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1 Introduction

There is an important sense in which integrable functions are “almost bounded”, “almost supported

on sets of finite measure” and “cannot concentrate mass on too small a set”. The first theorem in

this section makes this precise.

1.1 THEOREM (Concentration Properties of Integrable Functions). Let f be an integrable func-

tion on (X,M, µ). Then, for all ε > 0:

(1) There is a λ <∞ so that ∫
{x : |f(x)|>λ}

|f(x)|dµ ≤ ε . (1.1)

(2) There is a set A ∈M with µ(A) <∞ so that∫
Ac
|f(x)|dµ ≤ ε . (1.2)

(3) There is a δ > 0 so that for all E ∈M, whenever µ(E) < δ∫
E
|f(x)|dµ ≤ ε . (1.3)

Proof. For n ∈ N, define fn = f1{x : |f(x)|≥n}. Then |fn| ≤ |f | for all n, and |fn| → 0 a.e., Therefore,

by the Dominated Convergence Theorem,

lim
n→∞

∫
X
|fn|dµ = 0 .

Thus, for all sufficiently large n, (1.1) is true.

Next, for n ∈ N, define let Bn = {x : |f(x)| ≥ 1/n}. Since |f(x)| ≥ 1

n
1Bn(x),∫

X
|f |dµ ≥

∫
Bn

|f |dµ ≥ 1

n

∫
X

1BNdµ =
µ(BN )

n
.

Thus, for all n µ(Bn) is finite:

µ(Bn) ≤ n
∫
X
|f |dµ <∞ .
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Next, 1Bcn |f | ≤ |f | and 1Bcn |f | ≤ 1/n for all n ∈ N. The latter inequality shows that 1Bcn |f | → 0

a.e., and then the former allows us to apply the Dominated Convergence Theorem to show that

lim
n→∞

∫
Bcn

|f |dµ = 0 .

This shows that with Bn in place of A, (1.2) is true for all sufficiently large n, and taking any such

n we have proved (1.2).

Finally, since we have proved (1.1), we know there is an n ∈ N so that∫
{x : |f(x)|>n}

|f(x)|dµ ≤ ε

2
. (1.4)

Then, for any E ∈M,∫
E
|f |dµ =

∫
E∩{x : |f(x)|>n}

|f |dµ+

∫
E∩{x : |f(x)|≤n}

|f |dµ

≤
∫
{x : |f(x)|>n}

|f |dµ+

∫
E
ndµ

≤ ε

2
+ nµ(E) .

Thus, provided n is chosen so that (1.4) is satisfied, and then we set δ = ε/(2n), (1.3) is satisfied.

We now turn to the followiing question: Consider a sequence {fn}n∈N of integrable functions

such that fn → f , either almost everyhwhere or in measure. What else is required to ensure that

fn → f in L1?

According to Vitali’s Theorem that we state and prove below, the answer is that the properties

listed in Theorem 1.1 must hold uniformly for all the functions in the sequence. First we make the

relevant definition.

1.2 DEFINITION (Uniform Integrability). Let (X,M, µ) be a measure space, and F a set of

measurable functions on X. Then F is uniformly integrable in case

(1) There is a C <∞ such that for all f ∈ F ,∫
X
|f |dµ ≤ C . (1.5)

(2) For all ε > 0, there is a set Aε ∈M so that for all f ∈ F ,∫
Acε

|f |dµ ≤ ε . (1.6)

(3) For all ε > 0, there is a δε > 0 so that when E ∈M and µ(E) ≤ δε, then for all f ∈ F ,∫
E
|f |dµ ≤ ε . (1.7)
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1.3 EXAMPLE. Let g be a non-negative integrable function, and let F be the set of measurable

functions satisfying

|f | ≤ g .

Then by Theorem 1.1, F is uniformly integrable.

Indeed, given ε > 0 let Aε and δε be such that µ(Aε) < ∞,
∫
Acε
|g|dµ < ε, and µ(E) < δε ⇒∫

E |g|dµ < ε. Since |f | ≤ |g|, the same Aε and δε work for each f in F , and of course
∫
|f |dµ ≤∫

gdµ =: C for all f ∈ F .

