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1 Product Algebras

Recall a lemma we proved earlier, as Lemma 6.1 in the notes on σ-algebras and measurability.:

1.1 LEMMA. Let X be any set, and let F be a set of subsets of X such that for all E and F in

F , E\F is a finite disjoint union of elements of F . Then the set A of all finite disjoint unions of

elements of F is an algebra.

1.2 DEFINITION. Let X be any set. An elementary family of subsets of X is any set F of

subsets of X such that for all E,F ∈ F , E\F is a finite disjoint union of sets in F . For any set F
of subsets of X, α(F) is the smallest algebra containing F .

Lemma 1.1 says that if F is an elementary family, then α(F) consists of all finite disjoint unions

of sets in F .

1.3 DEFINITION. Now let X and Y be two sets. Let F and G be elementary families of sets

in X and Y respectively. Then rectangle(F ,G) consists of all sets E ⊂ X × Y of the form F × G
with F ∈ F and G ∈ G.

1.4 LEMMA. Let X and Y be two sets. Let F and G be elementary families of sets in X and Y

respectively. Then rectangle(F ,G) is an elementary family of sets in X × Y .

Proof. Let E1 = F1 ×G1 and E2 = F2 ×G2 belong to P. Then

Ec2 = (F c2 ×G2)
⋃

(F c2 ×Gc2)
⋃

(F2 ×Gc2) ,

and this union is disjoint. Therefore,

E1\E2 = E1 ∩ Ec2 = (F1\F2 ×G1 ∩G2)
⋃

(F1\F2 ×G1\G2)
⋃

(F1 ∩ F2 ×G1\G2) ,

By Lemma, 1.1, F1\F2 and G1 ∩ G2 are finite disjoint union of sets in F and G respectively.

Hence F1\F2 × G1 ∩ G2 is a finite disjoint union of sets in rectangle(F ,G). The same applies to

F1\F2 ×G1\G2 and F1 ∩ F2 ×G1\G2.
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Of course, an algebra is an elementary family. Thus, as a special case, the lemma implies that

if A is an algebra of subsets of X, and B is an algebra of subsets of Y , then the set of all finite

disjoint unions of sets in rectangle(A,B) is an algebra of subsets of X × Y . This justifies the

following definition:

1.5 DEFINITION (Product algebra). Let X and Y be two sets. Let A be an algebra of subsets

of X, and B be an algebra of subsets of Y . Then the product algebra A1 ⊗ A2 is the algebra

consisting of all finite unions of sets in rectangle(A,B).

Combining results we have proved:

1.6 THEOREM. Let X and Y be two sets. Let F and G be elementary families of sets in X and

Y respectively, and let A = α(F) and B = α(G). Then A⊗ B consists of all finite disjoint unions

of sets of the form F ×G with F ∈ F and G ∈ G.

2 Product σ-Algebras

2.1 DEFINITION. LetM and N be σ-algebras of subsets of X and Y respectively. A rectangle

is a subset of X × Y of the form F ×G with F ∈M and G ∈ N . Let A be the algebra consisting

of all finite disjoint unions of rectangles. The product σ-algebra M⊗N is the smallest σ-algebra

containing the algebra A.

2.2 Remark. Our notation is somewhat ambiguous: Since σ-algebras are also algebras, M⊗N
can be interpreted two ways. We shall always mean the product σ-algebra instead of the smaller

product algebra unless we explicitly indicate otherwise.

2.3 DEFINITION. Let E ⊂ X × Y . For all y ∈ Y , define

S1(E, y) = {x ∈ X : (x, y) ∈ E} ,

and for all x ∈ X, define

S2(E, x) = {y ∈ Y : (x, y) ∈ E} ,

These are the slices of E through y and x respectively.

It is immediate from the definition that if {En}n∈N is any sequence of sets in X × Y ,

S1

( ∞⋃
n=1

En, y

)
=
∞⋃
n=1

S1(En, y) and S1

( ∞⋂
n=1

En, y

)
=
∞⋂
n=1

S1(En, y) (2.1)

for all y ∈ Y . Of course, the analogous formulas hold for S2. Likewise, for any E ⊂ X × Y ,

x ∈ S1(Ec, y) if and only if (x, y) ∈ Ec, which is true if and only if (x, y) /∈ E, so that

S1(Ec, y) = (S1(E, y))c , (2.2)

and the analogous identity is valid for S2. In short, taking of slices commutes with taking of

complements.
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2.4 THEOREM. Let X and Y be sets, and let A and B be algebras of sets in X and Y . Then

for all E ∈ σ(A⊗ B), and all x ∈ X, and all y ∈ Y , S1(E, y) ∈ σ(A1) and S2(E, x) ∈ σ(A2).

Proof. Let S be the set of subsets of X ×Y such that for all E ∈M, and all x ∈ X, and all y ∈ Y ,

S1(E, y) ∈ σ(A1) and S2(E, x) ∈ σ(A2). By (2.1) and (2.2), S is a σ-algebra. It remains to show

that A ⊗ B ∈ S. In fact, since the general element of A ⊗ B is a disjoint union of rectangles, it

suffices to show that these rectangles are contained in S.

Let E = F ×G with F ∈ A and G ∈ B. Then

S1(E, y) =

{
F y ∈ G
∅ y /∈ G

.

Thus, for all y, S1(E, y) ∈ σ(A), and the same reasoning applies to S2(E, x). Thus, all sets

E = F ×G with F ∈ A and G ∈ G belong to S.

3 Product measures

3.1 LEMMA. Let X and Y be sets, and let A and B be algebras of sets in X and Y . Let m be a

premeasure on A, and let n be a premeasure on B. Let A ∈ A ⊗ B have two representations as a

disjoint union of rectangles:

A = A =
N⋃
j=1

Fj ×Gj and A =
M⋃
k=1

F̃k × G̃k .

Then
M∑
j=1

m(Fj)n(Gj) =

M∑
k=1

m(F̃k)n(G̃k) .

Proof. Taking intersections we also have

A =
⋃

1≤j≤N,1≤k≤M
(Fk ∩ F̃j)× (Gk ∩ G̃j) .

