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1 Introduction

The basic strategy in real analysis is approximation. In particular, one often tries to approximate

general elements of some infinite dimensional vector space of functions by elements of a subspace

consisting of well-behaved functions, or one tries to construct solutions to equations as limits of

solutions to “approximate” equations. The basic framework for making mathematical sense of

“approximation” is provided by the theory of metric spaces, and more generally the theory of

topological spaces. Methods of approximation are especially effective in a metric space that is

complete and rich in compact sets, as we explain in this introductory chapter.
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In the next chapter, we study the Lebesgue theory of integration. A fundamental advantage of it

over previous integration theories is that it permits the construction of many complete metric spaces

in which compact sets can be concretely described. This provides an extremely useful framework

for solving a wide variety of equations. First, we introduce the fundamental topological theory, and

illustrate it with examples that do not require the Lebesgue theory of integration.

2 Metric Spaces

2.1 DEFINITION (Metric Space). A metric space (X, d) consists of a set X and a function

d : X ×X → [0,∞) satisfying:

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The inequality in (3) is called the triangle inequality, and a function d satisfying (1), (2) and

(3) is called a metric on X.

2.1 EXAMPLE. For real numbers a < b, let C([a, b],R) denote the set of of continuous real-valued

functions on [a, b]. Given any two f, g ∈ C([a, b],R). Define

d∞(f, g) = sup
t∈[a,b]

|f(t)− g(t)| .

It is easy to check that d∞ is a metric on C([a, b],R), called the uniform metric. Since C([a, b],R)

has an obvious vector space structure, it is our first example of a metric space that is also a vector

space of functions.

2.1 Continuity in metric spaces

A function f from X to Y is continuous if a sufficiently small change in the input results in a

small change in the output. In other words, f(x) will be a close approximation of f(x0), if x is a

sufficiently close approximation of x0. Here is the precise version of this in the metric space setting:

2.2 DEFINITION (Continuous functions from one metric space to another). Let (X, dX) and

(Y, dY ) be two metric spaces. Let f be a function from X to Y . Then f is continuous at x0 ∈ X
in case for every ε > 0, there is a δε > 0 such that

dX(x, x0) < δε ⇒ dY (f(x), f(x0)) < ε . (2.1)

The function f is continuous in case it is continuous at each x0 ∈ X.

2.1 THEOREM (Continuity and sequences). Let (X, dX) and (Y, dY ) be two metric spaces. Let

f be a function from X to Y . Then f is continuous at x0 ∈ X if and only if for every sequence

{xk} in X

lim
k→∞

xk = x0 ⇒ lim
k→∞

f(xk) = f(x0) . (2.2)
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Proof. Suppose that f is continuous, and that limk→∞ xk = x0. Pick any ε > 0, and let δε be as in

(2.1). Choose N so large that for all k > N , d(xk, x0) < δε. Then, for all k > N , d(f(x), f(x0)) < ε.

Since ε is arbitrary, this shows that limk→∞ f(xk) = f(x0).

Next suppose that f is not continuous at x0. Then there exists some ε > 0 so that for every

δ > 0, there is at least one point x satisfying dX(x, x0) < δ such that dY (f(x), f(x0)) > ε.

Define a sequence {xk} as follows: For each k, choose xk so that dX(xk, x0) < 1/k such that

dY (f(xk), f(x0)) > ε. Then limk→∞ dX(xk, x0) = 0, but it is not the case that limk→∞ f(xk) =

f(x0). Thus, when f is not continuous at x0, (2.2) does not hold true. Hence, whenever (2.2) does

hold true, it must be the case that f is continuous at x0.

There is another characterization of continuity involving the notion of open sets, which we now

define:

2.3 DEFINITION (Open sets in metric spaces). Let X be a metric space with metric d. Given

a number r > 0, and a point x ∈ X, let Br(x) be defined by

Br(x) = { y ∈ X : d(y, x) < r } .

This set is called the open ball of radius r about x.

A subset U of X is open in case either:

(1) It is the empty set ∅, or else

(2) For each x ∈ U , there is an r > 0, depending on x, such that

Br(x) ⊂ U .

It is possible, and as we shall see, useful to characterize the continuity of functions between two

metric spaces simply in terms of open sets, without explicit reference to the the specific metrics

themselves.

2.2 THEOREM (Continuity and open sets). Let X and Y be metric spaces with metrics dX and

dY respectively. Let f be a function from X to Y . Then f is continuous if and only if for every

open set U in Y , f−1(U) is open in X.

Proof. Suppose that f is continuous, and let U be an open set in Y . If f−1(U) = ∅, then f−1(U)

is open by (1). Otherwise, if f−1(U) 6= ∅, consider any x ∈ f−1(U). Then f(x) ∈ U , and since U

is open, there exists a ε > 0 such that Bε(f(x)) ⊂ U . Then, since f is continuous at x0, there is a

δ > 0 so that

dX(x̃, x) < δ ⇒ dY (f(x̃), f(x)) < ε .

Hence

f(Bδ(x)) ⊂ Bε(f(x)) ⊂ U .

But this means that

Bδ(x) ⊂ f−1(U) .

Since x was any point in f−1(U), we have shown that f−1(U) contains an open ball about each of

its members, and hence is open.
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Conversely, suppose that f has the property that whenever U is open in Y , f−1(U) is open in

X. Fix any x ∈ X and any ε > 0. f−1(Bε(f(x))) is open and contains x. Therefore, there is some

δε > 0 such that

Bδε(x) ⊂ f−1(Bε(f(x))) .

But then

f(Bδε(x)) ⊂ Bε(f(x)) ,

which is just another way to write (2.1). Since ε is arbitrary, f is continuous at x. Since x is

arbitrary, f is continuous.

2.2 Complete metric spaces

The metric space (C([a, b],R), d∞) has another feature that is desirable for analysis: It is complete.

2.4 DEFINITION (Complete metric space). A metric space (X, d) is complete in case whenever

{xk}k∈N is a Cauchy sequence in X, there exists an x ∈ X such that

lim
k→∞

d(xk, x) = 0 .

2.3 THEOREM. (C([a, b],R), d∞) is complete.

Proof. Suppose that {fk}k∈N is a Cauchy sequence in (C([a, b],R), d∞). Then for any ε > 0, there

is an Nε so that

k, ` ≥ Nε ⇒ d∞(fk, f`) ≤ ε .

Fix any t ∈ [a, b], Since |fk(t)− f`(t)| ≤ d∞(fk, f`),

k, ` ≥ Nε → |fk(t)− f`(t)| ≤ ε , (2.3)

and hence {fk(t)} is a Cauchy sequence in R. By the completeness of the real numbers, it has a

limit which we denote by f(t). This defines a real valued function f on [a, b], and it remains to

show that f ∈ C([a, b],R), and that limk→∞ d∞(fk, f) = 0.

By the definition of f(t), |fk(t)− f(t)| = lim`→∞ |fk(t)− f`(t)|. For any s, t ∈ [0, 1],

|f(t)− f(s)| ≤ |f(t)− fk(t)|+ |fk(t)− fk(s)|+ |fk(s)− f(s)| ,

and so

k ≥ Nε → |fk(t)− f(t)| ≤ ε . (2.4)

For k = Nε, this becomes

|f(t)− f(s)| ≤ |fNε(t)− fNε(s)|+ 2ε .

Since fNε is continuous, there is a δ > 0 so that |s− t| ≤ δ ⇒ |fNε(s)− fNε(t)| ≤ ε. Therefore,

|s− t| ≤ δ ⇒ |f(s)− f(t)| ≤ 3ε .

Since ε > 0 is arbitrary, this proves that f ∈ C([a, b],R). Finally, since (2.4) is valid uniformly in t,

lim
k→∞

dk(fk, f) = 0 .
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The next theorem provides an example of the importance of completeness.

2.4 THEOREM (Banach Contraction Mapping Theorem). Let (X, d) be a complete metric space.

Let Φ : X → X have the property that for some λ < 1, d(Φ(x),Φ(y)) ≤ λd(x, y) for all x, y ∈ X.

Then there is a unique x0 ∈ X such that

x0 = Φ(x0) . (2.5)

Moreover, for all x ∈ X, let the sequence {xk}k∈N be defined by x1 = x and for xk+1 = Φ(xk).

Then

lim
k→∞

d(x0, xk) = 0 . (2.6)

Proof. Pick any x ∈ X, and construct the sequence {xk}k∈N as described in the theorem. Define

R := d(x2, x1) = d(Φ(x), x)). By the hypothesis

d(x3, x2) ≤ λd(Φ(x2),Φ(x1)) ≤ λd(x2, x1) = λR .

Then by a simple induction,

d(xk+2, xk+1) ≤ λkR

for all k ∈ N. By the triangle inequality, for all ` > k,

d(x`, xk) ≤
`−k−1∑
j=0

d(xk+j+1, xk+j ≤
∞∑
j=0

λk+j−1R =
λk − 1

1− λ
R .

Since limk→∞ λ
k = 0, this proves that {xk}k∈N is a Cauchy sequence. Since (X, d) is complete, this

sequence has a limit x0. Clearly

Φ(x0) = lim
k→∞

Φ(xk) = lim
k→∞

xk+1 = x0

so that x0 is a fixed point of Φ. Finally if y0 is any fixed point of Φ, then

d(x0, y0) = d(Φ(x0),Φ(y0)) ≤ λd(x0, y0) .

The only t ∈ [0,∞) satisfying t ≤ λt is t = 0. By property (1) in the definition of a metric, this

implies that y0 = x0 which proves the uniqueness.

2.2 EXAMPLE. The previous theorem is the basis of the basic existence and uniqueness theorem

for ordinary differential equations; we now sketch the main points in the simplest case. Let v(x, t)

be a continuous function of R× R such that for some L <∞,

|v(x, t)− v(y, t)| ≤ L|x− y|

for all x, y, t. For x(·) ∈ C([0, (2L)−1],R) and x0 ∈ R define

Φ(x(·))(t) = x0 +

∫ t

0
v(x(s), s)ds .

Note that x(·) is a fixed point of Φ is and only if for all t,

x(t) = x0 +

∫ t

0
v(x(s), s)ds .
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Suppose that such a fixed point exists. Then, since the right hand side is continuously differentiable,

x(t) is continuously differentiable, and differentiating both sides,

x′(t) = v(x(t), t) (2.7)

for all t, and moreover, x(0) = x0. Conversely, any solution of (2.7) with x(0) = x0 is a fixed

point of Φ. Hence, proving existence and uniqueness of fixed points of Φ is tantamount to proving

the existence and uniqueness of solutions of the ordinary differential equation (2.7), at least on this

time interval. To apply the Banach Contraction Mapping Theorem, consider the complete metric

space C([0, (2L)−1],R) equipped with the d∞ metric.

Let x(·), y(·) ∈ C([0, (2L)−1],R). Then for all 0 ≤ t ≤ (2L)−1,

|Φ(x(·))(t)− Φ(y(·))(t)| =

∣∣∣∣∫ t

0
[v(x(t), t)− v(y(t), t)]dt

∣∣∣∣
≤

∫ t

0
|v(x(t), t)− v(y(t), t)]|dt

≤ L

∫ t

0
|x(t)− y(t)|dt

≤ Lt sup
0≤s≤t

|x(t)− y(t)| ≤ 1

2
d∞(x(·), y(·))

Thus,

d∞(Φ(x(·)),Φ(y(·))) ≤ 1

2
d∞(x(·), y(·)) ,

and the Banach Contraction Mapping Theorem yields the existence of a unique fixed point of Φ.

This yields the existence and uniqueness of a solution to (2.7) on the interval [0, (2L)−1]. The basic

idea explained here can be used to prove much more.

We have just explained how completeness can be applied to solve equations. We shall do the

same for compactness after developing more of the theory.

2.3 Compactness in metric spaces

Alongside completeness, the other fundamental concept pertaining to approximation in analysis is

that of compactness:

2.5 DEFINITION (Sequentially compact subset of metric space). Let (X, d) be a metric space,

and A ⊂ X. Then A is sequentially compact in case every sequence {xk}k∈N in A contains a

subsequence converging to an element of A. A metric space (X, d) is sequentially compact in case

X itself is sequentially compact.

Note that if (X, d) is a metric space, and A ⊂ X, and dA denotes the restriction of d to A×A,

the (A, dA) is itself a metric space, and A is sequentially compact subset of X if an only if (A, dA)

is a compact metric space. Thus, characterizing compact subsets of a metric space reduces to a

question about whether or not a metric spaces is compact.

Later in this chapter we shall prove the Arzela-Ascoli Theorem which characterizes compact

sets in (C([a, b]), d∞), and we shall give an example of the application of this to solving equations.

There is an equivalent formulation of sequential compactness in a metric space that will be useful

in proving the Arzela-Ascoli Theorem and other theorems characterizing compact sets.
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2.6 DEFINITION (Totally bounded). A metric space (X, d) is totally bounded if and only if for

every ε > 0, there is a finite set Uε consisting of finitely many open balls of radius ε; i.e.,

Uε = {Bε(x1), . . . , Bε(xnε)} ,

that covers X; i.e, X =
⋃nε
j=1Bε(xj).

