures under consideration to have their elements in a fixed countable
set; or indeed by working with isomorphism types rather than structures.
We will not concern ourselves with the choice of formalism.

The relation that interests us here is the embeddability relation on Q:
a ≤ b if a is isomorphic with a substructure of b. Then Q is a quasi-order, and
the equivalence relation given by a ≤ b ≤ a is the relation of isomorphism.
All of these quasi-orders are well-founded, that is there is no infinite strictly
descending sequence a1 > a2 > . . . .

In general, a quasi-order is said to be well-quasi-ordered (wqo) if it is both
well-founded and contains no infinite antichain (i.e., set of pairwise incompa-
rable elements). The problem we wish to consider—in its first formulation—is
the following.
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Problem (A). With Q and C specified, is QC wqo? In other words, does QC

contain an infinite antichain?

We consider some illustrative examples.

Fact 1.1.

1. Let L be a finite linear tournament. Then the L-free tournaments are
wqo (in fact of bounded size, by Ramsey’s theorem) . . .

2. But if T is a nonlinear tournament, with at least 7 vertices, then the
T -free tournaments are not wqo (by [33], because of two very special
antichains serving to witness this in all cases).

This gives the following corollary.

Corollary 1.2. The finite tournaments T for which the class of T -free tour-
naments is wqo can be recognized in polynomial time.

Results of this kind often have a paradoxical quality: Fact 1.1 doesn’t ac-
tually tell us how to determine which side of the fence a particular constraint
T will actually fall, if T is nonlinear and very small, nor does it give us any
hint as to how one should find out in such cases. But once the number of
cases left unsettled is finite, and the others are cleanly handled, the problem
becomes polynomial time decidable. At the same time, it is precisely the
finitely many cases left over that tend to be the real challenges in practice,
and in the present instance it took extensive structural analyses of the classes
QT associated with two of these “left over” tournaments T , and then an ap-
plication of Kruskal’s tree theorem [31], to convert this abstract statement
into a definite answer.

Thus a proof that a problem is solvable is not at all the same thing as
a solution, and the distinction is worth bearing in mind. But we find the
question, whether such combinatorial problems are solvable in principle at a
systematic level, to be one with its own interest.

At the level of generality of the problems we consider, algorithmic decid-
ability per se is the natural question. But one curious feature of the wqo
problem is that decidability results are obtained by noneffective methods,
and that the resulting algorithms whose existence is proved are “good” in
the conventional sense of polynomial time computability, even though no
single correct algorithm is produced, and for that matter in certain cases no
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explicit bound on the degree of the associated polynomial can be extracted
from the decidability proof. This is not a new phenomenon; it comes with
the general territory of wqo theory [18, §8].

We restate our problem in the form that actually concerns us.

Problem (AQ). With Q fixed, for example the class of finite tournaments,
and with C varying, is Problem A effectively solvable (and if so, in polynomial
time)? That is, is the function taking us from the specification of C to the
answer, a computable function?

Our thesis is this: if the classification of classes of the form QC into wqo
and non-wqo cases can be accomplished effectively, then we have a real di-
chotomy, with a gap between the two cases (possibly revealed by the proof!);
and if not, then this expresses the absence of any clear borderline separating
the two alternatives.

This puts us in mind of Wang’s domino problem: given a finite set of tile
types (square tiles of fixed size, but with any of a finite number of “colors”),
and some tiling rules allowing only certain pairs of tile types to be juxtaposed
horizontally, and certain pairs vertically, to determine whether the plane
can be tiled completely using tiles of the specified types, and respecting the
constraints. (One can also encode the “colors” by small variations in shape,
so that this becomes literally a geometric problem of completely covering
the plane.) This problem was shown to be undecidable by Berger [2]. In
particular, this refuted a conjecture by Wang that any set which allows such
a tiling would allow a periodic one.

Wang’s conjecture would have given a clean separation between the two
possibilities; and we think Berger’s result may reasonably be taken to mean
that there is no clear line of separation, in the case of Wang’s problem.

And we raise the same question for the wqo problem.

1.3. Universal graphs with forbidden subgraphs

To approach our second problem, we first consider some examples.

Fact 1.3.

1. [45, 1964] There is a universal countable graph.

2. [28, 1988] For any path P , there is a universal countable P -free graph.

3. [20, 1981] There is no universal countable C4-free graph.
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Universality of G usually means the following here: for each countable
graph H in the class under consideration, there is an induced subgraph of G
isomorphic to H . If we require only an embedding as a subgraph, we speak
of weak universality, and on such occasions, we may refer to our usual notion
of universality as strong universality, for emphasis. One prefers to prove the
existence of universal graphs in the strong form, and the nonexistence in the
weak form, taking special note of the rare instances where a weakly universal
graph exists but a strongly universal one does not.

The Rado graph [45] is often built probabilistically, or explicitly, though
neither approach lends itself well to the natural generalizations.

The universal graph with a forbidden path [28] is handled differently: this
is based on a structure theorem for the class in question.

Lastly, with the cycle C4 forbidden, we find ourselves on the other side
of the fence. We will describe how one obtains negative results in such cases
much later, in §3.

Now we consider the general case, specifying a class Q of finite or count-
ably infinite combinatorial structures, and a finite constraint set C, whose
elements are finite, and preferably connected as well. The appropriate no-
tion of connectedness for structures of general type is connectedness of the
Gaifman graph, whose vertices are the elements of the structure, with edges
between any two vertices which occur within some n-tuple for which one of
the basic relations of the structure holds.

Problem (B). With Q and C specified, determine whether there is a univer-
sal structure in QC.

Of course we mean to ask this in a more algorithmic spirit, as follows.

Problem (BQ). With Q fixed, for example the class of countable graphs, and
with C varying, is Decision Problem B effectively solvable? That is, is the
function taking us from the specification of C to the answer, a computable
function?

This problem remains open, and probably quite difficult, even in the case
of a single constraint C. But in view of the more recent developments in the
area, which we will get into in §3, I am convinced that at least in the case of
a single constraint, this should be a decidable problem.

Beyond that, I see no strong reason to conjecture what will happen in
general. Here again, the domino problem comes to mind. We shall see
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something more about the relationship between the two problems at the end
of §3 and in Appendix 3 (§7).

Model theorists should again take note of the terminological point that
forbidden subgraphs are not forbidden induced subgraphs. We are using the
customary terminology of graph theory here, but when we move to a broader
context we will be dealing with the parallel notions of “substructures” and
“induced substructures” rather than “subgraph” and “induced subgraphs”.

1.4. Universality with one constraint

We will not undertake a discussion of the theory underlying the analysis
of universality problems till §3, but we do want to say more at this stage
about the case of one constraint.

A good deal of the evidence for the decidability of that case is found in
the proof of the following.

Fact 1.4.

1. [17] If C is a finite 2-connected graph, then there is a universal count-
able C-free graph if and only if C is complete.

2. [10] If C is a tree, then there is a universal countable C-free graph if
and only if C is either a path, or derived from a path by adjunction of
a single edge.

It seems that the general case of a single constraint may behave like an
amalgam of these two special cases, and that some elements of a general
proof are in hand. Any connected graph C can be viewed as built up from
its blocks (maximal 2-connected subgraphs) along a tree. We conjecture that
a necessary condition for existence of a universal C-free graph is that the
blocks should be complete, and there is some theoretical basis for this, given
in §3. We do not expect the tree structure to be as simple as the foregoing
fact might suggest, but we do think the underlying tree structure will be
severely limited. If that fails, then all bets are off—and there are some basic
case studies that still need to be carried out.

In general there will have to be some nontrivial interaction between the
sizes of blocks and the structure of the tree of blocks. For example, consider
2-bouquets Km ∧ Kn: these are formed from two complete graphs Km and
Kn by joining them at one common vertex, making something perhaps more
like a bow-tie than a bouquet.
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Fact 1.5 ([14]). Let C = Km ∧ Kn be a 2-bouquet of type (m,n). Then
there is a universal countable C-free graph if and only if the following two
conditions are satisfied:

1. min(m,n) ≤ 5;

2. (m,n) 6= (5, 5).

In terms of the underlying tree structure, we are considering here a path
of length 2. I would have predicted an answer of a slightly different type,
more in the vein of:

min(m,n) ≤ 4

(or even 3)—and without the “discontinuity” at (5, 5).
A considerable amount of computation goes into results of this type. But

we have a systematic theory telling us what sort of computation is relevant,
and this will be discussed in §3. One case where we are at a loss to complete
this computation will be proposed to the reader as Problem 5.

What really gives us optimism about the general case of a single constraint
is the style of the proofs in Fact 1.4. The Füredi-Komjáth argument is
certainly malleable enough to cover more than the case of a single block (and
a more general form is given in the original paper). And the tree analysis
is based on a simple notion introduced by Shelah, called pruning, which
in the case of trees brings us quickly down to the consideration of a finite
number of topological trees (though not a finite number of isomorphism types
as graphs). Fortunately, pruning is not restricted to trees—we can use the
underlying tree structure of the blocks. We will come back to this as well in
§3.

1.5. Tame or wild

The wqo/not-wqo distinction is a natural enough way to make a “tame
vs. wild” distinction. The same cannot be said for the question of existence
of a universal graph, at first glance. Still, we shall see that the latter also
translates into a comprehensible tameness condition.

On the wqo side, it is agreeable that once a class becomes tame, so do its
subclasses. On the universality side, we begin with Rado’s graph in the class
of all graphs, so we start on the tame side, then shrink to various wild classes,
and then back again to tame cases. Or starting with a large 2-bouquet of type
(m,n), we can shrink to (5, n), then to (5, 5), and finally (5, 4) and wander
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in and out of the tame side. The virtue of “pruning” will be that it provides
an antidote to this malaise: if one lops off blocks from the constraint (with
sufficient uniformity) then this sort of erratic behavior will be eliminated.

But the theory presented in §3 provides a different and more useful per-
spective. There we will see that the class C of constraints naturally produces
a notion of “algebraic closure,” which we will denote by aclC(A), and that
the essential question is the behavior of this operator. In the favorable case,
the algebraic closure of a finite set is finite, and then there will be a universal
object. In the unfavorable case, where aclC(A) is infinite with A finite, we
cannot immediately conclude that there is no universal C-free graph. But
apart from a few simple cases with a particularly straightforward structure,
this has been the case in practice.

So the tameness in question here is the tameness of an associated closure
operation, which in its most rudimentary incarnation (in locally finite graphs)
is given by simply taking the connected components of the elements involved,
but which in general is connected to the structure of the constraints in C in a
subtle way. The task of the general theory is to lay out this connection, and
then the bulk of the concrete results come from understanding something
about this closure operator in practice.

1.6. Varying Q

Our discussion so far has ignored the effect of varying the context Q
in which the problem is treated. Decision Problem A arose in the context
of tournaments, because it was associated with a natural decision problem
relating to homogeneous digraphs in view of [8]; and Decision Problem B
comes directly from the graph theoretic literature, e.g. [45, 41, 27, 28, 19, 26].

But these problems, and the theory that goes along with them, make
perfectly good sense for combinatorial structures of arbitrary type. And that
is the natural level at which to pose these problems as algorithmic questions.
One may also look for “reduction theorems:” these would state that posing
these problems in a single natural context exhausts the range of problems of
this kind, up to effective reductions.

One reduction theorem has been proved to date: Decision Problem BQ,
for general combinatorial structures, reduces to the same problem posed in
the context of graphs with a coloring of the vertices by two colors [13]. This
reduction was one step in a project aimed at proving the undecidability of the
problem for graphs. The reduction theorem was intended to provide a key
bridge, but this particular bridge lacks supports at either end. On the one
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hand, we never found a setting in which these problems could be shown to
be undecidable; and on the other hand, we could not get that encoding to go
into the class of graphs. Even so, the problem for graphs with colored vertices
is amenable to the same range of techniques as the problem for graphs, and
knowing that this is the general case does provide some additional incentive
for taking it up in that form.

As far as Problem AQ is concerned, the issue of reductions has never been
taken up seriously. It is not clear how one would approach that, but it is
worth looking into.

1.7. Plan of the Paper

Our plan for the rest of the paper is to take up the two problems discussed
again from the point of view of the general theory, and to indicate how that
theory has shaped the work to date and what it suggests about the natural
continuation in concrete cases—in the absence of a major breakthrough from
the side of undecidability, of which there is little sign at present.

§2 deals with Decision Problem AQ. In the first two subsections we de-
scribe work by Latka [33, 34, 35] on this problem for the case of tournaments,
in the case of a single forbidden subtournament, and a general finiteness re-
sult from [9] which amounts to the statement that results qualitatively similar
to Latka’s also hold for classes of tournaments defined by any fixed number of
forbidden subtournaments. Our finiteness theorem provides remarkably little
information about the actual content of such results, as the method of proof
is a nonconstructive argument typical of the theory of well quasi-orders.

In the remaining parts of §2 we look at some other instances of the wqo
problem. Guoli Ding [16] found that wqo problems for the case of (sym-
metric) graphs with forbidden subgraphs are very simple (§2.3). He showed
that up to equivalence there are only two minimal antichains, and only one
of these antichains is isolated. Turning to the case of permutation patterns
(§2.4), we take note of considerable recent progress on the structure of mini-
mal antichains and the wqo problem. As in the case of tournaments, there is
as yet no complete classification ([52]). In §2.5 we examine a much simpler
quasi-order (on vertex colored paths) in which one can identify the isolated
antichains explicitly and solve Decision Problem AQ. There are very natural
embeddings (encodings) from the quasi-order of colored paths to the quasi-
order of tournaments that with one small variation account for the known
minimal antichains of tournaments, as discussed in §2.6. It is unclear to
me whether the known antichains of permutations can be accounted for by
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encodings of ordered paths, or any similarly elementary combinatorial struc-
tures. There is a systematic theory of construction in that case, but it is
more subtle than in the case of tournaments.

In §3 we take up Problem BQ in the context of graphs, and we do not stray
much from that context. Our survey focuses on the general theory of [11]
and the applications in [17, 10, 14], leading to the suggestion that something
like an effective solution should be available in the case of one constraint,
giving in particular the decidability of the problem in that case. We remain
completely uncertain whether the problem is decidable for an arbitrary finite
set of constraints, and we take note of the attempt in [13] to build a machine
for interpreting some undecidable problem. Our tools for solving the problem
have gotten well ahead of our tools for proving undecidability, which may
not say much about what the final result will be, but explains the current
directions of research. In particular we will explain how Shelah’s simple but
powerful “pruning” operation allows something like an inductive approach
to the problem [10].

Apart from these matters, which are covered in the literature, we address
three others: (1) we give some motivation for the consideration of Problem
BQ in terms of forbidden substructures rather than in terms of forbidden
induced substructures; (2) we treat the special case of Problem BQ in which
the graphs involved have bounded vertex degree; (3) we show that an impor-
tant conjecture relating to universal graphs with one constraint (Conjecture
3) will fail in the context of an arbitrary finite set of constraints.

Concerning the first point, we show in Appendix 3 (§7) that Problem
BQ becomes undecidable if we allow a finite set of induced subgraphs to be
forbidden. In §3.6 we give a weaker result with similar content and a more
direct proof.

For the second point, we sketch a proof that Problem BQ becomes de-
cidable when restricted to graphs of bounded vertex degree (Proposition 3.4,
with more details given in Appendix 2 (§6)). The general theory of [11] de-
generates in this case to a straightforward study of connected components
of C-free graphs. In particular our basic Theorem 2 becomes obvious when
specialized to that context. It may be useful to think of the theory in general
as an extension of that analysis. But the solution to Problem BQ for the case
of bounded vertex degree does not suggest a similarly direct solution for the
general problem, even with this theory in place.

The third point relates to the theory of algebraic closure introduced in
§3.2. The complexity of this operator reflects the structure of the constraint

12



set. As we shall see, Conjecture 3 of §3.3 would support a direct approach to
decidability for universality problems in the case of one constraint. The fact
that the natural extension of this conjecture to the case of a finite constraint
set fails argues against such a direct approach in general.

The proof of Proposition 3.4 got a little out of hand, so we just sketch
the proof in §3.4, and give more detail in Appendix 2. In both §3.4 and the
appendix, we pay more attention to the underlying structural analysis than
to the decidability question per se.

One of the more concrete conjectures in the present paper is the Hairy
Ball Conjecture of §3.4, which we take some pains to make explicit in purely
graph theoretic terms in §3.5. This concerns an infinite family of constraints
C for which the existence of a universal C-free graph is plausible, though far
from certain. Such families are rare, and in the past have been fairly easy to
identify when they do exist. The obstacles to the analysis in this case appear
to be essentially graph theoretic.

§4 concludes the paper with a review of open problems touched on in
§§2,3, and concludes with some technical notes concerning matters that a
reader—particularly, a reader with a background in model theory—might
expect to see addressed somewhere.

The three concluding appendices alluded to then follow, with detailed
discussions of three results which are discussed more briefly in the exposition:
universality problems for graphs of bounded vertex degree, universal graphs
for which the associated operation of algebraic closure is not unary, and the
undecidability of universality problems when the constraints are forbidden
induced subgraphs.

2. Minimal Antichains in Well-Founded Quasiorders

The quasiorders that concern us have the following two properties.

• They are well-founded: there is no infinite, strictly decreasing chain;

• They are essentially countable, and effectively (and even, efficiently)
presented.

While we are concerned with arbitrary finite graphs, digraphs, and the like,
and hence with proper classes of structures, this could all be rephrased in
terms of isomorphism types; or with less need for paraphrasing, in terms of
structures whose elements are taken from a fixed countable set. When we
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deal with questions of effectivity some such approach should be taken, but
we leave the details aside.

Let Q be a well-founded and effectively presented quasiorder. For C ⊆ Q,
Q≥C is {q ∈ Q : ∃c ∈ C, q ≥ c}, and QC = Q \ Q≥C , an ideal (i.e., lower
set) of Q. We normally take C finite. The problem that concerns us is the
following.

Problem (AQ). Is there an effective (more particularly, polynomial-time)
procedure to determine whether, for a given finite C ⊆ Q, the ideal QC is
wqo?

For this question to be meaningful, at a minimum the elements of Q
must be coded effectively; but for the question to be not only meaningful,
but reasonable, the structure that Q imposes on those elements must also be
given effectively.

Our aim is to present a finiteness theorem for Problem AQ in the con-
text of well-founded quasiorders in general, which goes some distance toward
solving the restricted version of Problem AQ in which the constraint set C is
not only finite, but is taken to have k elements, with k fixed in advance. As
the failure of wqo is witnessed by infinite antichains, our finiteness theorem
aims to show that only finitely many antichains are relevant, for fixed k.
After that, what remains to make this effective would be to show that the
antichains involved are themselves sufficiently effective, in a precise sense.
We sidestep the question of finding the relevant set of antichains effectively
by fixing k; to solve Problem AQ would involve knowing not only that a
suitable finite set of antichains exists for each k, but also giving a method to
find such a set effectively. Above all the “halting problem”, that is, deciding
when the promised finite set has been completely enumerated, is very hard
in practice.

After proving the finiteness theorem, we will illustrate its content in the
context of tournaments, and also of graphs. One proceeds by looking for the
promised finite set, and as long as one has not found it, in practice one knows
how to keep looking effectively; once one has found it, proving that the search
is over becomes particularly difficult. In the nontrivial cases studied to date,
it is here that Kruskal’s tree theorem comes in; this says, roughly, that finite
trees carrying labels taken from a wqo set form a new wqo set with respect
to an appropriate notion of embedding.

Or we may put the difficulty like this: it is easier to realize that an ideal
QC is not wqo, when that is the case, than it is to realize that an ideal QC

14



is wqo, when that is the case. We will see this concretely below.

2.1. The finiteness theorem

An antichain inQ is a subset I whose elements are pairwise incomparable.
There is a natural quasiordering on infinite antichains defined as follows:

J ≤ I iff: ∀j ∈ J ∃i ∈ I (j ≤ i)

And then J < I if J ≤ I and for some j ∈ J and i ∈ I we have j < i.
We call an antichain I minimal if it is infinite, and if for any infinite

antichain J with J ≤ I, we have J ⊆ I; but here, by abuse of notation, we
will say J ⊆ I if each element j of J is equivalent to an element i of I in the
sense that

j ≤ i ≤ j

The following easy lemma is a version of Nash-Williams’ “minimal bad
sequence” argument [40].

Lemma 2.1. Let Q be well-founded and let I be an infinite antichain. Then
there is a minimal antichain J with J ≤ I.

Proof. Choose elements ji (i = 0, 1, 2, . . . ) as follows. Writing Jk = {ji :
i < k}, we let ji be a minimal element of the set

{j : ∃J i ≤ I infinite (Ji ∪ {j} ⊆ J i)}

Then ji is defined for all i, inductively, and J =
⋃

Ji is an antichain with
J ≤ I. We claim that J is a minimal antichain.

If J ′ ≤ J is an infinite antichain then we may adjust J ′ so that if j′ ∈ J ′

is equivalent to ji ∈ J then in fact j′ = ji. This will lighten notation. We
claim that J ′ ⊆ J .

As J ′ ≤ J we have for each j′ ∈ J ′ an element ji ∈ J so that j′ ≤ ji,
and more particularly, either j′ < ji or j′ = ji. If for some such pair we
have j′ < ji, and we take i minimal, then Ji ∪ J ′ is an antichain containing
Ji ∪ {j′}, and then the fact that j′ < ji violates the choice of ji. So in fact
J ′ ⊆ J as claimed.

The following observations will be important when we come to the proof
of the finiteness theorem for Problem A.

