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1 Introduction

Borovik proposed an axiomatic treatment of Morley rank in groups, later modi-

fied by Poizat, who showed that in the context of groups the resulting notion of

rank provides a characterization of groups of finite Morley rank [Poi87]. (This

result makes use of ideas of Lascar, which it encapsulates in a neat way.) These

axioms form the basis of the algebraic treatment of groups of finite Morley rank

undertaken in [BN94].

There are, however, ranked structures, i.e. structures on which a Borovik-

Poizat rank function is defined, which are not ℵ0-stable [BN94, p. 376]. In
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[Poi87, p. 9] Poizat raised the issue of the relationship between this notion of

rank and stability theory in the following terms: “. . . un groupe de Borovik est

une structure stable, alors qu’un univers rangé n’a aucune raison de l’être . . . ”

(emphasis added). Nonetheless, we will prove the following:

Theorem 1.1 A ranked structure is superstable.

An example of a non-ℵ0-stable structure with Borovik-Poizat rank 2 is given

in [BN94, p. 376]. Furthermore, it appears that this example can be modified

in a straightforward way to give ℵ0-stable structures of Borovik-Poizat rank 2

in which the Morley rank is any countable ordinal (which would refute a claim

of [BN94, p. 373, proof of C.4]). We have not checked the details. This does not

leave much room for strenghthenings of our theorem. On the other hand, the

proof of Theorem 1.1 does give a finite bound for the heights of certain trees of

definable sets related to unsuperstability, as we will see in §5.

Since Shelah gave combinatorial criteria both for instability as well as for

unsuperstability in a stable context, to prove the theorem we need only show

that these criteria are incompatible with the Borovik-Poizat rank axioms. Now

the rank axioms apply only to one structure, while Shelah’s criteria take their

simplest form in a saturated model. There are two ways to bridge this gap.

Our first proof worked directly within the model in which the rank function is

defined, paying attention in the process to the uniformity of various first order

definitions. In the proof we give here, we first extract the first order content of

the rank axioms, then work with them directly in a saturated model.

We will present the original rank axioms together with a few basic conse-

quences in §2. Their first order content is analyzed in §3; we call the rank

notions that result BP0-ranks. In §4 we prove stability, and superstability is

proved in §5. The proof of superstability does not depend on the full strength

of the axioms, so we will develop the basic facts about rank in a more general

context adequate for these applications.
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For the stability and rank issues that concern us here, we may always assume

that the language of the structure involved is countable, and we take advantage

of this in §3.

2 The Borovik-Poizat Axioms and variations

Let M be a structure. Let D be the collection of parametrically definable

subsets of Meq, i.e. the sets and relations interpretable in M. We say that M

is a ranked structure [BN94, p. 57] if there is a rank function rk : (D−{∅}) → N

which satisfies the following axioms for all A,B ∈ D. Such a rank will be called

a BP -rank.

Axiom 1 (Monotonicity of rank) rk(A) ≥ n+1 iff there are infinitely many pairwise

disjoint, nonempty, definable subsets of A, each of rank at least n.

Axiom 2 (Definability of rank) If f is a definable function from A to B then for

each integer n the set {b ∈ B : rk(f−1(b)) = n} is definable.

Axiom 3 (Additivity of rank) If f is a definable function from A onto B, and for all

b ∈ B we have rk(f−1(b)) = n, then rk(A) = rk(B) + n.

Axiom 4 (Elimination of infinite quantifiers) For any definable function f from A

into B there is an integer m such that for any b ∈ B the preimage f−1(b)

is infinite whenever it contains at least m elements.

We adopt the convention that rk(∅) = −∞.

These axioms are unnecessarily strong for our purposes. We prefer to work

with the following weaker form of Axiom 1, and to omit additivity of rank

entirely:

Axiom 1.1 (Weak monotonicity) rk(A ∪B) = max(rk(A), rk(B))

Axiom 1.2 (Finite degree) if there are infinitely many pairwise disjoint, nonempty,

definable subsets of A, each of rank at least n, then rk(A) ≥ n+ 1
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Let “Axiom 1′” mean Axioms 1.1 and 1.2. A rank satisfying Axioms 1′, 2,

and 4 will be called a BP ′-rank.