1.4 THEOREM (Vitali’s Theorem). Let (X,M, µ) be a measure space, and let F be a uniformly

integrable set of functions on (X,M, µ). Let {fn} be a sequence of functions in F and suppose that

limn→∞ fn = f either almost everywhere or in measure. Then

lim
n→∞

∫
X
|fn − f |dµ = 0 . (1.8)

Conversely, Suppose that {fn} is any sequence of integrable functions and that (1.8) holds. Then

the set F consisting of the functions fn in the sequence, together with the limit f , is uniformly

integrable

Proof. Fix ε > 0, and let C, Aε and δε be such that (1.5), (1.6) and (1.7) hold for all g in F , and

each fn in our sequence. By Fatou’s Lemma, or its analog for convergence in measure,∫
X
|f |dµ ≤ lim inf

n→∞

∫
X
|fn|dµ ≤ C ,

∫
Acε

|f |dµ ≤ lim inf
n→∞

∫
Acε

|fn|dµ < ε

and ∫
E
|f |dµ ≤ lim inf

n→∞

∫
E
|fn|dµ

so that µ(E) ≤ δε ⇒
∫
E |f |dµ ≤ ε.

Now use (1.6) in the definition of uniform integrability to reduce the proof to that of the special

case in which µ(X) <∞:∫
X
|fn − f |dµ =

∫
Aε

|fn − f |dµ+

∫
Acε

|fn − f |dµ

=

∫
Aε

|fn − f |dµ+

∫
Acε

(|fn|+ |f |)dµε

≤
∫
Aε

|fn − f |dµ+ 2ε . (1.9)

It therefore suffices to show that

lim
n→∞

∫
Aε

|fn − f |dµ = 0 . (1.10)

Suppose first that fn → f a.e. Since
∫
X |f |dµ ≤ C, f is finite almost everywhere. By Egoroff’s

Theorem, there is a subset E ⊂ Aε with µ(E) ≤ δε, and such that fn → f uniformly on Aε\E.
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Thus, ∫
Aε

|fn − f |dµ ≤
∫
E
|fn − f |dµ+

∫
Aε\E

|fn − f |dµ

≤
∫
E

(|fn|+ |f |)dµ+ µ(Aε) sup{ |fn(x)− f(x)| : x ∈ Aε\E }

≤ 2ε+ µ(Aε) sup{ |fn(x)− f(x)| : x ∈ Aε\E }
(1.11)

Since ε > 0 is arbitrary and limn→∞ sup{ |fn(x)− f(x)| : x ∈ Aε\E } = 0, we have proved (1.10)

in this case.

Next, suppose that fn → f in measure. Fix η > 0, and define Eη(n) = { x : |fn(x)− f(x)| >
η }. Since fn → f in measure, limn→∞ µ(Eη(n)) = 0. Now observe that for all n such that

limn→∞ µ(Eη(n)) ≤ δε,∫
Aε

|fn − f |dµ ≤
∫
Eη(n)

|fn − f |dµ+

∫
Aε\Eη(n)

|fn − f |dµ

≤
∫
Eη(n)

(|fn|+ |f |)dµ+ µ(Aε)η

≤ 2ε+ µ(Aε)η

(1.12)

Since ε, η > 0 are arbitrary, this proves (1.10) in this case as well.

Now we prove the converse part of the thoerem. For any set B,∫
B
|fn|dµ ≤

∫
B
|f |dµ+

∫
B
|fn − f |dµ ≤

∫
B
|f |dµ+

∫
X
|fn − f |dµ .

For any fixed ε > 0, choose Nε so that

n > Nε ⇒
∫
X
|fn − f |dµ < ε/2 .

We then have that for all n > Nε, ∫
B
|fn|dµ ≤

∫
B
|f |dµ+ ε/2 .

Since {f} itself is uniformly integrable, there is a number δ̃ε > 0 so that

µ(B) ≤ δ̃ε ⇒
∫
B
|f |dµ ≤ ε/2 .

Hence, for all n > Nε,

µ(B) ≤ δ̃ε ⇒
∫
B
|fn|dµ ≤ ε .