By symmetry, it suffices to show that
M∑
j=1

m(Fj)n(Gj) =
N∑
j=1

M∑
k=1

m(Fk ∩ F̃j)n(Gk ∩ G̃j). For this,

it suffices to show that for each j, m(Fj)n(Gj) =

M∑
k=1

m(Fk ∩ F̃j)n(Gk ∩ G̃j)

Simplifying our notation, it suffices to show that whenever F ∈ A and G ∈ B, and

F ×G = ∪Nj=1Fj ×Gj , (3.1)

where the right hand side is a disjoint union of rectangles, then

m(F )n(G) =
N∑
j=1

m(Fj)n(Gj) .
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To prove this, let S be any non-empty subset of {1, . . . , N}, and define FS =(⋂
j∈S Fj

)⋂(⋂
k∈Sc F cj

)
. By construction, for S 6= S′, FS ∩ FS′ = ∅. (It is also possible that

FS = ∅ for some S.) Also, for each j, Fj =
⋃
{S : j∈S} FS and F =

⋃
S FS . We define GS using the

analogous construction. Then

Fj ×Gj =
⋃

{S,S′ : j∈S,j∈S′}

FS ×GS′ .

Since (3.1) is a disjoint union, for j 6= k, ⋃
{S,S′ : j∈S,j∈S′}

FS ×GS′

⋂ ⋃
{S,S′ : k∈S,k∈S′}

FS ×GS′

 = ∅ ,

and so whenever S
⋂
S′ 6= {j} for some j ∈ {1, . . . , N}, FS ×GS′ = ∅. Thus,

S
⋂
S′ 6= {j} for some j ∈ {1, . . . , N} ⇒ m(Fs)n(GS′) = 0 (3.2)

where we have used the fact that m and n are premeasures so that m(∅) = n(∅) = 0. Since m and

n are finitely additive,

m(F )n(G) =

 ∑
S⊂{1,...,N}

m(FS)

 ∑
S′⊂{1,...,N}

n(GS′)


=

∑
S,S′

m(FS)n(GS′)

=

N∑
j=1

 ∑
S,S′ :S∩S′={j}

m(FS)n(GS′)


=

N∑
j=1

 ∑
S,S′ :j∈S,j∈S′

m(FS)n(GS′)


=

N∑
j=1

 ∑
S j∈S

m(FS)

 ∑
S′ j∈S′

n(GS′)


=

N∑
j=1

m(Fj)n(Gj) .

On the basis of Lemma 3.1, we may define a function m⊗ n on A⊗ B by

m⊗ n

 N⋃
j=1

Fk ×Gk

 =

M∑
j=1

m(Fj)n(Gj) (3.3)

whenever {Fj ×Gj}j=1,...,N is a set of disjoint rectangles in A⊗ B. It is clear that m ⊗ n(∅) = 0,

and that m⊗ n is finitely additive on A⊗ B. Hence m⊗ n is a premeasure on A⊗ B. It is called

the product of the premeasures m and n.
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3.2 LEMMA. Let X and Y be sets, and let A and B be algebras of sets in X and Y . Let m be a

premeasure on A, and let n be a premeasure on B. Suppose that both m and n are continuous at

the empty set and are semifinite. Then the product premeasure m ⊗ n is continuous at the empty

set and is semifinite.

Proof. The proof that m⊗ n is semifinite is left to the reader. Let {Ek}k∈N be a sequence of sets

in A⊗ B such that Ek+1 ⊂ Ek for all k, m⊗ n(E1) <∞, and
⋂∞
k=1Ek = ∅. We must show that

lim
k→∞

m⊗ n(Ek) = 0 .

To do this, fix k ∈ N, and write Ek as a disjoint union of rectangles

Ek =
N⋃
j=1

Fj ×Gj .

Then m ⊗ n(Ek) =
∑N

j=1m(Fj)n(Gj), and S2(Ek, x) =
⋃

{j : x∈Fj}

Gj is a disjoint union. Conse-

quently,

n(S2(Ek, x)) =

N∑
j=1

n(Gj)1Ej (x) .

Let µ be the countably additive extension of m to σ(A), and let gk be the simple function given by

gk(x) = n(S2(Ek, x)). Then, since µ extends m,∫
X
gkdµ =

N∑
j=1

n(Gj)

∫
X

1Ejdµ =
N∑
j=1

n(Gj)m(Ej) = m⊗ n(Ek) . (3.4)

Since k is arbitrary, we have lim
k→∞

m⊗ n(Ek) = lim
k→∞

∫
X
gkdµ. Since

⋂∞
k=1Ek = ∅, for each x,⋂∞

k=1 S2(Ek, x) = ∅, and then since n is continuous at the empty set,

lim
k→ infty

gk(x) = lim
k→ infty

n (S2(Ek, x)) = 0 .

Thus, limk→∞ gk(x) = 0 for all x. Furthermore gk ≤ g1, and
∫
X g1dµ = m ⊗ n(E1) < ∞. Hence,

by the Lebesgue Dominated Convergence Theorem,

lim
k→∞

∫
X
gkdµ = 0 .

By (3.4), this completes the proof.

3.3 DEFINITION (The product measure µ ⊗ ν). Let X and Y be sets, and let M and N be

σ algebras of sets in X and Y .Let µ and ν be σ-finite measures on M and N respectively. Let

M⊗N be the algebraic product of M and N regarded as algebras. Regard µ and ν as σ-finite

premeasures onM and N respectively, and let m be the corresponding product premeasure. Since

by Lemma 3.2, m is semifinite and continuous at the empty set, m has a unique countably additive

extension to the σ-algebra M⊗N , and by the σ-finiteness of m, this extension is unique. This

measure is the product measure µ⊗ ν on M⊗N .
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By the definition, for all F ∈ M and all G ∈ N , µ ⊗ ν(F × G) = µ(F )ν(G), and, by the

uniqueness theorem, which applies on account of our assumption that µ and ν are σ-finite, µ⊗ ν is

the unique measure on M⊗N with this property. If we only assume that µ and ν are semifinite,

then we can still define µ⊗ν onM⊗N using the Caratheodory construction, but then uniqueness

may fail.

4 The Fubini-Tonelli Theorem

Let f be a function on X × Y . For y ∈ Y , f(·, y) denotes the function on X whose value at x is

f(x, y). Likewise, for x ∈ X, f(x, ·) denotes the function on Y whose value at x is f(x, y).

4.1 LEMMA. Let f be a measurable function on (X × Y,M⊗N ). Then for all y ∈ Y , f(·, y) is

a measurable function on (X,M), and for all x ∈ X, f(x, ·y) is a measurable function on (Y,N ).

Proof. Suppose f is a real valued measurable function on (X × Y,M⊗ N ) Then for all a ∈ R,

f−1((a,∞)) ∈M⊗N , Then since

f−1(·, y)((a,∞)) = S1

(
f−1((a,∞)) , y

)
,

and since the right side belongs to M by what we have said above and Theorem 2.4,

f−1(·, y)((a,∞)) ∈ M. Since this is true for all a ∈ R, f(·, y) is measurable on (X,M). The

same reasoning applies to f(x, ·).