Axiom 1.1 is easily derived from full monotonicity as in [BN94, Lemma 4.10

p. 59], and of course Axiom 1.2 is simply part of Axiom 1, so a BP -rank is a

BP ′-rank.

The following special case of Axiom 1.1 is often used without comment:

Fact 2.1 [BN94, Lemma 4.9 p. 59] In a ranked structure Meq, if A ⊆ B are

two definable sets in Meq, then rk(A) ≤ rk(B).

Two of our axioms are more conveniently phrased in terms of uniformly

definable families of sets. A family of sets {Si : i ∈ I} is uniformly definable

over the structure M if there is a single formula φ(x, y) defined in Meq and

a choice of parameters bi (i ∈ I) such that Si = φ[Meq, bi] for all i. With

the formula φ fixed, we write Sb for φ[Meq, b]. Note that the formula φ(x, y)

involves no parameters, as their places are filled by the variables y.

Proposition 2.2 Let M be structure with a rank function satisfying Axioms 2

and 4, and let {Sb} be a uniformly definable family of sets over M. Then:

1. (Definability of rank) For each integer n, {b : rk(Sb) = n} is definable.

[BN94, Lemma4.23 p. 66]

2. (Elimination of infinite quantifiers) There is a bound m, depending only

on the formula φ, on the size of the finite members of the family {Sb}.

A property of rank which is sometimes taken for granted is invariance under

definable bijections. We do not know if this holds for BP ′-ranks in general, and

we will not assume it.

Definition 2.3 Let M be a structure with a rank satisfying Axiom 1.1, and

let A,B be two definable sets in Meq. We write A ≡ B if the rank of their

symmetric difference is less than the rank of their union. This may also be
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stated as follows: they have the same rank n, and the rank of their symmetric

difference is less than n.

Observe that by Axiom 1.1 this relation is an equivalence relation.

Remark 2.4 In Axiom 2, or equivalently in Proposition 2.2, part (1), we refer

to definability with parameters from the model M. If the language of M is

countable, then we may take the set of parameters involved to be countable as

well.

3 Canonical extensions of definable ranks

Whenever one has a definable rank function on a structure M, it has a canon-

ical extension to any elementary extension of M; details are given below. We

study the canonical extensions of BP -ranks or BP ′-ranks in the present section,

giving axioms which are satisfied by these ranks in general, and which exactly

characterize these canonical extensions in the case in which the language is

countable.

The focus of interest is Axiom 1.2, which could be phrased as follows: every

set has a degree (analogous to the Morley degree). We will review the theory of

the degree below, and show how to replace Axiom 1.2 by a degree approximation

property which holds in canonical extensions. First we deal with the issue of

the “canonical extension”.

Definition 3.1 Let M be a structure equipped with a definable rank notion, that

is a function from definable subsets of Meq to N such that for any uniformly

definable family {Sb} over M, the set

{b : rk(Sb) = n}

is definable (Axiom 2), and suppose that the rank has the following monotonicity

property: if A ⊆ B then rk(A) ≤ rk(B) (a consequence of Axiom 1.1). This
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implies that the rank is bounded on any uniformly definable family of sets. Let

N be an elementary extension of M. The canonical extension of rk to N (again

denote “rk”) is defined as follows. Every parametrically definable subset B

of Meq has a canonical extension B∗ to N eq. For S ⊆ Meq definable, let

rk(S) = n iff there is a uniformly definable family {Sb : b ∈ B} indexed by

a parametrically definable subset of M such that rk(Sb) = n for b ∈ B, and

S = Sb∗ for some b∗ ∈ B∗. (We have to check that this produces a well-defined

rank function.)

Lemma 3.2 With the hypotheses and notation of the preceding definition, every

definable subset of N eq is assigned a well-defined rank by the canonical extension

of the rank function from M to N .