2.5 THEOREM (Sequential compactness and total boundedness). A metric space (X, d) is se-

quentially compact if and only if it is complete and totally bounded.

Proof. Suppose that (X, d) is not totally bounded. We shall show that then it is not sequentially

compact. To do this, we construct a sequence that has no convergent subsequence. By hypothesis,

for some ε > 0, there does not exist any finite cover of X by open balls of radius ε. Thus given any

set {x1, . . . , xn} of X,
⋃nε
j=1Bε(xj) 6= X, and so we can select xn+1 so that

d(xn+1, xj) ≥ ε , for all j = 1, . . . , n .

Thus, starting from an arbitrary choice of x1, using a simple induction we can construct an infinite

sequence {xk}k∈N such that

d(xk, x`) ≥ ε

for all k 6= `. Clearly, such a sequence has no convergent subsequence.

Next, suppose that (X, d) is totally bounded and complete. Let {xk}k∈N be any infinite sequence

in X. For each m ∈ N, there exists a set {B1/m(x1), . . . B1/m(xnm)} of open balls of radius 1/m

such that

X =

n1/m⋃
j=1

Bε(xj) .

By the pigeon-hole principle, at least one of these balls contains infinitely many elements of any

infinite sequence in X.

By what we have explained above, there exists an infinite subsequence {x(1)k }k∈N of {xk}k∈N such

that all elements of this subsequence lie in some open ball of radius 1. Next, for the same reason,

exists an infinite subsequence {x(2)k }k∈N of {x(1)k }k∈N such that all elements of this subsequence lie

in some open ball of radius 1/2. Continuing the obvious induction, we obtain a sequence {x(j)k }k∈N
of sequences such that each {x(j+1)

k }k∈N is a subsequence of {x(j)k }k∈N, and all elements in {x(j)k }k∈N
lie in some open ball of radius 1/j.

Now we use Cantor’s “diagonal sequence” construction: define yj = x
(j)
j . Then {yj}j∈N is a

subsequence of {xk}k∈N, and for all m,

j, k ≥ m⇒ d(yj , yk) ≤ 1/m .

Thus, {yk}k∈N is a Cauchy sequence. Since (X, d) is complete, it is also convergent. We have thus

shown the existence of a convergent subsequence of an arbitrary sequence of X.

Many important theorems can be proved by using the fact that real valued continuous functions

on a sequentially compact metric space have maxima and minima. That is, if f is a real valued

continuous function on a sequentially compact metric space, the there exist x0 and x1 such that

f(x0) ≤ f(x) ≤ f(x1)
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for all x ∈ X.

While most often in the chapters that follow, we shall be working with the notions of continuity

and compactness in a metric space setting, this is not always possible, and it is not always convenient

even when it is possible. It is advantageous to develop these notions in a more general setting, that

of topological spaces. We now introduce this more general setting.

3 Topological spaces

Since by Theorem 2.2 we can characterize continuous functions from one metric space to another

in terms of open sets, without explicitly mentioning either metric at all, it is sometimes useful to

“strip away” the metric structure, and only refer to the open sets.

3.1 DEFINITION (Topological Spaces, Hausdorff Topological Spaces). Let X be any set, and

let O be any collection of sets in X satisfying:

(1) The empty set ∅ belongs to O, as does X itself.

(2) The union of any arbitrary set of sets in O belongs to O.

(3) The intersection of any finite set of sets in O belongs to O.

In this case, O is said to be a topology on X, and the sets belonging to O are called open sets

in X (for the topology in question). A subset A of X is closed in case its complement, Ac is open.

The pair (X,O) is said to be a topological space. It is a Hausdorff if whenever x, y are any two

distinct elements in X, there exists disjoint open sets sets U and V with x ∈ U and y ∈ V .

Note that by De Morgan’s laws, the intersection of any arbitrary set of closed sets in X is itself

closed.

3.1 EXAMPLE. It is left as an easy exercise to show that if X is any metric space, and O is the

collection of all open sets in X, as defined above in terms of open balls, O does indeed constitute a

topology on X.

If (X, d) is any metric space and x, y are distinct in X, then r := d(x, y) > 0. If w ∈ Br/3(x)

and z ∈ Br/3(y), then

r = d(x, y) ≤ d(x,w) + d(w, z) + d(z, y) ≤ d(w, z) + 2r/3 ,

so that d(w, z) > r/3, In particular, Br/3(x) ∩ Br/3(y) = ∅. Since Br/3(x) and Br/3(y) are open

sets containing x and y respectively, this proves that every metric space is Hausdorff.

Not every topology is Hausdorff. If X is an set, the trivial topology on X is given by O =

{∅, X}. This is evidently a topology, and when X contains more than a single element, it cannot

be Hausdorff.

3.2 EXAMPLE (Relative topology on a subset). Let (X,O) be a topological space. Let A be any

subset of X. The relative topology on A induced by O is denoted by OA and is given by

OA = { U ∩A : U ∈ O } .

It is readily checked that this is a topology.
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3.2 DEFINITION (Metrizable Topology). Let (X,O) be a topological space. The topology O is

metrizable if there exists some metric d on X ×X such that the set of open sets for this metric is

exactly O.

The remarks in Example 3.1 show that non-Hausdorff topologies are never metrizable. We shall

be (almost) exclusively concerned with Hausdorff topologies, but as we shall see, there are useful

Hausdorff topologies that are not metrizable.

The next definitions introduces some more useful terminology

3.3 DEFINITION (Interior, closure and neighborhoods). Let (X,O) be a topological space, and

A a subset of X.The interior of A, Ao, is the union of all of the open sets contained in A. The

closure of A, A, is the intersection of all of the closed sets containing A. Finally for any x ∈ X,

the set Nx of neighborhoods of x consists of all sets B such that x ∈ Bo.

3.1 Continuity in topological spaces

3.4 DEFINITION (Continuous functions between topological spaces). Let (X,OX) and (Y,OY )

be two topological spaces. A function f from X to Y is continuous at x ∈ X in case for every

neighborhood V of f(x), there is a neighborhood U of x such that f(U) ⊂ V .

A function f from X to Y is continuous whenever U is open in Y , f−1(U) is open in X.

It is easy to see that f : X → Y is continuous if and only if it is continuous at each x ∈ X.

3.1 Remark. By Example 3.1 and by Theorem 2.2, the definition of continuity that we make next

is consistent with our existing notion of continuity in the metric space setting.

We now turn to the notion of approximation in topological spaces. The following definition is

the starting point.

3.5 DEFINITION (Limit points in a topological space). Let (X,OX) be a topological space. If

A is any set in X, a point x ∈ X is a limit point of X in case every for every open set U that

contains x,

A ∩ U 6= ∅ .

Note that if (X,OX) is Hausdorff, and x is a limit point of A ⊂ X, with x /∈ A, then not

only is A ∩ U non-empty for every neighborhood U of x: A ∩ U must contain infinitely many

points. To see this, suppose y ∈ A ∩ U . Let Vx and Vy be disjoint open sets containing x and y

respectively. Then Vx∩U is another neighborhood of x, contained in U , so A∩ (Vx∩U) 6= ∅. Since

A ∩ (Vx ∩ U) ⊂ A ∩ U , and is missing at least y. Repeating this procedure, it is clear that we can

repeatedly remove elements from A∩U without ever emptying it, and so it must contain infinitely

many points.

3.6 DEFINITION (convergent sequence). Let (X,O) be a topological space. Let {xk} be a se-

quence of elements of X. Then {xk}k∈N is convergent to x in case every open set U containing x

also contains all but finitely many terms in the sequence {xk}k∈N.

Note the differences between the notions of limit point the notion of the limit of a sequence. One

difference is that a sequence {xk}k∈N is a function from N to X, though it is common practice to
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identify the sequence with its range, which is a subset of X. Apart from this, there is the essential

difference between “infinitely many” and “all but finitely many”.

In particular, in a Hausdorff space, a sequence can have at most one limit, but (identified with

its range, and considered as a set), but it may have more than one limit point, since x is a limit

point of {xn}n∈N if and only if every open set U containing x also infinitely many terms in the

sequence {xk}, while limn→∞ xn = x if and only if every neighborhood U of x contains all but

finitely many terms in the sequence.

In a metric space, there is of course a characterization of limit points in terms of sequences;

x is a limit point of A if and only if there is a sequence {xn}n∈N of elements in A such that

limn→∞ xkn = x.

3.3 EXAMPLE (The right order topology on R). Let Or be the set of all subsets of R of the form

(a,∞), a ∈ R, together with ∅ and R. It is readily checked that this is a topology, called the right

order topology. Conisder the function from R to R defined by

f(x) :=

{
1 x > 0

0 x ≤ 0 .

Then

f−1((a,∞)) =


∅ a ≥ 1

(0,∞) 0 ≤ a < 1

R a < 0 .

Therefore, if we equip the range with the right order topology and the domain with the usual

topology, f is conitnuous, though it is not continuous if both the domain and range are equipped

with the usual topology.

Let (X.O) be a topological space. A functions that is continuous from (X.O) to (R,Or) is called

lower semicontinuous. The left order topology and upper semicontinuous functions are defined in

the analogous way using the sets (−∞, b).

We are now ready for the theorem that justifies the terminology “closed”:

3.2 THEOREM (Closed sets and limit points). Let (X,O) be any topological space. A subset A

of X is closed if and only if A contains all of its limit points.

Proof. Suppose that A is closed, and x ∈ Ac. Since Ac is open, there is an open set U containing x

that has an empty intersection with A. Thus, x is not a limit point of A. Since x was an arbitrary

point outside A, A must contain all of its limit points.

On the other hand, suppose that A contains all of its limit points. We must show that A is

closed, or, what is the same thing, that Ac is open. Consider any point x ∈ Ac. Since it is not a

limit point of x, there is an open set Ux containing x that has empty intersection with A. For each

x ∈ Ac, chose such a Ux. But then, since Ux contains x,

Ac ⊂
⋃
x∈Ac

Ux
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On the other hand, since each Ux ⊂ Ac, ⋃
x∈Ac

Ux ⊂ Ac

Thus, A =
⋃
x∈Ac

Ux, and by (2) in the definition of topological spaces,
⋃
x∈Ac

Ux is open.

We close this subsection with one more definition:

3.7 DEFINITION (Density). Let (X,O) be a topological space. Let A ⊂ B ⊂ X. Then A is

dense in B in case the closure of A contains B.

By Theorem 3.2, A is dense in B if and only if every point in B is a limit point in A; i.e, if

every point in B can be approximated arbitrarily well by points in A.

3.2 Compactness in topological spaces

3.8 DEFINITION (Compact Sets). Let (X,OX) be a topological space. A subset K is called

compact in X in case for open cover U of K; that is, for every collection U of open sets such that

K ⊂
⋂
u∈U

U ,

there is a finite subset G of U that also covers K:

K ⊂
⋂
u∈G

U .

G is called a finite subcover of A. The topological space (X,O) is called compact in case X itself is

compact.

3.3 THEOREM. Let (X,O) be any compact topological space. Then every closed subset K of X

is compact. Conversely, if X is Hausdorff, every compact subset of X is closed.

Proof. Let U be any open cover of K. Then U ∪ {Kc} is an open cover of X. Thus, there exists

a finite set of the sets in sets in U ∪ {Kc} that covers all of X, and Kc is not needed to cover K.

Hence K is compact.

Conversely, suppose K is compact and (X,O) is Hausdorff. Suppose that y /∈ K, but that y

is a limit point of K. For each x ∈ K, there exist open sets Ux and Vx such that Ux ∩ Vx = ∅,
x ∈ Ux and y ∈ Vx. Then {Ux : x ∈ K} is an open cover of K, so there exists a finite subcover

{Ux1 , . . . , Uxn} that covers K. However,

y ∈ V :=

n⋂
j=1

Vxj

and V is open. Since y is a limit point of K, K ∩ V 6= ∅. But this is impossible since V ∩ Uxj = ∅
for each j, and K ⊂ ∪nj=1Uxj .
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Our first example of a convergence theorem involving compactness is the classical result known

as Dini’s Theorem. In proving this, we shall make use of the following fact: If U is any set of open

subsets of X, then by De Morgan’s laws,(⋃
U∈U

U

)c
=
⋂
U∈U

U c ,

Thus U is an open cover if and only if { U c : U ∈ U } is a set of closed subsets of X with empty

intersection.

Therefore, X is compact if and only if whenever K is a set of closed subsets of X such that⋂
K∈K

K = ∅ ,

there is a finite subset {K1, . . . ,Kn} ⊂ K such that

n⋂
j=1

Kj = ∅ .

This analysis is often summarized by saying that X is compact if and only if X has the “finite

intersection property”.

3.4 THEOREM (Dini’s Theorem). Let (X,O) be a compact topological space, and let {fn}n∈N
be a sequence of real valued continuous functions on X, and suppose that there is a continuous

real valued function f on X such that for each x ∈ X, the sequence {fn(x)}n∈N is monotone

non-decreasing, and

lim
n→∞

fn(x) = f(x) .