Remark 2.2.
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1. If I is a minimal antichain, then the ideal Q<I defined as {q ∈ Q :
∃q′ ∈ I q < q′} is a wqo (immediate);

2. If Q1, . . . ,Qn are wqo, then
∏

Qi, with the pointwise ordering, is a wqo
(Higman [22]).

Now we state the main result of [9].

Theorem 1 ([9]). Let Q be a well-founded quasiorder, k ≥ 0 fixed. Then
there is a finite set Λk of infinite antichains, such that for any set C ⊆ Q
with |C| ≤ k, the following are equivalent:

1. QC is not wqo;

2. There is some I ∈ Λk such that

I ⊆∗ QC

That is, there is I0 ⊆ I finite, so that I \ I0 ⊆ QC.

Proof. We proceed by induction on k. The induction goes by proving a little
more: that the antichains I ∈ Λk may be taken to be minimal antichains as
we go along.

Given Λk, we will of course take Λk+1 ⊇ Λk, and the main point is to throw
away all constraint sets |C| of size k+1 which can already be understood in
terms of Λk, and to see what remains.

Given C ⊆ Q with |C| = k+1, and any subset C ′ of C of cardinality k, if
QC′ is wqo we are done, and we discard this case. So for each such subset C ′,
we suppose there is a corresponding minimal antichain I ′ ∈ Λk, witnessing
the failure of wqo for QC′ . If I ′ ⊆∗ QC then we are again done, as we have
already put I ′ into Λk+1. So if c ∈ C is the unique element not in C ′, we
have

I ′ \ Q≥c is finite

and, in particular,
c ∈ Q<I′

So now enumerating C = (c1, . . . , ck+1) and letting C ′
i = C \ {ci}. we

conclude that there are Ii ∈ Λk so that

C ∈
∏

i

Q<Ii
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Now we have observed above that each of the quasiorders Q<Ii is wqo, and
hence their product is also wqo. In particular the subset S consisting of those
constraints

C ∈
∏

i

Q<Ii

for which QC is not wqo, is also wqo. Thus the set S has only finitely many
minimal elements. For each of these finitely many constraint sets C we may
choose a minimal antichain IC in QC , and we do this for each choice of k+1
antichains Ii out of Λk. Let Λk+1 consist of Λk together with each of these
additional minimal antichains IC , and we are done.

This argument can be turned into an iterative procedure which is in
fact a reasonable approach to concrete instances of Problem A. Namely,
one looks first for Λ0, which will be empty if Q is wqo, and will consist of a
single minimal antichain otherwise. Then one bootstraps along inductively as
suggested by the analysis given in the proof. A certain number of constraint
sets of cardinality k+1 are already handled by the set Λk, and the remaining
ones vary over a wqo family of constraint sets C of cardinality k + 1; the
expectation is that some of these will allow infinite antichains, and if specific
constraint sets are chosen judiciously they may even have unique minimal
antichains. In practice one may find these antichains quickly, as long as one
does not fall into the trap of looking for an antichain in a case where QC

actually is wqo. At a certain point, one suspects that Λk+1 has been properly
identified, and then matters take a turn for the worse. Some explicit structure
theorems are needed to prove wqo for the remaining cases, and as these are
extremal cases, the structural analysis involved may be elaborate.

Already in the case k = 1, in the case of tournaments, all of these phe-
nomena are visible, or would have been visible if the general theory had been
in place when the work was done [33].

This analysis can be pushed a little further, so we will develop the formal
side a little farther before turning to concrete cases. In [9] we expressed
this in terms of a topological space whose points are equivalence classes of
minimal antichains under the following equivalence relation:

I ∼ J iff Q<I = Q<J

So one could just as well take the corresponding ideals Q<I to be the points
of the space. The basic sets are then given by finite constraint sets C, where
the open set UC corresponds to {I ⊆ Q : I ⊆∗ QC}.
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One focuses in particular on the isolated points of this space, that is the
minimal antichains which are uniquely picked out by a finite constraint (up
to equivalence). Indeed, an isolated antichain associated with a constraint C
of size k must be in Λk, and if the isolated points are dense then Λ =

⋃
k Λk

can be taken to consist of exactly the isolated minimal antichains. When that
is the case, the issue of effectivity is simply one of an effective description of
the isolated minimal antichains. We require the following.

1. An enumeration of the finite constraint sets C which isolate a minimal
antichain IC ;

2. An algorithm for recognizing Q<IC for such C, given C (uniformly).

Most of the fundamental questions remain open, notably that of the den-
sity of the isolated points in cases of interest.

A curious feature of the inductive approach in terms of the sets Λk is
that for a fixed Q and k, if one has identified Λk, and if the antichains are
sufficiently effective in the above sense (here the first condition falls away, as
the set in question is finite), then Problem A is decidable, for the given Q
and for the parameter k + 1. This is a “bonus” that can be extracted from
the proof. At the end of the proof we see that there are only finitely many
constraint sets that remain to be understood in order to make the transition
from Λk to Λk+1, and in particular to solve Problem A fully for constraint
sets of size k + 1 it suffices to know Λk and just this finite set of additional
constraints. In other words, taking this finite set of additional constraints
as additional input to an appropriate algorithm, there is in fact an effective
solution to the problem.

It may be tempting at this point to try to bypass the Λk entirely and
work with the finiteness of the relevant collection of constraint sets to get a
soft proof of decidability of Problem A restricted to fixed size. This does not
work, as knowledge of Λk, while superfluous at stage k, becomes relevant at
stage k + 1.

2.2. Problem A for tournaments

Now let us consider, more concretely, wqo problems for classes of tourna-
ments. So in this subsection we will suppose

Q is the quasiorder of finite tournaments under embedding
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Wqo problems for classes of tournaments arose in the first instance in
connection with the classification of homogeneous directed graphs [8], and
were closely studied by Brenda Latka, with the main results presented given
in [33], which relies on two substantial classification results worked out sep-
arately as [34, 35].

For k = 0, it seems the first published construction of an antichain in
Q is due to Henson [21], who applied it to the construction of uncountably
many homogeneous directed graphs. Henson’s antichain is indeed minimal,
and therefore it may serve as the unique element of Λ0, though it turns out
in retrospect not to be the optimal starting point. In any case, with this in
hand, and looking, for k = 1, at constraints not settled by that example, one
finds out that Λ1 requires only two antichains, and that both are isolated,
and quite straightforwardly effective. One also notices that with these two
antichains in hand, one no longer needs Henson’s originally antichain, which
can now be discarded, though it will be needed subsequently as one of the
antichains in Λ2.

As we have indicated earlier, the correct identification of Λ1 is important,
but is only half the story. In this particular case, having this candidate for
Λ1 in hand already tells us the following, even before we confront the issue
of its completeness:

For any nonlinear tournament C with at least

7 vertices, the ideal QC is not wqo.

—And one of the two minimal antichains found will serve as witness.
This looks like more than half the battle: all but finitely many cases have

been disposed of, and we can show at this point that if our conjecture for the
set Λ1 is correct, it will suffice to prove just two wqo theorems to complete
the analysis, namely those for which the forbidden subtournament is either a
specific tournament of order 5, or another specific tournament of order 6 (the
latter tournament can occur in two dual forms, differing only in orientation,
but it suffices to treat one form). The required theorems turn out to be
correct, and the analysis comes to an end. Each of the two wqo theorems
requires a close and relatively lengthy analysis, given separately in [34, 35],
and of a wholly different character from all that has gone before. The main
tool at this stage is Kruskal’s tree theorem and a good deal of direct analysis
(the more recent draft of [35] also makes good use of [48]).

We emphasize that before one undertakes the proofs of the structure
theorems given in [34, 35], one has considerable confidence that a sufficiently
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close analysis will either produce the required structure theorems, or reveal a
more subtle construction of an additional antichain, and one has a theoretical
guarantee that if one continues in this fashion long enough, the process must
terminate. For the case we have described we had only finitely many cases
to consider, but in general we have a wqo set of problems to handle, and
no specific upper bound on how many iterates will be required. But we are
assured that the dialectic must come to an end, and we will arrive at utopia,
or in any case at a stopping point.

In the case k = 1, one has the anticipated structure theorems. In both
cases the tournaments excluding the given forbidden subtournament, which
has order 5 or 6, can be analyzed as built up along a tree using comprehensible
components at each stage, where the pieces involved are considered compre-
hensible if they come from sets which are obviously wqo under embedding,
such as linear orders or tournaments of a fixed bounded size.

In this direction, some of the remarkable work associated with the proof of
the Graph Minor Theorem may be relevant; we are looking for tree decompo-
sitions of tournaments, and if that side of the picture could be systematized
further in our context, then these analyses would flow much more smoothly.

With Λ1 identified, and with a proof of its correctness in hand, we have
the decidability of Problem A for tournaments, in the case of two constraints,
something realized after the fact in [9]. Our abstract knowledge of decidabil-
ity always marches one step ahead of our ability to say anything concrete
about the problem, and, in particular, gives us a clear framework for the
next step of the analysis.

We took this further in [9], finding three infinite families of isolated an-
tichains (of growing complexity in terms of the sizes of the associated con-
straint sets), and, in particular, we found a candidate for Λ2 which is reason-
able as a first try—this set contains only three new antichains in addition to
those of Λ1, one of which is Henson’s original example. We can say something
more about the construction of antichains—the known ones can be viewed as
“imported” from a simpler combinatorial setting, which we examine in §2.5.

At this point, if one believes that the candidate for Λ2 is correct, this
means that for any pair of constraints not ruled out by the known antichains,
we anticipate a structure theorem leading to a wqo result. This amounts to
a cornucopia of conjectured structure theorems, an infinite series, unlike the
previous case where there were, a priori, only finitely many instances left to
examine after the first candidate for Λ1 was put forward. The evidence for
these specific conjectures is not particularly strong, other than the finiteness
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theorem itself, which suggests that something qualitatively like this picture
should be correct.

2.3. Problem A for graphs

The wqo problem was taken up originally in the context of tournaments
for much the same reasons that Henson originally constructed one such an-
tichain: the analysis of homogeneous directed graphs.

A directed graph G is homogeneous if any isomorphism α0 : A ∼= B be-
tween two of its finite substructures is induced by an automorphism α of
G. This is a highly restrictive condition, but using a classical construction
of Fräıssé, Henson [21] showed that any antichain of tournaments translates
into uncountably many homogeneous digraphs (embedding some of them,
and omitting others, at random). Later it turned out that there are not so
many other ways to build homogeneous directed graphs, and in fact once the
Henson technique has been exploited, there remain only countably many fur-
ther examples, which can be explicitly identified [8]. As a corollary, a variety
of simple questions about these homogeneous directed graphs translate back
to the structure of the quasiordered class Q of finite tournaments, and its
finitely constrained ideals. In particular one such question, concerning the
number of homogeneous digraphs omitting finitely many specified digraphs,
translates directly into the wqo problem considered here, for the class Q.

But no doubt the problem has a similar character over a broad range
of combinatorial contexts, and with few exceptions the issue of decidability
is probably much the same, independent of the particular context. The
finiteness theorem certainly applies.

We will consider two other cases of some interest: the case of graphs, and
the case of permutation patterns. The case of graphs was treated in [16], and
in the case of permutation patterns there is a nice theory, still not complete,
which has made considerable progress recently. The problem degenerates in
the case of graphs, and to get something of the expected level of complexity
one would need to introduce a little more structure, such as a coloring of the
vertices by two colors, or any finite number greater than 1.

In the case of graphs, the first antichain that comes to mind is the col-
lection of cycles I0 = {Cn : n ≥ 3}. We claim that this single antichain gives
us Λk for all k. The antichain I0 is certainly minimal, as any J ≤ I0 which is
not simply a subset of I0 would consist, apart from finitely many elements, of
subgraphs of paths, and it is easy to see that these cannot form an antichain;
to see this, it is helpful to encode these graphs by strings giving the lengths
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of their connected components. The natural partial order on these strings,
or more generally on any strings taken from a quasiordered alphabet, is the
following:

Definition 2.3. Let Q be a quasiorder, Q∗ the set of finite strings with
elements in Q. For s = (si), t = (tj) in Q∗, we write s ≤ t if there is an
increasing function i 7→ ji such that

si ≤ tji

for all i.

In our case, the strings are strings of natural numbers, and an embedding
between two such strings—in this sense—gives an embedding of the corre-
sponding graphs. Furthermore by a result of Higman [22], if Q is wqo then
Q∗ is wqo; so with Q the natural numbers under their usual ordering, our
claim follows.

The result of Higman referred to here was mentioned earlier for the case
of strings of fixed length, just before the proof of the finiteness theorem. It is
a special case of Kruskal’s tree theorem, and is equivalent to the case in which
the trees involved have height 1 (or, applying that version several times, the
case in which they have fixed finite height).

However we claim not merely that I0 is a minimal antichain, but that
it will serve for Λk for any k, or in other words: if a graph C embeds in
infinitely many cycles, and C is a finite set of constraints containing C, then
the class of graphs QC is wqo.

Evidently, the graph C above may be supposed to be a path. The struc-
tural analysis of graphs omitting a path of fixed length was given in [28] with
an eye toward proving the existence of the corresponding universal graph, and
in [16] with a view toward the wqo problem. The proof involves strength-
ening the claim a bit and then proceeding inductively; and the strengthened
form of the claim turns out to have additional uses, so we will present this
in detail.

We consider graphs with a vertex coloring c in a wqo alphabet Σ (in other
words, an arbitrary function from the set of vertices to Σ). In this context,
an embedding between two colored graphs (G, c) and (G′, c′) would be an
ordinary embedding of f : G → G′ as a subgraph, respecting the coloring in
the sense that c′(f(v)) ≥ c(v) for v in G. In the frequently occurring case
in which Σ is finite and all elements of Σ are incomparable, this condition
reduces to c′(f(v)) = c(v).
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Proposition 2.4 ([16]). Let P be a fixed finite path and Σ a wqo alphabet.
The class of graphs equipped with a vertex coloring by Σ which omit the path
P is wqo under embedding. In particular, the class of graphs which omit P
is wqo under embedding as a subgraph.

Proof. Proceed by induction on the length n of P . It suffices to deal with
structures in which the underlying graph G is connected.

By induction, we may set aside those vertex colored graphs in which there
is no path of length n− 1. So we consider the structure of a connected finite
colored graph G, not containing a path of length n, but containing some path
P0 of length n − 1. We fix one such path P0 together with an enumeration
of its vertices. We break G \ P0 into its connected components, and pass
to a larger color set in which every vertex receives a pair of colors: first,
its original color in G; and second, the set of vertices in P0 to which it is
adjacent, coded as a subset of {1, . . . , n − 1}. Thus the enhanced coloring
uses an alphabet of the form Σ× Σ′ with Σ′ finite.

Now any connected component of G\P0 does not embed a path of length
n−1, as otherwise we have two disjoint paths of length n−1 in G, and then a
path of length n, by inspection. So by induction, the connected components
of G \P0 come from a wqo set under embedding; call this wqo set Σn−1, and
view it as an alphabet. Then G itself can be encoded by a finite string with
entries in Σn−1; here the order of the terms is unimportant, but we may fix an
order, and from the string we can uniquely reconstruct G. And indeed from
an embedding of one such string into another, in the sense just described
above, we get an embedding between the corresponding colored graphs, and
so by Higman’s theorem [22] we again have a wqo set.

Corollary 2.5. We may take Λ (i.e.,
⋃

k Λk) to be {I0}; that is, if a finite
set of constraints allows an antichain, then it allows a cofinite subset of I0.

Proof. Otherwise, one of our constraints embeds into a path, and hence the
corresponding ideal QC is wqo by Proposition 2.4.

In spite of Corollary 2.5, there is another minimal antichain of graphs,
consisting of a set of trees. The so-called arrows or bridges, are trees con-
sisting of two vertices of degree 3, joined by a path. Let this antichain be
called I1. Evidently I1 is a minimal antichain: proper subgraphs of these
trees have as their connected components paths or paths extended by one
vertex of order 3. So again the components form a wqo set, and by Higman’s
theorem the corresponding graphs do as well.
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As this antichain is not actually needed to form Λ, it gives us a sim-
ple example of a non-isolated antichain (in a topological space with only
two points). We have not yet encountered such examples in the context of
tournaments.

Ding shows that these two antichains characterize the downward closed
sets of graphs which are wqo; in other words, up to a natural notion of
equivalence, these are the only minimal antichains.

First, we clarify the notion of equivalence between minimal antichains
defined above by:

I ∼ I ′ if and only if Q<I = Q<I′

Lemma 2.6. Let I, J be minimal antichains. Then I ∼ J if and only if I∪J
is a minimal antichain (identifying points q of I with any equivalent points
q′ in J , that is points with q ≤ q′ ≤ q). In particular, if there is an infinite
antichain A with A ≤ I, J , then I ∼ J .

Proof. Suppose I ∼ J . Then no q ∈ I belongs to Q<J , and vice versa, so
I ∪ J is an antichain. Suppose A ≤ I ∪ J is another infinite antichain. Let
AI = {a ∈ A : ∃q ∈ I a ≤ q} and define AJ similarly. We may suppose that
AI is infinite. Then AI ⊆ I, by minimality. Now consider a ∈ AJ , and q ∈ J
with a ≤ q. Suppose q 6≤ a. Then a ∈ Q<J = Q<I . So {a} ∪ AI ≤ I and
thus a ∈ I up to equivalence. Thus AI ⊆ I, AJ ⊆ I ∪ J , and we conclude.

Now suppose that I ∪J is a minimal antichain (after making appropriate
identifications) and take a ∈ Q<I . Let A = {q ∈ I ∪ J : a 6≤ q}. If A is
infinite, then A ∪ {a} is an antichain and A ∪ {a} ≤ I ∪ J forces a ∈ I ∪ J .
If a ∈ I then I is not an antichain. If a ∈ J and a ≤ q′ ∈ I then as I ∪ J is
an antichain, a and q′ must be equivalent. Thus we return to the case a ∈ I
to get a contradiction.

So A is finite and in particular there are at least two q, q′ ∈ J so that
a ≤ q, q′. Hence a < q, q′ and a ∈ Q<J .

For the final point, if A ≤ I, J is infinite, then A ⊆ I ∩ J and I ∼ A ∼
J .

Fact 2.7 ([16, Theorem 2.7]). The only minimal antichains for the case of
graphs are I0 and I1, up to equivalence.

In other words, the claim is that if a downward closed class of graphs
contains no large cycles and no large arrows, then it is wqo (even, in fact,
with respect to the induced subgraph relation).

24



Ding proceeds roughly as follows. Let G be a connected graph which is
not itself a path. For any vertex v of G of degree at least 3, remove from
G all components of G \ {v} which are paths, and label v by a sequence of
natural numbers consisting of the orders of all the removed paths, in some
order. The result is a labeled graph G′ whose labels are finite sequences of
natural numbers. If G is a path, then let G′ be a single vertex labeled by the
length of that path.

Then for any two connected graphs G,H , an embedding of the labeled
graph G′ into H ′ gives rise to an embedding of G into H . So it suffices to
show that for fixed N , the labeled graphs G′ associated to connected graphs
G omitting all cycles and arrows of order at least N form a wqo set; and for
this, Proposition 2.4 suffices. In the first place, the set of labels is a wqo set.
In the second place, it turns out that the reduced graphs G′ contain no paths
of length 3N , as one can see by considering a path P of maximal length in
G′, and attempts to extend P further at one end or the other.

Wqo problems relative to the partial ordering of embeddability as an
induced subgraph were also considered in [16, 42]; here the constraints are
forbidden induced subgraphs. We are not aware of any very systematic at-
tempt to identify the minimal antichains relevant to finite sets of constraints,
in this context. On the other hand, a considerable strengthening of wqo was
considered by Pouzet in [43]: he considers downward closed collections of
graphs which are wqo, and remain wqo if one allows arbitrary vertex col-
orings by n colors. Call such classes n-wqo. Pouzet conjectures that 2-wqo
classes are already n-wqo for all n. An easy argument shows that all such
classes are determined by finitely many constraints, which is not true of wqo
classes in general. This is discussed in detail in [15], along with a systematic
approach to Pouzet’s conjecture.

2.4. Problem A for permutations

We deal here with (finite) permutations omitting certain patterns. As
Cameron observes in [7], this falls under our structural point of view by
considering a permutation to be encoded by a pair of linear orderings; the
isomorphism types of permutations are then permutation patterns. The study
of such permutations arises naturally in the theory of sorting; in particular,
permutations that can be sorted back to standard order using a stack (last-
in, first-out) are those omitting the pattern (231), and the number of such
permutations on a set of order n is given by the Catalan numbers [25].

25



The theory has grown considerably, with considerable emphasis on enu-
meration (explicitly, or asymptotically), as well as the connection with com-
putational issues (such as more elaborate sorting devices). See [3] for a
survey. For some naturally occurring downward-closed classes (such as those
associated with particular sorting mechanisms) it is not immediately clear
that there is a characterization by a finite set of forbidden patterns: in other
words, the minimal unsortable permutations could possibly form an infinite
antichain. So the study of infinite antichains of permutations naturally ac-
companies the subject, and is the subject of Chapter 7 of [3].

One can find a discussion of recent work on the structure of minimal
antichains of permutations in the thesis of Waton [52] and a survey talk by
Brignall [5], and we will go over some of this together with a little ancient
history. Our Decision Problem AQ, for permutations, is given as Algorithmic
Problem 2.7.5 of [52]. Also worthy of note here is the Enumeration Problem,
given as Algorithmic Problem 2.6.4: if a downward closed class has a finite
description, is its enumeration function computable in polynomial time? (In
[52] the notion of finite description is understood broadly; it certainly includes
any specification by finitely many forbidden patterns.)

