Notes on Uniform Integrability for Math 501

Eric A. Carlen¹ Rutgers University

October 11, 2014

1 Introduction

There is an important sense in which integrable functions are "almost bounded", "almost supported on sets of finite measure" and "cannot concentrate mass on too small a set". The first theorem in this section makes this precise.

1.1 THEOREM (Concentration Properties of Integrable Functions). Let f be an integrable function on (X, \mathcal{M}, μ) . Then, for all $\epsilon > 0$:

(1) There is a $\lambda < \infty$ so that

$$\int_{\{x : |f(x)| > \lambda\}} |f(x)| \mathrm{d}\mu \le \epsilon .$$
(1.1)

(2) There is a set $A \in \mathcal{M}$ with $\mu(A) < \infty$ so that

$$\int_{A^c} |f(x)| \mathrm{d}\mu \le \epsilon \ . \tag{1.2}$$

(3) There is a $\delta > 0$ so that for all $E \in \mathcal{M}$, whenever $\mu(E) < \delta$

$$\int_{E} |f(x)| \mathrm{d}\mu \le \epsilon \ . \tag{1.3}$$

Proof. For $n \in \mathbb{N}$, define $f_n = f \mathbb{1}_{\{x : |f(x)| \ge n\}}$. Then $|f_n| \le |f|$ for all n, and $|f_n| \to 0$ a.e., Therefore, by the Dominated Convergence Theorem,

$$\lim_{n \to \infty} \int_X |f_n| \mathrm{d}\mu = 0$$

Thus, for all sufficiently large n, (1.1) is true.

Next, for $n \in \mathbb{N}$, define let $B_n = \{x : |f(x)| \ge 1/n\}$. Since $|f(x)| \ge \frac{1}{n} \mathbb{1}_{B_n}(x)$,

$$\int_X |f| \mathrm{d}\mu \ge \int_{B_n} |f| \mathrm{d}\mu \ge \frac{1}{n} \int_X \mathbf{1}_{B_N} \mathrm{d}\mu = \frac{\mu(B_N)}{n}$$

Thus, for all $n \mu(B_n)$ is finite:

$$\mu(B_n) \le n \int_X |f| \mathrm{d}\mu < \infty \; .$$

¹© 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

Next, $1_{B_n^c}|f| \leq |f|$ and $1_{B_n^c}|f| \leq 1/n$ for all $n \in \mathbb{N}$. The latter inequality shows that $1_{B_n^c}|f| \to 0$ a.e., and then the former allows us to apply the Dominated Convergence Theorem to show that

$$\lim_{n\to\infty}\int_{B_n^c}|f|\mathrm{d}\mu=0$$

This shows that with B_n in place of A, (1.2) is true for all sufficiently large n, and taking any such n we have proved (1.2).

Finally, since we have proved (1.1), we know there is an $n \in \mathbb{N}$ so that

$$\int_{\{x : |f(x)| > n\}} |f(x)| \mathrm{d}\mu \le \frac{\epsilon}{2} .$$
(1.4)

Then, for any $E \in \mathcal{M}$,

$$\int_{E} |f| d\mu = \int_{E \cap \{x : |f(x)| > n\}} |f| d\mu + \int_{E \cap \{x : |f(x)| \le n\}} |f| d\mu$$

$$\leq \int_{\{x : |f(x)| > n\}} |f| d\mu + \int_{E} n d\mu$$

$$\leq \frac{\epsilon}{2} + n\mu(E) .$$

Thus, provided n is chosen so that (1.4) is satisfied, and then we set $\delta = \epsilon/(2n)$, (1.3) is satisfied.

We now turn to the following question: Consider a sequence $\{f_n\}_{n\in\mathbb{N}}$ of integrable functions such that $f_n \to f$, either almost everywhere or in measure. What else is required to ensure that $f_n \to f$ in L^1 ?

According to Vitali's Theorem that we state and prove below, the answer is that the properties listed in Theorem 1.1 must hold *uniformly* for all the functions in the sequence. First we make the relevant definition.