Lemma 4.1 tells us that when f ∈ L+(X × Y, µ⊗ ν), then the functions g and h given by

g(x) =

∫
Y
f(x, ·)dν and h(y) =

∫
X
f(·, y)dµ (4.1)

are well-defined on X and Y respectively. In fact, much more is true:

4.2 THEOREM (Tonelli’s Theorem). Let X and Y be sets, and let M and N be σ algebras of

sets in X and Y .Let µ and ν be σ-finite measures on M and N respectively. Let µ ⊗ ν be their

product measure on M⊗N . Let f ∈ L+(X × Y, µ ⊗ ν) and let g and h be given by (4.1). Then

g ∈ L+(X,M) and h ∈ L+(Y,N ), and∫
X
gdµ =

∫
X×Y

fdµ⊗ ν =

∫
Y
hdν . (4.2)

Proof. Let E = F × G with F ∈ M and G ∈ N , and consider the case in which f = 1E . Then

with g and h defined by (4.1), g(x) = ν(G)1F (x) ∈ L+(X,M) and h(y) = µ(F )1G(y) ∈ L+(Y,N ).

It is now evident that ∫
X
gdµ =

∫
X×Y

fdµ⊗ ν =

∫
Y
hdν = µ(F )ν(G)

so that (4.2) is valid in this case. From the additivity and homogeneity of integration it follows that

whenever f = 1E and E is a finite disjoint union of rectangles, g(x) ∈ L+(X,M), h(y) ∈ L+(Y,N )

and (4.2) is valid. Recall that the set of such sets is an algebra, namely the algebraic product of

M and N .
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Let S be the sets of all sets E in the σ-algebraM⊗N such that when f = 1E , and g and h are

given in terms of f by (4.1), then g(x) ∈ L+(X,M), h(y) ∈ L+(Y,N ) and (4.2) is valid. We claim

that S is a monotone class. One this is shown, it will follow from the Monotone Class Theorem

and the fact that the algebra consisting of all finite disjoint unions of rectangles is contained in S
that S is the σ-algebra generated by this algebra. But that is precisely M⊗N , and so we will

have that S =M⊗N .

Let {En}n∈N be an increasing sequence of sets in S. Let fn = 1En and let gn and hn be given

in terms of fn by (4.1). Let E =
⋃∞
n=1En. Then by continuity from below,

µ⊗ ν(E) = lim
n→∞

µ⊗ ν(En) = lim
n→∞

∫
X
gn(x)dµ . (4.3)

Then since gn(x) = ν(S2(En, x)), and since {S2(En, x)}n∈N is a sequence of sets increasing to

S2(E, x), another application of continuity from below yields the fact that {gn}n∈N increases to

g(x) for all x. Then by the Lebesgue Monotone Convergence Theorem,

lim
n→∞

∫
X
gndµ =

∫
X
gdµ .

Combining this with (4.3), we have that g ∈ L+(X,M) and

µ⊗ ν(E) =

∫
X×Y

fdµ⊗ ν =

∫
X
gdµ .

The same sort of reasoning shows that h ∈ L+(Y,N ) and µ⊗ ν(E) =

∫
Y
hdν.

Now we must show that if {En}n∈N is a decreasing sequence of sets in S, and E =
⋂∞
n=1En, then

E ∈ S. The argument is essentially the same as the one we have just given or increasing sequences

except that continuity from above will replace continuity from below, and the Lebesgue Dominated

Convergence Theorem will replace the Lebesgue Monotone Convergence Theorem. Both of these

require finiteness conditions. When µ(X) and ν(Y ) are both finite, so that µ⊗ν(X×Y ) <∞, these

finite conditions are trivially satisfied. The σ-finite case reduces to the finite case in the standard

way, and the details are left to the reader.

At this point we have shown that for all E ∈M⊗N , with f = 1E and g and h given in terms

of f by (4.1), then g(x) ∈ L+(X,M), h(y) ∈ L+(Y,N ) and (4.2) is valid. By the additivity and

homogeneity of integration, the same is true for all simple functions f ∈ L+(X × Y,M⊗N ).

Finally, we use the fact that every f ∈ L+(X × Y, µ⊗ ν) is the pointwise limit of an increasing

sequence {fn}n∈N of simple functions. But then for each y ∈ Y , {fn(·, y)}n∈N is an sequence of

simple functions converging pointwise to f(·, y). By Lebesgue’s Monotone Convergence Theorem,

h(y) =

∫
X
f(·, y)dµ = lim

n→∞

∫
X
fn(·, y)dµ .

Let hn(y) =

∫
X
fn(·, y)dµ. By what we have noted above, hn ∈ L+(Y,N ). Since L+(Y,N ) is closed

under pointwise limits, h ∈ L+(Y,N ). Similar reasoning shows that g ∈ L+(X,M).

4.3 THEOREM (The Fubini-Tonelli Theorem). Let X and Y be sets, and let M and N be σ

algebras of sets in X and Y .Let µ and ν be σ-finite measures on M and N respectively. Let µ⊗ ν
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be their product measure on M⊗N . Let f be measurable functions on (X × Y, µ⊗ ν) Then each

of the following integral are well defined:∫
X×Y

|f(x, y)|dµ⊗ ν (4.4)∫
X

(∫
Y
|f(x, y)|dν

)
dµ (4.5)∫

Y

(∫
X
|f(x, y)|dµ

)
dν (4.6)

Moreover, if any one of them is finite, then all are finite and equal and∫
X×Y

f(x, y)dµ⊗ ν =

∫
X

(∫
Y
f(x, y)dν

)
dµ =

∫
Y

(∫
X
|f(x, y)|dµ

)
dν . (4.7)

Proof. Since |f | ∈ L+(X×Y, µ⊗N ), the first part follows from Tonelli’s Theorem. Then, assuming

that any one of the three integrals (4.4), (4.5) or (4.6) is finite, then f ∈ L1(X ×Y,M⊗N , µ⊗ ν),

and now decomposing f in to the positive and negative parts of its real and imaginary parts, and

applying Tonelli’s Theorems to each of these, we obtain the final part.

4.4 Remark. In 1906 Fubini’s proved the above theorem except that he required that the integral

(4.4) was finite. In 1909 Tonelli showed how one could verify Fubini’s condition – finiteness of (4.4)

– by checking finiteness of an iterated integral. However, it is still essential that f be measurable

with respect to the product σ-algebra M⊗N . It is not sufficient that, say f(x, ·) ∈ L1(Y,N , ν)

for each x, and that x 7→
∫
Y |f(x, y)|dν ∈ L1(X,M, µ). This would be enough to guarantee that

the integral in (4.5) is well defined and finite. But unless f is measurable with respect to M⊗N ,

the integral in (4.4) is not even defined and the integrals in (4.7) need not be equal.