The first antichain given in [52, p. 35], omits decreasing sequences of
length 3 (i.e., the pattern (321)). It can be derived from the zigzag, which
for odd length n would be:

σn = (3, 1; 5, 2; 7, 4; 9, 6; . . . ;n, (n− 3); (n− 1))

We may replace the initial pair 3, 1 and the final pair (n − 3), (n − 1) by
a pattern of type 2341, relabeling the remaining terms to avoid clashes, as
follows

σ′
n = (2351; 7, 4; 9, 6; 11, 8; . . . ; (n+ 2); (n− 1), (n+ 3), (n+ 4)(n+ 1))

Under an embedding of one such permutation σ′
n into another σ′

m, the
index 1 goes to an index preceded by three larger ones; so it goes to itself,
and the map is the identity on the “anchor” consisting of the first four entries,
and once the pair 5, 1 are fixed, then so are 4 and 7, 6 and 9, etc., till at the
end a contradiction is reached if m 6= n.

Evidently, the structure of this antichain is that of an oriented path with
the ends colored.
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Figure 1: σ′

11

Just as in the case of tournaments, the set Λ1 (the finite set of minimal
antichains needed to settle all wqo problems for the case of one constraints)
has been fully identified for the quasiordering on permutations, and consists
of three antichains, of which the one shown is the most straightforward [1],
leading to the result that for a single constraint α, the set of permutations
avoiding the pattern α is wqo if and only if α is one of the following:

(1), (12), (21), (132), (213), (231), (312)

It also follows that the problem to decide whether a closed class of permu-
tations determined by the exclusion of two given patterns is wqo is decidable
in polynomial time. But as far as I know there is as yet no known algorithm,
and for that matter no bound on the degree of the relevant polynomial.

There is also a very elegant and general construction of a variety of mini-
mal antichains (known as “fundamental antichains” in this neck of the woods)
in a systematic way, more subtle than the method we will describe in §2.6.
This is based on the two-dimensional nature of permutations when one en-
codes them as a pair of linear orderings (equivalently, in terms of the graph
of σ as a subset of the plane, with the axes ordered).

The permutation is then a scattered set of points lying within a square. If
one imposes a grid structure on this square with a fixed number of boxes, and
requires that the permutation misses some boxes, and meets the remainder
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in monotonically increasing or decreasing sequences, then with the grid fixed
we get a large number of downward closed classes of permutations. Further-
more the grid structure is encoded by a matrix with entries ±1 where the
permutation is required to be monotonic, and 0 where it is required to be
absent.

Murphy and Vatter give an explicit criterion for such a matrix to define
a wqo set of permutations in terms of a graph derived from the matrix: the
associated class is wqo if and only if the graph contains no cycles. Further-
more, the proof of the failure of wqo is by an explicit construction of minimal
antichains which “wind around” such a cycle [39, 52, 5].

To quote one more point from [52], while the wqo problem for classes
of permutations defined by grid constraints has been solved, whether these
classes are themselves defined by finitely many constraints is open. Quoting
from §4.9: “The basis problem is particularly frustrating. It is very natural to
conjecture that every grid class is finitely based, see for example Huczynska
and Vatter [24, Conjecture 2.3]. . . . Nonetheless, a proof is not only elusive,
even an approach that hints at the beginnings of a proof has not been found.”

As a point of history, I quote a comment by the authors of [49] (linked
to their paper online) that the earliest known examples of infinite antichains
of permutations appear to be constructions by Tarjan, Pratt, and Laver in
1972, 1973, and 1976 respectively [50, 44, 36].

As Cameron also pointed out in [7], once one sees permutations as struc-
tures equipped with two linear orders, it is natural to take this as a model for
the study of more complex structures equipped with k linear orders, k ≥ 2
fixed. And this line is taken up as well in [52] (§5.9).

2.5. Problem A for colored paths

In the present subsection we will consider the quasiorder Q(c) whose ele-
ments are finite oriented paths equipped with a coloring of the vertices using
colors taken from the set {1, . . . , c} with c fixed. We aim to show that the
isolated, minimal antichains are dense, and each isolated antichain is effec-
tive (that is, membership in the corresponding ideal Qc,<I is algorithmically
decidable). And we claim that for c = 2, the class Q(2) embeds into the
quasiorder of finite tournaments in such a way that its minimal antichains
are carried to isolated, minimal, and effective antichains of the class of finite
tournaments.

We encode the elements of Q(c) by words in the language {1, . . . , c}∗ (ar-
bitrary words in the alphabet {1, . . . , c}). In this language, the embeddings
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to be considered are embeddings of one word as a contiguous segment of
another.

Definition 2.8. Let a, a′ be words in the alphabet {1, . . . , c}, of length k,
with a′ a cyclic permutation of a.

1. A word w ∈ {1, . . . , c}∗ is (a, a′)-periodic if w begins with a, ends with
a′, and is k-periodic.

2. For i, j ∈ {1, . . . , c} let Iij(a, a
′) be

{(i) ⌢̀ w ⌢̀ (j) : w is (a, a′)-periodic}

We will write these elements more briefly as iwj.

3. The pair i, j ∈ {1, . . . , c} is appropriate to the pair a, a′ as above if ia
and a′j are not k-periodic, that is i 6= ak, and j 6= a′1.

Lemma 2.9. For a a word of length k in {1, . . . , c}∗, a′ a cyclic permutation
of a, and i, j appropriate to the pair a, a′, the set I = Iij(a, a

′) is an isolated
minimal antichain in Q(c), and the corresponding ideal of Q(c) is effective.

Proof. First, I is an antichain. An embedding of iwj into i ⌢̀ w′ ⌢̀ j will
send iw into iw′, and as iw is not k-periodic it will carry i to the first entry
and thus iw goes over to an initial segment. Similarly wj goes into w′j as a
terminal segment and thus w = w′.

Now minimality holds since the sequences (iw) and (wj) associated with
I are increasing.

The fact that these antichains are isolated is an expression of their almost
periodic structure; with finitely many forbidden sequences, one can pin down
that structure.

And the effectivity is clear on similar grounds.

We will call these particular antichains “almost periodic,” of period k.
While we do not claim to have a complete understanding of the minimal

antichains in Q(c), the following gives us everything we need.

Proposition 2.10. Let C ⊆ Q(c) be finite. If Q
(c)
C is not wqo, then it contains

an almost periodic antichain.
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Proof. Let I ⊆ Q
(c)
C be an infinite antichain. Let k0 = sup(|P | : P ∈ C). Set

K = k0(c
k0 +1). For A ∈ I, let AL be the longest initial segment of A which

is k-periodic for some k ≤ K, and let AR be the longest terminal segment of
A disjoint from AL which is k-periodic for some k ≤ K.

Thinning I, we may suppose that the terms AL for A ∈ I are increasing,
with each occurring as a terminal segment of the next, and that similarly
the terms AR increase, with each an initial segment of the next. With AL

on the left and AR on the right under control, we consider the middle part
Â: A = ALÂAR. These middle terms are all distinct since I is an antichain,
and in particular their length is unbounded.

Consider A ∈ I for which |Â| ≥ K. Considering the first ck0+1 successive
disjoint paths in Â of length k0, we find two disjoint occurrences in Â of the
same path of length k0. In the notation of words, Â contains a segment ww′w
with |w| = k0 and with w′ possibly empty. Let a = ww′. Then an is C-free
for any n since ww′w is. In other words, for any cyclic permutation a′ of a,
any (a, a′)-periodic word is C-free.

We claim now that there are cyclic permutations a′, a′′ of a, and elements
i, j ∈ {1, . . . , c}, so that ia′ and a′′j are C-free and are not k-periodic. Sup-
pose the contrary, and specifically that this fails on the left: for any cyclic
permutation a′ of a, and any i ∈ {1, . . . , c} other than the final term a′k of
a′, the word ia′ is not C-free. Then this forces the initial segment of A up
through any occurrence of a in Â to be k-periodic, and contradicts the choice
of AL.

So with a′, a′′ and i, j as above, the almost periodic antichain Iij(a
′, a′′)

lies in Q
(c)
C .

In the statement of the next corollary we make use of the topological
language touched on earlier. In particular, a set I of minimal antichains is
called dense if any ideal in Q defined by finitely many constraints which is
not wqo contains an antichain equivalent to one in I. That is, the finite sets
of constraints define the basic open sets, and the nonempty basic open sets
meet I, up to equivalence.

Corollary 2.11. The isolated minimal antichains for Q(c) are exactly the
almost periodic antichains. They are dense and their ideals are uniformly
effective in the sense that the relation “x ∈ Q<Iij(a,a

′)” is decidable as a re-
lation in x, i, j, a, a′. The determination of the finite constraint sets C for
which Q(c) is wqo is effective (algorithmically decidable). The correspond-
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ing set Λc =
⋃

n Λ
c
n for Q(c) can be taken to be the set of almost periodic

antichains, and this is the minimal choice possible.

Proof. The previous proposition gives density, and we know these antichains
are isolated. Their structure is so simple as to make the uniform effectivity
clear. For the decidability of the wqo problem one must determine effectively
whether a given constraint set allows an almost periodic antichain. By our
proof, if there is a C-free almost periodic antichain, then there is one whose
period is at most K = k0(c

k0 + 1). So the problem is a finite one.
The last assertion holds (for the set of isolated minimal antichains) when-

ever the isolated minimal antichains are dense.

2.6. From colored paths to tournaments

The classes Q(c) provide more than a convenient case study: they are
readily encoded into other contexts, and give our “standard model” for the
construction of minimal antichains. It remains to make this last point ex-
plicit. Before turning to concrete examples, let us consider what sort of
encoding is wanted.

A natural way to embed Q(c) in the quasiorder of tournaments is as
follows. First find a sequence of tournaments Tn for n varying through an
infinite index set X , so that Tn has vertex set {1, . . . , n}, and so that any
embeddings Tm → Tn for m,n ∈ X must be a shift map x 7→ x + k from
{1, . . . , m} to {1, . . . , n}, as in the case of oriented paths. Represent the colors
in Q(c) by binary strings of length k where 2k ≥ c. For each vertex colored
path Pn on {1, . . . , n}, let the corresponding tournament T (Pn) be obtained
from Tn by adjoining k vertices v1, . . . , vk with some fixed structure, e.g. a
linear ordering with v1 ≤ v2 ≤ · · · ≤ vk, and using the coloring of {1, . . . , n}
to determine the edge relations between the vertices vi and the vertices of
Tn. In other words, if 1 ≤ i ≤ k, and 1 ≤ j ≤ n, let vi → j if and only if the
color c(j) associated to j corresponds to a bit string s for which s(i) = 1. In
particular, for c = 2, one additional vertex suffices.

Example 1. Let Ln be the natural linear order on {1, . . . , n}, viewed as a
tournament, and let Pn be the result of reversing the edges (i, i + 1) in Ln.
Included in Fact 2.13 below is the claim that for n, n′ ≥ 6, all embeddings
from Pn into Tn′ are translation maps from {1, . . . , n} to {1, . . . , n′}. If P
is an oriented path of order n with a vertex coloring by 2 colors, denoted
+ and −, then T (P ) denotes the extension of Tn by a single vertex v0 in
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which the orientation of the edges from v0 to the vertices of Tn is governed
by the coding. Here we identify the vertices of P or Tn with {1, . . . , n}, and
in particular with each other.

Returning to the general case, for m,n large and for most vertex color-
ings, one expects that an embedding of T (Pm) into T (Pn) will send the set
{1, . . . , m} into {1, . . . , n}, in which case it will also send each of the added
vertices vi to itself if the structure on these vertices is rigid (as in the case of
a linear order on the vi). In such cases we will get an embedding of T (Pm)
into T (Pn) if and only if there is such an embedding Pm → Pn, respecting
the coloring. Thus if (Pn) is an antichain in Q(c) one expects, after dropping
a few terms, that (T (Pn)) will be an antichain. If (Pn) is almost periodic and
if the set (Tn) is itself isolated by finitely many conditions then the T (Pn)
will be isolated, and have whatever effectivity properties the sequence (Tn)
has. There remains the question of the transfer of minimality: if (Pn) is a
minimal antichain in Q(c), is (T (Pn)) also minimal?

We need to consider the effect of removing one of the vertices vi from
each of the tournaments T (Pn). In terms of Pn, this involves a collapse of
the color set, in which certain pairs of colors become identified. For k = 1,
c = 2 this is not an issue since removal of v1 leaves us with Tn in that case.
For k > 1 it is an issue. We explore this further.

Suppose we begin with an almost periodic antichain Iij(a, a
′) in Q(c), and

we use an encoding procedure with k auxiliary vertices to convert this into
an antichain of tournaments. Here a and a′ have length ℓ, and we have
the conditions i 6= aℓ, and j 6= a′1. If we identify some colors, but avoid
identifying i with aℓ or j with a′1, then we again have an antichain, involving
fewer colors. If removal of some auxiliary vertex i corresponds to such an
identification of colors, then our antichain encoding Iij(a, a

′) is not minimal,
and contains a minimal antichain encoding an antichain Iī,j̄(ā, ā

′) involving
fewer colors.

In particular, if the colors i and aℓ are encoded by strings of length k
differing in at least two places, removal of an auxiliary vertex vi will not
identify them. If k ≥ 3 it follows that there is some vertex vi which can be
removed without collapsing either pair of colors (i, aℓ) or (j, a′1). So in our
encodings of paths by tournaments we may take k = 2 and correspondingly
c ≤ 4. Each of the corresponding antichains is either minimal, or lies above
a minimal antichain corresponding to an encoding with k = 1 and c = 2.

Now we make this more concrete, and we deal first with the construction
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of appropriate tournaments (Tn).

Notation 2.12.

1. Lk,n is the tournament with vertex set {0, . . . , n − 1}, and with edges
determined by this rule: for i < j, the pair (i, j) is an arc if and only
if j ≡ i mod k.

2. Nk,n is the tournament obtained from Lk,n by reversing the orientation
of each arc connecting successive vertices (i, i+ 1).

We should explain the idea. Begin with a linear order whose vertices are
colored by k colors; specifically, let the vertex set be {0, . . . , n− 1} and take
the residues mod k as the colors. Encode this structure by a tournament
as follows: within each class, leave the edge relation alone; between distinct
classes, reverse it. This gives Lk,n.

After that, Nk,n is derived from Lk,n by reversing precisely those edges
which correspond to the successor relation in the original structure. This is
an attempt to make the successor relation more “visible,” that is, more likely
to be preserved under embeddings from one of these tournaments to another.

Fact 2.13 ([9]). Embeddings from Nk,n to Nk′,n′ are translation maps (with
k = k′) in the following cases:

1. k = 1 and n ≥ max(6, 2k′ + 1);

2. k = 2, n ≥ 6;

3. k ≥ 3, and n ≥ 6k + 1.

This gives us an ample supply of tournaments Tn = Nk,n for our purposes.
The following seems quite likely, but we have not looked into it at this level
of generality. Some special cases were given in [9], but at that point we had
not looked separately into Q(c).

Conjecture 1. Let I be an almost periodic antichain in Q(2), and k fixed.
For P ∈ I let Tk(I) be the corresponding tournament using the sequence
(Nk,n) as the base. Then after removal of finitely many terms, (Tk(P ) : P ∈ I)
is an isolated minimal antichain in the quasiorder of finite tournaments,
whose associated ideal is effective.
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The minimality is not at issue and the isolation and effectivity do not
seem problematic, though there is something to work out. But the main
thing to check is that whatever unnatural (sporadic) embeddings there may
be between Tk(P ) and Tk(P

′) for small P, P ′, eventually die out.
Most of the antichains of tournaments given to date fall into this category.

In [9, Proposition 5.7] three antichains built as 1-point extensions of Nn (i.e.,
k = 1) were given, corresponding to the antichains Iij(a, a

′) of the following
forms:

1. a = 0m1m, i = 0; a′ = 0m1m, j = 1 or a′ = 1m0m, j = 0.

2. a = 01m0m−1, i = 1; a′ = 0m−11m0, j = 1 or a′ = 1m−10m1, j = 0.

3. a = 1, i = j = 0.

In [9, Proposition 5.3] two specific families of isolated minimal antichains
were given, built from Nk,n with k arbitrary. One of these also falls into our
current framework.

Notation 2.14. Let Nk,n,H be the variant of Nk,n in which the orientation
of the arc connecting the extreme points 0 and n− 1 is reversed.

For k = 1 this is the construction given by Henson [21], and in [9] it is
shown (sketchily) that (Nk,kn+1,H : n ≥ 6) is an isolated minimal antichain.

As only the arc connecting 0, n − 1 is reversed, this can be viewed as a
1-point extension of Nk,kn by the point kn. The periodic words involved are
a = 0k−11 and a′ = 010k−2 if k ≥ 2, and just a = a′ = 1 otherwise (as in the
third case of Proposition 5.7).

This leaves one more antichain from [9] to be accounted for. This one
comes from an even more direct encoding.

Notation 2.15.

1. If A is a tournament and v a vertex of A, then the tournament Av

obtained by doubling the vertex v has one additional vertex v∗, and for
u ∈ A, we take u → v∗ iff u → v.

2. The tournament Nk,n,D is obtained from Nk,n by first doubling 0, then
doubling n− 1.
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Again, (Nk,kn+1,D : n ≥ 6) is an isolated minimal antichain. This does
not fit into our framework of encoding Q(c). Really what we are encoding
are paths Pn with the ends marked by constants u0, u1, a simpler sort of
antichain. Indeed, there is a natural congruence on Nk,kn+1,D defined by:
u ∼ u′ if for all v 6= u, u′ we have u → v ⇐⇒ u′ → v. There are two classes
of order 2, the remainder of order 1, and the quotient is isomorphic toNk,kn+1.
So in a weak sense the endpoints are “marked” by being doubled. That this
actually gives an antichain does not immediately follow by general principles,
so one uses the embedding properties of the Nk,n to check it. However, it is
clear from the use of the doubling construction that if it is an antichain, it is
minimal. One could presumably repeat this, given other tournaments with
the properties of the Nk,n.

We recall the following.

Fact 2.16 ([33]). Λ1 may be taken to consist of I1 = (N1,n,D : n ≥ 7) and
I2 = (N2,2n+1,H : n ≥ 4).

These two antichains originally appeared as modified orders and modified
local orders, respectively, in other words they are derived from linear orders,
and linear orders with a coloring of the vertex by two colors, respectively. To
date, all known minimal antichains of finite tournaments are modest gener-
alizations of these two, as described above.

The fundamental conjecture for those in an optimistic frame of mind,
would be the following.

Conjecture 2. Within the quasi-order of finite tournaments with respect to
embeddings, the isolated minimal antichains are dense, and the associated
ideals are uniformly effective. The determination of whether a given finite
set of constraints is compatible with an isolated minimal antichain is also
decidable, so Problem AQ is decidable, for tournaments.

We see nothing unreasonable in this. One may of course read “permuta-
tion” in place of “tournament” here and get a conjecture which appears to
have much the same force.

But in the case of tournaments, we have noticed that the known facts are
compatible with the stronger statement that all of the minimal antichains
come from natural encodings of known antichains in simpler classes Q. We
consider the notion of isolation as the key here, though it may in practice
work out to some form of almost periodicity in this particular context. One
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can perhaps read the “grid” theory of permutation classes as also involving a
coding of colored paths by permutations (via “pin sequences” and symmetry
operations [5]).

An interesting question is whether we can find a direct encoding of the
known permutation antichains back into the quasiorder of tournaments. This
could give examples of (isolated) minimal antichains of tournaments quite
different from any previously encountered.

In the current state of knowledge, one may freely conjecture similar things
for any natural class of finite combinatorial structures. But if one generalizes
sufficiently far, using the methods of computability theory, one encounters
extreme examples of undecidability (cf. §4.1), which may or may not become
relevant once one deals with very rich combinatorial structures. And for that
matter, there is nothing in the current state of knowledge to prevent such
phenomena from arising in either of the cases of tournaments or permutation
patterns. Still, we think this last possibility is highly unlikely, and we’ll place
our current bets on Conjecture 2.

3. The universality problem with constraints

The subject of the present section is Problem B for graphs: given a finite
collection C of finite connected graphs, determine whether there is a universal
C-free graph.

As the constraints in C are taken to be connected, a disjoint sum of C-free
graphs is C-free. Hence, if we have a countable family (Gi) of jointly universal
countable C-free graphs—meaning, that any C-free graph embeds into one of
these as an induced subgraph—then we also have a single universal countable
C-free graph, their direct sum. So to prove non-universality one would look
for a construction of uncountably many pairwise incompatible countable C-
free graphs. This approach is not only natural, but inevitable, as we shall
see.

3.1. Graphs of bounded degree and other special cases

Among the classes of graphs determined by finitely many forbidden sub-
structures, those in which the graphs have bounded vertex degree (that is,
where a star is included among the constraints) can be analyzed in a straight-
forward manner. In fact we can show that the cases in which a weakly univer-
sal graph exists are severely limited. This is one of the exceptional situations
in which weakly universal graphs are more common than strongly universal
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graphs. Experience suggests that typically, when there is a weakly universal
graph then there is also a strongly universal one (though possibly less ob-
viously: e.g., an infinite complete graph is weakly universal for the class of
all countable graphs, while a strongly universal one actually requires some
construction).