Proof :

Let S be definable in N eq. Then we can find a uniformly definable family

(Sb : b ∈ B) with B 0-definable, such that S = Sb∗ for some b∗ ∈ B. Further-

more each set Sb is contained in a single sort of N eq, and by our (very weak)

monotonicity hypothesis, rk(Sb) is bounded for b ∈ B. Hence by definability of

ranks, BM can be partitioned into a finite number of M-definable sets Bi such

that rk(Sb) = i on Bi. Then b
∗ ∈ BN

i for some i, and hence we get rk(Sb) = i.

Thus every definable set is assigned at least one rank.

We must also verify that no conflicts arise. Suppose therefore that S lies

in the extension to N of the uniformly definable families {Sb : b ∈ B} and

{Tc : c ∈ C}, and that rk is constant on both families. Since N is an elementary

extension of M, it follows that in M there are some b, c such that Sb = Tc.

Hence the ranks are equal.

It is easy to see that any one of Axioms 1.1,2,3,4 will be preserved by the

passage to a canonical extension if it holds in the original model. Our main

interest at the moment will be in Axiom 1.2 (and later, in the rest of Axiom 1).
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Definition 3.3 If M is a structure with a rank function satisfying Axiom 1.1,

and A is a definable set in Meq, of rank n, then we say that A has degree d

if A can be decomposed into d disjoint definable pieces of rank n, but no more.

We say that A has a degree (or, for emphasis, a finite degree) if it has degree d

for some d.

The theory of degree for the case of BP -rank is dealt with in [BN94, Lemma

4.12,4.13]. In our context this reads as follows:

Fact 3.4 Let M be a structure with a rank function rk satisfying Axiom 1.1.

Then

1. If A is a definable set in Meq which has rank n and degree d, then A may

be partitioned into d definable pieces Ai (1 ≤ i ≤ d) of rank n and degree

1, and for any definable subset B of A of rank n and degree 1, we have

B ≡ Ai for a unique i. In particular, the partition is unique modulo sets

of lower rank in the following sense: if A is also decomposed as the union

of d definable subsets A′
i of rank n and degree 1, then after a permutation

of the indices, we will have Ai ≡ A′
i.

2. If A,B are disjoint definable sets of equal rank and degrees dA, dB respec-

tively, then deg(A ∪B) = deg(A) + deg(B).

3. If the rank function satisfies Axiom 1′ then every set has a degree.

As a substitute for the existence of degree, we consider the following, which

can be stated loosely in the form: “sets of finite degree are dense”. As usual,

we consider a rank function defined over a structure M; and we also fix a set of

parameters C ⊆ M.

(Degree Approximation Property over C) If A is a nonempty C-

definable set, and {Sa : a ∈ A} is a uniformly definable family (in

particular, Sa is a-definable for each a), then there is an element

a0 ∈ A for which deg(Sa0
) is finite.
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The case C = ∅ is reasonably strong but we will need this relativized version.

The case C = M (the universe of M) is pointless, as we are then assuming

that every definable set has a degree, since each definable set, taken by itself,

constitutes a C-definable family in this case.

Definition 3.5 A BP ′
0-rank on a structure M, relative to a set of parameters

C, is a function f : D \ {∅} → N satisfying:

Axiom 1.1 Weak Monotonicity: rk(A ∪B) = max(rk(A), rk(B))

Axiom 1.2′ The Degree C-approximation property

Axiom 2 Definability of rank, with parameters in C (i.e. Proposition 2.2, with pa-

rameters in C).

Axiom 4 Elimination of Infinite Quantifiers

Lemma 3.6 Let M be a structure equipped with a BP ′-rank rk, for which the

rank function is definable with parameters in C ⊆ M. Let N be an elementary

extension of M. Then the canonical extension of rk to N is a BP ′
0-rank relative

to the same set of parameters. Furthermore, the canonical extension satisfies

the additivity axiom if and only if the original rank function dose.