1.2 DEFINITION (Uniform Integrability). Let (X, \mathcal{M}, μ) be a measure space, and \mathcal{F} a set of measurable functions on X. Then \mathcal{F} is *uniformly integrable* in case

(1) There is a $C < \infty$ such that for all $f \in \mathcal{F}$,

$$\int_X |f| \mathrm{d}\mu \le C \ . \tag{1.5}$$

(2) For all $\epsilon > 0$, there is a set $A_{\epsilon} \in \mathcal{M}$ so that for all $f \in \mathcal{F}$,

$$\int_{A_{\epsilon}^{c}} |f| \mathrm{d}\mu \le \epsilon . \tag{1.6}$$

(3) For all $\epsilon > 0$, there is a $\delta_{\epsilon} > 0$ so that when $E \in \mathcal{M}$ and $\mu(E) \leq \delta_{\epsilon}$, then for all $f \in \mathcal{F}$,

$$\int_{E} |f| \mathrm{d}\mu \le \epsilon \;. \tag{1.7}$$

1.3 EXAMPLE. Let g be a non-negative integrable function, and let \mathcal{F} be the set of measurable functions satisfying

 $|f| \leq g$.

Then by Theorem 1.1, \mathcal{F} is uniformly integrable.

Indeed, given $\epsilon > 0$ let A_{ϵ} and δ_{ϵ} be such that $\mu(A_{\epsilon}) < \infty$, $\int_{A_{\epsilon}^{c}} |g| d\mu < \epsilon$, and $\mu(E) < \delta_{\epsilon} \Rightarrow \int_{E} |g| d\mu < \epsilon$. Since $|f| \leq |g|$, the same A_{ϵ} and δ_{ϵ} work for each f in \mathcal{F} , and of course $\int |f| d\mu \leq \int g d\mu =: C$ for all $f \in \mathcal{F}$.

1.4 THEOREM (Vitali's Theorem). Let (X, \mathcal{M}, μ) be a measure space, and let \mathcal{F} be a uniformly integrable set of functions on (X, \mathcal{M}, μ) . Let $\{f_n\}$ be a sequence of functions in \mathcal{F} and suppose that $\lim_{n\to\infty} f_n = f$ either almost everywhere or in measure. Then

$$\lim_{n \to \infty} \int_X |f_n - f| \mathrm{d}\mu = 0 .$$
(1.8)

Conversely, Suppose that $\{f_n\}$ is any sequence of integrable functions and that (1.8) holds. Then the set \mathcal{F} consisting of the functions f_n in the sequence, together with the limit f, is uniformly integrable

Proof. Fix $\epsilon > 0$, and let C, A_{ϵ} and δ_{ϵ} be such that (1.5), (1.6) and (1.7) hold for all g in \mathcal{F} , and each f_n in our sequence. By Fatou's Lemma, or its analog for convergence in measure,

$$\begin{split} &\int_X |f| \mathrm{d}\mu \leq \liminf_{n \to \infty} \int_X |f_n| \mathrm{d}\mu \leq C \ , \\ &\int_{A_{\epsilon}^c} |f| \mathrm{d}\mu \leq \liminf_{n \to \infty} \int_{A_{\epsilon}^c} |f_n| \mathrm{d}\mu < \epsilon \end{split}$$

and

$$\int_{E} |f| \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{E} |f_n| \mathrm{d}\mu$$

so that $\mu(E) \leq \delta_{\epsilon} \Rightarrow \int_{E} |f| d\mu \leq \epsilon$.

Now use (1.6) in the definition of uniform integrability to reduce the proof to that of the special case in which $\mu(X) < \infty$:

$$\int_{X} |f_{n} - f| d\mu = \int_{A_{\epsilon}} |f_{n} - f| d\mu + \int_{A_{\epsilon}^{c}} |f_{n} - f| d\mu$$
$$= \int_{A_{\epsilon}} |f_{n} - f| d\mu + \int_{A_{\epsilon}^{c}} (|f_{n}| + |f|) d\mu \epsilon$$
$$\leq \int_{A_{\epsilon}} |f_{n} - f| d\mu + 2\epsilon .$$
(1.9)

It therefore suffices to show that

$$\lim_{n \to \infty} \int_{A_{\epsilon}} |f_n - f| \mathrm{d}\mu = 0 .$$
(1.10)

Suppose first that $f_n \to f$ a.e. Since $\int_X |f| d\mu \leq C$, f is finite almost everywhere. By Egoroff's Theorem, there is a subset $E \subset A_{\epsilon}$ with $\mu(E) \leq \delta_{\epsilon}$, and such that $f_n \to f$ uniformly on $A_{\epsilon} \setminus E$.