5 Construction of Lebesgue measure on Rn

For n ∈ N, define En to be the set of half open rectangles in Rn; i.e., the sets of the form

{x ∈ Rn : 〈ej , x〉 ∈ (aj , bj ] j = 1, . . . , n } (5.1)

where ej is the jth standard basis vector in Rn, and where 〈x, y〉 denotes the standard inner product

in Rn. Since En is an elementary family, An, the set of all finite disjoint unions of sets in En is an

algebra.

For E ∈ En, given by (5.1) define

ρn(E) =
n∏
j=1

(bj − aj) . (5.2)

Let A ∈ An. By definition, A is the disjoint of finitely many half-open rectangles E1, . . . , EN . We

then define

ρn(A) =

N∑
j=1

ρn(Ej) ,

and note that there is no ambiguity stemming from the fact that A can be written in more than

one way as a finite disjoint union of half-open rectangles: Considering any common refinement of

two such partitions of A into half-open rectangles, we see that they yield the same value for ρ(A).
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5.1 THEOREM. For each n ∈ N, ρn is a semi-finite premeasure on An that is continuous at the

empty set.

Proof. The fact the ρn is semifinite is clear. We prove that it is continuous at the empty set by

induction on n, noting that we have already proved this for n = 1.

Suppose we have shown that ρm is continuous at the empty set for all m < n. One readily

checks that An = A1 ⊗ An−1 and that ρn = ρ1 ⊗ ρn−1. Then by Lemma 3.2 and our inductive

hypothesis, ρn is continuous at the empty set.

5.2 DEFINITION (Lebesgue outer measure and measure). The outer measure µ∗n on Rn defined

by

µ∗n(E) = inf


∞∑
j=1

ρn(Aj) : {Aj}j∈N ⊂ An and E ⊂
∞⋃
j=1

Aj

 (5.3)

is the Lebesgue outer measure on Rn. Its Caratheodory σ-algebra is the σ-algebra Ln of Lebesgue

measurable subsets of Rn, and the restriction mn of µ∗n restriction to Ln is Lebesgue measure on

Rn.

5.3 Remark. By decomposing each Aj into a finite union of half open rectangles, we see that we

do not raise the infimum if we further require that each Aj in (5.3) is a half open rectangle. Next,

slightly enlarging each of these, we see that we do not change the infimum if we further require

that E is contained in the union of the interiors of the Aj . Extending the definition of ρn to open

rectangles in the obvious way, we then have the alternate formula

µ∗n(E) = inf


∞∑
j=1

ρn(Aj) : each Aj an open rectangle and E ⊂
∞⋃
j=1

Aj

 (5.4)

Because ρn is semifinite and continuous at the empty set, the restriction of µ∗n to An agrees

with ρn. We also know that σ(An) ⊂ Ln.

5.4 PROPOSITION. σ(An) = Bn, the Borel σ-algebra on Rn.

Proof. Since every open rectangle in Rn is a countable union of half-open rectangles in Rn, σ(An)

contains all open rectangles in Rn. Since every open set in Rn is a countable union of open

rectangles, σ(An) contains all open sets, and hence contains Bn. Conversely, since each half open

rectangle is a Borel set, σ(An) ⊂ Bn.

Now let E ∈ Ln, and ε > 0. Then there is a sequence of open rectangles {Aj} such that with

U := ∪∞j=1Aj , so that U is open,

E ⊂ U and mn(U) ≤
∞∑
j=1

mn(Aj) =
∞∑
j=1

ρn(Aj) ≤ mn(E) + ε .

This shows that mn is outer regular on L.

We next show that mn is inner regular: Let CN = { x : 〈ej , x〉 ∈ [−N,N ] , j = 1, . . . n } be

the centered closed cube of side length 2N .
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For any E ∈ Ln, and any ε > 0, let U be an open set containing CN ∩ Ec such that mn(U) ≤
mn(CN ∩ Ec) + ε. Define KN := CN ∩ U c. Then KN is compact and contained in E ∩ CN . Then

mn(CN ) = mn(KN ) +mn(CN ∩ U)

≤ mn(KN ) +mn(CN ∩ Ec) + ε .

Therefore,

mn(KN ) ≥ mn(CN )−mn(CN ∩ Ec)− ε = mn(CN ∩ E)− ε .

Now suppose mn(E) <∞. Then by continuity from below, there exists N so that mn(CN ∩ E) ≥
mn(E)− ε. Then with KN as above, mn(KN ) ≥ mn(E)− 2ε. On the other hand, if mn(E) =∞,

then for each k, there is an N so that mn(CN ∩E) ≥ k + 1, and then, taking ε = 1, mn(KN ) ≥ k.

Either way, we have that

mn(E) = sup{ mn(K) : K compact,K ⊂ E } .

This shows that m is inner regular on L. We summarize and extend:

5.5 THEOREM. Lebesgue measure mn is inner and outer regular on the Lebesgue measurable

subsets of Rn. Moreover, for every E in Ln, there are Borel sets F and G such that

F ⊂ E ⊂ G and mn(G ∩ F c) = 0 .

In fact, we can take F to be a a countable union of closed sets, and G to be a countable intersection

of open sets.

Proof. Write Rn as the disjoint union of a family of bounded half open rectangles {Cj}, which we

may as well take to be cubes of unit side length. Given k ∈ N, for each j there exists an open set

Uj,k such that E ∩ Cj ⊂ Uj,k and

mn(Uj,k) ≤ mn(E ∩ Cj) +
1

k2j
.

Let Uk = ∪∞j=1Uj,k which is open. Then E ⊂ Uk and

µ(Uk ∩ Ec) ≤
∞∑
j=1

mn(Uj,k ∩ Ec) ≤
∞∑
j=1

mn(Uj,k ∩ (E ∩ Cj)c) ≤
1

k
.

Define G = ∩∞k=1Uk. Then G is a Gδ set, hence Borel, E ⊂ G, and mn(G ∩ Ec) = 0.

Likewise, choose Fj,k to be a compact set contained in E ∩ Cj so that

mn(Fj,k) ≥ mn(E ∩ Cj)−
1

k2j
.

Let F = ∪∞j,k=1Fj,k. Then F ⊂ E and F is an Fσ set. Finally,

mn(E ∩ F c) =
∞∑
j=1

mn((E ∩ Cj) ∩ F c) ≤
∞∑
j=1

mn((E ∩ Cj) ∩ F cj,k) ≤
1

k
.