Proof :

In the context of a definable rank, the additivity property is clearly first

order, so the final claim is immediate.

We should however check the C-approximation property for degree. As every

nonempty C-definable set B has a point in M, and every M-definable set S has

a degree, we just have to check that the degree of S is unaltered by canonical

extension. This reduces to the case in which S has degree 1. So suppose that

in N we have a definable subset T of S∗ so that both T and S∗ \ T have rank

n = rk(S). Using definability of rank we can pull this down to a set T0 defined

in M with T0 and S \ T0 of rank n, a contradiction.
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One may refine this slightly: the canonical extension of a BP ′
0-rank is again

a BP ′
0-rank, by essentially the same argument. When the language is countable,

our axioms actually characterize the canonical extensions of BP ′-ranks, as will

be seen in the proof of the next result.

Theorem 3.7 Let T be a complete theory in a countable language. Then the

following conditions are equivalent:

(A) T has a model with a BP ′-rank.

(B) T has a model with a BP ′
0-rank.

(C) T has a countable extension by constants TC, such that every model of

TC carries a BP ′
0-rank, for which the degree approximation property, and

definability of rank, hold relative to the empty set.

The equivalence of conditions (B) and (C) is clear, but worth noting, and

worth using: by passing to TC we can work over the empty set, and lighten the

notation. For the proof that (C) implies (A) we rely on the following.

Lemma 3.8 Let T be a complete theory in a countable language, and suppose

that T has a model M with a BP ′
0-rank relative to ∅. Then T has a prime

model.

Proof :

We must show that T is atomic, i.e. that every ∅-definable nonempty set

X contains an ∅-definable atom. We may assume X has minimal rank since

ranks are finite. By degree approximation X has a degree, since the family

{X} is already definable over the empty set. We may suppose that deg(X) is

minimized as well; we then claim that X is an atom over ∅.

By weak monotonicity any ∅-definable nonempty subset Y of X will have

rank no larger than rk(X), and hence equal to rk(X) by the minimization;

accordingly Y will have finite degree no greater than deg(X), and hence equal
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to deg(X); the same cannot apply simultaneously to X \ Y , so X \ Y must be

empty, and Y = X : X is an atom over ∅.

Proof of Theorem 3.7:

We assume N is a structure on which we have a BP ′
0-rank rk which has the

degree approximation property and definability of rank relative to the empty

set. By Lemma 3.8 the theory of N has a prime model M, which we take to

be an elementary substructure of N . We claim that on M, the rank function

gives a BP ′-rank. Only Axiom 1.2 presents any issues: we claim that every

M-definable set S has a degree.

Let S be a-definable with a ∈ M (an n-tuple for some n). Let A be the

locus of a over the empty set; as the type of a is principal, A is a 0-definable

set. By the degree approximation property, A contains a point a′ for which the

corresponding set Sa′ has a degree d. As tp(a) = tp(a′) and rank is ∅-definable,

it follows easily that deg(Sa) = d as well.

We will show that the existence of BP ′
0-rank implies superstability. This is

of course equivalent to the statement that a BP ′-rank gives superstability, since

the problem localizes to countable languages. As this is our main application,

we have emphasized BP ′-ranks and BP ′
0-ranks. However we can treat BP -ranks

similarly.

Definition 3.9 Let rk : D \ {∅} → N be a rank function over a structure M,

and C ⊆ M a set of parameters. We say that rk has the splitting property if

every set of rank n > 0 contains a definable subset of rank n − 1, and we say

that rk has the splitting approximation property over C if for every uniformly

definable family of infinite sets {Sb : b ∈ B} indexed by a nonempty C-definable

set B, there is an element b ∈ B such that Sb contains a definable subset S′

with rk(S′) = rk(Sb)− 1.

Observe that a BP ′-rank is a BP -rank if and only if it has the splitting

property and additivity. We define a BP0-rank relative to a set of parameters
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C analogously, as a rank satisfying Axiom 1.1, degree and splitting approxima-

tion, and Axioms 2− 4, where the degree approximation property, the splitting

approximation property, and the definability of rank all hold over C.