In the case of bounded degree, one focuses on the maximal connected
C-free graphs; these are graphs such that any embedding into a connected
C-free graph is an isomorphism. It is not hard to see that any connected
C-free graph extends to a maximal one in this case. Furthermore, if there are
only countably many isomorphism types of maximal connected C-free graphs
then a universal C-free graph may be formed by taking the disjoint sum of
countably many copies of each, while if there are uncountably many maximal
connected C-free graphs, then there is no universal countable C-free graph.
However, the split between the cases in which there are or are not universal
countable C-free graphs is generally much sharper than this. At one extreme,
we have the possibility that the connected components of C-free graphs are
finite. In that case it is clear that there are only countably many maximal
connected C-free graphs, and indeed the maximality is not even needed here.
On the other hand, if there is an infinite connected C-free graph, we might
expect it to be possible to vary its structure in uncountably many ways, and
thus we should generally fall into the second class. One obvious exception
to this rule would be the case of graphs of vertex degree at most 2, where
there are two isomorphism types of infinite connected graphs, and just one
of them is maximal. More generally, we may construct a graph by taking
an infinite path and attaching to each vertex a disjoint copy of some fixed
finite connected graph, and we may then find a finite set of constraints for
which this graph is the unique maximal infinite connected graph. Or varying
further, instead of taking a single graph repeated along a path, we may take
a finite sequence of such graphs, repeated along a path. All of these examples
have the special property that in a connected infinite C-free graph there is a
unique infinite path. However this does not yet exhaust the possibilities. So
we will now take this case up more systematically, from the beginning.

Let C be a finite set of connected finite graphs, including some star (a tree
consisting of one vertex and d + 1 adjacent leaves). Thus the C-free graphs
have vertex degree bounded by d. A C-free connected graph G is maximal
if any embedding of G into a C-free connected graph (as a subgraph) is an
isomorphism. Note that maximality refers both to the vertex set and the
edge set. As mentioned, any connected C-free graph embeds as a subgraph
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into a maximal connected C-free graph (e.g., by Zorn’s lemma, since these
graphs are countable or finite). The following is our point of departure.

Lemma 3.1. Let C be a finite set of finite connected graphs, including a star.
Then the following are equivalent:

1. There is a weakly universal C-free graph.

2. There are finitely or countably many maximal connected C-free graphs.

Proof. Clear, on the basis of the foregoing remarks.

As far as the “finite” alternative is concerned, Sam Buss has observed the
following.

Lemma 3.2 (Buss). If C is a finite set of finite connected graphs, then there
is an infinite connected C-free graph of bounded vertex degree if and only if C
contains no path.

Proof. If C contains a path, then the diameter of a connected C-free graph is
bounded, and hence those of bounded vertex degree are finite.

If C contains no path, then an infinite path is C-free.

At the opposite extreme, we have the following.

Proposition 3.3. Let C be a finite set of connected finite graphs, including
some (d+1)-star, but no path. If there is a weakly universal countable C-free
graph, then C contains some tree S with at most one vertex of degree 3, and
no vertex of greater degree.

Proof. We suppose C contains no constraint of the specified type. Roughly
speaking, we will vary the lengths of cycles embedding in these graphs. More
precisely, we will vary the structure of maximal connected C-free graphs
viewed as metric spaces, using cycles for this purpose.

Call a C-free connected graph G vertex-maximal if for any connected C-
free graph containing G, the vertex sets are the same. Since vertex degrees
are bounded, any connected C-free graph G0 can be extended to a vertex-
maximal connected C-free graph by attaching trees to some of its vertices.

Now consider how the graph metric on G changes when a vertex-maximal
connected C-free graph G is embedded into a maximal connected C-free graph
G∗. Let K be the maximum diameter of a graph in C. For any edge (u, v)
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occurring in G∗ but not in G, there is a constraint C in C which prevents us
from adjoining an edge at u with a new vertex v∗; so a subgraph C0 of C
embeds into G over u in such a way as to prevent this. Therefore the vertex
v must lie on the image of C0 in G, and hence within distance K of u in the
graph metric on G.

It follows that the embedding of a vertex-maximal connected C-free graph
into a maximal C-free graph perturbs the graph metric at most by a multi-
plicative factor of K.

Under our hypothesis on C, we claim that for any set X of natural num-
bers we can find a vertex-maximal connected C-free graph G such that the
nontrivial blocks of G are cycles of diameter K2n for n ∈ X . Then embed-
ding each of these into a maximal connected C-free graph, we can recover X
from the metric structure by looking at the metric space analog of cycles.

The construction begins by letting GX be the disjoint union of cycles of
appropriate diameter, joined by paths of length greater than K. Then GX

is C-free in view of our hypothesis on C.
We then extend GX to a vertex-maximal connected C-free graph G∗

X by
attaching some trees to it. After that we pass to a maximal connected C-free
graph containing G∗

X , and then varying X we get an uncountable number of
nonisomorphic maximal connected C-free graphs.

In view of Lemma 3.2 and Proposition 3.3, we are left with the case of
a constraint set C containing no path, but containing some tree S with a
unique vertex of degree 3, and with no vertex of degree greater than 3; in
other words, S is topologically a star whose unique branch vertex has degree
3.

We claim that this case can also be analyzed, and thus the universal-
ity problem for constraint sets including a bound on the vertex degree is
decidable.

Proposition 3.4. For constraint sets C including some star, the problem
of the existence of a universal countable C-free graph is decidable. A weakly
universal C-free graph will exist if and only if one of the following conditions
holds:

1. C contains a path;

2. C contains a generalized 3-star S(k1, k2, k3) consisting of a central ver-
tex v0 and paths Pi of length ki for i = 1, 2, 3 attached to v0. In addi-
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tion, any maximal infinite connected C-free graph is almost periodic, in
a sense explained below.

At this point we will give just a sketch of the structural analysis, and put
more about that in an appendix. The issue of decidability involves making
some estimates explicit (which is not problematic), but also one must make
explicit the analysis of a set of infinite words constructed from a particular
finite set of finite words. We have convinced ourselves that this is manageable,
but the reader is welcome to draw his own conclusions.

We now explain the particular notion of almost periodicity we have in
mind here, which is very concrete. Note however that any reasonable notion
of almost periodicity with respect to finite data in condition (2) would force
the number of graphs under consideration to be countable, and thus imply
that a universal one exists.

Definition 3.5.

1. Let G be a finite connected graph with two specified base points u1, u2.
We let GZ denote the graph obtained from the disjoint union of copies Gi of
G (i ∈ Z) by identifying the vertex u2 of Gi with the vertex u1 of Gi+1. The
subgraph GN is constructed in the same way from copies of G indexed by N.

2. A graph H will be called almost periodic if it is periodic, or can be
obtained from a periodic graph of type GN by attaching one more finite graph
G′ with base point u to G0, by identifying the base point u in G′ with u1 in
G0. Equivalently, H is either of the form GZ or is obtained from a graph of
the form GN by adjoining finitely many vertices and edges, since any fixed
finite initial segment Gn of GN can be treated as part of the one additional
graph G′.

As defined, our periodic graphs are connected, and the base points are cut
points. In particular the blocks are finite of bounded order, and contained in
the finite graph G taken as the initial building block. Much the same applies
to almost periodic graphs. Clearly these can be construed as coded by words
in a finite alphabet, but in a particularly simple way.

Proof of Proposition 3.4, sketch, cf. Appendix 1, §5. The case in which the
set C contains a path was treated in Lemma 3.2, and the case in which C
contains no path and no generalized star S was treated in Proposition 3.3.
So we are left with the case in which C contains no path, but does contain
some generalized star S.
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Let G be C-free. As G omits S, we argue first that the blocks of G have
bounded diameter. As G has bounded vertex degree, it then follows that the
blocks of G have bounded order.

Again, as G omits S, the underlying tree structure T on the blocks is
path-like: there is a path P in T , with or without an end point, such that
the remainder of T decomposes into connected components of bounded size.
P is almost unique, apart from the first few vertices in the case where P has
an endpoint.

We can define P more carefully by defining an appropriate set A of cut
points v of G intrinsically, in terms of the sizes of connected components of
G \ {v}; we require two large connected components. Then A inherits the
graph structure of P ; blocks of G which contain two vertices of A correspond
to points of P between successive points of A. The connected components
of G \ A may be viewed as attached to one or two vertices of A; those that
meet a block containing two successive vertices of A are viewed as attached
to those two vertices, while for the other components there will be a unique
vertex of A linked to the component by an edge.

Now orient the path P , taking the natural orientation if P has an end-
point, or an arbitrary orientation, otherwise. Then we can associate to the
vertex a ∈ P , its successor b, and the set of components of G \ A attached
either to a or to a, b. Take the union of these components together with the
vertices a, b, and let Ga be the induced graph on this set, with the vertices
u1 = a and u2 = b taken as base points.

G can be considered as the connected sum of the Ga (a ∈ A) of order
type N or Z and can be associated with the infinite word W whose succes-
sive terms are the isomorphism types of the structures (Ga, a, b). This is a
finite alphabet, so there will be a long word w which repeats in W , giving a
contiguous subword of W of the form ww′w. We consider the periodic word
(ww′)Z, and the corresponding periodic graph G∗ which is constructed from
the finite graph associated with the word ww′.

As the condition that G is C-free is a strictly local condition, involving
subgraphs of G of bounded diameter, G∗ inherits this condition as long as w
and w′ are sufficiently long.

We may choose the word w to occur infinitely often in W . If G is not
almost periodic of type ww′, then there is another word w′′ for which ww′′w
occurs in the word W and (ww′′)Z is not a shift of (ww′)Z. Then taking
products of powers of (ww′) and (ww′′) we get 2ℵ0 words corresponding to
2ℵ0 nonisomorphic maximal connected C-free graphs.
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If we ask for strong universality we arrive at much more restrictive condi-
tions: the infinite connected components must be trees, as otherwise a single
maximal C-free graph can be varied by taking a subgraph containing a span-
ning tree, and if necessary adjoining additional trees to obtain a C-free graph
which is maximal with respect to embeddings as an induced subgraph. But
we prefer to turn now toward the general theory.

We will see shortly that much of the foregoing analysis works perfectly
well in general, with no bound on the vertex degree, if (a) one confines one-
self to the strongly universal case and (b) one replaces the straightforward
notion of connected component (which is relevant only in the case of bounded
degree), by a more delicate notion whose precise interpretation depends on
the particular constraint set C under consideration, and which reduces to the
connected component in the bounded degree case. It is only in this more
general setting of unbounded degree that the model theoretic point of view
becomes relevant. First we consider some additional examples illustrating
the boundary between existence and nonexistence of universal graphs.

Fact 3.6.

1. [17] Let C be a 2-connected graph. Then there is a countable universal
C-free graph if and only if C is complete.

2. [12] Let C be a finite set of cycles. Then there is a countable universal
C-free graph if and only if C consists of all the odd cycles up to some
fixed size.

In general, the way to analyze the class QC of C-free graphs with respect
to Problem B is the following. One associates to the class C in a very direct
way a notion of C-algebraic closure; for each set of vertices A in a C-free graph
G, this gives us a set aclC(A) containing A. At the outset one may take the
following definition, which eventually will need to be made far more explicit:
the vertex v ∈ G is in aclC(A) if for any C-free graph G∗ containing A as an
induced subgraph, the set of all possible images of v under embeddings of G
into G∗ over A is a finite set. Later we will make more explicit the kind of
information needed in G to pin down v in this way. But for the moment this
definition will suffice.
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3.2. Algebraic closure

Consider a few examples. If C = ∅ then evidently aclC(A) = A for any
set A. Indeed, just take G∗ to be the amalgam of infinitely many copies of G
over A. On the other hand, in the case of bounded vertex degree with which
we began, it is clear that aclC(a) is the connected component of a, and that
for any set A we have

aclC(A) =
⋃

a∈A

aclC(a)

This last condition, which is weaker than degeneracy, will be called unarity
here.

The property of most interest in this context will be local finiteness. The
operator aclC will be said to be locally finite if aclC(A) is finite whenever A
is. The following general result brings us to the heart of the matter and gives
us a criterion for universality which can be made both explicit and purely
combinatorial.

Theorem 2 ([11]). Let C be a finite set of connected finite graphs. Suppose
that aclC(·) is a locally finite operator. Then there is a universal C-free graph.

The proof shows that in this case there is a canonical universal C-free
graph. It can be described as follows.

Definition 3.7. A C-free graph G is strongly universal if for any finite sub-
set A of G and any countable C-free graph G∗ containing G, there is an
embedding of G∗ into G over A.

Note that a strongly universal C-free graph G is universal: if G1 is C-free
then take A = ∅ and let G∗ be the disjoint union of G and G1. Further-
more there is at most one strongly universal countable C-free graph, up to
isomorphism, by a back-and-forth argument.

We could generalize this theorem to give an exact characterization of
constraint sets C allowing a universal countable C-free graph. But more
progress comes from the theorem as we have stated it, because the local
finiteness condition is much easier to work with, and because the exceptional
cases where the local finiteness condition fails but a universal graph exists
can be treated on an ad hoc basis, in a second round of analysis. We will see
this more concretely when we discuss the analysis of tree constraints.

To tie up the knot on what we have said so far: in the case of graphs
of bounded degree, the local finiteness condition says that connected C-free
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graphs are finite. Thus for graphs of bounded degree the theorem is obvious,
but it takes a certain body of theory to prove the theorem in general.

Theorem 2 needs to be supplemented by a close study of the operator
aclC and how it is determined by C. A good place to begin is the degenerate
case.

Lemma 3.8 ([11, Lemma 5 and Theorem 4]). Let C be a finite set of finite
connected graphs. Then the following conditions are equivalent.

1. aclC is degenerate, that is: aclC(A) = A for all A;

2. C is closed under homomorphism in the following sense: for C ∈ C and
for C̄ a homomorphic image of C, there is C ′ ∈ C which embeds in C̄.

Homomorphisms between graphs are functions carrying vertices to ver-
tices so as to induce a map from edges to edges. In particular homomorphisms
do not identify two adjacent vertices, because the edge between them would
go to a loop, and our formalism excludes loops.

One might rephrase the homomorphism condition as follows: a homo-
morphic image of a forbidden graph is forbidden.

Proof. (2 =⇒ 1):
We suppose (2): no C-free graph is a homomorphic image of a graph

which is not C-free.
Suppose A ⊆ G, a C-free graph, and v ∈ G \ A. Let G∗ be the amalgam

over A of infinitely many copies Gi of G. Then G is a homomorphic image
of G∗ and thus G∗ is C-free. But there are infinitely many images of v over
A in G∗ and thus v /∈ aclC(A). So (1) holds.
(1 =⇒ 2):

Any homomorphism can be obtained by composing two kinds of maps
f : G1 → G2: isomorphisms from G1 to a subgraph (not necessarily an
induced subgraph) ofG2, and maps in which G2 is the result of identifying two
vertices of G1. Since the image of a forbidden subgraph under an embedding
is forbidden, only maps of the second kind need concern us.

Suppose that we have C ∈ C and u, v vertices of C so that the graph C̄
obtained from C by identifying u and v to a single vertex ū is C-free. Let
A = C̄ \{ū}. Then we claim that (1) is violated and specifically ū ∈ aclC(A).
Indeed under any embedding of C̄ into a C-free graph G∗, the image of ū is
determined by the image of A, since two distinct images u1, v1 would allow
us to reconstruct C in G1.
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This already goes some distance to explaining Fact 3.6. For a single
constraint C, the operator aclC is degenerate if and only if C is complete.
For a finite set of cycles C, the operator aclC is degenerate if and only if it
consists of odd cycles up to some fixed size. Thus all of the positive cases
covered by Fact 3.6 follow from the degenerate case.

On the negative side, the nondegeneracy of aclC is certainly not adequate
to refute the existence of a universal C-free graph, but in the two cases covered
by Fact 3.6, what is needed is a two-stage process in which first, specific
examples are constructed showing that aclC is not locally finite, and secondly,
the construction is shown to have the capacity to incorporate enough latitude
that it can be varied in 2ℵ0 different ways, or in other words there are an
infinite number of “free choices” which can be made during the construction.
In the case of a 2-connected but incomplete constraint C this requires a very
uniform construction which does not depend on the particular structure of C,
while in the case of a set of cycles the situation is a good deal more concrete
from the beginning, and it is just a matter of varying a construction given
earlier for the case of a single cycle.

It does not seem that this final step, in which the construction is varied,
can be usefully covered by a general theorem. On the other hand in all critical
cases treated to date, the essential difficulty is overcome at the previous stage,
when the dividing line between local finiteness and its failure is accurately
identified. In practice, the absence of a theoretical path from the failure
of local finiteness to the nonexistence of a universal graph has not been a
major difficulty. And our thesis is that the essence of Problem BQ, at a
combinatorial level, is captured by the following variation.

Problem (Problem B̃Q). Given the constraint set C, determine whether aclC
is locally finite.

We will therefore focus on this problem. All the negative results to date
have followed the route we have described, first refuting local finiteness, then
exploiting the choices available to produce uncountably many incompatible
structures, all of the form aclC(A) for some fixed finite A. We will discuss
more such cases below, in which a single constraint is involved: namely, the
case of 2-bouquet constraints, and the case of tree constraints. We also still
need to give the promised analysis of aclC which is essential to the systematic
investigation of Problem B̃, and we will come to that shortly.

But let us return for a moment to the special case of graphs of bounded
vertex degree, and consider Problem B̃ in that context. This amounts to
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replacing “algebraic closure” by connected component.

Problem (Problem B̃0). Given a finite set C of connected finite graphs,
determine whether the connected graphs in QC are of uniformly bounded size.

As it happens, this last problem is not at all a good model for the general
case, and in fact this problem has a straightforward solution. On the one
hand, if an infinite star or an infinite path is C-free, then the answer is
negative. On the other hand, if the constraint set C contains some star and
also some path, then the answer is positive.

This may appear disconcerting if we wish to use the locally finite case as
the basis of our intuition about aclC(·), but nonetheless, there remain strong
parallels between the general notion of algebraic closure and the notion of
connected component which are worth developing, along the following lines:

We naturally think of the connected component of a as “generated” by
the adjacency relation, or explicitly:

aclC(A) =
⋃

n

∆n(A)

where ∆n(A) = {b : d(A, b) ≤ n}, the n-th cumulative iterate of the operator

∆(A) = {b : d(A, b) ≤ 1}

In the bounded degree case, where aclC(a) is the connected component of
a, the operator ∆ has the following desirable properties: ∆(A) is defined
explicitly and concretely; ∆ and each of its iterates is locally finite; and
aclC(A) is exhausted by the iterates of ∆. In particular our problem B̃0 is a
problem about the length of this iteration (i.e., the diameter of the graph).

All of this goes over to the general case, when our graphs are not assumed
to have bounded vertex degree, except that the definition of the associated
operator ∆ will now depend in general on the choice of C, and will be denoted
∆C. However, the solution of Problem B̃0 does not translate into a solution
of Problem B̃—or if it does, it requires more subtlety than anything we have
tried.

3.3. Immediate algebraic closure

We wish now to describe an operator ∆C(A) associated with a finite set
C of connected finite graphs, with the following properties.
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1. ∆C(A) is finite if A is finite;

2. aclC(A) =
⋃

n ∆
n
C(A);

3. ∆C(A) is directly and explicitly determined by C.

We will say in this case that the elements of ∆C(A) are “immediately alge-
braic”’ over A.

The required definition goes as follows. We follow [11], with some minor
modifications. What is needed is mainly a notion of freeness of one finite
subgraph over another, but we need also a subsidiary notion of richness for
this notion to correlate properly with algebraic closure.

Definition 3.9. Fix a finite constraint set C as usual, and a C-free graph G.

1. If X ⊆ Y are graphs with X an induced subgraph of Y , denote by Y ∞
X

the graph formed by amalgamating infinitely many copies of Y over
the subgraph X ; define Y n

X similarly for n finite. If in addition Y is
an induced subgraph of G, we say that Y is free over X in G if Y ∞

X

embeds in G as an induced subgraph.

2. We say that G is C-rich if for every pair of finite induced subgraphs
X ⊆ Y in G, if Y ∞

X embeds into some C-free graph G∗ containing G,
then Y ∞

X embeds into G.

3. Let A ⊆ X ⊆ Y be graphs, each an induced subgraph of G, with Y
free over X in G. We say that X is a base for Y over A if Y is free over
X , but is not free over any proper subset of X containing A.

4. Let A be an induced subgraph of G. We say that the vertex v ∈ G is
immediately algebraic over A if there are induced subgraphs A0 ⊆ X ⊆
Y ⊆ G with:

(a) A0 ⊆ A;

(b) v ∈ X ;

(c) Y embeds as a subgraph in some C ∈ C, and |Y | < |C|;

(d) X is a base for Y over A0.

5. ∆C(A) is the set of immediately algebraic elements of G over A.
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It is not hard to show that every countable C-free graph G embeds in a
countable C-free and C-rich graph. Now we verify that this notion of imme-
diate algebraicity meets our requirements, if the ambient graph G is C-rich.

Proposition 3.10. With C a finite constraint set consisting of connected
finite graphs, and with G a fixed C-free and C-rich graph, the following hold.

1. ∆C(A) ⊆ aclC(A);

2. ∆C(A) is finite if A is;

3. aclC(A) =
⋃

n ∆
n
C(A).