Finally, using the fact that for each n ≤ Nε, {fn} is uniformly integrable, there is a δ
(n)
ε > 0 so that

µ(B) ≤ δ(n)ε ⇒
∫
B
|fn|dµ ≤ ε .
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Define

δε = min{δ(1)ε , δ(2)ε , . . . , δ(Nε)ε , δ̃ε} .

Since the minimum of a finite set of strictly positive numbers is strictly positive, we have that

δε > 0 Also,

µ(B) ≤ δε ⇒
∫
B
|fn|dµ ≤ ε

for all n and for f as well. Thus, condition (1.6) is satisfied. The other two condtions are easily

proved in the same way.

Vitali’s Theorem implies a generalized for of the Dominated Convergence Thoerem:

1.5 THEOREM (A Generalized Dominated Convergence Theorem). Let {fn} be a sequence of

measurable functions on (X,M, µ), and let {gn} be a sequence of integrable functions on (X,M, µ)

such that for sime g ∈ L1(X,M, µ), limn→∞ ‖gn − g‖1 = 0.

Suppose that

|fn| ≤ |gn|

a.e. for all n, and that for some f , fn → f either a.e. or in measure. Then

lim
n→∞

∫
X
|fn(x)− f(x)|dµ = 0 .

Proof. By the converse to Vitali’s Theroem, the sets {gn}n∈N is uniformly integrable. But then

since |fn| ≤ |gn| for all n, {fn}n∈N is also uniformly integrable with the same C, Aε and δε as

{gn}n∈N. Then the first psrt of Vitali’s Theorem yields fn → f in L1.

1.6 Remark. The special case in which gn = g for all n gives us the Dominated Converge Theorem

since ∣∣∣∣∫
X
fndµ−

∫
X
fdµ

∣∣∣∣ ≤ ∫
X
|fn(x)− f(x)|dµ .

Not all applications of Vitali’s Theorem involve a dominating function. A situtation that

frequently arrises in applications is that one has a sequence of functions {fn} for which one has an

a priori bound on ∫
X
φ(|fn|)dµ

for some function φ that grows faster than linearly at infinity; for example φ(t) = t log+(t) or

φ(t) = t2.

1.7 THEOREM (Integral Limits on Concentration). Let φ be a monotone increasing function on

[0,∞) with values in [0,∞) such that

lim
t→∞

φ(t)

t
=∞ .

Then for any measure space (X,M, µ) and any C > 0, let FC be the set of functions satisfying∫
X
φ(|f |)dµ ≤ C .
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Then

lim
δ→0

(
sup

{∫
E
|f |dµ

∣∣∣∣ µ(E) ≤ δ , f ∈ FC
})

= 0 . (1.13)

In particular, if µ(X) <∞, FC is uniformly integrable.

Proof. Let E be any measurable set, and f any memeber of FC . Then for any a > 0, let

Ba = {x | |f(x)| > a } ,

and let a0 be such that φ(a) is strictly positive for a > a0. Then since φ is monotone increasing,

for all a > a0, ∫
E
|f |dµ =

∫
E∩Ba

|f |dµ+

∫
E∩Bca

|f |dµ

≤
∫
E∩Ba

|f |φ(|f |)
φ(a)

dµ+

∫
E∩Bca

adµ

≤
∫
X
|f |φ(|f |)

φ(a)
dµ+

∫
E
adµ

≤ C

φ(a)
+ aµ(E) .

Now given ε > 0, choose a so that C/φ(a) < ε/2, and then choose δε = ε/(2a). It then follows

that

µ(E) < δε ⇒
∫
E
|f |dµ < ε

and f was an arbirary member of FC . Since ε > 0 was arbitrary, this proves (1.13), which is another

way of stating condition (3) in the definition of uniform integrability.

Now suppose µ(X) <∞. Let a1 be such that φ(t) ≥ t for all t ≥ a1. Then for f ∈ FC ,∫
X
|f |dX ≤

∫
{|f |≤a1}

|f |dµ+

∫
{|f |≥a1}

|f |dµ

≤
∫
{|f |≤a1}

a1dµ+

∫
{|f |≥a1}

φ(|f |)dµ

≤ a1µ(X) + C,

so that (1) is satisfied. Finally, for (2), we can simply take Aε = X; the second requirement in the

definition of uniform integrability is vacuous in case µ(X) <∞.