Thus,

$$\int_{A_{\epsilon}} |f_n - f| d\mu \leq \int_E |f_n - f| d\mu + \int_{A_{\epsilon} \setminus E} |f_n - f| d\mu
\leq \int_E (|f_n| + |f|) d\mu + \mu(A_{\epsilon}) \sup\{ |f_n(x) - f(x)| : x \in A_{\epsilon} \setminus E \}
\leq 2\epsilon + \mu(A_{\epsilon}) \sup\{ |f_n(x) - f(x)| : x \in A_{\epsilon} \setminus E \}$$
(1.11)

Since $\epsilon > 0$ is arbitrary and $\lim_{n\to\infty} \sup\{ |f_n(x) - f(x)| : x \in A_{\epsilon} \setminus E \} = 0$, we have proved (1.10) in this case.

Next, suppose that $f_n \to f$ in measure. Fix $\eta > 0$, and define $E_{\eta}(n) = \{x : |f_n(x) - f(x)| > \eta \}$. Since $f_n \to f$ in measure, $\lim_{n\to\infty} \mu(E_{\eta}(n)) = 0$. Now observe that for all n such that $\lim_{n\to\infty} \mu(E_{\eta}(n)) \leq \delta_{\epsilon}$,

$$\int_{A_{\epsilon}} |f_n - f| d\mu \leq \int_{E_{\eta}(n)} |f_n - f| d\mu + \int_{A_{\epsilon} \setminus E_{\eta}(n)} |f_n - f| d\mu \\
\leq \int_{E_{\eta}(n)} (|f_n| + |f|) d\mu + \mu(A_{\epsilon})\eta \\
\leq 2\epsilon + \mu(A_{\epsilon})\eta$$
(1.12)

Since $\epsilon, \eta > 0$ are arbitrary, this proves (1.10) in this case as well.

Now we prove the converse part of the theorem. For any set B,

$$\int_{B} |f_n| \mathrm{d}\mu \leq \int_{B} |f| \mathrm{d}\mu + \int_{B} |f_n - f| \mathrm{d}\mu \leq \int_{B} |f| \mathrm{d}\mu + \int_{X} |f_n - f| \mathrm{d}\mu \ .$$

For any fixed $\epsilon > 0$, choose N_{ϵ} so that

$$n > N_{\epsilon} \Rightarrow \int_X |f_n - f| \mathrm{d}\mu < \epsilon/2 \; .$$

We then have that for all $n > N_{\epsilon}$,

$$\int_{B} |f_n| \mathrm{d}\mu \leq \int_{B} |f| \mathrm{d}\mu + \epsilon/2 \; .$$

Since $\{f\}$ itself is uniformly integrable, there is a number $\tilde{\delta}_{\epsilon} > 0$ so that

$$\mu(B) \leq \tilde{\delta}_{\epsilon} \Rightarrow \int_{B} |f| \mathrm{d}\mu \leq \epsilon/2$$

Hence, for all $n > N_{\epsilon}$,

$$\mu(B) \leq \tilde{\delta}_{\epsilon} \Rightarrow \int_{B} |f_n| \mathrm{d}\mu \leq \epsilon$$

Finally, using the fact that for each $n \leq N_{\epsilon}$, $\{f_n\}$ is uniformly integrable, there is a $\delta_{\epsilon}^{(n)} > 0$ so that

$$\mu(B) \le \delta_{\epsilon}^{(n)} \Rightarrow \int_{B} |f_n| \mathrm{d}\mu \le \epsilon \; .$$

Define

$$\delta_{\epsilon} = \min\{\delta_{\epsilon}^{(1)}, \delta_{\epsilon}^{(2)}, \dots, \delta_{\epsilon}^{(N_{\epsilon})}, \tilde{\delta}_{\epsilon}\}.$$

Since the minimum of a *finite* set of strictly positive numbers is strictly positive, we have that $\delta_{\epsilon} > 0$ Also,

$$\mu(B) \le \delta_{\epsilon} \Rightarrow \int_{B} |f_n| \mathrm{d}\mu \le \epsilon$$

for all n and for f as well. Thus, condition (1.6) is satisfied. The other two conditions are easily proved in the same way.

Vitali's Theorem implies a generalized for of the Dominated Convergence Theorem:

1.5 THEOREM (A Generalized Dominated Convergence Theorem). Let $\{f_n\}$ be a sequence of measurable functions on (X, \mathcal{M}, μ) , and let $\{g_n\}$ be a sequence of integrable functions on (X, \mathcal{M}, μ) such that for sime $g \in L^1(X, \mathcal{M}, \mu)$, $\lim_{n\to\infty} ||g_n - g||_1 = 0$.