Theorem 3.10 Let T be a complete theory in a countable language. Then the

following conditions are equivalent:

(A) T has a model with a BP -rank.

(B) T has a model with a BP0-rank.

(C) T has a countable extension by constants TC , such that every model of TC

carries a BP0-rank, for which the degree approximation property, defin-

ability of rank, and the splitting approximation property all hold relative

to the empty set.

Proof :

As before we need only prove (C ⇒ A), and this reduces to the claim that

a BP0-rank on the prime model is a BP -rank, with the only property not yet

verified being the splitting property. Again, this reduces to the claim that if

tp(a) = tp(a′) and we have a uniformly definable family for which Sa′ contains

a definable subset S′ with rk(S′) = rk(Sa′) − 1, then the same applies to Sa.

This is clear by definability of rank.

4 Generic indistinguishabily and Stability

Before taking up stability as such, we analyze the structure of definable binary

relations in general. For this it will be convenient to introduce a quantifier

“∀∗x”, read “for generic x, as follows.

Definition 4.1 Assume M carries a definable rank function satisfying Axiom

1.1. Let X be a definable set. “(∀∗x ∈ X)ψ(x)” means: “ψ holds generically
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on X”, i.e. rk(X − ψ[X ]) < rk(X). By the definability of rank, if X = Xa

and ψ = ψ(x, b) both vary over uniformly definable families, the set {(a, b) :

∀∗x ∈ Xa ψ(x, b)} is definable. In other words, first order logic is closed under

the quantifier ∀∗.

By Axiom 1.1, if ψ1 and ψ2 hold generically on X , then so does ψ1&ψ2.

On the other hand, the property: “For all ψ, ψ holds generically or ¬ψ holds

generically” is equivalent to the condition that the degree of X is equal to 1.

Note also that the relation A ≡ B defined above can be expressed as follows:

(∀∗x ∈ A ∪B)[x ∈ A ⇐⇒ x ∈ B].

Definition 4.2 Let M be a structure with a definable rank function satisfying

Axiom 1.1. Let R be a definable relation on a definable set S. We will say that

x1, x2 ∈ S are generically indistinguishable for R on S, and we write x1 ∼ x2,

if (∀∗x ∈ S)(R(x1, x) ⇐⇒ R(x2, x)).

Observe that this is an equivalence relation, and is definable from whatever

parameters are needed to define R and S, together with those used to define

rank.

Proposition 4.3 Let M be a structure with a BP ′
0-rank. Let S be a definable

set in Meq and R a definable binary relation on S. Let ∼ be the relation of

generic indistinguishability for R on S. Then S/∼ has finitely many classes.

Proof :

First, put S and R into a uniformly definable family {(Sa, Ra) : a ∈ A}

with A defined over the empty set. Let ∼a be the relation of generic indistin-

guishability relative to Ra on Sa. Note that ∼a is definable from the parameter

a together with parameters needed to define certain ranks. Then {Sa/∼a} is

a uniformly definable collection of sets. Hence there is a uniform bound m on

the sizes of its finite members. Consider I = {a : |Sa/∼a| > m}, the set of
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indices for which the quotient is infinite. Our claim is that I is empty. If rank

is C-definable, then I is also C-definable.

Suppose I is nonempty. Then there is some a ∈ I such that d = deg(Sa) <

∞. We will show that Sa/∼a has only finitely many classes to obtain a contra-

diction.

Sa may be partitioned into d definable pieces Sa,i of degree 1. For x1 ∈ Sa,

the set {x ∈ Sa : Ra(x1, x)} coincides with a union of some of the Sa,i, modulo

sets of lower rank. In other words, there is a set S′, a union of finitely many of

the Sa,i, for which:

(∀∗x ∈ Sa)[Ra(x1, x) ⇐⇒ x ∈ S′]

As there are at most 2d possibilities for S′, the relation ∼a has at most 2d

classes. As this is finite, we have the desired contradiction.