Proof.
1. If v is immediately algebraic over A then we fix witnesses A0, X, Y in

G as in the definition. Then we claim v ∈ aclC(A0).
Assuming the contrary, we have G∗ C-free containing G, and infinitely

many distinct images vi of v under embeddings fi of G into G∗ over A.
We consider the sets Xi = fi[X ]. Now apply the ∆-system lemma to the
collection of finite sets Xi of fixed size. Then restricting to an infinite subset
of the given embeddings, we may suppose that there is a fixed set Ā such
that

Xi ∩Xj = Ā

for all i 6= j. The inverse images f−1
i (Ā) are subsets of X ; we may assume

these sets coincide.
As Y is free over X in G, for each i we can find a copy Y ′

i of Y in G, so
that the images Yi = fi[Y

′] also satisfy

Yi ∩ Yj = Ā

for i 6= j. Thus the Yi are free over Ā in G∗ and hence by C-richness, Y is
free over f−1

i (Ā) in G. Then by the minimality of X , we have f−1
i (Ā) = X

for all i, and in particular vi ∈ Ā. So these elements cannot be distinct.
2. We simply repeat the proof of (1).
Suppose that ∆C(A) is infinite, and for each v ∈ ∆C(A) pick a corre-

sponding “witness” (Av, Xv, Yv) according to the definition. We may suppose
Av = A for all v, and that the isomorphism type of the quadruple (A,Xv, Yv)
is fixed. By the ∆-system lemma we may suppose once more that we have a
set Ā such that

Xu ∩Xv = Ā
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for all u, v distinct, and again by freeness of Yv we may suppose that Yu∩Yv =
Ā as well. So again, Y = Yu is free over Ā and by minimality Ā = Xu for all
u, and u ∈ Ā, a contradiction.

3. It is easy to see that aclC(aclC(A)) = aclC(A) and thus the inclusion
∆n

C(A) ⊆ aclC(A) follows from (1). The other direction is less formal.
Set Â =

⋃
n∆

n
C(A). Consider the graph G∗

Â
. It suffices to show that this

graph is C-free, as it allows infinitely many embeddings of G disjoint over Â,
forcing aclC(A) ⊆ Â.

So suppose toward a contradiction that some C ∈ C embeds into G∗
Â
.

Consider Â0 = C ∩ Â. The graph G∗
Â
is the union of copies Gi of G, with

A in common; let Y ′
i be C ∩ Gi and let Yi be the corresponding induced

subgraph of G itself. Here we need only concern ourselves with the finitely
many graphs Yi for which Yi 6= Â0.

If each of these graphs Yi is free over Â0 in G, then we may choose copies
Zi of Yi in G which are pairwise disjoint over Â0, getting an embedding of C
into G, and a contradiction. So some Yi is not free over Â0 in G. But Yi is free
over Yi, vacuously, and hence there is a base X for Yi over Â0, and this base
properly contains Â0. But as X ⊆ ∆C(Â0) ⊆ Â, we find X ⊆ Yi ∩ Â = Â0, a
contradiction.

The concluding portion of the last proof gives a more detailed indication
of which subgraphs Y ⊆ C are actually relevant, namely those which are
part of a collection of subgraphs of C which could be amalgamated over a
common part to give C. This is a useful bit of information in practice. The
same analysis can be used to clarify the property of unarity, as follows.

Fact 3.11 ([11, Proposition 6 and remarks following]). For C a single con-
nected finite constraint, the following are equivalent.

1. aclC is unary;

2. The blocks of C are complete graphs.

The implication (2) =⇒ (1) was given more generally for finite constraint
sets in [11], and the converse direction, which holds for single constraints, was
only mentioned, without proof. One can read [17] as exploiting this principle,
though this formalism is not used there.

When the operator aclC is unary, the simplifications resulting from the
restriction to a consideration of ∆C(a) and its iterates can be substantial.
Conversely, the following conjecture was stated in [10].
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Conjecture 3. When C contains a single constraint, and the operator aclC
is not unary, no universal C-free graph will exist.

In [10] we also mentioned the possibility that the same would hold for
any finite constraint set, but prudently refrained from giving that as a con-
jecture. We will refute that more general form in Appendix 2 (§6). Given
that refutation, there is no theoretical basis for the foregoing conjecture, but
it corresponds to our sense that the case of a single constraint should be
manageable by explicit analysis. The methods used in [17] and [12], which
exploit failures of unarity, are suggestive. Furthermore an idea of Shelah
which we call pruning allows an inductive approach to such problems. We
take this up next.

3.4. Pruning

One very simple idea of Shelah has had a substantial impact and is far
from exhausted: the effect of “pruning” on universality problems. This was
introduced and applied in [10].

One obstruction to a clean theory has been the circumstance that a
“tighter” set of constraints does not necessarily yield a “simpler” class as
far as the problem of the existence of universal graphs is concerned. Indeed,
if we have no constraints at all then there is a universal graph: the Rado
graph, which here falls under Theorem 2 via Lemma 3.8, a clear case of
overkill. What seems more to the point is an example which turns up in an
analysis of 2-bouquets given in [14]. We write Km ∧Kn for the graph with
two complete blocks which are complete graphs of order m and n; in other
words, Km and Kn joined at a common point. One then has the following:

Fact 3.12 ([14]). Let C = Km∧Kn be a 2-bouquet. Then there is a universal
C-free graph if and only if the following conditions are satisfied:

1. min(m,n) ≤ 5;

2. (m,n) 6= (5, 5).

In particular we have universal C-free graphs for K4∧K5 and K6∧K5 but
not forK5∧K5. One can make some sense of this by viewing the “symmetric”
and “asymmetric” cases as slightly out of phase with each other, but the main
point is that this type of result strongly suggests that the analysis of one case
may not cast much light on any other.

Fortunately, that suggestion is wrong, and the following comes as a wel-
come surprise.
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Lemma 3.13 ([10, Proposition 2.3]). Let T be a tree for which there is a
countable universal T -free graph, and let T ′ be the tree obtained from T by
removing all its leaves (pruning). Then there is a universal T ′-free graph.

This was exploited, with some labor, to confirm a long-standing conjec-
ture as to which trees T do correspond to universal graphs [10]. As the list
of such trees is very short, Lemma 3.13 reduces the number of essentially
distinct cases which need to be analyzed to a manageable size.

But pruning can be applied in a very general form, and provides a pow-
erful point of departure for future analyses. We give the general statement.

If C is a finite set of connected finite graphs, we may view each C ∈ C
as made up of a tree of blocks. The blocks which occur as leaves in such a
tree decomposition will be called block-leaves of C; these are really pointed
blocks (v, B) with v a vertex in B representing its point of attachment to
the rest of C. A minimal block-leaf (v, B) is one for which an embedding
(v′, B′) → (v, B) as a subgraph is necessarily an isomorphism, for any other
block-leaf (v′, B′) of a graph in C.

If (v, B) is a block-leaf of the graph C, pruning C at (v, B) means remov-
ing B \ {v}. Pruning C (globally) with respect to a block-leaf (v, B) means
pruning C at (v′, B′) for each block-leaf of C which embeds as a subgraph
into (v, B). Pruning a set C of finite graphs with respect to the pointed graph
(v, B) (where B is 2-connected) means pruning each graph C ∈ C with re-
spect to (v, B). For example, if C is a set of trees then its blocks are of order
2 and one prunes the set C by removing the leaves from each tree.

Lemma 3.14 ([10, Proposition 2.3]). Let C be a finite set of connected finite
graphs, and (v, B) a pointed 2-connected graph. Let C′ = {C ′ : C ∈ C} be
the result of pruning C with respect to (v, B) (pruning at all occurrences of
subgraphs of (v, B)). If there is a universal countable C-free graph, then there
is a universal countable C′-free graph.

So there is a natural inductive approach which is likely to be part of any
very direct attack on the universality problem.

Proof. We first define an anti-pruning operation: for any graph G, let G∗ be
the result of freely attaching infinitely many copies of (v, B) to each vertex
of G, taking v as the point of attachment.

If G is C′-free then we claim that G∗ is C-free. Suppose that C ∈ C embeds
into G∗. Any block of C whose image contains a vertex outside G will lie in
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one of the newly adjoined copies of (v, B). And in view of the structure of
G∗, it will necessarily be a block-leaf of C. So C ′ itself is forced into G, a
contradiction.

Now suppose that G is countable universal C-free and let G0 be the in-
duced subgraph on the set of vertices u ∈ G such that there are infinitely
many copies of (v, B) with common vertex v = u, and otherwise disjoint. We
claim that G0 is universal C′-free.

Certainly G0 is C′-free: if C ∈ C and C ′ embeds into G0, then the defini-
tion of G0 gives an extension of this embedding to an embedding of C into
G, and a contradiction.

So now suppose H is countable C′-free. Embed H∗ into G; then the
vertices of H are carried into vertices of G0, and our claim follows.

We feel that this line of attack is very promising and may eventually lead
to a complete solution to Problem B for the case of a single constraint. To
put the matter formally:

Conjecture 4. The existence of a universal C-free graph is a decidable prob-
lem, for C a single finite connected forbidden graph.

In this particular case, what we have in mind is something close enough
to an explicit solution to trivialize the decidability question.

Indeed, we felt for some time that the general case might be, roughly
speaking, a combination of the 2-connected case cited in Fact 3.6 and the
case of trees, which runs as follows.

Fact 3.15 ([10, 14]). Let T be a finite tree. Then the following are equivalent.

1. There is a universal T -free graph;

2. T is either a path or can be obtained from a path by adding one addi-
tional vertex and one corresponding edge.

We are hopeful that the 2-connected case goes over quite generally: that
a constraint C for which there is a countable universal C-free graph must
have complete blocks (Conjecture 3, Fact 3.11). On the other hand we will
not say that we expect the underlying tree structure to be quite as simple
as it is when the constraints are actually trees—something suggested by the
optimistic [10, Conjecture 2]—but we think it is plausible that the “path or
near-path” rule will be the main case, with some more limited examples of
other types, notably the following.
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Conjecture 5 (Hairy Ball Conjecture). Let C be a graph obtained from a
complete graph K by attaching at most one path to each vertex. Then the
operator aclC is locally finite, and in particular there is a universal C-free
graph.

This last conjecture can be decoded to a completely explicit graph theo-
retic problem, and we will work that out below.

In short, the general form of the answer to the universality problem for
the case of a single constraint is still not quite in sight; but the tools for
pinning it down in that case appear to be in hand.

We conclude this subsection with some additional comments on the prun-
ing construction and its application via Lemma 3.14.

We have some freedom in general to choose the pointed graph which
determines the pruning chosen. This graph should of course contain a block-
leaf actually occurring in one of the members of C, as otherwise C′ = C.
When pruning sets of trees there is only one possible type of block, so there
is only one type of pruning in that case.

One can prune even more generally: the essential property of a block-leaf
(v, B) of a graph C is that B \ {v} is a connected component of C \ {v}.
To date the most useful kind of pruning has been pruning with respect to a
minimal block-leaf but Shelah has given good reasons in unpublished notes
to expect that the more general pruning operation will be useful in practice,
at a later stage of analysis.

3.5. The Hairy Ball Constraint

In this section we consider a constraint C consisting of a complete graph
K of order n together with a single finite path Pv with endpoint v (possibly
of length 0) attached to each vertex v of K .

Of particular importance will be the subgraphs Cv of C associated with
vertices v of C as follows: let C ′

v be the connected component of C \ {v}
containing K \ {v}, and let Cv be the induced graph on C ′

v ∪ {v}. Also, let
Pv be the path from v supplementary to Cv, so that C = Cv ∪ Pv.

In order to state our conjecture in concrete terms we make use of the
analysis of “acl” undertaken in Definition 3.9, using the notion “free over” a
subgraph.

Conjecture 6 (Hairy Ball II). Let G be a graph containing a sequence of
vertices (vi)i∈Z such that the vi lie along a 2-way infinite path Q which is free
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in G over the (vi)i∈Z, and each vertex vi belongs to a subgraph Ci so that the
pair (vi, Ci) is isomorphic to a pair (v, Cv) in the notation above. Then C is
isomorphic to a subgraph of G.

In this formulation, we intend the vertices vi to be enumerated in their
order along Q, with respect to some orientation of Q. In general the vertices
vi will not exhaust the vertices of Q, but then the freeness condition allows
us to take Q so as to avoid clashes between the remaining vertices of Q, and
other vertices which may come into consideration as part of the structure of
the graph in neighborhoods of the vertices vi. We would expect that a proof
in the case in which the vi do exhaust the path Q would lead quickly to a
proof in general.

Proposition 3.16. Conjectures 5 and 6 are equivalent.

Suppose first that Conjecture 6 fails, so that there is a configuration
(vi, Ci) inside a C-free graph G with the stated properties. It suffices to
show that for each i there is j > i so that vj ∈ acl(vi).

Now (vi, Ci) ∼= (v, Cv) for some v ∈ C. Let Q be a path containing the
sequence (vi)i∈Z and free over it. Let Qi be a segment of Q of the same
length as the supplement Pv to Cv in C, beginning at vi, and in the positive
direction along Q. As G is C-free, Qi is not free over vi, so let B be a base for
Qi over vi. As Q is free over (vi)i∈Z, B is a subset of {vj : j > i}. Therefore
any element of B is a vertex vj with j > i which lies in acl(vi), as claimed.

To argue in the converse direction we will have to analyze the algebraic
closure operation again in the manner of §3.3, but more explicitly; this was
done in the general case for graphs with complete blocks in [11].

We use the following concrete notion of immediate algebraic closure.

Definition 3.17. v′ ∈ acl′(v) if the following holds:
There is a path Pv with endpoint v, not free over v, and a base B for Pv

over v such that v′ is the nearest vertex to v in B.

Lemma 3.18. For G C-rich and C-free, acl′ generates aclC.

Proof. We saw in Proposition 3.10 that acl′ is contained in acl. So taking
A not algebraically closed, and finite, we must find v ∈ A with acl′(v) not
contained in A.

The infinite amalgam G∞
A is not C-free, so embed C into G∞

A ; we will
now identify C with its image in G∞

A . Call u ∈ C a transition point if there
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are distinct factors Gi, Gj of G∞
A such that u has neighbors in both Gi \ A

and Gj \ A. We may suppose that the embedding of C into G∞
A has been

chosen to minimize the number of transition points. But since G is C-free,
there must be at least one such point.

Choose a transition point a ∈ C such that the path Pa outward from a in
C has minimal length. Notice that a ∈ C ∩A in view of the structure of G∞

A .
Then the neighbors of a in C lie in exactly two factors Gi, Gj; let Gi be the
factor that contains the neighbors of A in Ca, and Gj the factor containing
the neighbor of a in Pa.

If Pa is free over a in G, then we can replace Pa by a path in Gj and
reduce the number of transition points. So Pa is not free over a in G. Let B
be a base for Pa over a, and let a′ be the closest vertex to a in B. If a′ /∈ A
then we have what we have been aiming for: a′ ∈ acl′(a) \ A.

If a′ ∈ A we have to look a little more. As the interval (a, a′) in Pa is free
over a, a′, it can be replaced by an interval in Gi disjoint from Ca ∪Pa′ . The
effect of this is to replace the transition point a by a new transition point
a′, and the path Pa by the shorter path Pa′ . Repeating this argument (or
phrasing the initial minimization a little more precisely) we arrive eventually
at our claim.

Now we complete the proof of Proposition 3.16. Suppose that Conjecture
5 fails, and thus the operator aclC is not locally finite; as this operator is
unary (Fact 3.15), for some a the set aclC(a) is infinite. Then if we define

acl
(n)
C as the n-th iterate of acl′, Lemma 3.18 and Proposition 3.10 (2) show

that acl
(n)
C 6= acl

(n+1)
C for all n. Fix N , choose aN ∈ acl

(N)
C (a) \ acl

(N−1)
C , and

then choose by downward induction elements ai for i < N with ai ∈ acl(i)(a)
and ai+1 ∈ acl′(ai). Then inductively, ai /∈ acl(i−1)(a).

Now as ai+1 ∈ acl(ai) we have, for each i, a path Pi with endpoint ai,
and a base Bi for Pi over ai such that ai+1 is the nearest vertex to ai in Bi.
In particular, the path Qi = [ai, ai+1] ⊆ Pi is free over ai, ai+1. Furthermore
the vertices (ai)0≤i≤N are distinct, since for i < j we have ai ∈ acl(i)(a),
aj /∈ acl(i)(a). So the paths Qi can be glued together to give a path Q from
a0 to aN which is free over (a0, a1, . . . , aN ). And the definition of acl′ gives
us a graph Ci = Cai associated to each vertex ai, as required.

Since our initial choice ofN is arbitrary, an application of the compactness
theorem of logic, or of König’s tree lemma, shows that we can extend this to
a similar pattern of order type Z, all in a C-free context: so the failure of
Conjecture 5 entails the failure of Conjecture 6.
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3.6. Forbidden substructures and forbidden induced substructures

So far, our discussion has focused single-mindedly on forbidden sub-
graphs. But one can consider similar problems for forbidden substructures in
any combinatorial setting. The general theory applies as long as the struc-
tures fit into our framework as relational systems.

The classification of the homogeneous universal structures has been car-
ried out for graphs, digraphs, colored partial orders, permutation patterns,
and in other cases [32, 8, 51, 7, inter alia]. This could be taken as a point
of departure for a more general study of universal structures. In the case
of permutation patterns, it would be very desirable to have a general the-
ory of universal structures; in some cases these provide a canonical infinite
limit for the class of finite structures (generalizing the Fräıssé theory). Such
limits have been considered in the permutation pattern literature, but not
systematically.

While it would be very nice to import the sort of model theoretic machin-
ery we have for graphs, that is not actually feasible. That particular version
of the theory depends on our ability to form disjoint unions, and more gener-
ally disjoint unions over a common substructure. So to bring this theory over
to this interesting case would require further foundational work (Problem 12,
§4.2). The general model theoretic point of view is still relevant and should
have some sensible interpretation in this setting.

But we may consider universality problems for classes of general struc-
tures determined by finitely many forbidden substructures (or in model the-
oretic terms: weak substructures). Then the theory developed for graphs
applies very well. At the same time, it has been shown in [13] that in a
straightforward sense, the problem of the existence of universal C-free struc-
tures is no more complicated than the special case in which the structures
are simply graphs equipped with a coloring of the vertices by two colors; and
for all we know, there may well be a reduction of the general problem to
universality problems for ordinary graphs without additional structure, but
that point remains open.

It would also seem natural to consider universality problems with finitely
many forbidden induced substructures. This is a broader problem: to forbid
one substructure A, it suffices to forbid the finite set of induced substructures
which contain A and have the same elements.

But this turns out to be a problem of a radically different character. In
the first place, the theory sketched here in terms of aclC breaks down com-
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pletely when the constraint set C is an arbitrary finite set of forbidden in-
duced substructures. We will see in particular that any universality problem
involving finitely many forbidden induced substructures can be transformed
to an equivalent problem with aclC degenerate. Thus Theorem 2 becomes
irreparably false at this level of generality, eliminating our most useful tool.

Furthermore, we will show that Problem B becomes undecidable when
one takes as constraints a finite set of forbidden substructures.

Theorem (4, §7). The existence of a universal C-free graph, with C an arbi-
trary finite set of finite connected induced subgraphs, is an undecidable prob-
lem.

In the present section, we will give a weaker form of Theorem 4 which
involves fewer coding issues, and makes a similar point. We give the proof of
Theorem 4 in Appendix 3 (§7).

The breakdown of our general theory in the context of universality prob-
lems for forbidden induced subgraphs is illustrated by the following.

Example 2. Let Q be any class of graphs, and let Q∗ be the class of structures
of the form (V,E,∼) satisfying the following conditions:

1. G = (V,E) is a graph;

2. ∼ is a congruence on the graph G, that is an equivalence relation on V
satisfying the law

a ∼ a′, b ∼ b′, E(a, b) =⇒ E(a′, b′)

with E the edge relation.

3. G/ ∼ is a graph in Q with the induced edge relation
E(ā, b̄) ⇐⇒ E(a, b).

Then there is a countable universal G∗ in Q∗ if and only if there is a count-
able universal G in Q, and if Q is determined by a finite set of forbidden
subgraphs, then Q∗ is determined by a finite set of forbidden induced sub-
structures.

Notice that in the foregoing construction, we cannot constrain ∼ to be
an equivalence relation using forbidden substructures.
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On the other hand, the corresponding operation of acl in Q∗ is degener-
ate, because each vertex may have an infinite equivalence class consisting of
indistinguishable elements. So the operation acl no longer conveys anything
at all in this setting (or else, it becomes an operation on equivalence classes
rather than on elements).

This shows that our theory of algebraic closure has no bearing on such
cases.

Next we would like to show that problems of this type become undecidable
when forbidden induced substructures are considered. For this we use Hao
Wang’s unconstrained domino problem, shown undecidable by Berger [2].

Wang’s problem is a tiling problem. Wang tiles (which he called domi-
noes) may be thought of as unit squares with colors along the edges, which
are to be used to tile the plane Z2, with colors matching along adjacent edges.

We will find it convenient to set this up a little more generally. The
tiles we use can be thought of as unit squares, with each tile carrying a single
color, and with arbitrary horizontal and vertical matching rules, saying which
pairs of tile colors may occur successively, in either the horizontal or the
vertical direction. To convert a Wang tile set with color set C into one of
our form, we construe a tile with edge colors cE , cN , cW , cS as a tile carrying
the “color” (cE , cN , cW , cS), and we give as the matching rule the requirement
that corresponding entries agree, i.e. the cE entry in one tile equals the cW in
the next one horizontally, with a north-south match in the vertical direction.

Thus the undecidability of the Wang tiling problem yields the undecid-
ability of our ostensibly more general problem, which is all we will need.
However one may encode our more general tiles as Wang tiles as follows:
from any tiling of the plane by unit squares with centers on the lattice Z2,
we derive a tiling of the plane by unit squares centered on the shifted lattice
(Z+ 1

2
)2, where each of the new squares overlaps with four of the original ones.

The squares of the shifted tiling may be treated as dominoes if we assign to
each edge of a new tile the ordered pair of colors of the two tiles in which
that edge lies, and these dominoes satisfy the color matching condition.

The (unconstrained) tiling problem is to tile the plane with a given finite
set of tiles and specified tiling rules. The corresponding decision problem was
originally posed byWang for the case of his dominoes, and shown undecidable
by Berger by an encoding of Turing machine computations. In particular,
the decision problem, whether it is possible to tile the plane with a specified
set of tiles and tile constraints in our sense, is undecidable.