Suppose that

$$|f_n| \le |g_n|$$

a.e. for all n, and that for some $f, f_n \to f$ either a.e. or in measure. Then

$$\lim_{n \to \infty} \int_X |f_n(x) - f(x)| \mathrm{d}\mu = 0 \; .$$

Proof. By the converse to Vitali's Theorem, the sets $\{g_n\}_{n\in\mathbb{N}}$ is uniformly integrable. But then since $|f_n| \leq |g_n|$ for all n, $\{f_n\}_{n\in\mathbb{N}}$ is also uniformly integrable with the same C, A_{ϵ} and δ_{ϵ} as $\{g_n\}_{n\in\mathbb{N}}$. Then the first psrt of Vitali's Theorem yields $f_n \to f$ in L^1 .

1.6 Remark. The special case in which $g_n = g$ for all n gives us the Dominated Converge Theorem since

$$\left| \int_X f_n \mathrm{d}\mu - \int_X f \mathrm{d}\mu \right| \le \int_X |f_n(x) - f(x)| \mathrm{d}\mu$$

Not all applications of Vitali's Theorem involve a dominating function. A situation that frequently arrises in applications is that one has a sequence of functions $\{f_n\}$ for which one has an *a priori* bound on

$$\int_X \phi(|f_n|) \mathrm{d}\mu$$

for some function ϕ that grows faster than linearly at infinity; for example $\phi(t) = t \log_+(t)$ or $\phi(t) = t^2$.

1.7 THEOREM (Integral Limits on Concentration). Let ϕ be a monotone increasing function on $[0,\infty)$ with values in $[0,\infty)$ such that

$$\lim_{t \to \infty} \frac{\phi(t)}{t} = \infty \; .$$

Then for any measure space (X, \mathcal{M}, μ) and any C > 0, let \mathcal{F}_C be the set of functions satisfying

$$\int_X \phi(|f|) \mathrm{d}\mu \leq C$$

Then

$$\lim_{\delta \to 0} \left(\sup \left\{ \int_{E} |f| \mathrm{d}\mu \ \middle| \ \mu(E) \le \delta \ , \ f \in \mathcal{F}_{C} \right\} \right) = 0 \ . \tag{1.13}$$

In particular, if $\mu(X) < \infty$, \mathcal{F}_C is uniformly integrable.

Proof. Let E be any measurable set, and f any member of \mathcal{F}_C . Then for any a > 0, let

$$B_a = \{x \mid |f(x)| > a \} ,$$

and let a_0 be such that $\phi(a)$ is strictly positive for $a > a_0$. Then since ϕ is monotone increasing, for all $a > a_0$,

$$\begin{split} \int_{E} |f| \mathrm{d}\mu &= \int_{E \cap B_{a}} |f| \mathrm{d}\mu + \int_{E \cap B_{a}^{c}} |f| \mathrm{d}\mu \\ &\leq \int_{E \cap B_{a}} |f| \frac{\phi(|f|)}{\phi(a)} \mathrm{d}\mu + \int_{E \cap B_{a}^{c}} a \mathrm{d}\mu \\ &\leq \int_{X} |f| \frac{\phi(|f|)}{\phi(a)} \mathrm{d}\mu + \int_{E} a \mathrm{d}\mu \\ &\leq \frac{C}{\phi(a)} + a\mu(E) \;. \end{split}$$

Now given $\epsilon > 0$, choose a so that $C/\phi(a) < \epsilon/2$, and then choose $\delta_{\epsilon} = \epsilon/(2a)$. It then follows that

$$\mu(E) < \delta_{\epsilon} \Rightarrow \int_{E} |f| \mathrm{d}\mu < \epsilon$$

and f was an arbitrary member of \mathcal{F}_C . Since $\epsilon > 0$ was arbitrary, this proves (1.13), which is another way of stating condition (3) in the definition of uniform integrability.

Now suppose $\mu(X) < \infty$. Let a_1 be such that $\phi(t) \ge t$ for all $t \ge a_1$. Then for $f \in \mathcal{F}_C$,

$$\begin{split} \int_{X} |f| \mathrm{d}X &\leq \int_{\{|f| \leq a_1\}} |f| \mathrm{d}\mu + \int_{\{|f| \geq a_1\}} |f| \mathrm{d}\mu \\ &\leq \int_{\{|f| \leq a_1\}} a_1 \mathrm{d}\mu + \int_{\{|f| \geq a_1\}} \phi(|f|) \mathrm{d}\mu \\ &\leq a_1 \mu(X) + C, \end{split}$$

so that (1) is satisfied. Finally, for (2), we can simply take $A_{\epsilon} = X$; the second requirement in the definition of uniform integrability is vacuous in case $\mu(X) < \infty$.