Then

lim
n→∞

fn = f

uniformly.

In other words, pointwise convergence, together with compactness and monotonicity, imply

uniform convergence. Also note that replacing each fn by −fn, one converts a monotone non-

decreasing sequence into a monotone non-increasing sequence, and so the theorem remains true if

one replaces “monotone non-decreasing” by “monotone non-increasing”.

Proof. Fix ε > 0. Define the sets K`, ` ∈ N, by

K` := { x ∈ X : f(x)− f`(x) ≥ ε } .

Since f and f` are continuous, K` is closed. Since {fn(x)}n∈N is monotone non-decreasing,

` ≥ k ⇒ K` ⊂ Kk . (3.1)

Also, since for each x, lim`→∞ f`(x) = f(x),
∞⋂
k=1

K` = ∅ Then, by the compactness of X, there is

some n ∈ N such that
n⋂
`=1

K` = ∅. (3.2)
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Combining (3.1) and (3.2), we see that K` = ∅ for all ` ≥ n. Hence, for all ` > n, and all x,

|f`(x)− f(x)| < ε. which proves the uniform convergence.

Next, we turn to one of the main theorems on compactness.

3.5 THEOREM (Compactness, Continuity, and Minima). Let (X,O) be any topological space,

and let K be a compact subset of X. Let f be a functions from X to R that is continuous when R
is equipped with its usual metric topology. Then there exists and x ∈ K so that

f(x) ≥ f(y) for all y ∈ K . (3.3)

Proof. Consider the open sets (−n,∞) in R, since f is continuous,

U = { f−1((−n,∞)) : n ∈ N }

is an open cover of X, and hence K. Since K is compact, there exists an open subcover. But for

n > m, f−1((−m,∞)) ⊂ f−1((−n,∞)), so there is an n with K ⊂ f−1((−n,∞)). In particular, f

is bounded from below on K.

Now let a be the greatest lower bound of the numbers f(y) for y ∈ K. We claim that there

exists an x ∈ K with f(x) = a. If so, then plainly (3.3) is true.

To prove this, let us suppose that there is no such x. Then

U = { f−1((a+ 1/n,∞)) : n ∈ N }

is an open cover of K. This means that there is a finite subcover, and again, since the sets in the

open cover are nested, a single one of them, say f−1((a+ 1/n,∞)), covers K. But this would mean

that f(y) ≥ a+ 1/n for each y in k, which is not possible since a is the greatest lower bound.

Any point x for which (3.3) is true is called a maximizer of f on X. Likewise, any point x for

which

f(x) ≤ f(y) for all y ∈ K . (3.4)

is called a minimizer of f on X.

There are several important things to notice from this proof. First, if f is continuous, so is

−f , and a minimizer of −f is a maximizer of f . Hence the theorem implies the existence of both

minimizers and maximizers for continuous functions on compact sets.

Now suppose we have a real valued function f defined on a sets K, and we want to know if

f has a minimizer in K. If we can find a topology on K that makes f continuous, and makes K

compact, then we can apply the previous theorem.

However, the demands of continuity and compactness pull in opposite directions when we look

for our topology: The topology has to have sufficiently many open sets in it for f to be continuous,

since we need f−1(U) to be open for every open set U in R. On the other hand, the more open

sets we include in our topology, the more open covers we have to worry about when showing that

every open cover has a finite subcover.

Very often, one is stuck between a rock and a hard place, and there is no topology that both

makes f continuous, and K compact. Indeed, there are many very nice functions f – such as the
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exponential function of R – that simply do not have minimizers or maximizers. While R is compact

under the trivial topology O = {∅,R}, and while the exponential function is continuous under the

usual metric topology on R, the fact that the exponential function does not have either a maximizer

or a minimizer shows that there is no topology on R under which R is compact and the exponential

function is continuous.

A situation that is frequently encountered in applications is that a function f on X does have,

say, a minimizer, but not a maximizer. Also in this situation, it is impossible to find a topology for

which f is continuous and X is compact, since them both minima and maxima would exist.

However, if we are just looking for minima, it is worth noticing that in our proof of Theorem 3.5,

we did not use the full strength of the continuity hypothesis. The same proof yields the same

conclusion if we assume only the property that f−1((t,∞)) is open for each t in R.

3.9 DEFINITION (Upper and lower semicontinuous function). Let (X,OX) be a topological

space. A function f from X to R is called lower semicontinuous in case for all t in R, f−1((t,∞))

is open. It is called upper semicontinuous in case for all t in R, f−1((−∞, t)) is open. As has been

explained in Example 3.3, lower semicontinuity of f is the same as conitnuity of f from (X,OX)

to (R,Or), where Or is the right order topology on R.

Summarizing the discussion above, we have the following variant of Theorem 3.5:

3.6 THEOREM. Let (X,O) be a topological space, and let K ⊂ X be either compact or sequen-

tially compact. Let f be a lower semicontinous real valued function on (X,O). Then there exists

x0 ∈ K such that f(x0) ≤ f(x) for all x ∈ K.

Thus, we can prove existence of minimizers for f on X by finding a topology that makes f lower

semicontinuous, and K compact. This turns out to be a very useful strategy, as we shall see.

Still, to use either Theorem 3.1 or Theorem 3.5, we need criteria for compactness. How can we

tell if a set X is compact? In metric spaces, we can reduce this to a question about sequences.

3.10 DEFINITION (Sequential compactness). A topological space (X,O) is sequentially compact

in case every sequence {xn}n∈N has a convergent subsequence {xnk}k∈N.

3.7 THEOREM (Compactness and subsequences in a Metric space). Let (X, d) be any metric

space, and let K be any subset of X. Then K is compact if and only if every infinite sequence {xk}
of elements of K has an infinite subsequence {xkn} that converges to some x in K.

In other words, a metric space is compact if and only if it is sequentially compact. In the

broader setting of topological spaces, there is no relation between compactness and sequential

compactness. There are topological spaces that are compact, but not sequentially compact, and

there are sequentially compact spaces that are not compact.

The notion of compactness as we have defined it in terms of open covers is a 20th century notion.

In the 19th century, mathematicians thought about compactness issues in terms of sequential

compactness.

It is important to note that this theorem is not true in the general setting of topological spaces; it

is important that the topology be a metric topology. Likewise, in the general topological setting, it

is not true that a function f is continuous if and only if it takes convergent sequences to convergent

sequences.
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The close connection between sequences and continuity and compactness that one has in metric

spaces does not carry over to the more general topological setting at all. Fortunately, almost all of

the topologies that we shall encounter are metric topologies.

Proof of Theorem 3.7. The fact that compactness implies sequential compactness in a metric space

is relatively easy. Suppose there exists a sequence {xn}n∈N that has no convergent subseqeunce.

Then there is no y ∈ K such that for all r > 0, Br(y) contains xk for infinitely many k, since

otherwise there would be a subsequence converging to y. (Consider the balls B1/n(y), and apply

Cantor’s diagonal sequences argument to the sequence of subsequences coinained in these balls.)

Hence, for each y ∈ K there exists an open set Uy that contains y, but which cointains xk for at

most finitely many k. Then {Uy : y ∈ K} is an open cover of K. Since K is compact, there

exists a finite subcover {Uy1 , . . . , Uyn}. Thus, every k, xk belongs to Uyj for some j, but each Uyj
contains xk for only finitely many k, which is impossible. Hence a convergent subsequence exists.

Fot the other implication, we assume sequention compactness, and shall prove compactness in

four steps.

Step 1: K is bounded: We first show that K is bonded, which means that

sup
x,y∈K

d(x, y) <∞ .

This supremum is called the diameter of K.

To see that the diameter is finite, suppose that it is not. Under this hypothesis, we construct a

sequence {xn}n∈N as follows. First, fix any x ∈ X. Now for each n ∈ N , choose some xn ∈ K\Bn(x).

The set K\Bn(x) is not empty when the diameter of K is infinite.

Then, by hypothesis, there is a subsequence {xnk}k∈N and some y ∈ K such that

lim
k→∞

xnk = y . (3.5)

Then by the triangle inequality, we would have

d(x, xnk) ≤ d(x, y) + d(y, xnk) .

But this cannot be: By construction, d(x, xnk) > nk, while d(x, y) is some fixed, finite number,

and for all sufficiently large k, d(y, xnk) ≤ 1, by (3.5). This contradiction shows that K must be

bounded.

Step 2: K contains a dense sequence: We next show that there is a sequence {xn}n∈N that is dense

in K; i.e., that for every ε > 0, and every x ∈ K, there is some n such that d(xn, x) < ε.

In other words, the sequence {xn}n∈N passes arbitrarily close to every point in K. Here is how

to construct it:

Pick the first term x1 arbitrarily. We then define the rest of the sequence recursively as follows:

Suppose that {x1, . . . , xk} have been chosen. For each y ∈ K, define

dk(y) := min
1≤j≤k

{d(y, xj)} .

This is, by definition, the distance from y to the set {x1, . . . , xk} ⊂ K, and of course, this is no

greater than the diameter of K, which is finite by the first step.
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Therefore, dk, defined by

dk := sup
y∈K

dk(y)

is no greater than the diameter of K.

Armed with this knowledge, we are ready to choose xk+1: We choose xk+1 to be any element

of K with

dk(xk+1) ≥
1

2
dk .

We now claim that limk→∞ dk = 0. It should be clear that {xn}n∈N is dense if and only if this

is the case. So, to complete Step 2, we need to prove that limk→∞ dk = 0.

Towards this end, the first thing to observe is that {dk}k∈N is a monotone decreasing sequence,

bounded below by zero: Indeed, for any sets A ⊂ B ⊂ K, the distance from y to B is no greater

than the distance from y to A. Therefore, we only have to show that some subsequence of {dk}k∈N
converges to zero.

To do this, let {xkn}n∈N be a convergent subsequence of {xk}k∈N, and let y be the limit; i.e.,

lim
n→∞

xkn = y .

Then of course since by the triangle inequality

d(xkn , xkn+1) ≤ d(xkn , y) + d(y, xkn+1) ,

and since lim
n→∞

d(xkn , y) = lim
n→∞

d(y, xkn+1) = 0,

lim
n→∞

d(xkn , xkn+1) .

But since

xkn ∈ {x1, . . . , xkn+1−1} ,

d(xkn , xkn+1) ≥ dkn+1−1(xkn+1) ≥ 1

2
dkn+1−1 .

Therefore,

lim
n→∞

dkn+1−1 = 0 ,

and then, since the entire sequence is monotone decreasing, limk→∞ dk = 0. Hence, the sequence

we have constructed is dense.

Step 3: Given any open cover of K, there exists a countable subcover. To prove this, consider any

open cover G of K. Consider the set of open balls Br(xk) where r > 0 is rational, and {xk}k∈N
is the dense sequence that we have constructed in Step 2. This set of balls is countable since a

countable union of countable sets is countable.

The countable subcover is constructed as follows: For each rational r > 0 and each k ∈ N,

choose Ur,k to be some open set in G that contains Br(xk) if there is such a set, and otherwise,

do not define Ur,k. Let U be the set of open sets defined in this way; clearly U is countable by

construction.

We now claim that U is an open cover of K. Clearly the sets in U are open. To see that they

cover, pick any x ∈ K. Since G is an open cover of K, x ∈ V for some V ∈ G. Then, since V is

open, for some rational r > 0, B2r(x) ⊂ V .
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Then, since {xk}k∈N is dense, there is some k with xk ∈ Br(x). But then x ∈ Br(xk) and

Br(xk) ⊂ B2r(x) ⊂ V ,

(where the first containment holds by the triangle inequality). This shows that for the pair (r, k),

there is some V ∈ G containing Br(xk). Therefore, by construction, Ur,k ∈ U contains Br(xk), and

hence x ∈ Ur,k. Since x is an arbitrary element of K, U covers K.

Step 4: Some finite subcover of the countable cover is a cover. Now order the sets in our countable

cover U into a sequence of open sets {Uk}k∈N that covers K.

Suppose that for each n, it is not the case that

K ⊂
n⋃
k=1

Uk . (3.6)

Then we can construct a sequence {xn}n∈N be choosing xn ∈ K\

(
n⋃
k=1

Uk

)
.

Let {xnj}j∈N be a subsequence with limj→∞ xnj = y ∈ K. Then, since U is an open cover of

K, there is some Uk with y ∈ Uk. But then all but finitely many terms of the sequence {xnj}j∈N lie

in Uk, and so the whole sequence lies in some finite union of the sets in U . This is a contradiction,

and so (3.6) is true for some n ∈ N.

Part of the proof made use of a dense sequence in our sequentially compact metric space. The

existence of a dense sequence is often useful, and so we make the following definition.

3.11 DEFINITION (Separable topological space). A topological space (X,O) is separable in case

it contains a countable dense subset.

We have seen the a compact metric space is always separable, but also many non-compact

spaces are separable. We shall se examples shortly.