It is useful to take note of the following reduction of the tiling problem.
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For any specified tile set (and tiling rules), one of the following occurs.

1. It is possible to tile the plane with (some of) the specified tile types,
and observing the rules; or

2. For some finite n, there is no acceptable tiling of an n× n square.

Since the tiling problem is undecidable, we see that there is no way to com-
pute a relevant “test” value of n from the tile set.

We wish to convert each tile set into a related class of structures, de-
termined by finitely many forbidden induced substructures, in such a way
that tile sets which can be used to tile the plane correspond to classes of
structures for which there is no countable universal object, thus reducing the
undecidability of the latter problem to a known result.

This involves the consideration of what one might call “nonstandard”
tilings. The definition of a tiling in Z2 depends on the structure of Z with
the successor relation, which defines the relations “right neighbor,” “left
neighbor,” “next above,” and “next below” in Z. Given any set of tiles and
tiling rules, and any two directed graphs A and B, we can define analogously
what is meant by an admissible tiling of A×B: we place a tile at each point
of the Cartesian product, and whenever we have a pair of points (a, b) and
(a′, b) in Z2 with an edge relation E(a, a′), or (a, b) and (a, b′) with an edge
relation E(b, b′), we impose the corresponding tiling rule. We do not really
need anything as exotic as the general case: in practice we will want A and B
to be oriented paths (finite or infinite) or oriented cycles (or at worst, disjoint
unions of such graphs). For example, when A and B are finite paths, a tiling
of A×B is just a partial tiling of the plane; when A and B are both cycles,
a tiling of A × B encodes a periodic tiling of the plane (more explicitly, a
doubly periodic tiling).

Our encoding of tiling problems proceeds as follows.
Let the tile set be specified, and suppose there are k tiles, arranged in

some particular order as (t1, . . . , tk). We consider structures G equipped with
the following:

A. An asymmetric relation E; so (G,E) is a directed graph without loops
or multiple edges.

B. A series of binary relations Ti(x, y) for 1 ≤ i ≤ k.

C. A unary relation A on G.
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We impose the following constraints on G.

1. The in-degrees and out-degrees of (G,E) are bounded by 1; in other
words, the components are oriented paths or cycles;

2. For any pair x, y in G, one and only one of the relations Ti(x, y) holds;

3. Taking the relations Ti to encode a tiling of G2 and E to give the local
structure on G2, the tiling constraints are respected

Let us clarify the picture. By our first condition, the components of G are
oriented cycles or paths. The induced structure on G2 is given by two rela-
tions, the horizontal successor relation SH((a, b), (a

′, b′)) ⇐⇒ E(a, a′)&b =
b′ and the vertical successor relation SV ((a, b), (a

′, b′)) ⇐⇒ a = a′&E(b, b′).
In particular the union of these relations gives G2 the structure of an oriented
graph which is locally a grid, and the connected components of G2 are the
products A× B with A,B connected components of G.

To tile G2 means to tile A × B for each pair of components A,B of G,
in such a way that the given tiling rules are respected. In other words, we
tile rectangles. The tiling rules specify the tile types that can be assigned to
points of A× B which are connected by the horizontal or vertical successor
relations, coming from the successor relations on the oriented paths A and
B respectively.

Most of our constraints here are just “forbidden substructures,” including
half of the clause “one and only one” in the second constraint. However the
requirement that at least one of the relations Ti should hold is a constraint
on induced substructures, and not at all the sort of constraint that can be
imposed using forbidden substructures.

The point of the construction is the following.

Proposition 3.19. Let T be a set of tiles with a specified set of tiling rules,
and let QT be the corresponding class of structures. Then there is a universal
countable structure in QT if and only if there is no tiling of the plane by the
tile set T respecting the rules.

Proof. Suppose first that there is such a tiling. Then consider structures
consisting of a single 2-way infinite oriented path P together with an appro-
priate tiling of P 2, with an arbitrary interpretation of the predicate A on P .
There are uncountably many such structures, and at most countably many
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of them embed into a countable structure in QT , since P will go over to a
connected component of the image.

Now suppose there is no such tiling. Then by König’s lemma, there is
some finite bound n on the length of a path P for which P 2 can be tiled
respecting the tiling rules, or to put the matter more directly: there is a
bound on the sizes of connected components of (G,E) for G ∈ QT . We use
this fact to build a countable universal structure for the class.

Observe that as there is no tiling compatible with the rules, no connected
component of a structure in QT contains any cycles; otherwise, if C were
such a cycle, the tiling on C × C would give rise to a periodic tiling of the
plane. So the components of such structures are oriented paths of bounded
length; let L be the maximum length of a path P for which P 2 carries a
compatible tiling.

We will call a countable structure G in QT homogeneous universal if it
satisfies the following condition: For any finite substructure H0 of G which is
a union of connected components of G with respect to E, and any embedding
ι : H0 → H1 with H1 ∈ QT finite, and with H0 a union of connected
components in H1, there is an embedding of H1 over H0 into G, with the
image of H1 a union of connected components in G.

We claim that homogeneous universal structures exist, and are, as the
terminology would indicate, in fact universal. We claim further that there is
only one such up to isomorphism, but we do not require that fact.

We remark that we are following well-trodden model theoretic lines here,
associated with Fräıssé ([23]).

Existence. One builds G as a union of finite structures Gi such that each
Gi is a union of connected components in the next. It then suffices to show
that having built Gi for some i, and taking H0 a union of some connected
components of Gi, and ι : H0 → H1 a corresponding extension as in the
definition, the structure Gi+1 can be manufactured so that Gi remains a
union of connected components of Gi+1, and H1 embeds into Gi+1 over H0,
also as a union of connected components.

Indeed, first take for Gi+1 the disjoint union of Gi and H1 over H0, so
that its connected components are those of H0, those of G0 disjoint from H0,
and those of H1 disjoint from H0. Extend the unary predicate A arbitrarily.
The tilings are defined within Gi and H1, so it remains to define appropriate
tilings of P × Q and Q × P when P and Q are components of Gi \H0 and
H1 \ H0 respectively. Now P and Q are paths of length at most L, and
therefore there are tilings of P × Q and of Q × P which respect the tiling
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rules. So extend the relations Ti correspondingly.
Universality. For any countable H in QT , write H as a union of finite

substructures Hi with eachHi a union of connected components ofH . Embed
Hi → G inductively so that the image at each stage is a union of connected
components of G, using the homogeneous universality of G to carry out the
inductive step.

For the uniqueness of G argue similarly, interchanging the roles of H and
G at each successive step.

Corollary 3.20. There is no effective procedure to determine whether a class
QT as above contains a countable universal model.

We give this corollary to make a point about the difference between for-
bidden substructures and forbidden induced substructures. Of course, we
cannot yet rule out a more subtle encoding of tiling problems by universal-
ity problems with forbidden substructures, but the requirement that every
vertex of a grid carry some tile is naturally expressed by a forbidden induced
substructure.

Our construction has two defects which are addressed in Appendix 3, §7.
First, we have used a variable language, which is not really consistent with
the framework we set out initially. This can be addressed by limiting oneself
to two types of tiles and then allowing more elaborate constraints as tiling
rules (essentially, various patterns of two tiles are taken to represent a set of
tiles).

But one would also like to show that one can do the whole construction
in the language of graph theory, so that our universality problem for graphs
becomes undecidable as soon as one allows forbidden induced subgraphs.
This is Theorem 4 of §7.

The reduction to a finite language is straightforward (§§7.1–7.2). The
reduction to the language of graphs is more delicate.

4. Open Problems, Notes

We will present some of the open problems touched on in §§2,3, and
conclude with a few technical remarks relating to points not developed in
the text.
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4.1. WQO problems

So far in concrete cases of the WQO problem for classes of structures
determined by finitely many constraints, the theory gives us a good idea of
where we should look for antichains and what sort of antichains we should
look for. It says less about what we should do when there are no antichains
and we need to prove the WQO property. Generally we reach at some point
for Kruskal’s tree theorem. This suggests the following ill-defined problem.

Problem 1 (WQO techniques). To what extent can the structure theorems
needed to prove WQO for specific classes of tournaments defined by forbidden
subtournaments be subsumed under the type of analysis occurring in the proof
of the graph minor theorem, or an analog of that analysis for the case of
tournaments?

In [9] there was a brief discussion of the tournaments known to be in Λ2.
We have a given a somewhat more systematic account of the origin of the
known antichains here and it is worth revisiting Λ2 with this in mind.

Problem 2. Which antichains arising by known constructions (either the
doubling construction (Notation 2.15) or an encoding from Q(c) (§2.5)) lie
in Λ2? Do such antichains exhaust Λ2 completely?

Note that we do not have very good control of these constructions for
c > 2 but we do have good control for c = 2, and for the case of two
constraints (i.e., for Λ2) that should really be enough.

Problem 3 (Paths with wqo vertex color sets). Can one identify the set Λ
when Q is the collection of structures consisting of a finite oriented path P
together with a coloring of the vertices of P using a fixed set of colors, and
the set of colors carries a wqo?

Here an embedding must preserve edges and the coloring c of P must be
compatible with the embedding f in the sense that c ≤ f(c).

We looked at the case of paths with vertex colorings using a fixed finite
set of colorings in §1, but in this area, finite colorings can often be replaced
by colorings using wqo sets of colors, with the corresponding notion of em-
bedding, as we have had occasion to see already. However we have not taken
up this generalization, so we leave it as a problem.

In addition, the problem of the precise relationship between the class Q(c)

of paths with c colors and other classes like the class of finite tournaments
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has not been worked out in any systematic way. So one could explore this
more systematically. The first step would be the following problem, stated
as a conjecture in §2.5.

Problem 4. Let I be an almost periodic antichain in Q(2), and k fixed.
For P ∈ I let Tk(I) be the corresponding tournament using the sequence
(Nk,n) of §2.5 as the base. Show that after removal of finitely many terms,
(Tk(P ) : P ∈ I) is an isolated, minimal antichain in the quasiorder of finite
tournaments, whose associated ideal is effectively determined (and uniformly
effective, relative to the data determining I).

More generally:

Problem 5. Determine the “natural” embeddings of Q(c) into the class Q of
finite tournaments.

Problem 4 suggests the following, mentioned in [9] without the hypothesis
of isolation.

Problem 6. Is it true that for any isolated minimal antichain I of finite
tournaments, there is a bound k so that each T ∈ I is covered by k linear
orders?

In any case, one should try to determine the structure of the isolated
minimal antichains satisfying this condition. Whether isolation is relevant
here is unclear, but as we also conjecture that the isolated antichains are
dense, we believe that this hypothesis is harmless; these should be the only
ones whose study is relevant to Problem A.

For c = 2 the problem is to determine appropriate tournaments Tn corre-
sponding to paths Pn, for an infinite set of indices n. We proposed one family
of examples Nk,n which arises by first encoding a k-colored linear order into
a tournament, and then reversing the edges corresponding to the successor
relation.

For c > 2 one gets a useful embedding, in fact several for each value of c,
but not all minimal antichains go over into minimal antichains; as we saw,
they must be minimal in a strong sense, with respect to homomorphisms
between color sets.

Problem 7. To what extent are isolated minimal antichains in Q, for the
case of tournaments, derived from Q(c) via natural embeddings, or other simi-
lar quasi-orders for which the associated supply of isolated minimal antichains
can be explicitly described?
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As we have mentioned there is a “doubling” construction which produces
antichains by an even simpler process, which must be taken into account.

We are suggesting here that rather than just blindly following the “boot-
strap” approach of the finiteness theorem, one can separate the issues out
somewhat. Thus one can systematize more fully the search for appropri-
ate antichains, and then return to the broader question of whether for Q as
a whole, we are looking for a few families of appropriate constructions, or
something considerably more chaotic.

Problem 8. Are there encodings of Q(2) or more generally Q(c) into the qua-
siorder P of finite permutations which convert the almost periodic antichains
into isolated minimal antichains of P?

One can ask more fundamental questions about these problems, for which
the tools of logic and descriptive set theory are relevant. One way of pos-
ing our problem is in terms of the finiteness theorem; we ask whether the
antichains involved can be described effectively, and uniformly. Results of
logic suggest that these problems are highly nontrivial in general, even if the
quasiorders involved are effectively given, and wellfounded (in fact strongly
wellfounded: each element has only finitely many predecessors, as is the case
when dealing with finite structures).

Harvey Friedman has shown the following (private communication). We
use the term “locally finite” for a quasiorder such that each element lies
above a finite set of elements, up to equivalence. This is a considerable
strengthening of well-foundedness.

Fact 4.1 (Friedman). There is an effectively given (elementary recursive)
and locally finite partial order Q such that the set WQOQ,1 of constraints
c ∈ Q for which the ideal Qc is wellfounded is a complete Π1

1 set.

Here we invoke the definability hierarchy of logic, which is a good way
of classifying sets which are radically non-computable. A set of integers is
Π1

1 if it has a definition beginning with one universal quantifier over sets of
integers, with any remaining quantifiers being over integers. Here the natural
definition of the set WQOQ,1 has this form: in saying there is no infinite
antichain, one quantifies over arbitrary subsets of Q. A complete Π1

1 set is of
maximal complexity among all Π1

1-definable sets (with respect to algorithmic
reductions, specifically many-one reductions). For our purposes, the main
point would be that one cannot effectively determine which constraints c
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satisfy our condition (belong to WQOQ,1). Indeed, sets of integers which
can be recognized by an algorithm lie close to the bottom of the hierarchy of
logical complexity, as far as definability is concerned, being definable using
little more than a single existential numerical quantifier.

Thus Fact 4.1 is a very sharp way of saying that the set WQOQ,1 is
undecidable—and that the set is intrinsically as complex as a set with such
a definition can be. This gives us a model for the “bad” case of Decision
Problem AQ, and raises more pointedly the question as to whether our natural
cases could conceivably include cases just as bad. But to us this still seems
highly unlikely.

Friedman has also announced the following in a private communication:

• there is a finite signature consisting of just constant and function sym-
bols for which the same occurs.

• The Finiteness Theorem of §2, for the case k = 1, is equivalent, over a
weak base theory (RCA0), to the Π1

1 Comprehension Axiom Π1
1−CA0.

The first of the these results comes close to the combinatorial context
considered here, though there are differences between functional languages
and relational languages in this context.

The second result corresponds to the fact that there is a direct proof
of the Finiteness Theorem for the case of single constraints, for which it is
sufficient to take as the starting point the set of all constraints for which the
wqo property fails; and it makes rigorous the claim that one cannot carry
out this argument with less at one’s disposal.

We give the proof of Fact 4.1.

Lemma 4.2. Let ≤ be the usual ordering of N, and ≤1 any linear ordering of
N. Define a partial order n ≤2 m by (n ≤ m and n ≤1 m). Then (N,≤2) is a
locally finite quasiorder with the following property: ≤2 is a wqo of the ideal
Nn if and only if ≤1 is a well order of the initial segment (i ∈ N : i <1 n).

Here we write Nn for (N,≤2)n, which by definition is the ideal

{m ∈ N : n 6≤2 m}

of (N,≤2).
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Proof. Suppose the initial segment (i ∈ N : i <1 n) is wqo and I is an infinite
antichain in Nn. Removing finitely many elements of I, we may suppose that
all are larger than n in the natural order. Since I ⊆ Nn, they are then smaller
than n in the order ≤1. Taking i ∈ I to be minimal in the order ≤1, and
j ∈ I larger in the natural order, we find i ≤2 j, a contradiction.

Now suppose that the initial segment (i ∈ N : i ≤1 n) is not well ordered
and that x1, x2, . . . is a decreasing sequence with respect to ≤1. Then for
any n there is some m > n such that xm > x1, . . . , xn in the natural order,
and thus xm is incomparable with x1, . . . , xn in (N,≤2). It follows that the
sequence contains an infinite antichain in Nn.

Now for the partial order (N,≤2), the set {n ∈ N : Nn is not wqo} coin-
cides with the set

{n ∈ N : The initial segment below n relative to ≤1 is not well ordered}

This is a typical representation of a complete Π1
1 set in recursion theory, with

≤1 recursive [47, Chapter 1]. Fact 4.1 follows.

4.2. Universality Problems

The universality problem for classes determined by a single connected
constraint has become increasingly amenable to analysis, notably with the
advent of the pruning lemma.

In the bounded degree case to say that one vertex is immediately algebraic
over another simply means that they are adjacent. But in general immediate
algebraicity is witnessed by additional vertices, and then as one attempts to
analyze further the interaction of these witnesses requires analysis. For an
example of the complications ensuing, consider the following instance, where
the analysis is still not complete.

Problem 9 (Hairy Ball Problem). We consider graphs C consisting of a
complete graph K on n vertices vi, with at most one path Pi adjoined to each
vertex vi. We ask whether aclC is locally finite.

We tend to think acl is indeed locally finite in all such cases, so that there
is a corresponding universal graph. But if this is not the case, then with a
few counterexamples in hand, we would be able to use the pruning method
to reduce the general problem substantially.

We have already carried out the translation of this problem into a com-
pletely explicit one, so we repeat that here.
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Problem 10. [Hairy Ball Problem, Explicit Form] With C as specified, let
G be a graph containing a sequence of vertices (vi)i∈Z such that the vi lie
along a 2-way infinite path Q which is free in G over the (vi)i∈Z in the sense
of Definition 3.9 and such that each vertex vi belongs to a graph Ci so that
the pair (vi, Ci) is isomorphic to a pair (v, Cv) in the notation above. Does
it follow that C embeds into G?

We now turn to a different topic. We took note in §3.6 of a reduction of
universality problems in general to the case of graphs with a coloring of the
vertex by two colors. So we ask the next question.

Problem 11 (Graph Reduction Problem). Is there a reduction of the prob-
lem of the existence of countable universal vertex colored graphs (for the case
of two colors) to the same problem for graphs, where a finite set of forbidden
substructures is allowed in each case?

Here a reduction would be, in general, any algorithmic reduction, but
what is envisioned in particular would be an interpretation of the broader
class in the narrower, which is how such results are usually obtained. Such
a result would complete the reduction of all problems of this type to the
category of graphs, which is encouraging if one thinks the latter problem
might be solvable, and discouraging if one thinks the former problem is not
likely to be solvable. The most intriguing possibility is that the universality
problem is solvable for graphs but not for general structures; but such a
reduction would close the door on this possibility.

There is one more problem that we consider very attractive, which as far
as we know has received no systematic attention.

Problem 12 (Permutation Patterns). Identify those permutation pattern
classes for which there is a unique existentially complete countable permuta-
tion, up to isomorphism.

A variety of decision problems in the context of permutation pattern
classes are discussed in [46]. When permutations are viewed as structures,
pattern classes are precisely the classes defined by forbidden substructures
which are themselves permutations [7]. We may extend a pattern class by
considering all the countable permutations (i.e., reorderings of an arbitrary
countable ordered set) which obey the same constraints. Cameron has given
the complete classification of the universal homogeneous permutations; these
all have a very simple structures.
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In this setting, a permutation P is existentially complete (relative to the
given class) if for every finite subpermutation P0 of P and every extension of
P0 to a finite permutation Q0, if Q0 embeds over P0 into an extension of P in
the class, then Q0 embeds into P over P0. Every countable permutation in a
pattern class extends to a countable existentially complete permutation for
that class, and thus there will be a universal permutation if and only if there
is a universal existentially complete permutation. In particular, when there is
a unique existentially complete permutation in the class, there is a universal
one, and furthermore we have a canonical infinite permutation representing
the pattern class. If we take our experience with graphs as a guide, we may
expect that universal permutations arise mainly in this fashion—but it is an
uncertain guide, as mentioned before. We alluded in §3.6 to the need for
some foundational work on the model theory side.

One can see this topic touched on in the permutation class literature in
a very direct sort of way (looking for infinite limits as permutations of Z or
Q). But adopting Cameron’s strategy of viewing permutations as structures,
and then applying the standard apparatus of model theory, one should be
able to make something more comprehensive out of this idea.

4.3. Notes

Here we address some points that might strike a close reader as calling
for further comment.

1. By a “combinatorial structure” we have in mind, roughly speaking, a
structure in a finite relational language. However we also allow the impo-
sition of symmetry conditions: for each complete quantifier-free type in the
language, we allow the specification of a symmetry group. And it is reason-
able to require that a relation never hold of an n-tuple whose entries are not
distinct, as one may add a relation in fewer variables to cover that case.

The article [11] was written throughout in the language of graph theory,
but goes over without significant change to structures in finite relational
languages with symmetry conditions on the relations.

In combinatorial model theory it is often appropriate to allow finitely
many functions with a uniform finiteness condition (with vector spaces over
finite fields a typical instance), but we have not looked in this direction.

2. If A,B are combinatorial structures of the same type, with the domain
of A contained in the domain of B, we call A a substructure of B if the
relations on A are contained in the corresponding relations on B, and an
induced substructure if the relations on A are the restrictions to A of the
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corresponding relations on B. When symmetry conditions are imposed on
the basic relations of a structure (as in Note 1) then the relations of A as
well as B must satisfy those symmetry conditions. (Thus for example if we
consider a structure in which a certain binary relation R is symmetric, then
any induced substructure will be symmetric, but this is not necessarily the
case for substructures, unless we choose to work in the category of symmetric
structures.)

Our terminology follows the usage of graph theory: “subgraph” and “in-
duced subgraph” are, respectively, “substructure” and “induced substruc-
ture” when graphs are encoded by symmetric binary relations, and the sym-
metry is included in the specification of the language.