Since this is true for all k, mn(E ∩ F c) = 0.
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5.6 THEOREM (Approximation of measurable sets by finite unions of rectangles). Let E ∈ Ln
be such that mn(E) <∞. Then for all ε > 0, there is a set A ∈ An such that

mn(A∆E) ≤ ε . (5.5)

Proof. We have already seen, using the Monotone Class Theorem, that for any σ-finite measure

µ on the σ algebra σ(A) generated by some algebra A, the following is true: For any measurable

set E with µ(E) < ∞, and any ε > 0, there is an A ∈ A so that µ(A∆E) ≤ ε. Since the Borel

σ-algebra of Rn is generated by An and since mn is σ-finite, it follows that (5.5) is true whenever

E is a Borel set of finite Lebesgue measure. But since we have shown above that every Lebesgue

measurable set differs form a Borel set by a set of measure zero, the theorem is true in general.

5.7 THEOREM. L1(Rn,Ln,mn) is separable and C∞c (Rn) is dense in it.

Proof. Let f ∈ L1(Rn,Ln,mn), and let ε > 0 be given. We know from the general theory of

Lebesgue integration that there is a simple function φ such that ‖f −φ‖1 ≤ ε. Let φ =
∑M

j=1 zj1Ej .

Without loss of generality, we may assume each zj is rational. Approximating each Ej by a disjoint

union of half-open rectangles, that we may assume to have rational boundaries, we find a function

ψ of the form ψ =
∑N

k=1 zk1Rk
where each zk is rational, and each Rk is a half-open rectangle with

rational boundary, and ‖φ−ψ‖1 ≤ ε. By Minkowski’s inequality, ‖f−ψ‖1 ≤ ‖f−φ‖1+‖φ−ψ‖2 ≤ 2ε.

since there are only countably many functions of the form of ψ, L1(Rn,Ln,mn), is separable.

To see that C∞c (Rn) is dense, consider the function

ϕ(t) =

{
exp(−(1− t2)−1) −1 < t < 1

0 |t| ≥ 1 .

Note that ϕ1/n(t) increases monotonically with n to 1(−1,1)(t). It follows that for any a < b in R,

ϕ1/k((2t− (a+ b))/(b− a)) increases monotonically to 1(a,b)(t) as k →∞, and hence that

n∏
j=1

ϕ1/k((2〈ej , x〉 − (aj + bj))/(bj − aj)) ↑
n∏
j=1

1(aj ,bj)(〈ej , x〉) .

Hence, by the Lebesgue Monotone Convergence Theorem, the characteristic function of any

open rectangle, and hence any half-open rectangle, can be arbitrarily closely approximated in

L1(Rn,Ln,mn) by C∞c (Rn) functions. Combining this with our approximation of f by a finite

linear combination of characteristic functions of open rectangles, we obtain the result.

6 Transformation of measures

Let (X,M, µ) be a measure space, and let (Y,N ) be a measurable space. Let T : X → Y be

measurable. Define a function T#µ on N with values in [0,∞] by

T#µ(F ) = µ(T−1(F )) .
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Notice that if {Fj}j∈N is disjoint in Y , then {T−1(Fj)}j∈N is disjoint in X and T−1(∪∞j=1Fj) =

∪∞j=1T−1(Fj),

T#(∪∞j=1(Fj)) = µ(T−1(∪∞j=1Fj) = µ(∪∞j=1T−1(Fj)

=
∞∑
j=1

µ(T−1(Fj)) =
∞∑
j=1

T#µ(Fj) .

Thus, T#µ is a countably additive measure on N . it is called the push-forward of µ by T . The

following identity is the root of a number of change of variables formulae.

6.1 THEOREM. Let f ∈ L+(Y,N ), and let T : X → Y be measurable with respect to N on Y

and M on X. Let µ be any measure on X, and define

ν = T#µ .

Then f ◦ T ∈ L+(X,M), and ∫
X
f ◦ Tdµ =

∫
Y
fdν .

Proof. Clearly f ◦ T is non-negative and is measurable, so f ◦ T ∈ L+(X,M), and both integrals

are defined. Consider the case f = 1F , ∈ N . Then∫
Y

1Fdν = ν(F ) = µ(T−1(Fj)) =

∫
X

1Fj ◦ T (x)dµ .

By linearity of integration, whenver f is a simple function, say f =
∑M

j=1 zj1Fj where each Fj
belongs to N . ∫

Y
fTdν =

∫
X
f ◦ Tdµ .

This proves the result for simple functions, and now the general result follows from approximation

by simple functions.

This theorem becomes useful if it can be combined with a concrete description of T#µ. We

now turn to severla cases in whihc we can identify T#mu explicitly. In the first example, T is

translation on Rn, and we will show this leave Lebesgue measure invariant.

6.2 THEOREM (Translation invariance of Lebesgue measure). For all a ∈ Rn, define τa : Rn →
Rn by τ(x) = x+ a. Then

τa#mn = mn .

Proof. Let A ∈ An. Note that τa is invertible and τ−1
a = τ−a. Notice that τ−1

a (A) ∈ A. By

definition,

τa#mn(A) = mn(τ−1
a (A)) = ρn(τ−1

a (A)) ,

since on An, mn agrees with ρn. But ρn is invariant under translations as an obvious consequence

of the formula that defines it. Hence

ρn(τ−1
a (A)) = ρn(A) = mn(A)

for all A ∈ An. Thus, τa#mn and mn agree on An, and so by the uniqueness theorem, they agree

on all Borel sets. Finally, since every Lebesgue measurable contains and is contained in a Borel set

of the same measure, the result is true for all A ∈ Ln as well.
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7 The push-forward of Lebesgue measure under an invertible lin-

ear transformation

7.1 THEOREM. Let T : Rn → Rn be linear and invertible. Then

T#mn = |det(T )|−1mn . (7.1)

Consequently, for f ∈ L+(Rn,Ln,mn),

|detT |
∫
Rn

f ◦ Tdmn =

∫
Rn

fdmn . (7.2)

Proof. The second part follows from the first part and Theorem 6.1. Hence it suffices to prove

(7.1). The proof of this rests on the following elementary fact from linear algebra: Let E be any

parallelepiped in Rn. That is, E is some translate of the image of the unit cube in Rn under some

invertible linear transformation T : Rn → Rn. Then for every ε > 0, there are two sets F and G in

An such that F ⊂ E ⊂ G and

ρn(G)− ε ≤ |det(T )| ≤ ρn(F ) + ε .

Since

ρn(F ) ≤ mn(E) ≤ mn(G) ,

it follows that

mn(E) = |det(T )| .