We shall soon prove two powerful theorems on approximation and compactness in an infinite

dimensional vector space, C(X,R), the space of real valued continuous functions on a compact

Hausdorff space X, equipped with the uniform metric

d∞(f, g) = sup
x∈X
{|f(x)− g(x)|} .

Note that by Theorem 3.5 and the fact that X is compact, there exists an x0 ∈ X such that

|f(x0)− g(x0)| = sup
x∈X
{|f(x)− g(x)|} .

It is then very easy to see that d∞ is indeed a metric on C(X,R), called the uniform metric. It is

left as an exercise to generalize Theorem 2.3 and show that (C(X,R), d∞) is complete.

3.3 Generated topologies

When working a class of functions F on a set X with values in a topological space (Y,U), it is often

useful to introduce a topology that makes every function f ∈ F continuous, but which contains

the minimal number of open sets for this purpose. given two topologies O1 and O2 on a sets X,
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we say that O1 is weaker than O2 in case O1 ⊂ O2. In the case at hand, there is a unique weakest

possible topology OF on X with respect to which each f ∈ F is continuous, and such that OF is

weaker than any other topology with this property.

The weaker a topology is, the more compact sets there will be, and so such topologies are useful

when we wish to apply theorems requiring both continuity and compactness.

3.8 THEOREM (Generated topologies). Given a class of functions F on a set X with values in

a topological space (Y,U), define

E = {f−1(U) : f ∈ F , U ∈ U },

and define Ê to be the set of all finite intersections of sets in E. Finally define OF to be the set of

arbitrary unions of sets in Ê. Then OF is a topology, and it is the weakest topology with respect to

which each f ∈ F is continuous.

Proof. Since each x ∈ X lies in f−1(Y ) ∈ E for any f ∈ F , it is clear that X ∈ OF , and taking

the empty union, ∅ ∈ OF . Evidently OF is closed under arbitrary unions. Thus, if OF is closed

under finite intersections, is is a topology. Let E,F ∈ OF . If x ∈ E ∩ F , then, by definition,

there exist Ex, Fx in Ê such that Ex ⊂ E and Fx ⊂ F . Since Ê is closed under finite intersections,

x ∈ Ex ∩ Fx ∈ Ê , and Ex ∩ Fx ⊂ E ∩ F . Making such a construction for each x ∈ E ∩ F , we have

E ∩ F =
⋃

x∈E∩F
Ex ∩ Fx ,

showing that E ∩ F ∈ OF . Thus, OF is a topology.

Now let O be any topology with respect to which each f ∈ F is continuous. Evidently, O must

contain all of the sets

E = {f−1(U) : f ∈ F , U ∈ U }.

Certainly also any such topology must contain, Ê , the set of all finite intersections of sets in E , and

then it must contain all arbitrary unions of sets in Ê . Hence O must contain OF .

3.12 DEFINITION (Weak topology). Given a set X and a family F of functions from X to a

topological space (Y,O), the weak topology on X generated by F .

3.4 The strong topology on `2

Let `2 denote the set of complex valued sequences x = {xk}k∈N such that
∑∞

k=1 |xk|2 < ∞. Let

x, y ∈ `2. By the arithmetic-geometric mean inequality, for each k,

|x∗kyk| ≤
1

2
|xk|2 +

1

2
|yk|2 ,

so that whenever x, y ∈ `2,
∑∞

k=1 x
∗
kyk is absolutely convergent. Define the inner product of x, y in

`2, 〈x, y〉, by

〈x, y〉 =

∞∑
k=1

x∗kyk ,

and define the norm of x, ‖x‖ by

‖x‖ = 〈x, x〉1/2 .
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By the Cauchy-Schwarz inequality in CN ,∣∣∣∣∣
N∑
k=1

x∗kyk

∣∣∣∣∣ ≤
(

N∑
k=1

|xk|2
)1/2( N∑

k=1

|yk|2
)1/2

.

In the limit N →∞ we obtain the Cauchy-Schwarz inequality in `2:

|〈x, y〉| ≤ ‖x‖‖y‖ .

We add and subtract sequences in the obvious way, regarding them as functions from N to C. As

a direct consequence of the Cauchy-Schwarz inequality, we have the Minkowski inequality: For all

x, y ∈ `2,
‖x+ y‖ ≤ ‖x‖+ ‖y‖ (3.7)

To see this, note that

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉+ 2< (〈x, y〉)
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖
= (‖x‖+ ‖y‖)2 .

3.13 DEFINITION (The `2 metric). For x, y ∈ `2, define

d`2(x, y) = ‖x− y‖ .

The corresponding topology is call the strong topology on `2.

Evidently, for all x, y ∈ `2, d`2(x, y) ∈ [0,∞) and d`2(x, y) = 0 if and only if xk = yk for each k;

i.e., x = y. It is also clear that for all x, y ∈ `2, d`2(x, y) = d`2(y, x). Finally, for x, y, z ∈ `2,

‖x− z‖ = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ .

This proves the triangle inequality d`2(x, z) ≤ d`2(x, y) + d`2(y, z), and justifies our terminology:

The `2 metric is a metric on `2.

By definition, ‖x‖ = d`2(x, 0) where 0 denotes the zero sequence; i.e., the additive identity

in `2. Then by the triangle inequality, for all x, y ∈ `2, d`2(0, x) ≤ d`2(0, y) + d`2(x, y), so that

‖x‖ ≤ ‖y‖+ d`2(x, y). By symmetry, ‖y‖ ≤ ‖x‖+ d`2(x, y) That is,

| ‖x‖ − ‖y‖ | ≤ d`2(x, y) .

In particular, the function x 7→ ‖x‖ is continuous on `2 in the `2 metric topology.

Let B := { x : ‖x‖ ≤ 1 } denote the unit ball in `2, and let S := { x : ‖x‖ = 1 } denote the

unit sphere in `2. Since B is the inverse image under the norm function of the closed set [0, 1] in

[0,∞), it is closed in the `2 metric topology. A similar argument shows that S is closed.

A subset X of `2 is said to be bounded in case supx∈X{‖x‖} < ∞. Both B and S are closed

bounded subsets of `2. However, they not compact in the strong topology.
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3.4 EXAMPLE. For each n ∈ N let e(n) be the sequence such that

e
(n)
k =

{
1 k = n

0 k 6= n
. (3.8)

Then ‖e(n)‖ = 1 for all n so that for all n, e(n) ∈ S ⊂ B. However, since ‖e(n) − e(m)‖ =
√

2 for

all m 6= n, no subsequence of {e(n)}n∈N is Cauchy in the `2 metric, and hence this sequence has no

convergent subsequence, proving that S, and hence B, is not compact in the `2 metric topology.

However, `2 is complete the strong topology:

3.9 THEOREM. The metric space (`2, d`2) is complete.

Before proving the theorem, we prove the following lemma:

3.10 LEMMA. Let {z(j)}j∈N be a sequence in `2 such that ‖z(j)‖ ≤ 2−j for each j. Then there

exists a sequence of non-negative numbers {dk}k∈N such that
∑∞

k=1 dk ≤ 1, and such that for all

k,m ∈ N, ∣∣∣∣∣∣
m∑
j=1

z
(j)
k

∣∣∣∣∣∣
2

≤ dk (3.9)

Proof. Fixing any value of j, and writing

m∑
j=1

z
(j)
k =

m∑
j=1

(2−j/2)(2j/2z
(j)
k ), and applying the Cauchy-

Schwarz inequality in Cm, we obtain∣∣∣∣∣∣
m∑
j=1

z
(j)
k

∣∣∣∣∣∣ ≤
 m∑
j=1

2−j

1/2 m∑
j=1

2j |z(j)k |
2

1/2

≤

 ∞∑
j=1

2j |z(j)k |
2

1/2

since
∑∞

j=1 2−j = 1. Define dk :=

∞∑
j=1

2j |z(j)k |
2. Then, since sums of non-negative terms can be

summed in any order with the same result,

∞∑
k=1

dk ≤
∞∑
k=1

m∑
j=1

2j |z(j)k |
2 =

∞∑
j=1

2j

( ∞∑
k=1

|z(j)k |
2

)
≤
∞∑
j=1

2−j = 1.

Proof of Theorem 3.9. Let {x(n)}n∈N be a Cauchy sequence in (`2, d`2). Then since for all x, y ∈ `2,
and all k ∈ N, |xk − yk| ≤ d`2(x, y) = ‖x− y‖, it follows that {x(n)k }k∈N is a Cauchy sequence in C.

Since C is complete, it has a limit. Let xk denote this limit, and define x to be the sequence whose

kth term is xk. Therefore, we have found a sequence x such that

lim
n→∞

x
(n)
k = xk

for all k ∈ N. We must show that x ∈ `2, and that {x(n)}n∈N converges to x in the `2 metric.
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For this, it suffices to show that x ∈ `2, and to construct a subsequence {x(nm)}m∈N

lim
m→∞

x(nm) = x

in the `2 metric. Then since the original sequence is Cauchy, it follows that limn→∞ x
(n) = x since

d`2(x(n), x) ≤ d`2(x(n), x(nm)) + d`2(x(nm), x) ,

and both terms on the right can be made arbitrarily small by taking m and n sufficiently large.

We will use a particularly chosen subsequence to show that x ∈ `2. To construct the subse-

quence, for each m ∈ N, let nm be a strictly increasing sequence such that

j, k ≥ nm ⇒ d`2(x(j), x(k)) ≤ 2−m−1 . (3.10)

Note that for each m > 1,

x(nm) = x(n1) +
m∑
j=2

z(j) where z(j) := x(nj) − x(nj−1) . (3.11)

By (3.10),

‖z(j)‖ = ‖x(nj) − x(nj−1)‖ ≤ 2−j . (3.12)

Applying first the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 to (3.11), and then Lemma 3.10,

|x(nm)
k |2 ≤ 2|x(n1)

k |2 + 2

 m∑
j=2

|z(j)k |

2

≤ 2|x(n1)
k |2 + 2dk (3.13)

where {dk}k∈N is a summable sequence of non-negative numbers, and this bound holds for all k,

independently of m.

Now define ck := 2|x(n1)
k |2 + 2bk. Then (3.13) becomes

|x(nm)
k |2 ≤ ck for all k,m and

∞∑
k=1

ck <∞ .

Let x be the pointwise limit of x(n), and hence of x(nm). Then

|xk|2 = lim
m→∞

|x(nm)
k |2 ≤ ck ,

and this shows that
∑∞

k=1 |xk|2 <∞; i.e., x ∈ `2. Now pick ε > 0. For all N ∈ N sufficiently large

that

∞∑
k=N+1

ck ≤ ε/8,

∞∑
k=1

|x(nm)
k − xk|2 =

N∑
k=1

|x(nm)
k − xk|2 +

∞∑
k=N+1

|x(nm)
k − xk|2

≤
N∑
k=1

|x(nm)
k − xk|2 + 4

∞∑
k=N+1

ck

=

N∑
k=1

|x(nm)
k − xk|2 +

ε

2
.
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But for any finite N , lim
m→∞

(
N∑
k=1

|x(nm)
k − xk|2

)
= 0. Therefore, for all m large enough,

∞∑
k=1

|x(nm)
k − xk|2 ≤

ε

2
+
ε

2
= ε .

This proves that limm→∞ d`2(x(nm), x) = 0.

The metric space (`2, d`2) is not only complete; it is also separable:

3.11 THEOREM. The metric space (`2, d`2) is separable.

Proof. Let X be the set of all sequences that have only finitely many non-zero entries, each of which

is rational. (A complex number a + ib is called rational in case a and b are rational.) It is clear

that X ⊂ `2 and that for all y ∈ `2 and all ε > 0, there exists an x ∈ X such that ‖x− y‖ < ε.

3.5 The weak topology on `2

For each y ∈ `2, define fy to be the function on `2 given by

fy(x) = 〈y, x〉 .

Each of these functions is linear. They are also all continuous: By the Cauchy-Schwarz inequality,

|fy(x)− fy(z)| = |〈y, x− z〉‖ ≤ ‖y‖‖x− z‖ = ‖y‖d`2(x, z) .

Therefore, for all ε > 0,

D`2(x, z) <
ε

‖y‖
⇒ |fy(x)− fy(z)| < ε .

However, the metric topology is not the weakest topology with respect to which each fy is contin-

uous.

3.14 DEFINITION (The weak `2 topology). Let F be the set of functions fy : x 7→ 〈y, x〉 ∈ C,

y ∈ `2. The weak `2 topology is the weakest topology for which each fy is continuous. It is called

the weak topology on `2

Evidently the weak topology on `2 is weaker than the metric topology, and in fact, it is strictly

weaker: As we shall soon see, it is a non-metrizable topology.

Theorem 3.8 permits us to give a concrete description of the open sets in the weak `2 topology.

Let U be an such open set, and let x ∈ U . Then by Theorem 3.8 there is a finite set {y1, . . . , yn} ⊂ `2
such that and there are open sets V1, . . . , Vn ∈ C, such that

n⋂
j=1

{f−1yj (Vj)} ⊂ U .