But this terminology conflicts with the usage of model theory, where
“substructure” corresponds to our “induced substructure” and there is no
common term corresponding to our “substructure,” though “weak substruc-
ture” would be natural.

We gave some substantial reasons to work with forbidden substructures
rather than forbidden induced substructures in §3.6. On the one hand our
general theory holds in the former case and definitely not in the latter; on
the other hand we have relatively straightforward encodings of undecidable
problems in the latter setting, and nothing similar (so far) in the former
setting.

The formal setting for wqo problems is flexible: any interesting class of
finite combinatorial objects with a natural well-founded quasi-order will do.
Thus the fact that the classQ of tournaments is not closed under substructure
is not of particular importance in the context of §2.

But universality problems are more sensitively related to the initial choice
of forbidden substructures, and other issues (the latter illustrated by Problem
12).

3. In the treatment of Q(c) we work with oriented paths. One can work
with symmetric paths without much alteration, evidently, and when encoding
antichains into binary relational structures with symmetric relations, one
would presumably do so.

4. In subsection 2.3 we saw that for the wqo problem, the case of graphs
and the case of tournaments are very different; as technically speaking tour-
naments are not actually an instance of “finite relational systems” in the
sense of model theory, and graphs are, one might wonder whether the latter
case is more typical. However, what is actually important here is the fact
that in the language of tournaments (or digraphs, if one prefers) there are
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two positive relations on pairs: E(x, y) and E(y, x). So for example if one
considers graphs with two colors of edges, encoded by relations E1(x, y) and
E2(x, y), this should be similar to the case of tournaments.

Recall that the Gaifman graph (M,E) associated to any relational system
(M, . . . ) hasM as its set of vertices, with two vertices are adjacent if and only
if they are part of a tuple related by at least one relation in M . One way to
get antichains of structures is by ensuring that the corresponding Gaifman
graphs are antichains; but on the other hand one also has antichains of
structures whose Gaifman graphs are paths, and in the case of tournaments
all the associated Gaifman graphs are complete.

5. Our “default” notion of universality is the strong one, where we require
universal graphs to admit embeddings of other graphs as induced subgraphs.
We have also taken note of the weak notion of universality, in which the
embedding must be as simply as a subgraph.

These two notions can diverge considerably—in Rado’s context, if all
one wants is weak universality, a complete graph would suffice—but for the
question of their existence, as opposed to the details of their structure, the
corresponding dividing line does not seem to change much. In fact the work
to date has always been done in the strongest possible form: in positive cases
strongly universal graphs are constructed, and in negative cases the existence
of weakly universal graphs is refuted. The latter may take a little extra work
in some cases, requiring some decoration of the algebraic closure of a finite
set so as to guarantee incompatibility of the structures involved, in a suitable
sense. The work in the case of trees in particular [10] would be a little simpler
without this fillip, but the structure of the argument would be unchanged.

The case of bounded degree (3.1) is an exception to this pattern. Here one
comes down almost immediately to the case in which the algebraic closure
operator is not locally finite, while in other cases that first phase of the
analysis is the main one.

6. We have restricted our attention to three notions of tameness: wqo, the
existence of a universal graph, and a local finiteness condition equivalent to
the existence of a canonical universal graph. In model theoretic terms, this
last condition is the ℵ0-categoricity of the model companion of the theory of
the class. Any of the tameness criteria of model theory (notably, stability
and its variations) give rise to analogous classification and decidability prob-
lems. In general, the first order theories which axiomatize constraints given
by finite sets of forbidden substructures constitute a class of universal theo-
ries that lend themselves to particularly systematic analysis. More precisely,
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one considers the class of model complete theories whose universal part ex-
presses a set of constraints given by finitely many forbidden substructures.
Within this latter class, one expects the study of any natural model theo-
retic property to lead back to purely combinatorial problems involving the
set of finite forbidden substructures from which the theory is derived. Expe-
rience in model theory would suggest that stability, in particular (or perhaps
more the broader notion of simplicity), should have connections with more
concrete combinatorial issues.

But we have not pursued this line of thought.

5. Appendix 1: Universality with Bounded Degree

In this Appendix we will elaborate on our previously sketched proof of
the following.

Proposition (3.4). For constraint sets C including some star, the problem
of the existence of a weakly universal countable C-free graph is decidable. A
weakly universal C-free graph will exist if and only if one of the following
conditions holds:

1. C contains a path;

2. C contains generalized 3-star S(k1, k2, k3) consisting of a central vertex
v0 and paths Pi of length ki for i = 1, 2, 3 attached to v0. In addition,
any maximal infinite connected C-free graph is almost periodic.

We will concentrate on the structural analysis involved, and comment
afterward on the issues involved in making this more constructive.

5.1. Block structure of C-free graphs

We first go over some standard graph theory used in the structural anal-
ysis.

Definition 5.1.

1. A cut vertex of a connected graph is a vertex whose removal disconnects
the graph.

2. A graph is 2-connected if it is connected and has no cut vertices.
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3. An induced subgraph of a graph is a block if it is a maximal 2-connected
induced subgraph.

4. The tree of blocks associated to a connected graph G has as vertices
the blocks and the cut points of G, with the incidence relation as edge
relation.

To justify the terminology one checks that the graph structure on the tree
of blocks T is in fact a tree. This holds because the union of the blocks lying
in any cycle of T would itself be 2-connected, contradicting the maximality
of the blocks.

Lemma 5.2. Let G be connected graph of infinite diameter omitting some
generalized 3-star S = S(k1, k2, k3). Let k = max(k1, k2, k3). Then the diam-
eter of any block of G is at most k.

We remark that this does not work with G of finite diameter, e.g. a large
cycle.

Proof. Let B be a block of G, and suppose a, b ∈ B lie at distance greater
than k. There are two disjoint paths P1, P2 joining a to b in B and each
has length at least k. Let C be the cycle formed by P1 ∪ P2. Let δ be the
diameter of C.

Take a vertex c ∈ G with d(a, c) > δ + k. Let Q be a path of minimal
length connecting c to C. Then the length of Q is at least k. Then Q ∪ C
contains S and we have a contradiction.

Corollary 5.3. Let G be a connected infinite graph omitting some star and
some generalized 3-star. Then the blocks of G have bounded order.

Lemma 5.4. Let G be a connected infinite graph omitting some star and
some generalized 3-star S. Then there is a sequence Bi of blocks of G indexed
by I = N or Z, so that Bi meets exactly Bi±1 (with the obvious exception for
i = 0, I = N), and so that the connected components of G \

⋃
i Bi are of

bounded order.

Proof. Let T be the tree structure induced on the blocks of G: its vertices
are the blocks and cut points of G, with incidence as the edge relation. This
tree omits the generalized 3-star S and is itself infinite. We claim that T
contains a path P of order type N or Z such that T \ P decomposes into
trees of bounded order.
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Let S = S(k1, k2, k3) and k = max(k1, k2, k3). For any vertex v of T , the
connected components of T \ {v} are trees of bounded degree, and all but
at most two contain no path of length 2k; otherwise we find three disjoint
paths of length k connecting to v.

Let P be the set of vertices of T for which there are, in fact, two compo-
nents of T \ {v} containing a path of length 2k. T induces a tree structure
on P , with edges in P corresponding to paths in T . If a vertex v in P has at
least three neighbors v1, v2, v3 in P , then there are components Ti of T \ {vi}
such that Ti contains a path of length 2k and does not contain v. Then
T1, T2, T3 are contained in distinct connected components of T \ {v} and we
contradict the definition of P .

On the other hand, if u, v ∈ P then the path connecting them lies in P
as well.

So P is a path.
Consider the connected components of T \P . If one of them is sufficiently

large, it will contain a path of length 4k + 1. Then the midpoint will belong
to P , a contradiction. So T \ P breaks up into trees of bounded order. In
particular P is infinite, and can be indexed by N or by Z.

For any vertex of T \P that lies between two vertices v1, v2 of P , as above
we find components T1, T2 of T \ {v} containing v1, v2 respectively together
with a path of length 2k. So P is a convex subset of T . So P represents a
sequence of blocks and cut points, each incident with the next, and pulling
back from T to G gives the claim.

Apart from the choice of a numerical parameter, the path P constructed
in the previous proof was obtained canonically from the graph G.

Notation 5.5. With the hypotheses of Lemma 5.4, and with k fixed, let P
be the path in the tree of blocks constructed in the proof. Let (PB, PV ) be the
partition of the vertices of P into blocks and cut vertices. Each of PB and
PV may be construed as a path in which the remaining vertices of P encode
edges (with the exception of the endpoint of P if there is one).

At this point we can see the encoding of G by an infinite word in a fixed
finite alphabet, indexed by the vertices of P . The next lemma is mainly a
matter of establishing notation.

Lemma 5.6. Let G be a graph, P an infinite path contained in the tree of
blocks T associated with G, and PV the set of cut vertices in P . For C a
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connected component of T \ PV , let Ĉ be the union of the blocks in C. Then
we have the following.

1. Ĉ meets PV in one vertex or in two adjacent vertices of PV .

2. As C varies over the connected components of T \ PV , Ĉ \ PV varies
over the connected components of G \ PV , with each such component
occurring once.

Proof. The first statement is a transparent statement about trees. A con-
nected component C of T \ PV will have vertices adjacent to one or more
vertices of PV . Either C will contain a vertex on P and the two adjacent
vertices on PV will be the ones in question, or C will contain a vertex of T \P
adjacent to a vertex of PV , and the latter is then unique. A vertex v of C
adjacent to a vertex a of PV represents a block containing a, so in this way
Ĉ picks up the neighboring vertices of PV .

For the second statement, it is evident that the various Ĉ are connected,
and their union contains all blocks of G, hence all vertices and all edges of
G. Furthermore the sets Ĉ \PV are pairwise disjoint. This proves the second
point.

Notation 5.7. Assume the graph G satisfies the hypotheses of Lemma 5.4,
and let T be the tree of blocks associated with G, with PV ⊆ P ⊆ T corre-
sponding.

1. For a, b adjacent vertices of PV , set

Ga =
⋃

Ĉ∩PV ={a}

Ĉ

Ga,b =
⋃

Ĉ∩PV ={a,b}

Ĉ

2. Fix an orientation of PV so that PV is an ordered path of type N or
Z, and in particular carries a successor relation. For a ∈ PV with
successor b ∈ PV , set Ga = (Ga ∪ Ga,b, a, b), a finite graph with two
distinguished base points.

3. Let Σ be the alphabet consisting of the isomorphism types of structures
(G0, u1, u2) consisting of finite graphs of bounded order with two distin-
guished base points, where the bound is a function of k which bounds
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the sizes of all possible Ga. Let W = WG be the infinite word (Ga)a∈PV

in the alphabet Σ.

Observe that after appropriate numerical parameters have been fixed to
make these constructions canonical, two connected graphs satisfying our hy-
potheses will be isomorphic if and only if they correspond to the same infinite
word W , allowing of course for translation of the index set it if it is of type
Z.

5.2. Proposition 3.4

With this notation in hand we can return to the proof of Proposition 3.4.

Proof. Let G be an infinite maximal connected C-free graph, and W = WG

the associated infinite word describing the construction of G relative to a
suitable sequence of cut vertices. We must show that if G is not almost peri-
odic, then there are 2ℵ0 such graphs G. We are interested in finite segments
of W , that is finite contiguous subwords.

At this point another numerical parameter comes into play: a bound K
on the size of all constraints in C. We need to see how the properties of G
are reflected by the associated word W , and we claim that this is local, that
is, depends only on the local structure of W , namely its subwords of length
at most K.

Any connected subgraph of G of order, or for that matter diameter, at
most K lies in a portion of G encoded by a segment of W of length at most
K. Thus the C-freeness is local, involving only the set of such segments
occurring in W . Maximality is for the most part a similar condition. An
edge not in G would either involve two points at a large distance, in which
case the generalized 3-star occurring as a constraint already rules out the
existence of such an edge, or else would involve two vertices v, v′ of G at
a uniformly bounded distance. In this case, maximality of G requires that
insertion of the edge (v, v′) would result in an embedding of some graph in C
into the extended graph, and as the constraints are connected graphs, these
would involve small graphs connected to v and v′, and hence again encoded
into short segments of W , containing suitable segments around v and v′, and
the segment from v to v′.

So for any infinite word W ′ whose segments of appropriately bounded
length occur as segments of W , we may construct a graph G′ with associated
word W ′, which will then be an infinite maximal connected C-free graph.

76



Now there is at least one suitably long finite segment w which occurs
infinitely often in W . In particular there is a segment ww′w of W with both
w and w′ suitably long. Then any short subword of (ww′)∞ will be a subword
of ww′ or w′w, and hence of W .

We claim that either the word W is itself almost periodic with period
ww′, or that we can find an uncountable set of distinct words with the same
local structure.

Suppose that W is not almost periodic. Then there is a finite segment
ww′′ with w′′ at least as long as w′, such that ww′′ does not embed into
(ww′)∞. (Begin with any specific occurrence of w in W .) There is then a
power (ww′)n of ww′ which does not embed in (ww′′)∞. Consider the words
(ww′)n and ww′′, which we label α, β, choosing the notation so that the word
α is no longer than the word β. We record the relevant properties.

1. α, β are finite words, with α no longer than β.

2. α does not embed in β∞.

3. Any 2-way infinite product
∏

iwi with wi ∈ {α, β} encodes an infinite
maximal connected C-free graph.

Now consider products of words wi = αβni (i ∈ Z, ni ≥ 2, even). Two
such products W1, W2 corresponding to sequences ni, n

′
i will be translates of

each other if and only if the sequences (ni), (n
′
i) are themselves translates of

each other. Indeed, let f embed W1 into W2. Then the image of each segment
of type α in one of the words wi has to meet some segment of type α in one of
the words wj, and while in principle these two segments may overlap properly,
as α is no longer than β this allows at worst |ni − n′

j | ≤ 1, so by taking the
entries even we ensure that they match, after which it becomes clear that
the map from i to j determined by f is a translation.

So we arrive at 2ℵ0 distinct words from which 2ℵ0 nonisomorphic maximal
connected C-free graphs can be constructed, and there is no universal C-free
graph in this case.

For the issue of decidability, one needs mainly in the concluding phase
of the argument to determine how far from strict periodicity the sequence
needs to be to produce the final construction of 2ℵ0 graphs. If one is not
much concerned about complexity issues it suffices to argue that there is
such a bound, and also that once such a bound can be reached, it can be
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recognized. One can certainly enumerate the alphabet Σ (on the first pass, it
is enough to give a finite alphabet containing Σ) and a list of all the words in
Σ up to some finite bound which correspond to C-free graphs, and which also
satisfy an appropriate weak maximality condition, with respect to vertices
lying well away from the boundary of the word. After that, one needs only
to determine whether there is an infinite product of these words which is not
almost periodic.

6. Appendix 2: Unarity vs. Universality

This appendix is devoted to a proof of the following.

Theorem 3. There is a finite set C of finite connected graphs such that

1. The associated operation aclC of algebraic closure (in C-free graphs) is
locally finite;

2. In particular, the class AC of countable C-free graphs has a universal
member (Theorem 2); but—

3. The operation of algebraic closure aclC associated with C is not unary.

The fact that we can have a universal C-free graph without unarity un-
doubtedly complicates the issue of determining systematically when a uni-
versal countable C-free graph exists. This phenomenon seems unlikely in the
case of 1 constraint, but is not yet ruled out.

The idea of the proof is simple enough: consider the cartesian power X2

as a structure A = (X2∪X ; π1, π2) with π1, π2 the projection maps. If S ⊆ A
then taking XS = (S∩X)∪π1(S)∪π2(S), we have acl(S) = XS∪X2

S. So this
operation is locally finite and not unary, and if we can encode this situation
faithfully into a graph structure, these properties will be inherited. It will
then suffice to extract a finite number of forbidden substructures which are
sufficient to carry through the same analysis.

6.1. Graph structures on [X ]2

Since we are working with graphs, we are forced to allow some graph
structure on X2, so we begin by considering a class of structures that encodes
such a structure, except that we will replace the set of ordered pairs of X2

by the set of unordered pairs, denoted [X ]2.
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Definition 6.1. Let A be the class of countable structures of the form

A = (X ;E)

where E = E(x1, x2, x3, x4) is a 4-place relation on X which encodes a
triangle-free graph on [X ]2 (in particular, E is invariant under permutations
of the variables in the Klein 4-group), and such that E(x1, x2, x3, x4) never
holds if two of the entries are equal.

The next result is analogous to the existence of a universal triangle-free
graph.

Lemma 6.2. There is a universal homogeneous structure in A.

Such results are typically proved using Fräıssé’s theory. For simplicity
we formulate that theory in a very special case, adequate for our present
purpose, as follows.

Fact 6.3. Let F be a class of finite structures having finitely many relations
and no functions, and assume that the following hold.

• If A is in F , then any structure isomorphic to an induced substructure
of A is also in F .

• The disjoint union of two structures in F is again in F .

• If A0, A1, A2 ∈ F and A0 ⊆ A1, A2 then the disjoint union of A1 with
A2 over A0 (denoted A1 ∪A0

A2) is again in F .

Let A be the class of countable structures whose induced substructures belong
to F . Then there is a universal structure in A.

Our lemma then follows directly.

Proof. The necessary properties are all immediate. In the case of amalga-
mation, we may suppose that the structures A1, A2 are taken so that their
intersection is A0, that is the disjoint union over A0 is just the union. Then
the relation E on A1∪A2 is E1∪E2, and this represents a graph on [A1∪A2]

2

in which vertices {a, b} for which a ∈ A1\A0, and b ∈ A2\A0 are isolated.
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6.2. Encoding by Graphs

The next step is to pick a particular encoding of our exotic structures by
ordinary (simple, symmetric) graphs.

Definition 6.4. Let A = (X,E) ∈ A. Then ΓA is the graph with vertex
set (X × Z/3Z) ∪ [X ]2 and with edge relation the symmetric closure of the
following relation ∼:





(x, i) ∼ (x, j) x ∈ X , i, j ∈ Z/3Z, i 6= j

(x, 0) ∼ {x, y} x, y ∈ X distinct

{x1, x2} ∼ {x3, x4} xi ∈ X (i = 1, 2, 3, 4) and E(x1, x2, x3, x4) holds

Then all of the graphs ΓA have the following five properties, with the first
four properties corresponding to negative constraints.

1. Distinct triangles are disjoint.

2. No vertex v has three neighbors such that each one lies on a triangle.

3. In any triangle, at most one vertex has a neighbor not in the triangle.

4. For any two distinct vertices v1, v2, each of which lies on a triangle,
there is at most one vertex adjacent to both.

5. Any vertex v has at least two neighbors, each of which lies on a triangle;
and for any two distinct triangles, there is a vertex with a neighbor on
each one.

We let A∗ be the class of countable graphs satisfying conditions (1–4).

Remark 6.5. There is a set C of finite connected graphs such that A∗ coin-
cides with the class AC of countable graphs omitting each member of C (as a
subgraph).

More specifically, condition (1) is expressed by two such constraints, and
modulo condition (1), conditions (2,3,4) are expressed by one constraint each.

Lemma 6.6. Let Γ ∈ A∗. Then there is a structure A ∈ A such that Γ
embeds into ΓA as an induced subgraph.
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Proof. For any vertex v ∈ Γ, let Γ′
v be the graph obtained from Γ by adjoining

three vertices (a, b, c) forming a triangle, and one further edge (a, v).
Claim: If in Γ v does not have two neighbors such that each one lies on

a triangle, then Γ′
v ∈ A∗. Observe that the hypothesis on v includes the

assumption that v itself does not lie on a triangle in Γ. The claim then
follows by inspection of the conditions (1-4) in Γ′

v.
Applying the claim iteratively, Γ embeds as an induced subgraph into a

graph Γ̄ ∈ A∗ such that every vertex v ∈ Γ̄ has two neighbors such that each
lies on a triangle.

Now in Γ̄ we consider the set X of triangles contained in Γ̄, and the set
Y of vertices of Γ̄ not lying on triangles. We define a structure A = (X ;E)
with underlying set X and with E(x1, x2, x3, x4) defined by:

∃v1, v2 ∈ Y ∃ui ∈ xi (i = 1, 2, 3, 4) v1 ∼ u1, u2&v2 ∼ u3, u4&v1 ∼ v2

By conditions (1–3) we have A ∈ A.
Furthermore Γ̄ embeds as an induced subgraph of ΓA. For y ∈ Y , we

map y to the unordered pair {T1, T2}, where T1 and T2 are the two triangles
which contain neighbors of y. And for any triangle T of Γ̄, we map it into
the corresponding triangle {T} × Z/3Z of ΓA, in such a way that if T has a
vertex v with a neighbor off T , then v corresponds to (T, 0).

6.3. Universality and Non-unarity

Lemma 6.7. A∗ contains a (strongly) universal structure.

Proof. Let A ∈ A be universal. We claim that ΓA is universal in A∗.
Let Γ ∈ A∗ and let B ∈ A be taken so that Γ is isomorphic with an

induced subgraph of ΓB. Take an embedding of B into A as an induced
substructure. This gives an embedding of ΓB into ΓA as an induced sub-
structure.

Now we claim that the operation aclC associated with A∗ is not unary.

Lemma 6.8. Let Γ ∈ A∗ and suppose that Γ satisfies condition (5). Then
Γ = aclC(Γ), relative to any extension Γ′ of Γ in A∗ (with the Γ an induced
substructure of Γ′).

Proof. It suffices to show that if Γ is an induced substructure of Γ1 ∈ A∗,
then the free amalgam Γ∗ = Γ1⊔Γ Γ1 (the disjoint union over Γ) is in A∗. As
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a matter of notation, it will be convenient to write Γ2 for the second copy of
Γ1, bearing in mind that Γ1 ∩ Γ2 = Γ.