Now let T : Rn → Rn be linear and invertible. Let S denote the inverse of T . Then S is also

linear and has a matrix representation. Let vj denote the jth row of this matrix so that

S(x) = (〈v1, x〉, . . . , 〈vn, x〉) . (7.3)

Since S is invertible, {v1, . . . ,vn} is linearly independent, and hence a basis for Rn. Conversely,

any basis β = {v1, . . . ,vn} generates an invertible linear transformation S on Rn through (7.3).

Now let

E := {x ∈ Rn : 〈ej , x〉 ∈ (aj , bj ] j = 1, . . . , n } (7.4)

be a generic element of En. Then

T (E) = S−1(E) = {x ∈ Rn : 〈vj , x〉 ∈ (aj , bj ] j = 1, . . . , n } ,

is a rectangle in coordinates based on the basis {v1, . . . ,vn}. It is evident that the sets of this form

are an elementary family, and so the set of all finite disjoint unions of such sets forms an algebra

that we denote AT . It is clear that T sets up a one-to-one correspondence between AT and An.

That is, E ∈ An if and only if T (A) ∈ AT .

We define a premeasure ρT on AT by

ρT (A) = ρn(T−1(A)) (7.5)

for all A ∈ AT , This is well defined since T (A) ∈ An for all A ∈ AT . Since ρn is σ-finite, and hence

semifinite, so is ρT .
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Moreover, if {Aj} is a decreasing sequence with ∩∞j=1Aj = ∅, then ∩∞j=1T
−1(Aj) = ∅. It follows

from the fact that ρn is continuous at the empty set that ρT has this property too.

It is clear that just as with An, σ(AT ) = Bn. Let mT denote the Borel measure on Rn obtained

by restricting the outer measure generated by ρT to Bn. Since, as noted at the beginning of the

proof, the Lebesgue measure of every parallelepiped in Rn may be computed by evaluating an

appropriate determinant, and since mn extends ρn, it follows from (7.5) that

T#mn(A) = ρn(T−1(A)) = |det(T )|−1mn(A) ,

and hence that for all A ∈ AT ,

T#mn(A) = mT (A) = ρT (A) = | det(T )|−1mn(A) , (7.6)

Since mT and | det(T )|mn agree on the algebra AT , and since this algebra generates Bn, it

follows from the uniqueness theorem for measures agreeing on an algebra that T#mn = mT =

|det(T )|−1mn on all of Bn.

7.2 THEOREM (Rotation invariance of Lebesgue measure). Let T : Rn → Rn be any orthogonal

transformation. Then

T#mn = mn .

Proof. If T is orthogonal, | det(T )| = 1, and the result follows from the previous theorem.

7.3 THEOREM (Transformation of Lebesgue measure under dilation). For t ∈ R define ςt :

Rn → Rn by ςt(x) = e−tx. Then

ςt#mn = entmn .

Proof. The transformation ςt is linear and the corresponding matrix is e−t times the identity, whose

determinant is e−tn. Hence this result is a direct consequence of (7.1).

7.4 Remark. The set of transformations ςt, t ∈ R, form an abelian group of transformation acting

on Rn since for all s, t ∈ R ςs ◦ ςt = ςs+t, and ς0 is the identity transformation. The group of

translations is another abelian group action on Rn, while the rotations are a non-abelian group of

transformation on Rn.

8 Lebesgue measure on the sphere Sn−1

We let Sn−1 denote the unit sphere in Rn; i.e., Sn−1 = {x ∈ Rn : ‖x‖ = 1 }. Define the map

Ω : Rn\{0} → Sn−1 by

Ω(x) =
x

‖x‖
.

Notice the Ω is continuous, and hence a Borel transformation.

8.1 DEFINITION (Lebesgue measure on Sn−1). Let X denote the punctured closed unit ball in

Rn; i.e, X = {x ∈ Rn : 0 < ‖x‖ ≤ 1 }, and let µ denote the restriction of Lebesgue measure mn

to X. That is, for E a Borel set in Rn,

µ(E) = mn(E ∩X) .
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We define the Lebesgue measure on Sn−1 to be the Borel measure σn on Sn−1 given by

σn(A) = nΩ#µ(A) = nµ(Ω−1(A)) (8.1)

for all Borel sets A ⊂ Sn.

8.2 Remark. The factor of n in the definition of σn is to make σn(Sn−1) equal to n times the

Lebesgue measure of the unit ball which will be seen to be the “right” normalization below.

Notice that the map Ω commutes with rotations. That is, if T : Rn → Rn is any rotation

TΩ(x) = ΩT (x)

for all x ∈ Rn since ‖T (x)‖ = ‖x‖ for all x, and T is linear. This has the following consequence:

8.3 THEOREM (Invariance of σn under rotations). Let T : Rn → Rn be any rotation, which then

acts on Sn−1 be restriction.

T#σn = σn . (8.2)

Proof. Let A be any Borel set in Sn−1, and T any rotation. Then, since T−1 is also a rotation,

Ω−1 ◦ T−1 = T−1 ◦ Ω−1. Therefore,

σn(T−1A) = nµ(Ω−1T−1(A)) = nµ(T−1Ω−1(A)) = nT#µ(Ω−1(A)) = nµ(Ω−1(A)) = σn(A) .

We now define a homeomorphism Φ : (0,∞)× Sn onto Rn\{0} by

Φ(r, ω) = rω .

Since both Φ and Φ−1 are continuous, they are both Borel. Notice that

Ω−1(A) ∩X = Φ((0, 1]×A) ,

and therefore
σn(A)

n
= mn(Φ((0, 1]×A)) . (8.3)

8.4 LEMMA. For any a < b ∈ (0,∞), and any Borel set A ⊂ Sn−1,

mn(Φ((a, b]×A)) =
bn − an

n
σn(A) . (8.4)

Proof. Notice that (8.3) is the special case of (8.4) corresponding to a = 0 and b = 1. To get the

general case, we use the dilation properties of Lebesgue measure. Let t be such that e−t = b. Then

Φ((0, b]×A) = ςt(Φ((0, 1]×A)) = ς−1
−t (Φ((0, 1]×A)) ,

and therefore,

mn(Φ((0, b]×A)) = ς−t#mn(Φ((0, 1]×A)) = e−tnmn((0, 1]×A) ,



EAC November 19, 2014 16

where in the last equality we have used (8.2). Combining this with (8.3) and recalling that e−t = b,

we obtain

mn(Φ((0, b]×A)) =
bn

n
σn(A) .

But then

mn(Φ((a, b]×A)) = mn(Φ((0, b]×A))−mn(Φ((0, a]×A))

and we obtain (8.4).