Since each Vj must contain Brj (fyj (x)) for some r > 0, U contains a set of the form

{z ∈ `2 : |fyj (z)− fyj (x)| < r for all j = 1, . . . , n } (3.14)

for some {y1, . . . , yn} ⊂ `2 and some r > 0. Conversely, every such set is open in the weak `2
topology.

Now consider a seuquence {x(n)} of sequences in `2. When is such a sequence convergent to

x ∈ `2 in the weak `2 topology?
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3.12 THEOREM. A sequence {x(n)} in `2 converges to x ∈ `2 in the weak `2 topology if and only

if

lim
n→∞

〈y, x(n)〉 = 〈y, x〉 (3.15)

for all y ∈ `2.

Proof. Suppose that {x(n)} converges to x ∈ `2 in the weak `2 topology. Then for all ε > 0,

U = {z : |fy(z)− fy(x)| < ε}

is a neighborhood of x, and so for all but finitely many n, x(n) ∈ U , so that |〈y, x(n)〉 − 〈y, x〉| < ε

for all sufficiently large n. Since ε > 0 is arbitrary, this means that (3.15) is valid for all y ∈ `2.
Now suppose that (3.15) is true for all y ∈ `2. Let U be any neighborhood of x. We must

show that for all but finitely many n, x(n) ∈ U . By what we have explained above, U contains a

neighborhood of x of the form (3.14). But then since for each j = 1, . . . , n, |〈yj , x(n)〉 − 〈yj , x〉| < r

for all n sufficiently large, it is the case that for all n sufficiently large, x(n) lies even within this

subset of U .

3.13 Remark. For each n ∈ N let e(n) be the sequence such that

e
(n)
k =

{
1 k = n

0 k 6= n
. (3.16)

Then ‖e(n)‖ = 1 for all n, and for any x ∈ `2, xn = 〈e(n), x〉. Therefore, whenever limk→∞ x
(k) = x

in the weak `2 topology, for each k,

lim
k→∞

x(k)n = xn

for each n. That is, regarding elements in `2 as functions from N to C, weakly convergent sequences

in `2 converge pointwise.

It is also worth noting that the sequence {e(n)}n∈N converges to 0, the zero sequence, in `2,

since for all y ∈ `2, 〈y, e(n)〉 = y∗n and since
∑∞

n=1 |yn|2 <∞, limn→∞ y
∗
n = 0.

3.14 THEOREM (Uniform boundedness in `2). Let {x(n)} be a sequence in `2 that converges to

some x ∈ `2 in the weak `2 topology. Then there is some L <∞ so that

‖x(n)‖ ≤ L

for all n. That is, weakly convergent sequences in `2 are uniformly bounded in norm.

Proof. Suppose that there exists a sequence {x(n)}n∈N that converges to x in the weak `2 topology,

and has the property that supn∈N{‖x(n)‖} = ∞. Replacing x
(n)
k by x

(n)
k − xk, we may assume

without loss of generality that {x(n)}n∈N converges to 0, the zero sequence.

We show below that from such a sequence one could extract a subsequence {x(nm)}m∈N, and

two sequences of positive integers {Am}m∈N and {Bm}m∈N such that for each m

(1) Am < Bm < Am+1

(2)

a2m :=
∑

k∈[Am,Bm]

|x(nm)
k |2 ≥ 8m and

∑
k/∈[Am,Bm]

|x(nm)
k |2 ≤ 1 .
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We first show that such a sequence cannot be convergent in the weak `2 topology, which con-

tradicts the assumption that the original sequence was convergent in this topology.

For each m ∈ N, define u(m) ∈ ` by

u
(m)
k :=

{
a−1m x

(nm)
k k ∈ [Am, Bm]

0 k /∈ [Am, Bm]

Then ‖u(m)‖ = 1 for all m. Now define a sequence {yk}k∈N by

yk =
∞∑
m=1

2−mu
(m)
k .

Note that each k belongs to at most one interval [Am, Bm], and so there is at most one non-zero

term in each of these sums, so that {yk}k∈N is well defined. Moreover, it is easy to see that

∞∑
k=1

|yk|2 =

∞∑
m=1

2−m‖u(m)‖2 =
1

2
,

so that y = {yk}k∈N ∈ `2.
Then

〈y, x(nm)〉 =
∑

k∈[Am,Bm]

y∗kx
(nm)
k +

∑
k/∈[Am,Bm]

y∗kx
(nm)
k

=
∑

k∈[Am,Bm]

a−1m 2−m|x(nm)
k |2 +

∑
k/∈[Am,Bm]

y∗kx
(nm)
k

= 2−mam +
∑

k/∈[Am,Bm]

y∗kx
(nm)
k

≥ 2m +
∑

k/∈[Am,Bm]

y∗kx
(nm)
k

(3.17)

By the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑

k/∈[Am,Bm]

y∗kx
(nm)
k

∣∣∣∣∣∣ ≤
 ∑
k/∈[Am,Bm]

|yk|2
1/2 ∑

k/∈[Am,Bm]

|x(nm)
k |2

1/2

≤ 1 .

Therefore,

|〈y, x(nm)〉| ≥ 2m − 1 ,

which diverges to infinity. Therefore, {x(nm)}m∈N does not converge, and we have our contradiction.

It remains to show that given a sequence {x(n)} that converges to 0 in the weak `2 topology,

and such that supn∈N{‖x(n)‖} = ∞, we could extract a subsequence satisfying (1) and (2). We

construct the subsequence recursively.

Let A1 = 1. pick x(n1) so that ‖x(n1)‖ ≥ 9. Since
∑∞

k=1 |x
(n1)
k |2 <∞, there exists B1 such that

∞∑
k=B1+1

|x(n1)
k |2 ≤ 1 .
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Now suppose that Am, Bm and x(nm) have been constructed for m < M . Then since weak

convergence implies pointwise convergence and since BM−1 is finite,

lim
n→∞

BM−1∑
k=1

|x(n)k |
2

 = 0 .

Hence there exists an AM such that

n ≥ AM ⇒
BM−1∑
k=1

|x(n)k |
2 ≤ 1

2
.

Now pick any nM ≥ AM such that ‖xnM )‖ ≥ 8M + 1. Since
∑∞

k=1 |x
(nM )
k |2 < ∞, there exists BM

such that
∞∑

k=BM+1

|x(nM )
k |2 ≤ 1

2
.

This gives us Am, Bm and x(nM ) such that (1) and (2) are satisfied for m ≤ M . Now induction

finished the construction.

3.15 THEOREM. The weak `2 topology is not metrizable.

Proof. Suppose that ρ is some metric on `2× `2 for which the open sets are precisely the `2 weakly

open sets. Let 0 denote the zero sequence, and let for r > 0 let Br(0) denote the open ball of radius

r about 0 in this metric. Since Br(0) is open, it contains a neighborhood of 0 of the form

{z ∈ `2 : |〈yj , z〉| < ε , j = 1, . . . , n}

for some ε > 0, n ∈ N and y1, . . . , yn ∈ `2. It is easy to see that there exists some x ∈ `2 such that

‖x‖ = 1 and 〈x, yj〉 = 0 for all j = 1, . . . , n .

(In fact, one can choose x so that xk = 0 for all k > n+ 1.) But then for all t

tx ∈ {z ∈ `2 : |〈yj , z〉| < ε , j = 1, . . . , n} ⊂ Br(0)

and hence each Br(0) contains elements of arbitrarily large norm.

Therefore, for each n, there would exist xn ∈ B1/n(0) with ‖xn‖ ≥ n. This would be a weakly

converging sequence that is unbounded. This is impossible, and hence no such metric exists.

The weak `2 topology is of interest because of the next theorem.

3.16 THEOREM. A weakly convergent subsequence can be extracted form every norm-bounded

sequence in `2.

Proof. Let {x(n)}n∈N be a sequence in `2 such that for some M < ∞, ‖x(n)‖ ≤ M for all n. Let

{y(j)}j∈N be a dense sequence in `2, which exists by Theorem 3.11. The sequence of numbers

{〈y(j), x(n)〉}n∈N is bounded by the Cauchy-Schwarz inequality. Hence, first considering j = 1

we may select a subsequence {x(n1,k)}k∈N along which limk→∞〈y(1), x(n1,k)〉 exists. Now select a
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further subsequence {x(n2,k)}k∈N along which limk→∞〈y(2), x(n2,k)〉 exists, and so on. Finally, define

the z(k) = x(nk,k), using Cantor’s “diagonal sequence” construction. This is a subsequence of the

original sequence, and limk→∞〈y(j), z(k)〉 exists for each j.

Now for all y ∈ `2, and all ε > 0, there is a j ∈ N so that ‖y − y(j)‖ < ε/M . Then

|〈y, z(k)〉 − 〈y(j), z(k)〉| = |〈y − y(j), z(k)〉| ≤ ‖y − y(j)‖‖z(k)‖ ≤ ε .

Since ε > 0 is arbitrary, the sequence {〈y, z(k)〉}k∈N is Cauchy, and therefore convergent, for all

y ∈ `2. Define the function L on `2 by

L(y) = lim
k→∞
〈y, z(k)〉 .

it is evidently linear, and

|L(y)| ≤ lim sup
k→∞

|〈y, z(k)〉| ≤ lim sup
k→∞

‖y‖‖z(k)‖ ≤M‖y‖ .

Define a sequence z by zj = limk→∞〈e(j), z(k))〉 = L(e(j)) for all j ∈ N . Then for all N ∈ N,

N∑
j=1

|zj |2 = L

 N∑
j=1

z∗j e
(j)

 ≤M
 N∑
j=1

|zj |2
1/2

.

This shows that
∑N

j=1 |zj |2 ≤M2 for all N , and hence
∑∞

j=1 |zj |2 ≤M2. This means that z ∈ `2.
We now claim that for all y ∈ `2, L(y) = 〈y, z〉. To see this, pick ε > 0, and n so that

‖y −
n∑
j=1

yje
(j)‖ < ε

Note that

L(
n∑
j=1

yje
(j)) =

n∑
j=1

y∗j zj =

〈
n∑
j=1

yje
(j), z

〉
.

and so

|L(y)− 〈y, z〉| ≤ |L(y −
n∑
j=1

yje
(j))|+

∣∣∣∣∣∣
〈

n∑
j=1

yje
(j) − y, z

〉∣∣∣∣∣∣
≤ M‖y −

n∑
j=1

yje
(j)‖+M‖y −

n∑
j=1

yje
(j)‖ ≤ 2Mε .

Since ε > 0 is arbitrary, L(y) = 〈y, z〉 for all y, and hence

lim
k→∞
〈y, z(k)〉 = 〈y, z〉

for all y, and this means that {z(k)}k∈N converges weakly to z.

3.17 THEOREM. For all r > 0, the closed ball of radius r about 0 in `2, Br(0), is weakly closed,

and moreover, weakly sequentially compact. In particular, B, the closed unit ball is weakly compact.
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Proof. Suppose x 6= 0. Define u := ‖x‖−1x, so that ‖u‖ = 1 and ‖x‖ = 〈u, x〉. On the other hand,

for any v ∈ B, <(〈v, x〉) ≤ |〈v, x〉| ≤ ‖x‖‖v‖ ≤ ‖x‖ It follows that

‖x‖ = sup
v∈B
<(〈v, x〉) . (3.18)

In particular, if we define Hv = { x : <(〈v, x〉) ≤ 1}, then each Hv is weakly closed, and

B =
⋂
v∈B

Hv

displays B as an intersection of closed sets, and shows that B is weakly closed.

By the previous theorem, any sequence in B has a subsequence that converges weakly to some

element x of `2, But since x is a limit of a sequence in B and B is closed, x ∈ B. Thus any sequence

in B has a subsequence converging to an element of B.

3.18 Remark. The first part of the previous thoerem may be restated by saying that the function

x 7→ ‖x‖ is lower semicontinuous on `2. Indeed, calling this function φ for the moment, we have that

φ1(−∞, r]) is weakly closed. Therefore, φ1(r,∞) is weakly open, and so φ is lower semicontinuous.

Conversely, given that φ is lower semicontinous, φ1(r,∞) is weakly open, and hence φ1(−∞, r]) is

weakly closed, for all r.

On the other hand, we have seen that every weak neighborhood of any point in `2, even 0,

contains elements of arbitrarily large norm. Hence the norm function cannot be weakly continuous.

Thus, the norm function provides a simple concrete example of a function that is strongly contin-

uous, but is only lower semicintinuous for the weak topology. Still, this is enough to ensure the

existence of minimizers on closed, compact sets, and so every weakly closed, bounded sets contains

an element of minimal norm.

We now give an important application concerning linear transformations on `2. Let {Ti,j}i,j∈N
be an array of numbers such that for all j, k,

Tj,k = T ∗k,j (3.19)

and such that

|||T ||| :=
∞∑

i,j=1

|Ti,j |2 <∞ . (3.20)

Then for x ∈ `2, define T (x) to be the sequence with

T (x)i =

∞∑
k=1

Ti,jxk .