We claim first that any triangle T in Γ∗ which meets Γ is contained in Γ.
Let v be a vertex in T ∩ Γ. Then v has two neighbors v1, v2 ∈ Γ which lie on
triangles of Γ. So by condition (2) T is contained in Γ.

In particular, condition (1) holds in Γ∗.
For condition (2), suppose that the vertex v ∈ Γ∗ has three neighbors

v1, v2, v3, each lying on a triangle. If v ∈ Γ1 \ Γ then v1, v2, v3 ∈ Γ1 and we
violate condition (2) in Γ1. So we may suppose v ∈ Γ. By our hypothesis
on Γ, we may suppose v1, v2 ∈ Γ. Then the existence of v3 violates condition
(2) in Γ1 or Γ2.

Condition (3) for Γ∗ is clear, but it is worth noticing that it depends on
the fact that the two factors Γ1,Γ2 are isomorphic over Γ.

Turning to condition (4), suppose that v1, v2 ∈ Γ∗, each one lies on a
triangle in Γ∗. If v1, v2 ∈ Γ then there is a vertex u ∈ Γ adjacent to both, and
condition (4) for Γ∗ follows from condition (4) for Γ1,Γ2. Suppose therefore
that v1 ∈ Γ1 \ Γ. Then any neighbor of v1 in Γ∗ lies in Γ1, and hence, by
condition (5) in Γ, must lie in Γ1 \ Γ. So if v1, v2 have a common neighbor u
then both u and v2 must lie in Γ1, and hence u is unique by condition (4) in
Γ1.

Proposition 6.9. The algebraic closure relation aclC associated with the class
A∗ is not unary.

Proof. Consider the graph on seven vertices consisting of two triangles T1, T2

together with a vertex v adjacent to a unique vertex on each.
Evidently v ∈ aclC(T1 ∪ T2). On the other hand, the triangles T1, T2 are

algebraically closed in view of the previous lemma.

With this the proof of Theorem 3 is complete.

7. Appendix 3: Forbidden Induced Graphs

Our aim in the present section is to prove the following.

Theorem 4. The universality problem for graphs with finitely many forbid-
den induced subgraphs is undecidable.

Or equivalently: the problem of determining whether a universal theory
of graphs has a universal countable model is undecidable.
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Our method is to encode tiling problems, which involves covering the grid
Z2 by a finite set of tile types, respecting some horizontal and vertical tiling
constraints. As an intermediate step, we introduce string tiling problems,
which are similar problems with the tile colors represented by bit strings
(thereby reducing to the case of two tiles, with slightly more complicated
tiling rules). It will be convenient to state a technical condition somewhat
stronger than undecidability for both tiling problems, namely inseparability
of the class of unsolvable tiling problems from the class of tiling problems
with many solutions. All of this involves minor tweaks of the original tiling
problem. Here one would expect “many” solutions to mean 2ℵ0 , but in fact we
require a slightly sharper condition: 2ℵ0 incomparable solutions, with respect
to the pointwise comparison of colorings f : Z2 → {0, 1}.

With that in place, we will introduce the class of graphs associated with
a particular string tiling problem, in such a way that unsolvable cases of the
tiling problem will give classes of graphs satisfying a finiteness condition that
results in a universal structure, while the existence of many tilings refutes
the existence of a universal structure.

The preparation with regard to tiling problems in §§7.1–7.2 is extremely
natural, and can probably be taken in at a glance. The encoding by graphs
was more elusive.

7.1. Tiling Problems

The intuition in the following definition is that we will have a finite set
of colors C, an infinite collection of tiles of each color, and that we will be
attempting to tile the plane Z2 completely with the specified tiles, while
avoiding certain clashes of colors in the horizontal and vertical directions.
There the structure on Z2 is a directed graph structure corresponding to the
successor relation on Z.

Definition 7.1.

1. A tile set is a structure (C;H, V ) with C finite and H, V ⊆ C2.

2. Let T = (C;H, V ) be a tile set. A function

f : Z2 → C

is a T -tiling if for all m,n ∈ Z we have

H(f(m,n), f(m+ 1, n)) and

V (f(m,n), f(m,n+ 1))
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3. The tiling problem is the problem of deciding, for a given tile set T ,
whether or not there is a T -tiling of Z2.

See §3.6 for comments on the relationship of these tiles with Wang’s
dominoes.

Fact 7.2 ([2]). The tiling problem is undecidable.

As we said at the outset, this fact needs to be recast for our present
purposes, using the following notion of algorithmic inseparability.

Definition 7.3. Let A,B be two disjoint sets whose elements are finite struc-
tures of some type, for example tile sets. We say that A and B are algorith-
mically inseparable if there is no computable function φ with domain all finite
structures of the specified type, which separates A and B in the sense that
φ = 0 on A and φ = 1 on B.

Lemma 7.4. Let W− be the set of all tile sets T for which there is no T -
tiling of Z2, and let W+ be the set of all tile sets T for which there are 2ℵ0

T -tilings of Z2. Then W+ and W− are algorithmically inseparable.

Proof. Short version: if you replace each tile in a set by two tiles, then every
solution to the original tiling problem corresponds to 2ℵ0 solutions to the new
tiling problem.

More formally, if T = (C;H, V ) is a tile set, define the double T̃ =
(C̃; H̃, Ṽ ) by

C̃ = C × {0, 1}

π : C̃ → C (projection)

H̃ = π−1[H ], Ṽ = π−1[V ]

(The map π : C̃2 → C2 implicit in the last clause above is the map
induced by π.)

Then T̃ -tilings T̃ : Z2 → C̃ project to T -tilings via

π∗(T̃ ) = π ◦ T̃

and 2ℵ0 T̃ -tilings cover any single T -tiling.
Thus if φ were a computable function separatingW+ andW−, the function

φ(T̃ ) would solve the Wang tiling problem.

84



7.2. String Tiling Problems

We will find it convenient to work with colorings of Z2 by two colors
rather than by an arbitrary set of colors, so we introduce another set of
tiling problems.

Definition 7.5.

1. A string tile set is a tile set (C;H, V ) in which C is a set of binary
strings of fixed length: C ⊆ 2k for some k.

2. If T = (C;H, V ) is a string tile set with C ⊆ 2k, then a function

f : Z2 → {0, 1}

is a T -coloring if for all m,n ∈ Z the strings

σm,n = (f(m+ i, n))i<k

satisfy

H(σm,n, σm+k,n)

V (σm,n, σm,n+1)

3. If f, g : Z2 → {0, 1}, we write f ≤ g if f(m,n) ≤ g(m,n) throughout
Z2, and we refer to this as the pointwise partial order. In particular,
f and g will be called incomparable if they are incomparable in this
partial order.

We aim to convert the inseparability result for tiling problems to a very
similar result for string tiling problems. Our encoding of tiling problems by
string tiling problems is very direct, but as we have a number of technical
constraints to observe, it takes some space to check thoroughly. This is the
subject of the next lemma.

We first insert a word about shifts of tilings and colorings. For f a function
with domain Z2 and (m,n) ∈ Z2, we define the shift f ′ of f by (m,n) via
f ′(x) = f(x−(m,n)). A shift of a T -coloring f is again a T -coloring, but if f
is the bitstring representation of a tiling by tiles in 2k, its shift by (m,n) will
generally not be the bitstring representation of a tiling, unless m is a multiple
of k. So we take this into account in our description of the correspondence
between tiling and string tiling problems.
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Lemma 7.6. There is a transformation of tiling problems T = (C;H, V )
into string tiling problems T̃ = (C̃; H̃, Ṽ ) so that the following hold.

1. T -tilings T : Z2 → C correspond naturally (and bijectively, up to shifts)
to T̃ -colorings f : Z2 → {0, 1}.

2. Any two T̃ -colorings f, g : Z2 → {0, 1} are incomparable in the point-
wise partial order.

Proof. We make a direct encoding of an arbitrary tile set T into a string tile
set T̃ so that T -tilings and T̃ -colorings correspond, using strings of repeated
1’s to mark tile boundaries, and using a set of incomparable strings to encode
tile types. This will translate the inseparability result for tilings into the
desired result. We now pass to the details.

Let T = (C;H, V ) be a tile set. Take k so that |C| ≤ 2k and assume that
C ⊆ 2k is a set of bit strings. For σ ∈ 2k let σ̄ ∈ 2k be the complementary
bit string, σ̄(i) = 1−σ(i). Replacing each string σ ∈ C by the string σσ̄, we
may suppose that C ⊆ 22k and the strings in C are incomparable.

Next we insert 0’s to eliminate repeated occurrences of 1. So for σ ∈ 22k

we define σ′ ∈ 24k+1 by

σ′(i) =

{
0 i even

σ((i− 1)/2) i odd

Let α0 be the string 011, α1 the string 110, and define

σ̃ = α0σ
′α1

for σ ∈ C. We set C̃ = {σ̃ : σ ∈ C} and k̃ = 4k + 7.
Let H̃ be the set of all pairs (σ, τ) ∈ C̃2 which embed as a contiguous

substring of some string σ̃1σ̃2σ̃3 with σ1, σ2, σ3 in C and H(σ1, σ2), H(σ2, σ3).
Let Ṽ be the set of all pairs σ, τ such that the 2× k̃ array

(
τ

σ

)

embeds into an array of the form
(
τ̃1τ̃2
σ̃1σ̃2

)
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where the σi and τi are in C and we have H(σ1, σ2), H(τ1, τ2), V (σi, τi)
(i = 1, 2). Finally, set T̃ = (C̃; H̃, Ṽ ).

To go from a T -tiling T : Z2 → C to a T̃ -coloring T̃ : Z2 → {0, 1}, we
replace the tiles by the corresponding strings, getting

T̃ (mk̃ + i, n) = ˜T (m,n)i (i < k̃)

where ˜T (m,n) is the string encoding T (m,n) and the subscript denotes its
i-th entry.

By our construction, every T -tiling produces a T̃ -coloring, and further-
more distinct T -tilings give rise to incomparable T̃ -colorings. So we need
only check that every T̃ -coloring arises in the intended manner, as the en-
coding of a T -tiling.

Suppose therefore that f : Z2 → {0, 1} is a T̃ -coloring. We work mainly
with the horizontal constraints H̃. We claim that for each n, the infinite
string

τn = (f(i, n))i∈Z

has a unique decomposition as a concatenation

τn =
∏

j∈Z

σ̃j (σj ∈ C)

This uniqueness should not be taken overly literally: any shift of the index
set gives another parametrization of the same decomposition, a point which
becomes more relevant when n varies. The horizontal constraints H̃ ensure
that the pattern 11011 repeats regularly and that the strings occurring be-
tween successive instances encode elements of C, that is σ′ for σ ∈ C. This
gives us the desired unique decomposition.

Now we will decode the T̃ -coloring f : Z2 → {0, 1}, making an appropri-
ate shift at this point. Pick an occurrence of the pattern 110011 in τ0, and
shift the function f so that the second 0 occurs in position (0, 0). Observe
that the vertical constraint Ṽ forces the occurrences of the pattern 110011
to be aligned vertically, and therefore after this shift the function f is the
encoding of some function T : Z2 → C. Then it is immediate that the con-
straints H̃ and Ṽ , and the distinguished positions of the patterns 110011,
force T to be T -tiling.

And we may now read off the inseparability result.
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Lemma 7.7. Let S− be the set of string tile sets T for which there is no
T -coloring of Z2, and let S+ be the set of string tile sets T with the following
properties.

(a) There are 2ℵ0 T -colorings of Z2;

(b) Any two T -colorings f, g of Z2 are incomparable with respect to the point-
wise partial order.

Then S+ and S− are algorithmically inseparable.

Proof. If the computable function φ separates S+ and S−, then using the
function T 7→ T̃ of Lemma 7.6, the computable function φ(T̃ ) separates W+

and W−.

7.3. Encodings by Graphs

We now come back to universality problems for classes of graphs. This
requires a transformation from string tile sets T to classes of countable graphs
AT . We begin by defining a particular encoding of colorings

f : Z2 → {0, 1}

by graphs Γf .

Definition 7.8.

1. Let S be the symmetrized successor relation on Z: S(m,n) means
|m− n| = 1.

2. Let Z̃ be the graph obtained from (Z, S) by adjoining a cycle Ci of
length 2(i mod 6) + 3 to the vertex i ∈ Z.
Explicitly, set ci = 2(i mod 6) + 3, represent the vertices of Z̃ as pairs

(i, v): i ∈ Z, v ∈ Z/ciZ

and define the edge relation by: E((i, v), (j, v′)) iff

j = i± 1, v = v′ = 0

or i = j,v = v′ ± 1

In particular we identify Z with its image in Z̃, writing i rather than
(i, 0).
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3. Given f : Z2 → {0, 1}, let Ef be the extension of the edge relation on
Z̃ by the following relation on Z

{(a, b) ∈ Z2 : ∃x, y ∈ Z f(x, y) = 1&{a, b} = {6x, 6y + 3}}

Let Γf = (Z̃, Ef )

Remark 7.9. For any f : Z2 → {0, 1}, the graph Ef ↾ Z is bipartite, with
partition the even and odd integers. Thus the only odd cycles in Γf are the
cycles Ci = {i} × Z/ciZ.

Now we turn to the definition of the class AT of countable graphs asso-
ciated with a string tile set T . This class should contain all the graphs Γf

for f : Z2 → {0, 1} a T -coloring, and should be defined by finitely many for-
bidden induced subgraphs. We need to collect some appropriate properties
of the graphs Γf .

The first such constraints are as follows. Let A0 = {ci : 0 ≤ i < 6} be
the set of sizes of odd cycles in the graphs Γf . Let R0 be the cyclic successor
relation on A0 given by R0(ci, ci+1 mod 6), R1 the corresponding predeces-
sor relation on A0, R the symmetric relation R0 ∪ R1, and R2 the relation
R ∪ {(c0, c3), (c3, c0)} Then the following constraints hold in the graphs Γf

introduced above.

1. Any vertex belongs to at most one cycle whose order is in A0.

2. For any cycle C whose order is in A0, there is a most one vertex of C
of degree greater than 2.

3. If C,C ′ are distinct cycles whose orders c, c′ lie in A0, and if some vertex
of C is adjacent to a vertex of C ′, then R2(c, c

′) holds.

4. If C is a cycle of order c ∈ A0, v ∈ C, c′ ∈ A0, and R(c, c′) holds, then
there is at most one cycle of order c′ containing a vertex adjacent to v.

Definition 7.10. Let Γ be any graph satisfying conditions (1–4).

1. ZΓ is the set of vertices v ∈ Γ of degree at least 3 which lie on some
cycle C whose order is in A0, Z

′
Γ is the subset of ZΓ of vertices lying

on a triangle (recall c0 = 3).
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2. We define a successor relation S on ZΓ as follows. Let E be the edge
relation on Γ.

S = {(a, b) ∈ Z2
Γ : E(a, b) and a, b lie on cycles C1, C2

of orders c1, c2 ∈ A0, with R0(c1, c2)}

The connected components of (ZΓ, S) are oriented paths, or oriented
cycles.

3. If a, b ∈ Z ′
Γ we define a partial function

χΓ,a,b : Z
2 → {0, 1}

by

χΓ,a,b(m,n) = 1 iff

a′ = S6ma, b′ = S6n+3b are both defined, and E(a′, b′)

Observe that the domain of the function χΓ,a,b will be of the form I × J
with I, J ⊆ Z intervals containing 0. Our last constraint is associated with
a string tile set C.

(5)T The function χΓ,a,b is T -admissible, for all a, b ∈ Z ′
Γ.

By this we mean that the function satisfies the requirements on a T -coloring,
wherever it is defined.

Remark 7.11. Constraints (1–4) correspond to finitely many forbidden sub-
graphs. Constraint (5)T corresponds to finitely many induced subgraphs.

The last point is perhaps unclear as m and n can be arbitrarily large.
But since we can shift the base point (a, b) and the constraint (5)T is a local
one, the same condition can be expressed with bounded m and n.

Definition 7.12. Let T be a string tile set. Then AT is the set of countable
graphs satisfying constraints (1–4) and (5)T .
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7.4. Universality in AT

Lemma 7.13. Let T be a string tile set such that

1. There are 2ℵ0 T -colorings of Z2.

2. Any two distinct T -colorings f, g : Z2 → {0, 1} are incomparable in the
pointwise partial order.

Then there is no (weakly) universal graph in AT .

Proof. Suppose Γ ∈ AT is weakly universal. For each T -coloring f : Z2 →
{0, 1}, fix an embedding

f ∗ : Γf → Γ

as a subgraph.
As Γ is countable, there must be two distinct T -colorings f1, f2 for which

f ∗
1 (i) = f ∗

2 (i) for i = 0, 1 ∈ Z

The constraints on Γ then force the embeddings f1, f2 to agree throughout
Z: f ∗

1 ↾ Z = f ∗
2 ↾ Z.

Let φ = f ∗
1 ↾ Z and let a = φ(0). Then f1 ≤ χΓ,a,a pointwise. As

χΓ,a,a : Z2 → {0, 1} is total and Γ ∈ AT , χΓa
is a T -coloring and therefore by

hypothesis f1 = χΓ,a,a. Similarly f2 = χΓ,a,a and f1 = f2, a contradiction.

Now we consider tile sets T for which there is no T -coloring, and we claim
that in this case AT does contain a universal graph. We will need to apply
the Fräıssé theory to a variation on the class AT equipped with additional
functions.

Definition 7.14. Let A′
T be the set of structures of the form

(Γ, E, f1, f2, f3)

such that

1. (Γ, E) ∈ AT

2. On ZΓ, f1 gives a partial successor function corresponding to the rela-
tion S, with f1(x) = x where the successor is not defined. Similarly f2
represents the inverse of the successor function, with f2(x) = x where
not otherwise defined.
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3. For cycles C whose length is in A0, f3 gives a successor function on C
(in other words, gives C an orientation); at vertices v ∈ Γ not lying on
such cycles, f(v) = v.

For Γ ∈ A′
T , and A ⊆ Γ, the substructure of Γ generated by A is the union

of A, all connected components of (ZΓ, S) which meet A, and all cycles of
appropriate length meeting such a component.

Lemma 7.15. Let T be a string tile set for which there is no T -coloring of
Z2. Then A′

T has the following properties.

1. A′
T is hereditary: closed under substructure and isomorphism.

2. The number of isomorphism types of finitely generated structures in A′
T

is countable.

Proof. Condition (1) is clear.
For condition (2), since there is no T -coloring of Z2, there is some maximal

finite L = LT for which there is a T -coloring of [0, L)2 (writing [0, L) for
{n ∈ Z : 0 ≤ n < L}). This bound follows by König’s Tree Lemma, or a
compactness argument.

Thus under our hypothesis on T , the finitely generated structures in A′
T

are finite, and the claim follows.

The foregoing lemma gives the more innocuous hypotheses of the Fräıssé
theory. The next lemma addresses the main issue (amalgamation).

Lemma 7.16. Let Γ0,Γ1,Γ2 ∈ A′
T with Γ0 an induced substructure of Γ1 and

Γ2. Then there is an amalgam Γ of Γ1,Γ2 over Γ0 in A′
T . That is, we have

embeddings i1 : Γ1 → Γ and i2 : Γ2 → Γ as induced substructures, agreeing
on Γ0.

Proof. Form the disjoint union Γ◦ of Γ1 and Γ2 over Γ0, with respect to
vertices, edges, and the functions f1, f2, f3. This is not yet in A′

T for the
following reason. If we take a ∈ Γ1 \ Γ0 and b ∈ Γ2 \ Γ0 and consider
the function χΓ◦,a,b, we find that this function is identically 0, which is not
compatible with our constraints. We have to complete the definition of Γ by
adding some edges encoding a suitable coloring of products A×B with A,B
components of Z ′

Γ with respect to the successor relation S6 (and its inverse).
Note however that if A is a component of Γ1 with respect to the successor

function S6 then for a ∈ A the function χΓ1,a,a gives a T -admissible coloring
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of an interval of length |A|. This forces |A| ≤ L. Thus we need only find
encodings of T -admissible colorings of products A × B with |A|, |B| ≤ L,
and by definition of L, there are such.

To make the last step a little more explicit: if f : A × B → {0, 1} is a
suitable coloring of A×B, we add edges (a, S3b) and (S3b, a) that encode this
(in particular we can encode f(a, b) = 1 and f(b, a) = 0 without conflict).

Corollary 7.17. Let T be a string tile set. Then

1. If T ∈ S+ then there is no weakly universal graph in AT .

2. If T ∈ S−, there is a strongly universal graph in AT .

Proof. We treated the first point in Lemma 7.13.
The second point requires some mopping up still. By Lemmas 7.15 and

7.16, the class A′
T satisfies Fräıssé’s conditions for the existence of a strongly

universal (even universal homogeneous) structure; we have omitted explicit
mention of the joint embedding property, but that is the case Γ0 = ∅ in
Lemma 7.16.

So let (Γ∗, E, f1, f2, f3) be universal and let Γ′ = (Γ∗, E) be the underlying
graph. Then Γ′ ∈ AT , and we claim Γ′ is universal. Taking Γ ∈ AT , we
expand it to a structure Γ̂ in A′

T by orienting the cycles whose lengths are
in A0 arbitrarily and then defining the functions f1, f2, f3 correspondingly.
Then Γ̂ embeds into Γ∗ as an induced substructure, and the restriction to Γ
carries it into the graph Γ′ as an induced substructure.

Now by Lemma 7.7 and Corollary 7.17, the problem of determining
whether a given class of the form AT contains a universal structure is al-
gorithmically undecidable. Thus Theorem 4 follows.
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