8.5 Remark. Taking a = 0, b = 1 and A = Sn−1, we see that with Bn denoting the unit ball on

Rn,

mn(Bn) =
1

n
σn(Sn−1) ,

and that with this normalization of σn,

σn(Sn−1) = lim
r↑1

mn(Φ((r, 1]× Sn−1)

1− r
,

where Φ((r, 1]×Sn−1) is a spherical shell of thickness 1−r. Thus, the factor of n in (8.1) is natural.

8.6 DEFINITION. Let Fn(t) = tn/n for t ∈ (0,∞). Since Fn is right continuous, There is a

unique Lebesgue-Stieltjes measure %n on (0,∞) such that for all a < b ∈ (0,∞),

%n((a, b]) = Fn(b)− Fn(a) .

We write %n to denote this measure in what follows.

8.7 Remark. Note that for a < b ∈ (0,∞),

%n((a, b]) =

∫ b

a
rn−1dr .

The point of this definition is that we may now rewrite (8.4) as

mn(Φ((a, b]×A)) = %n ⊗ σn((a, b]×A) ,

and thus,

Φ−1#mn((a, b]×A) = %n ⊗ σn((a, b]×A) , (8.5)

Let Sn be the algebra consisting of all disjoint unions of sets of the form (a, b]×A, a < b ∈ (0,∞)

and A ∈ BSn−1 . Then σ(Sn) is easily seen to be the product σ-algebra B(0,∞) ⊗ BSn−1 . By the

uniqueness theorem, we conclude that

Φ−1#mn = %n ⊗ σn and consequently mn = Φ#(%n ⊗ σn) .

This identification of mn as the push-forward under Φ of %n⊗σn leads to the following theorem

for integration in polar coordinates:

8.8 THEOREM (Integration in polar coordinates). Let f ∈ L+(Rn). Then∫
Rn

fdmn =

∫
(0,∞)

[∫
Sn−1

f(rω)dσn(ω)

]
d%n(r) =

∫
Sn−1

[∫
(0,∞)

f(rω)d%n(r)

]
dσn(ω) . (8.6)
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Proof. For r ∈ (0,∞) and ω ∈ Sn−1, Φ(r, ω) = rω, and hence∫
(0,∞)×Sn−1

f(rω)d%n ⊗ σn =

∫
(0,∞)×Sn−1

f ◦ Φ(r, ω)d%n ⊗ σn =

∫
Rn\{0}

fdmn =

∫
Rn

fdmn .

Finally, by Tonelli’s Theorem we have (8.6).

In particular, since ∫
R
e−t

2/2dt =
√

2π ,

by Tonelli’s Theorem once more,

(2π)n/2 =

∫
Rn

e−‖x‖2/2dmn

= σn(Sn−1)

∫
(0,∞)

e−r
2/2rn−1dr

= σn(Sn−1)2n/2−1

∫
(0,∞)

e−uun/2−1du

= σn(Sn−1)2n/2−1Γ
(n

2

)
.

Therefore,

σn(Sn−1) =
2πn/2

Γ(n/2)
and mn(Bn) = n

2πn/2

Γ(n/2)
.

9 Properties of Lebesgue measure on Sn−1

There is an important identification of Sn−1 with the one-point compactification of Rn−1 through

the stereographic projection.

9.1 DEFINITION (Stereographic projection). Let ω0 = −en be the “South Pole” in Sn−1. For

any other ω ∈ Sn−1, define T (ω) to be the intersection of the line through ω0 and ω with the

hyperplane {x ∈ Rn : 〈en, x〉 = 0}, which we may identify with Rn−1 in the natural way. Then

T : Sn−1\ω0 → Rn−1 is the stereographic of Sn−1\ω0 onto Rn−1. Let Rn−1 ∪∞ be the one point

compactification of Rn−1, so that the neighborhoods of ∞ are the complements of compact sets

in Rn−1. Then we define T (ω0) = ∞, which yields the stereographic projection of Sn−1 onto the

one-point compactification of Rn−1.

It is easy to work out a formula for T . Let us write vectors in Rn in the form (v, z) where

v ∈ Rn−1 and z ∈ R. Then for any ω = (v, z) other than ω0, the line through ω0 and ω is

parameterized by

(1− t)ω0 + tω = (tv, t(1 + z)− 1) .

Then 〈(tv, t(1 + z)− 1), en〉 = 0 reduces to t = (1 + z)−1, and hence

T ((v, z)) =
1

1 + z
v . (9.1)
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It is also useful to have a formula for the inverse. Let x := T ((v, z), so that (1 + z)x = v. Since

(v, z) ∈ Sn−1, ‖v‖2 + z2 = 1, and so (1 + z)2‖x‖2 = 1− z2 which is readily solved for z in terms of

‖x‖2, and then (1 + z)x = v gives us v:

T−1(x) =
1

1 + ‖x‖2
(2x, 1− ‖x‖2) . (9.2)

The map T is evidently a homeomorphism of Sn−1\ω0 onto Rn−1. We may use it to transfer

the half open rectangle algebra of sets Rn−1 to an algebra of sets in Sn−1\ω0, since any bijective

image of an algebra is an algebra. Call this algebra ASn−1 . We know that every open set in Rn−1

can be written as a countable union of sets in the half-open rectangle algebra on Rn−1, and then,

since T is a homeomorphism, every open set in Sn−1\ω0 is a countable union of sets in ASn−1 . It

follows that

BSn−1 = σ(ASn−1) .

Now let µ be any Borel measure µ on Sn−1\ω0 such that µ(Sn−1) <∞. By our general results

concerning measures on σ-algebras generated by algebras, it follows that every set E ∈ BSn−1\ω0

has the property that for every ε > 0, there is a set A ∈ ASn−1 such that

µ(E∆A) ≤ ε . (9.3)

(The condition that µ(Sn−1) <∞ ensures that µ(E) <∞, a requirement of the general theorem.)

It then follows, in the usual way, that every f ∈ L1(Sn−1\ω0,BSn−1\ω0
, µ) may be approximated

by a really simple function, and then rounding the corners”, by a continuous function.

Finally, if µ({ω0}) = 0, there is no difference between L1(Sn−1\ω0,BSn−1\ω0
, µ) and

L1(Sn−1,BSn−1 , µ). We have proved:

9.2 THEOREM. Let µ be any Borel measure on Sn−1 such that µ(Sn−1) < ∞ and such that

µ(ω) = 0 for all single points ω. Then L1(Sn−1,BSn−1 , σn) is separable, and the continuous func-

tions C(Sn−1) are dense in it.

We next prove a uniqueness theorem for Lebesgue measure on Sn−1.