We can write this in terms of the `2 inner product as follows: For each i ∈ N, define t(i) ∈ `2 by

t
(i)
j = Ti,j . Then T (x)i = 〈t(i), v〉, and note that |〈t(i), v〉| ≤ ‖t(i)‖‖x‖.

Therefore,
∞∑
i=1

|T (x)i|2 ≤
∞∑
i=1

‖t(i)‖2‖x‖2 = |||T |||1‖x‖2 ,
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and so T (x) ∈ `2. In fact, we have proved that

‖T (x)‖ ≤ |||T |||‖x‖.

The condition (3.19) has the consequence that for all x, y ∈ `2,

〈x, T (y)〉 = 〈T (x), y〉 . (3.21)

To see this note that

〈x, T (y)〉 =
∑
i,j

x∗iTi,jyj =
∑
i,j

(xiT
∗
i,j)
∗yj =

∑
i,j

(Tj,ixi)
∗yj = 〈T (x), y〉 .

It is evident that T is a linear transformation of `2 into itself. It may be viewed as an “infinite

dimensional matrix”. Define the function

ΦT (x) = 〈x, T (x)〉 , (3.22)

which is real-valued because of (3.21): 〈x, T (x)〉 = 〈T (x), x〉 = 〈x, T (x)〉∗.
It is an important theorem that the at least one of the numbers λmin and λmax defined by

λmin = inf
v∈N

ΦT (v) and λmax = sup
v∈N

ΦT (v) . (3.23)

is an eigenvalue of T – and if both are non-zero, then both are eigenvalues.

3.19 LEMMA. For all T that satisfy (3.20), the function ΦT is is continuous on B in the relative

weak topology. Suppose also that Ti,j 6= 0 for some i, j, and let λmin and λmax be given by (3.23).

Then λmin < λmax and the image of B under ΦT is precisely the closed interval

[λmin, λmax] .

Proof. Let x ∈ B and let ε > 0 be given. We must find an open set U ⊂ B containing x such that

|ΦT (y)− ΦT (x)| < ε for all y ∈ U .

To see this, for each N ∈ N, we introduce the transformation TN on `2 defined by

TN (x) =

N∑
i=1

(
〈t(i), x〉

)
e(i) .

Then for all x

(TN (x))i =

{
T (x)i i ≤ N
0 i > N

.

It follows that

‖TN (x)− T (x)‖2 =

 ∞∑
j=N+1

‖t(i)‖2

 ‖x‖2
and hence for all ε > 0, there is an Nε such that

N ≥ Nε ⇒ ‖TN (x)− T (x)‖ < ε for all x ∈ B . (3.24)



EAC November 9, 2014 29

In other words, TN coverges usniformly to T on B.

y 7→ 〈y, TN (y)〉 =
N∑
i=1

viT (v)i =
N∑
i=1

〈y, e(i)〉〈t(i), y〉

is a finite sum or products of weakly continuous functions. It is left as a simple but useful exercise

to show that the uniform limit of a sequence of continuous functions from an arbitrary topological

space to a metric space, here C with the usual metric, is continuous. This proves the contiuiuty of

ΦT .

Next, the continuous image of a compact set under a continuous function is compact. Hence

the range of B is a compact subset of R. In fact, it is a clased interval: If a, b ∈ ΦT (B), then there

are xa, xb ∈ B such that ΦT (xa) = a and ΦT (xb) = b. Let φ(t) be defined by

φ(t) = ΦT ((1− t)xa + txb)

which is a quadratic polynomial in t, and hence continuous. By the inermediate value theorem,

for every c ∈ [a, b] there is a t ∈ [0, 1] such that φ(t) = c. But then c = ΦT ((1 − t)xa + txb). so

c ∈ ΦT (B). Thus, ΦT (B) is an interval. Since it is compact, it is a closed, bounded interval, and

then evidently its endpoits are given by (3.23). It remains to show they are not equal. Since 0 ∈ B,

and ΦT (0) = 0, 0 ∈ ΦT (B). It suffices to show there is some v ∈ B with ΦT (v) 6= 0. If Tk,k 6= 0 for

any k, we have ΦT (e(k)) = Tk,k ≤ 0. Otherwise, given that Ti,j 6= 0, let v := (e(i) + e(j))/
√

2 ∈ B.

Then ΦT (v) = (Ti,j + T ∗j,i)/2 = Ti,j 6= 0. In any case,there exists v ∈ B for which ΦT (v) 6= 0.

It is, of course, much easier to show that ΦT is strongly continuous, even on all of `2. This is

left as an exercise.

3.20 THEOREM. For all T satisfying (3.19) and (3.20), at least one of λmin and λmax, as defined

in (3.23), is an eigenvalue of T .

The proof of this theorem illustrates the use of compactness to prove the existence of eigenvalues

in an infinite dimensional setting.

Proof. If Ti,j = 0 for all i, j, the theorem is true for trivial reasons. Suppose this is not the case.

Then at least one of λmin or λmax is not zero. Supose that λmax 6= 0. Since λmax ∈ ΦT (B), there

exists u ∈ B such that ΦT (u) = λmax.

Then since

ΦT (tu) = t2ΦT (u) = t2λmax ,

which is outside ΦT (B) for t > 1, it cannot be that tu ∈ B for any t > 1. Hence ‖u‖ = 1.

So far we have proved the existence of a u in the unit sphere S of `2 such that either ΦT (u) =

λmax. For any x ∈ `2 such that 〈u, x〉 = 0, and any s ∈ R

‖u+ sx‖2 = ‖u‖2 + s2<〈u, x〉+ s2‖x‖2 = 1 + s2‖x‖2 .

Also,

ΦT (u+ sx) = ΦT (u) + 2s<〈u, T (x)〉+ s2ΦT (x) .
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Then for all s ∈ (−‖x‖−1, ‖x‖−1),

ϕ(s) :=
ΦT (u+ sx)

1 + s2‖x‖2
= ΦT

(
‖u+ sx‖−1(u+ sx)

)
≤ ΦT (u) = ϕ(0)

is differentiable and satisfies

ϕ′(0) = 0 .

Computing the derivative, we find that

ϕ′(0) = 〈u, T (x)〉+ 〈T (x), u〉
= 〈T (u), x〉+ 〈x, T (u)〉
= 〈T (u), x〉+ 〈T (u), x〉∗ = 2<〈T (u), x〉 ,

where the first equality if true on account of (3.21).

Replacing x by eiθx, we conclude that <(eiθ〈T (u), x〉) = 0 for all θ, and finally that we conclude

that

〈T (u), x〉 = 0 (3.25)

whenever x ∈ B satisfies 〈u, x〉 = 0. Define y = T (u) − 〈T (u), u〉u. Then, a simple computation

using (3.21) once more gives

‖y‖2 = 〈y, y〉 = ‖T (u)‖2 − 〈T (u), u〉2 , (3.26)

and 〈y, u〉 = 〈T (u), u〉 − 〈T (u), u〉 = 0. Therefore, (3.25) is valid with x = y, and we have

0 = 〈T (u), y〉 = ‖T (u)‖2 − 〈T (u), u〉2 .

Comparing with (3.26), we see ‖y‖ = 0, and hence y = 0. By the definition of y,

T (u) = 〈T (u), u〉u = λmaxu ,

as was to be shown.

4 Some frequently used theorems

4.1 The Arzelà-Ascoli Theorem

Let X be a compact topological space, and consider the metric space, and hence topological space,

consisting of C(X,R) equipped with the uniform metric.

4.1 DEFINITION (Equicontinuous, pointwise bounded). Let F ⊂ C(X,R). Then F is equicon-

tinuous in case for each ε > 0 and each x ∈ X, there is a neighborhood Uε of x such that

y ∈ Uε ⇒ |f(y)− f(x)| < ε .

Also, F is pointwise bounded in case for each x ∈ X, {f(x) : f ∈ F } is a bounded subset of R.
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The first thing to observe is that if F is a compact subset of C(X,R), then F is both pointwise

bounded and equicontinuous.

Indeed, suppose that F is compact. Then evidently F ⊂
⋃
f∈F

Bf (1), and hence there exists a

finite set {f1, . . . , fn} in F such that

F ⊂
n⋃
j=1

Bfj (1) .

Let Mj denote the maximum of |fj |, which is continuous on X, and hence bounded. Let M =

maxj=1,...,nMj . Then for any f ∈ F , there is some j such that d∞(f, fj) < 1, and hence for all x,

|f(x)| ≤ |fj(x)|+ |f(x)− fj(x)| ≤Mj + d∞(f, fj) ≤M + 1 .

This even shows that F uniformly bounded.

To show that F is equicontinuous, fix x ∈ X and ε > 0. For each f ∈ F , define Vf by

Vf = { g ∈ F : d(g, f) < ε/3 } .

Clearly, each Vf is open, and
⋃
f∈F

Vf = F . Hence there exists a finite set {f1, . . . , fn} ⊂ F such

that
n⋃
j=1

Vfj = F .

Next, define Uj ⊂ X by Uj = { y ∈ X : |fj(y)− fj(x)| < ε/3}. Evidently U = ∩nj=1Uj is a

neighborhood of x.

For any f ∈ F , d∞(f, fj) < ε/3 for some j, and so for y ∈ U ,

|f(y)− f(x)| ≤ |f(y)− fj(y)|+ |fj(y)− fj(x)|+ |fj(x)− f(x)| ≤ |fj(y)− fj(x)|+ d∞(f, fj) < ε .

Thus, U is a neighborhood of x such that |f(y)− f(x)| < ε for all y ∈ U and all f ∈ F .

Thus, a necessary condition for F to be compact in C(X,R) is that F be equicontinuous and

pointwise bounded. The Arzelà-Ascoli Theorem says that these conditions are essentially sufficient

as well:

4.1 THEOREM (Arzelà-Ascoli). Let X be a compact topological space space, and let F be an

equicontinuous and pointwise bounded subset of C(X,R). Then the closure of F is compact.

Proof. The first thing to observe is that if F is equicontinuous and pointwise bounded, then so is

the closure of F . Hence, let us assume that F is closed as well as equicontinuous and pointwise

bounded. We shall then show that F is compact.

By Theorem 3.7, it suffices to show that for any infinite sequence {f`}`∈N in F , there is a

convergent subsequence, and then by the completeness of C(X,R) it suffices to show that for any

infinite sequence {f`}`∈N in F , there is a Cauchy subsequence. Therefore, fix any infinite sequence

{f`}`∈N in F . We must prove that there is a subsequence {f`j}j∈N such that for all ε > 0, there is

an Nε ∈ N such that

j, k ≥ Nε ⇒ |f`j (x)− f`k(x)| < ε for all x ∈ X. (4.1)
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Fix ε > 0. Use the compactness of X and the equicontinuity of F to select a finite set of points

{x1, . . . , xm} and neighborhoods {U1, . . . , Um} that cover F and are such that

x ∈ Uj ⇒ |f(x)− f(xj)| <
ε

3
for all f ∈ F . (4.2)

Since for each i, the set {f(xi) : f ∈ F } is a bounded subset of R, we can choose a subsequence

of {f`}`∈N along which f`k(xi) converges for each i. Since convergent sequences are Cauchy, it follows

that there exists Nε ∈ N such that

j, k ≥ Nε ⇒ |f`j (xi)− f`k(xi)| ≤
ε

3
. (4.3)

But then since each x ∈ X belongs to Ui for some i, we have (for this i), and j, k ≥ Nε,

|f`j (x)− f`k(x)| ≤ |f`j (x)− f`k(xi)|+ |f`j (xi)− f`k(xi)|+ |f`j (xi)− f`k(x)|

≤ ε

3
+ |f`j (xi)− f`k(xi)|+

ε

3
≤ ε .

where the first inequality is the triangle inequality, the second is (4.2) and the third is (4.3). This

proves (4.1).

Another proof of the Arzela-Ascoli Theorem may be given using the fact that complete totally

bounded subsets of a metric space are compact. This approach is useful in proving other compact-

ness theorems, so we briefly explain it as well. The key is the following lemma of Hanche-Olsen

and Holden:

4.2 LEMMA. Let (X, dX) be a metric space. Suppose that for all ε > 0 there exists a δ > 0 and

a metric space (W,dW ) and a function Φ : X →W such that:

(1) Φ(X) is totally bounded in W .

(2) For all x, y ∈ X,

dW (Φ(x),Φ(y)) < δ ⇒ dX(x, y) < ε .

Then X is totally bounded.

4.3 Remark. If Φ : X →W were invertible, then (2) could be rewritten as: For all w, z ∈W ,

dW (w, z) < δ ⇒ dX(Φ−1(w),Φ−1(z)) < ε ,

which would mean that Φ−1 is continuous. However, we do not assume that Φ is invertible.

Nonetheless, even when Φ is not invertible, and A is any subset of W , we write Φ−1(A) to denote

the preimage of A under Φ, i.e., Φ−1(A) = {x ∈ X Φ(x) ∈ A}. Condition (2) then says that the

diameter of the preimage of a set of diameter less than δ is less than ε.