Theorem 4.4 Let M be a structure with a BP ′
0-rank. Then Th(M) is stable.

Proof :

We may replace M by any elementarily equivalent model. So if the theory

of M is unstable, we may suppose that there is a definable relation R on a

definable subset X of Meq such that R linearly orders some infinite subset of

X , not necessarily definable. We may also assume that M is ω1-saturated. Let

S be a definable set which contains an infinite subset L which is linearly ordered

by R, and has minimal rank. As M is ω1-saturated we may suppose L has the

order type of the rationals.

Now we consider the relation ∼ of generic indistinguishability for R on S.

Since S/∼ is finite, one of the equivalence classes for ∼ on S meets L in an

infinite set. So without loss of generality S consists of a single ∼-class.

Consider elements a, b ∈ L0 with a < b. The set S′ = {x ∈ S : [R(a, x) ⇐⇒

¬R(b, x)]} contains the interval (a, b) of L, hence by the minimality of rk(S) we
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find

rk(S′) = rk(S)

But this violates the generic indistinguishability of a and b.

5 Superstability

Theorem 5.1 Let M be a structure with a BP ′
0-rank. Then Th(M) is super-

stable.

Proof :

In this proof we will be less cavalier about the distinction between elements

and k-tuples, as this will permit a slight refinement of the result (see the remark

following the proof).

Suppose M is an unsuperstable structure with a BP ′
0-rank. As Th(M) is

stable by the previous theorem, we can apply a combinatorial criterion due

to Shelah, involving an infinitely branching tree of infinite height whose levels

consist of pairwise disjoint uniformly definable sets. This goes as follows.

In the first place we have D1(x = x, L,∞) = ∞ [She90, Theorem II 3.14

p. 53]. Therefore, by [She90, Lemma VII 3.5(5) p. 423], there are formulas

φk ∈ L for 0 ≤ k < ω and in some model M′ of T there are parameters av for

v a node of the tree ω<ω, such that:

(i) If v ≤ w are two nodes in the tree, then φ[M′, aw] ⊆ φ[M′, av] and

φ[M′, aw] 6= ∅;

(ii) For any two distinct nodes v, w at the same level k of the tree,

φk[M′, av] ∩ φk[M′, aw] = ∅.

Note that the only condition imposed on the (single) root formula φ0[M′, a∅] is

that φ0[M′, a∅] should contain all the sets φ1[M′, a<i>]. We may assume that

r0 = rk(φ0[M′, a∅]) is minimal among all such trees.
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For parameters b of the same sort as a∅, consider the parameters giving

possible first level nodes of full rank

Nb = {c : φ1[M′, c] ⊆ φ0[M′, b] and rk(φ1[M′, c]) = r0}

Let c1 ∼b c2 be the relation defined on Nb by φ1[M′, c1] ≡ φ1[M′, c2]. Nb and

∼b are uniformly definable (by definability of rank) and ∼b is an equivalence

relation.

Claim 5.1.1 Na/∼a has finitely many classes

Proof :

First, {Nx/∼x} is a uniformly definable collection of sets, so there is a uni-

form bound m on the sizes of its finite members. Let C = {x : |Nx/∼x| > m}

be the set of indices of infinite ones. If C 6= ∅ then there is a b ∈ C such that

d = deg(φ0[M′, b]) <∞. Now, Nb/∼b has at most 2d classes, contradiction.

This indicates that there are only finitely many first level nodes of full rank

and there exists an index i0 such that rk(φ1[M′, a<i0>]) < r0. We find a

contradiction to the choice of r0 by taking φ′j = φj+1 for j ≥ 0 and a′v = a<i0,v>.

Remark 5.2 We can prove a stronger result: The height of any such tree of

nonempty definable subsets of M′, pairwise disjoint at each level, with infinite

branching, cannot exceed r = rk(φ0[M′, a∅]) ≤ rk(M′). This goes by induction

on r by following the line of the previous argument.
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