9.3 THEOREM. Let µ be any Borel measure on Sn−1 such that µ(Sn−1) <∞, and such that for

all rotations R,

R#µ = µ .

Then

σn(Sn−1)µ = µ(Sn−1)σn .

The proof of this theorem is based on some lemmas of independent interest that we now present.

In what follows, L2 denotes L2(Sn−1,BSn−1 , σn) and ‖f‖22 =
∫
Sn−1 |f |2dσn.

Given any f ∈ L2, we define Rf to be the function f ◦R. Then f → Rf is linear, and since σn
is rotation invariant,

‖f‖2 = ‖Rf‖2 .

Next, for any rotation R define

ARf =
1

2
(f +R) .
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This operation is also linear, and it is a contraction in the L2 norm by the Minkowski inequality and

the fact that ‖Rf‖2 = ‖f‖2. Moreover, if f is continuous, Rf has the same modulus of continuity

as f , and the average of f and Rf , namely ARf , therefore has a modulus of continuity no greater

than that of f .

9.4 LEMMA. For any real valued f ∈ L2, and any rotation R,

‖ARf‖2 ≤ ‖f‖2 ,

and there is equality if and only if Rf = f in L2. More generally, for any finite set {R1, . . . , Rm}
of rotations,

‖ARm · · ·AR1f‖2 ≤ ‖f‖2 ,

and there is equality if and only if Rjf = f for each j = 1, . . . ,m.

Proof. We compute ∥∥∥∥1

2
(f +Rf)

∥∥∥∥2

2

=
1

4
(‖f‖22 + ‖Rf‖22 + 2

∫
Sn−1

fRfdσn .

However, by the rotation invariance of σn, ‖Rf‖2 = ‖f‖2, and by the Cauchy-Schwarz inequality,∫
Sn−1

fRfdσn ≤ ‖f‖2‖Rf‖2 = ‖f‖22 .

This proves the inequality. Note that there is equality in the Cauchy-Schwarz inequality if and only

if ‖Rf‖2f = ‖f‖2Rf , which reduces to f = Rf .

For the second part, consider first the case m = 2, and suppose ‖AR2AR1f‖2 = ‖f2‖. By the

first part,

‖AR2AR1f‖2 ≤ ‖AR1f‖2 and ‖AR1f‖2 ≤ ‖f‖2 .

We must have equality in both inequalities. By what we have proved above, equality on the right

implies that R1f = f , and then of course AR1f = f . Then the inequality on the left reduces to

‖AR2f‖2 ≤ ‖f‖2, and be what we have proved above, equality here implies that R2f = f . The

general case follows in the same way.

9.5 LEMMA. Let f be any continuous functions on Sn−1. Let {R1, . . . , Rm} be any finite set of

rotations. Define a sequence {fj} by

f0 = f and fj+1 = ARm · · ·AR1fj .

Then fj converges uniformly to a continuous function h such that

Rjh = h

for j = 1, . . . ,m. Moreover, there is a choice of m = n− 1 rotations {R1, . . . , Rn−1} for which the

limiting function h is constant.
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Proof. By what we have noted above, the sequence {fj} is uniformly equicontinuous and equi-

bounded, by Arzela-Ascoli Theorem, there is a subsequence {fjk} and h ∈ C(Sn−1) such that

fjk → h uniformly.

Next note that by the lemma, ‖fj‖2 is monotone decreasing. Define

c = lim
→∞
‖fj‖2 .

Since uniform convergence implies L2 convergence for finite measure spaces,

‖h‖2 = lim
k→∞

‖fjk‖2 = c .

Since the linear operator ARm · · ·AR1 is continuous (it is even a contraction),

[ARm · · ·AR1 ]fjk → [ARm · · ·AR1 ]h

uniformly. But the left hand side is fjk+1, and so

‖ARm · · ·AR1h‖2 = lim
k→∞

‖fjk+1‖2 = c .

That is,

‖ARm · · ·AR1h‖2 = ‖h‖2 .

The lemma now implies that h is invariant under each of R1, . . . , Bm.

Let ‖ · ‖∞ denote the supremum norm, which gives the uniform topology. Since for any contin-

uous g,

‖ARm · · ·AR1g − h‖∞ = ‖ARm · · ·AR1(g − h)‖∞ ≤ ‖g − h‖∞ ,

The fact that ‖fjk − h‖∞ → 0 implies that ‖fj − h‖∞ → 0 along the whole sequence. The final

part is left as an exercise for the reader.

Proof of Theorem 9.3. We may suppose µ(Sn−1) 6= 0, or else the claim is trivial. Then normalizing,

we may suppose without loss of generality that µ(Sn−1) = σn(Sn−1).

Next, if µ({ω}) = c > 0 for some ω, µ({Rω}) = c for every rotation R. We can choose an

infinite sequence of rotations to obtain an infinite sequences of distinct points in this way. This

would force µ(Sn−1) = ∞, and so µ does not charge single points. Thus, Theorem 9.2 applies to

µ, σn and to µ+ σn.

It suffices to show that ∫
Sn−1

fdµ =

∫
Sn−1

fdσn (9.4)

for all f ∈ C(Sn−1). This is because if E is any Borel set, 1E may be approximated by continuous

functions in L1(Sn−1,BSn−1 , µ+ σn) by Theorem 9.2. But if

lim
n→∞

‖fn − 1E‖L1(Sn−1,BSn−1 ,µ+σn) = 0 ,

then fn → 1E in both L1(Sn−1,BSn−1 , µ) and L1(Sn−1,BSn−1 , σn).
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Therefore, if (9.4) is true for all continuous functions f ,

µ(E) =

∫
Sn−1

1Edµ = lim
n→∞

∫
Sn−1

fndµ

= lim
n→∞

∫
Sn−1

fndσn =

∫
Sn−1

1Edσn = σn(E) .

Next, given any continuous function f , in the lemmas above we have constructed a sequence

{fj} of continuous function that converges uniformly to constant functions h. Moreover since each

fj is an average over rotations of f and since both µ and σn are rotation invariant,∫
Sn−1

fjdσn =

∫
Sn−1

fdσn and

∫
Sn−1

fjdµ =

∫
Sn−1

fdµ

for all j .

Since uniform convergence implies convergence of integrals on a finite measure space,∫
Sn−1

fjdσn →
∫
Sn−1

hdσn and

∫
Sn−1

fjdµ→
∫
Sn−1

hdµ

as j →∞. But since h is constant and µ and σn have the same total mass,∫
Sn−1

hdσn =

∫
Sn−1

hdµ .

Combining the last three identities, we obtain (9.4)