Proof. Fix ε > 0, Let δ, (W,dW ) and Φ be such that (1) and (2) are satisfied. Since Φ(X)

is totally bounded, there is a finite cover {U1, . . . , Un} of Φ(X) be balls of radius δ in W . It

follows immediately that {Φ−1(U1), . . .Φ
−1(Un)} is a cover of X by sets of diameter 2ε. For each

i = 1, . . . , n, pick xi ∈ Φ−1(Ui). Then Φ−1(Ui) ⊂ B2ε(xi), and so {B2ε(x1), . . . , B2ε(xn)} is a finite

cover of X by balls of radius 2ε . Since ε > 0 is arbitrary, (X, d) is totally bounded.
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Proof. We may suppose as before that F is closed and hence that (F , d∞) is a complete metric

space. It therefore suffices to show that it is totally bounded. Starting as before, fix ε > 0, and use

the compactness of X and the equicontinuity of F to select a finite set of points {x1, . . . , xm} and

neighborhoods {U1, . . . , Um} that cover F and are such that

x ∈ Uj ⇒ |f(x)− f(xj)| <
ε

3
for all f ∈ F . (4.4)

Define Φ : F → Rm by

Φ(f) = (f(x1), . . . , f(xm)) .

Since F is pointwise bounded, Φ(F) lies in some bounded rectangle in Rm, and bounded sets in

Rm are totally bounded. Thus, Φ satisfies condition (1) of Lemma 4.2. Next, consider any f, g ∈ F .

Denoting the Euclidean norm on Rm by ‖ · ‖,

‖Φ(f)− Φ(g)‖ = ‖(f(x1), . . . , f(xm))− (g(x1), . . . , g(xm))‖ ≥ m
max
j=1
|f(xj)− g(xj)| . (4.5)

fix any x ∈ X. Then for some j, x ∈ Uj , and for this j,

|f(x)− g(x)| ≤ |f(x)− f(xj)|+ |f(xj)− g(xj)|+ |g(xj)− g(x)|

≤ ε

3
+ |f(xj)− g(xj)|+

ε

3

≤ ε

3
+ ‖Φ(f)− Φ(g)‖+

ε

3

where the first inequality is the triangle inequality, the second is (4.4) and the third is (4.5).

Thus, condition (2) of Lemma 4.2 is satisfied for δ = ε/3, and we have proved that F is totally

bounded.

4.2 The Stone-Wierstrass Theorem

The Stone-Wierstrass Theorem is an approximation theorem that generalizes the classical Wier-

strass Approximation Theorem that we discussed at the beginning of these notes.

We begin with two definitions. Let X be a compact topological space, and let C(X,R) be the

space of continuous real valued functions on X equipped with the uniform metric d∞. A subset A
of C(X,R) is an algebra in case A is a vector subspace over R of C(X,R) equipped with its usual

rules of addition and scalar multiplication, and if, moreover, for every f and g in A, the pointwise

product fg also belongs to A.

A subset A of C(X,R) is separating in case for pair of distinct points x, y in X, there is an

f ∈ A such that f(x) 6= f(y).

Notice that if X is not Hausdorff, not even C(X,R) the space of all continuous real valued

functions on X is separating. Indeed, if X is not Hausdorff, there exist two distinct points x and

y in X such that every neighborhood U of x contains y. But then for any continuous function f ,

f(x) = f(y). Indeed, if |f(x)− f(y)| := r > 0, then f−1((f(x)− r.2, f(x) + r/2)) would be an open

neighborhood of x that excluded y. Thus, for all continuous f , f(x) = f(y), so not even C(X,R)

separates, let alone any proper subset of C(X,R). Hence throughout this subsection, we shall only

be concerned with Hausdorff topological spaces.

The primary example of a separating algebra to keep in mind is X = [0, 1], with A being the

algebra of all polynomials in the real variable x ∈ [0, 1]. To see that this algebra is separating,

consider the polynomial p(x) = x. Then for x0 6= x1 in X, p(x0) 6= p(x1).
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4.4 THEOREM (Stone-Wierstrass). Let X be a compact topological space, and let A be a subset

of C(X,R) that is a separating algebra. Let B be the uniform closure of A. Then either B = C(X,R),

or else B consists of all continuous functions on X that vanish at some fixed point x0. In particular,

if A contains the constant functions, B = C(X,R).

We will prove Theorem 4.4 as a consequence of two lemmas, and shall make use of the partial

order in C(X,R): If f, g ∈ C(X,R), we write f ≤ g in case f(x) ≤ g(x) for all x ∈ X. With this

partial order, C(X,R) is a lattice: Given any f, g ∈ C(X,R) there is a unique function g∧f ∈ C(X,R)

such that g ∧ f ≤ f, g, and such that h ≤ g ∧ f whenever h ≤ f, g. Of course, g ∧ f is defined by

g ∧ f(x) = min{ f(x) , g(x) } ,

which is continuous.

Likewise, given any f, g ∈ C(X,R) there is a unique function g ∨ f ∈ C(X,R) such that f, g ≤
g ∨ f , and such that g ∨ f ≤ h whenever f, g ≤ h. Of course, g ∧ f is defined by

g ∨ f(x) = max{ f(x) , g(x) } ,

which is continuous.

A subset F of C(X,R) is itself a lattice if and only if whenever f, g ∈ F , then both f ∧ g and

f ∨ g belong to F . Then observing that

f ∧ g =
1

2
(f + g − |f − g|) and f ∨ g =

1

2
(f + g + |f − g|) , (4.6)

we see that a subset F of C(X,R) that is a vector space is a lattice if and only if whenever f ∈ F ,

then |f | ∈ F .

4.5 LEMMA (Limit point criterion for lattices in C(X,R)). Let X be a compact Hausdorff space.

Let F ⊂ C(X,R) be a lattice.

If f is any element of C(X,R) with the property that for every x, y ∈ X, there exists a function

fx,y ∈ F for which

fx,y(x) = f(x) and fx,y(y) = f(y) . (4.7)

Then f is a limit point of F ; i.e., it belongs to the closure of F .

Proof. Fix any f ∈ C(X,R) with the property every x, y ∈ X, there exists a function fx,y ∈ F
such that (4.7) is satisfied. Fix any ε > 0. We must show that there exists some g ∈ F with

|g(x)− f(x)| < ε for all x ∈ X.

First, for each (x, y) ∈ X ×X, make some choice of fx,y, and define the open set Ux,y ⊂ X by

Ux,y = { z : fx,y(z) < f(z) + ε } .

Evidently, x, y ∈ Ux,y. Therefore

X =
⋃
x∈X

Ux,y ,
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and then, since X is compact, there exists a finite set {x1, . . . , xn} ⊂ X such that

X =
n⋃
j=1

Uxj ,y .

Now define the function fy by

fy = fx1,y ∧ fx2,y ∧ · · · ∧ fxn,y .

Since F is a lattice, fy ∈ F , and

fy ≤ f + ε

in the lattice order; i.e., everywhere on X.

Furthermore, since fxj ,y(y) = f(y) for each j, fy(y) = f(y). Therefore, defining the open set

Vy by

Vy := { z ∈ X : f(z)− ε < fy(z) } ,

we have y ∈ Vy, and hence

X =
⋃
y∈X

Vy ,

hen, since X is compact, there exists a finite set {y1, . . . , ym} ⊂ X such that

X =

m⋃
k=1

Vyk .

Now define g by

g = fy1 ∨ fy2 ∨ . . . ,∨fym .

Then since F is a lattice, g ∈ F , and by construction,

f − ε ≤ g ≤ f + ε ,

which means that |f(x)− g(x)| < ε for all x ∈ X.

4.6 LEMMA (A closed algebra in C(X,R) is a lattice). Let X be a compact Hausdorff space. Let

B be a closed subset of C(X,R) that is also a subalgebra of C(X,R). Then B is a lattice.

Proof. By the remarks we have made concerning (4.6), it suffices to show that for all f ∈ B, |f | ∈ B.

Since X is compact and f is continuous, f is bounded above and below, and hence there is a finite

positive number c such that |cf | ≤ 1. Then since |cf | = c|f |, we may freely suppose that f | ≤ 1.

Therefore, fix any f ∈ B with |f | ≤ 1, We shall complete the proof by showing that there exists

a sequence of polynomials {pn}n∈N so that

|f | = lim
n→∞

pn(f2) (4.8)

in the uniform topology. Since B is an algebra, pn(f2) ∈ B for each n, and then since B is closed,

|f | ∈ B.
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For any number a ∈ [0, 1], we define a sequence {bn}n∈N recursively as follows: We set b1 = 0

and then for all n ∈ N,

bn+1 = bn +
a− b2n

2
.

Notice that

b1 = 0 , b2 =
a

2
, b3 = a− a2

8
,

and so forth. It is easy to see by induction that for each n, there is a polynomial pn, independent

of the value of a, so that such that bn = pn(a).

We claim that
√
a = limn→∞ bn. This will give us a sequence of polynomials {pn}n∈N such that

for each a ∈ [0, 1], √
a = lim

n→∞
pn(a) ,

and therefore, such that

|f(x)| = lim
n→∞

pn(f2(x))

for all x in X. Then, since X is compact, Dini’s Theorem implies that (4.8) is true with uniform

convergence.

Hence, we need only verify the claim that
√
a = limn→∞ bn. To do this, note that

√
a− bn+1 =

√
a− bn −

(
√
a− bn)(

√
a+ bn)

2
= (
√
a− bn)

(
1−
√
a+ bn

2

)
.

Since a ≤ 1, as long as bn ≤
√
a, the right hand side is non-negative, and therefore bn+1 ≤

√
a.

Since b1 ≤
√
a, it follows that

√
a is an upper bound for the sequence {bn}n∈N.

Now, knowing that b2n ≤ a for all n, it is clear from the definition that {bn}n∈N is a monotone

non-decreasing sequence. Therefore the limit b = limn→∞ bn exists and satisfies

b = b+
a− b2

2
.

This means that b2 = a, and since b ≥ 0, b =
√
a.

Proof of Theorem 4.4: Fix x 6= y in X, and consider the linear transformation from A to R2 given

by

f 7→ (f(x), f(y)) .

The range of this linear transformation is a subspace S of R2.

Since A separates, there can be at most one point x0 ∈ X for which g(x0) = 0 for all g ∈ A.

Let us first assume first that neither x nor y is such a point. Since A is an algebra, and a vector

space in particular, if g is in A so is very multiple of g. By assumption, there is some g ∈ A such

that g(x) 6= 0, and by choosing an appropriate multiple, we may arrange that g(x) = 1.

Thus, S contains a vector of the form (1, a). (Since A separates, we can choose g ∈ A so that

g(y) = a 6= 1.)

Now there are two cases to consider. If also a 6= 0, then the two vectors (1, a) and (1, a2) are

linearly independent, and (1, a2) also belongs to S since A is an algebra (so that g2 ∈ A). On the

other hand if a = 0 then S contains the vector (1, 0), and, since there is some other g with g(y) = 1,
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there is some b ∈ R such that (b, 1) ∈ S. Hence in this case, S contains the two vectors (1, 0) and

(b, 1) which are linearly independent. Either way, S = R2, and so we have proved that as long as

g(x) 6= 0 and h(y) 6= 0 for some g, h ∈ A, then S is all of R2.

This has the consequence that for any f ∈ C(X,R), we can find a function fx,y ∈ A for which

(f(x), f(y)) = (fx,y(x), fx,y(y)) . (4.9)

Now we have two cases once more: Suppose first that there is no point x0 ∈ X with f(x0) = 0

for all f ∈ A. Then the above argument applies for all x and y in X and all f ∈ C(X,R), we

can find fx,y ∈ A such that (4.9) is true. Moreover, by Lemma 4.6, B is a lattice. Therefore, by

Lemma 4.5, f is a limit point of B, and since B is closed, f ∈ B. Since f is an arbitrary element of

C(X,R), we see that in this case, B = C(X,R).

The remaining case to consider is that in which there is one point x0 such that g(x0) = 0 for

all g ∈ A, and hence B, so that B is certainly contained in the closed subset of C(X,R) consisting

of continuous functions f on X such that f(x0) = 0.

Let f be any such function. The argument made above show that as long as neither x nor y

equals x0, then there is some g ∈ A, and hence B, for which (4.9) is true. Now suppose that x = x0,

and y 6= x0. Then we trivially have

f(x0) = g(x0) = 0

for all g ∈ B. And since A separates, and is a vector space, we can choose g so that f(y) = g(y).

Therefore, for any f ∈ C(X,R) with f(x0) = 0, no matter how x and y are chosen, we can can find

gx,y ∈ B so that (4.9) is true.

Then the argument made above shows that every f ∈ C(X,R) with f(x0) = 0 is a limit point

of B, and hence belongs to B. Therefore, in this second case, B is the subset of C(X,R) consisting

of functions f with f(x0) = 0.

In our proof of Theorem 4.4, we made use of the fact that our functions f were real valued, and

not complex valued: The real numbers are ordered, while the complex numbers are not, and the

order on the complex number played a crucial role in the proof through our use of Lemma 4.5.

This is not simply an artifact of the proof: If in the statement of the theorem we replace C(X,R)

by, C(X,C), the space of continuous complex valued functions on X, the statement becomes false.

To see this, take X to be the closed unit disc in the complex plane C. Take A to be the algebra

of all complex polynomials in the complex variable z, which clearly separates. Polynomials in z

are analytic, and uniform limits of analytic functions are analytic, and so the closure of A consists

of functions that are analytic in the interior of the the unit disc. Obviously, not every continuous

function of the closed unit disc is analytic in the interior of the disc; f(z) = z∗, the complex

conjugate of z, is an example. Hence, the uniform closure of A is not the full set of continuous

complex valued functions on the closed unit disc.

However, under one simple additional condition on the algebra A, one can reduce the complex

valued case to the real case.

A (complex) subalgebra A of the algebra of complex valued function on a compact Hausdorff

space is called a ∗-algebra in case it is closed under complex conjugation. That is, whenever f ∈ A,

then f∗ ∈ A, where f∗ is the function defined by f∗(x) = (f(x))∗ for all x ∈ X.
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In this case, for every f ∈ A, the real and imaginary parts of f both belong to A. It is also

easy to see that when A separates, so does the real algebra consisting of the real and imaginary

parts of functions in A. Applying the Stone-Wierstrass Theorem to this algebra, one can separately

approximate, in the uniform metric, the real and imaginary parts of any continuous complex valued

function on X by functions in A.

In summary, we have:

4.7 THEOREM (Complex Stone-Wierstrass). Let X be a compact topological space, and let A be

a subset of C(X,C) that is a separating ∗-algebra. Let B be the uniform closure of A. Then either

B = C(X,C), or else B consists of all continuous functions on X that vanish at some fixed point

x0. In particular, if A contains the constant functions, B = C(X,R).

Here is one important application of Theorem 4.7: Let X be the unit circle in C, with its usual

topology. Let A ⊂ C(x,C) be the set consisting of functions f of the form

f(z) =

n∑
j=−n

ajz
n

for some n ∈ N, and some numbers a−n, . . . , an in C. (Each element of X is a complex number z,

and zn denotes the nth power of z.) The elements of A are called complex trigonometric polynomials

It is easy to see that A is a ∗-algebra, and that A separates. Hence, by Theorem 4.7, A is dense

in C(X,C). This proves:

4.8 THEOREM (Density of Complex Trigonometric Polynomials). Let X be the unit circle in

C, with its usual topology. Then the set of complex trigonometric polynomials is dense in C(X,C),

with respect to the uniform metric.

4.3 Tychonoff’s Theorem

Let X be a set. The Cartesian product of X with itself, X × X, is the set of all ordered pairs

(x1, x2) of elements of X. Of course (x1, x2) is the graph of a unique function f : {1, 2} → X,

namely the one with f(1) = x1 and f(2) = x2. (One can accommodate Cartesian products of two

different sets Y and Z in this framework by considering X = Y ∪ Z and restricting attention to

functions f such that f(1) ∈ Y and f(2) ∈ Z. No real generality is lost in taking the sets to be the

same, and the notation is much simpler, so that is how we shall proceed.)

More generally, given any set non-empty S, the Cartesian product of X indexed by S, denotes

XS , is the set of all functions from S to X. For example, XN is the set of all infinite sequences

{xn}n∈N of elements of X.

On any Cartesian product, there is a natural family of functions with values in X, namely the

coordinate functions: For each s ∈ S, define

ϕs : XS → X

by

ϕ(f) = f(s) .

That is, one simply evaluates the function f ∈ XS at s.

Note that when S = {1, 2}, ϕj((x1, x2)) = xj , which is why the ϕs are called coordinate

functions.
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4.2 DEFINITION. Let (X,O) be a topological space, and S and arbitrary set. The product

topology on the Cartesian product XS is the topology generated by the coordinate functions. That

is, it is the weakest topology for which each of the coordinate functions is continuous.

Now suppose that (X,O) is a compact topological space. When is (X,O) compact in the

product topology? The answer, given by Tychonov’s theorem is: “Always.”

4.9 THEOREM (Tychonoff’s Theorem). Let (X,O) be a compact topological space, and S any

non-empty set. Then XS, equipped with the product topology, is compact.

The special case of this theorem in which X is a compact metric space and S is countable (or

finite) is fairly easy to prove using the theorems presented so far in these notes. This is developed

in the exercises that follow. The general case involves either the theory of “nets” or the theory of

“filters”, and this would be a digression, since we shall not invoke the general case in this course,

nor shall we have any other occasion to use the theory of nest of filters. Furthermore, the proof

of the general case involves the axiom of choice in a much more subtle way than does the spacial

case. This is not a problem, but discussion of these subtleties would take us far afield. (The axiom

of choice enters the subject, even in the special case, in an essential way: It is the axion of choice

which assures us that XS is non-empty: one can always choose, for each x ∈ s, some x(s) ∈ X.

Moreover, it is known that Tychanov’s Theorem is logically equivalent to the Axiom of Choice.)

It is well worth knowing the general case nonetheless. It shows that advantage of the 20th

century notion of compactness, as defined above, in terms of open covers, and the 19th century

notion of sequential compactness. As shown in the exercises, if we take X = [0, 1] with its usual

topology, and equip XX , the set of all functions from [0, 1] to [0, 1], then XX is not sequentially

compact, but is compact by Tychonov’s Theorem. Many theorems in which compactness is an

hypothesis remain true if this hypothesis is replaced by sequential compactness (see the exercises).

Tychonov’s Theorem is an important example for which this is not the case.

5 Exercises

1. Let (X, d) be a separable metric space. Let Y be any subset of X, and define dY to be the

restriction of d to Y × Y . Show that (Y, dY ) is separable.

2. Suppose that (X, d) is a complete metric space with a finite diameter; i.e., there exists D <∞
such that d(x, y) ≤ D for all x, y ∈ X. Is it true that every continuous real valued function on X

is bounded? Prove this assertion or give a counterexample.

3. Let (X, d) be a compact metric space.

(a) Show that if f : X → X is continuous but not onto, there is some x0 ∈ X and some r > 0 so

that d(f(x), x0) ≥ r for all x ∈ X.

(b) Let f be an isometry from X into itself; i.e., a function with the property that

d(f(x), f(y)) = d(x, y)

for all x, y ∈ X. Show that f is necessarily one to one and onto, and hence invertible.
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4. Let (X, d) be a compact metric space, and let f : X → C be continuous. Show that for all ε > 0,

there exists L <∞ so that

|f(x)− f(y)| ≤ Ld(x, y) + ε

for all x, y ∈ X.

5. (a) Let (X, d) be a complete metric space in which bounded sets are totally bounded. Let

A ⊂ X be closed and B ⊂ X be compact. Show that there exist x1 ∈ A and x2 ∈ B such that

d(x1, x2) ≤ d(x, y) for all x ∈ A , y ∈ B .

(b) Show by example that this is false if we weaken the assumption to only suppose that B is closed.

6. Define `1 to be the set of complex valued sequences {xj}j∈N such that

∞∑
j=1

|xj | <∞. Define a

function on d`1 on `2 by

d`1 ({xj} , {yj}) =

∞∑
j=1

|xj − yj | .

(a) Show that (`1, d`1) is a metric space.

(b) Show that the metric space (`1, d`1) is complete.

7. Let (`2, d`2) Show that a bounded subset X of `2 is totally bounded if and only if for all ε > 0,

there exists Nε ∈ N such that ∑
k>Nε

|xj |2 < ε2

for all {xj} ∈ X.

8. Let (`1, d`1) be defined as in Exercise 6. Show that X ⊂ `1 is totally bounded if and only if for

all ε > 0, there exists Nε ∈ N such that ∑
k>Nε

|xj | < ε

for all {xj} ∈ X. Then show that B1({0}), the ball of radius 1 about the zero sequence, is not

totally bounded, and hence that the closed ball of radius 1 about the zero sequence is not compact.

9. Let X = [0, 1]. Each x ∈ X has a binary expansion

x =
∞∑
n=1

bn(x)2−n

with each bn(x) ∈ {0, 1}. We stipulate that if x is a dyadic rational, only finitely many of the

bn(x) are non-zero, and under this condition, the bn(x) are uniquely determined, so that bx : X →
{0, 1} ⊂ X is a well-defined function for each n.

(a) Show that no subsequence of {bn}n∈N converges pointwise.

(b) Equip XX with its product topology and note that each bn is a function from X to X, and hence

is an element of XX . Show that no subsequence of {bn}n∈N converges in the product topology, and

thus that the analog of Tychonov’s Theorem for sequential compactness is false.
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10. Let (X, d) be a compact metric space. Then XN consists of all sequences {xk}k∈N in X. Define

a function d on XN ×XN by

d({xk}k∈N, {yk}k∈N) =

∞∑
k=1

2−kd(xk, yk) .

(a) Show that d is a metric on XN ×XN.

(b) Show that the metric topology in XN induced by d is at least as strong as the product topology.

(c) Show that with the metric topology induced by d, XN is sequentially compact.

(d) Show directly, without invoking Tychonov’s Theorem that XN compact in the product topology.

11. Let (X, dX) and (Y, dY ) be two compact metric spaces. Let C(X×Y,R) be the set of all valued

functions on X × Y continuous real that are continuous with respect to the product topology. Let

A be the set of functions f on X × Y of the form

f(x, y) =
n∑
j=1

gj(x)hj(y)

for some n ∈ N and some {g1, . . . , gn} ⊂ C(X,R) and some {h1, . . . , hn} ⊂ C(Y,R). Show that A is

dense in C(X×Y,R) in the uniform topology. (Note: The usual notation for A is C(X,R)⊗C(Y,R),

and it is called the tensor product of C(X,R) and C(Y,R).)

12. A topological space is locally compact in case every point has a neighborhood whose closure is

compact. Let (X, dX) and (Y, dY ) be locally compact metric spaces, and suppose that f : X → Y

is continuous and bijective. Show that f−1 is continuous if and only if f−1(K) is compact for all

compact K ⊂ Y .

13. Let (X,O) be a compact topological space. Let A and B be non-empty closed and disjoint

subsets of X. Suppose that for every b ∈ B, there exist a continuous function fb : X → [0, 1] such

that fb(b) = 1 and fb(a) = 0 for all a ∈ A. Show that there exist open sets U and V such that

A ⊂ U , B ⊂ V and U ∩ V = ∅.

14. Let (X,O) be a compact topological space, and let F be a set of functions real valued on X

that is equicontinuous and uniformly bounded. Define

g(x) = sup
f∈F

f(x) .

Is g(x) necessarily continuous? Prove that your answer is correct.

15. Let (X, dX) and (Y, dY ) be metric spaces with Y complete. For L ∈ (0,∞), a function

f : X → Y is L-Lipschitz in case dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X.

Let S be a dense subset of X. Let g : S → Y satisfy

dY (g(x), g(y)) ≤ LdX(x, y) for all x, y ∈ S .

Show that there exists a unique L-Lipschitz function f : X → Y such that the restriction of f to

S is g.
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16. Let {fn}n∈N be a sequence of continuous real valued functions on [0, 1] that are continuously

differentiable on (0, 1). Suppose that fn(0) = 0 for all n and that there is a continuous function

g : [0, 1] → [0,∞) such that |f ′n(x)| ≤ g(x) for all n ∈ N and all x ∈ (0, 1). Show that there exists

a uniformly convergent subsequence {fnk}k∈N.

17. Let (X, dX) and (Y, dY ) be two metric spaces. Let f : X → Y be continuous uand surjective,

and supose that

dX(x1, x2) ≤ dY (f(x1), f(x2))

for all x1, x2 ∈ X.

(a) If (X, dX) complete, must (Y, dY ) be complete? Prove this or give a counterexample.

(b) If (Y, dY ) complete, must (X, dX) be complete? Prove this or give a counterexample.

18. Let (X, d) be a metric space. If every real-vauled conttinuous function f on X has a maximum,

does this mean that X is compact? Prove your answer is correct.

19. Let (X, d) be a compact metric space. Ptove that if {U1, . . . , Uk} is an open cover of X, there

there exists a closed cover {C1, . . . , Ck} with Cj ⊂ Uj for j = 1, . . . , k.

20. Let A and B be compact subsets of a Hausdorff topological space. Prove that there exist open

sets U and V such that A ⊂ U , B ⊂ V and U ∩ V = ∅.

21. Let (X, dX) and (Y, dY ) be metric spaces and let F : X → Y be a continuous functions such

that f maps closed sets to closed sets and such that the inverse image of any point in Y is compact.

Show that f−‘(K) is compact whenever K is compact.

22. Ler {fn}n∈N be a sequence of uniformly continuous functions from R to R. Suppose that fn
converges uniformly to f . Must f be uniformly continuous?


