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1 Solutions to the Exercises

1. Let (X, d) be a separable metric space. Let Y be any subset of X, and define dY to be the

restriction of d to Y × Y . Show that (Y, dY ) is separable.

SOLUTION Let {xn}n∈N be a dense sequence in X. Pick any y0 ∈ Y . For each k ∈ N construct

a sequence {y(k)
n }n∈N as follows: If there exists some y ∈ Y such that d(xn, y) < (2k)−1, choose

y
(k)
n = y for some such y. Otherwise, choose y

(k)
n = y0.

Now, given any y ∈ Y , and any k, there is some n so that d(y, xn) < (2k)−1. But then

d(y
(k)
n , xn) < (2k)−1. By the triangle inequality, and the definition of dY ,

dY (y(k)
n , y) = d(y(k)

n , y) ≤ d(y(k)
n , xn) + d(xn, y) <

1

k
.

Thus we have constructed a sequence in Y that passes within a distance 1/k of every y ∈ Y .

Now the set of all pairs (k, n) ∈ N×N is countable. Choose some ordering, and using it arrange

all of the terms of the sequences {xn}n∈N, k ∈ N into a single sequence. This sequence is clearly

dense in Y .

2. Suppose that (X, d) is a complete metric space with a finite diameter; i.e., there exists D <∞
such that d(x, y) ≤ D for all x, y ∈ X. Is it true that every continuous real valued function on X

is bounded? Prove this assertion or give a counterexample.

SOLUTION This assertion is false. If X is compact, then every continuous function on X is

bounded. So to find a counterexample, we must find a metric space (X, d) of finite diameter that

is compete, but not compact. We have seen that the unit ball in `2 is such a space, and that the

unit vectors e(n) in it satisfy

d`2(e(m), e(n)) =
√

2

for all m 6= n – and hence the sequence {e(n)}n∈N has no convergent subsequence.

Now define functions fn, n ∈ N, on `2 (and hence the unit ball in `2) by

fn(x) =

{
n(1− 4d`2(x, e(n))) d`2(x, e(n))) ≤ 1/4

0 d`2(x, e(n))) > 1/4
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Note that each of the functions fn is continuous, being constructed out of the metric using operations

that preserve continuity. Also, since fn(x) = 0 unless d`2(x, e(n)) < 1/4, fn(x) can be non-zero for

at most one n ∈ N, and moreover, if fn(x) 6= 0, then for all y with d`2(y, x) < 1/4, fm(y) = 0 for

all m 6= n. This is true since by the triangle inequality d`2(y, e(n)) < 1/2, and so, again by the

triangle inequality,

d`2(y, e(m)) ≥ d`2(e(n), e(m))− d`2(e(n), y) ≥
√

2− 1

2
>

1

4
.

Thus, the function g(x) given by

g(x) =
∞∑
n=1

fn(x)

is well-defined and continuous since for each x, there is neighborhood U of x such that for all y ∈ U
(including s), fn(y) 6= 0 for at most one n ∈ N . But clearly g(e(n)) = n, so g is not bounded.

3. Let (X, d) be a compact metric space.

(a) Show that if f : X → X is continuous but not onto, there is some x0 ∈ X and some r > 0 so

that d(f(x), x0) ≥ r for all x ∈ X.

(b) Let f be an isometry from X into itself; i.e., a function with the property that

d(f(x), f(y)) = d(x, y)

for all x, y ∈ X. Show that f is necessarily one to one and onto, and hence invertible.

SOLUTION (a) Suppose f is not onto. then for some x0, f(x) 6= x0 for any x. Define ϕ(x) =

d(x, x0). This is continuous and X is compact, so there exists y ∈ X such that ϕ(x) ≥ ϕ(y) for

all x ∈ X. Let r = ϕ(y). Since f(y) 6= x0, r = d(f(y), x0) > 0. But then by the definition of ϕ,

d(f(x), x0) ≥ r for all x ∈ X.

(b) Continuing with the assumption, define a sequence {xn}n∈N by x1 = f(x0) and xn+1 = f(xn)

for all n ≥ 1. This sequence has a convergent subsequence {xnk}k∈N, and like all convergent

subsequences, this sequence is Cauchy, so that or all ` > k with k sufficiently large,

d(xnk , xn`) <
r

2
.

However, by the isometry property,

d(xnk , xn`) = d(x0, xn`−nk) ≥ r .

This contradiction shows that f must be onto.

4. Let (X, d) be a compact metric space, and let f : X → C be continuous. Show that for all ε > 0,

there exists L <∞ so that

|f(x)− f(y)| ≤ Ld(x, y) + ε

for all x, y ∈ X.

SOLUTION Let C ⊂ X ×X be given by

C = {(x, y) : |f(x)− f(y)| ≥ ε} .
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Since the function (x, y) 7→ |f(x)− f(y)| is continuous on X ×X, the set C is closed. Since X ×X
is compact, C is compact.

The function

g(x, y) =
|f(x)− f(y)|

d(x, y)

is continuous on C. (The denominator is continuous and bounded from below on C by a positive

number since if (x1, y1) minimizes d(x, y) on C, |f(x1) − f(y1)| ≥ ε, hence x1 6= y1 and hence

d(x1, y1) 6= 0.)

Define

L = max
(x,y)∈C

|f(x)− f(y)|
d(x, y)

,

which is well defined since continuous functions have maxima on compact sets. Then

(x, y) ∈ C ⇒ |f(x)− f(y)| ≤ Ld(x, y) and (x, y) ∈ Cc ⇒ |f(x)− f(y)| ≤ ε .

Thus for all (x, y),

|f(x)− f(y)| ≤ Ld(x, y) + ε .

5. (a) Let (X, d) be a complete metric space in which bounded sets are totally bounded. Let

A ⊂ X be closed and B ⊂ X be compact. Show that there exist x1 ∈ A and x2 ∈ B such that

d(x1, x2) ≤ d(x, y) for all x ∈ A , y ∈ B .

(b) Show by example that this is false if we weaken the assumption to only suppose that B is closed.

SOLUTION (a) This is easy if both A and B are compact since then d(x, y) is continuous on

A×B, which is compact, and hence there exist (x1, x2) ∈ A×B so that d(x1, x2) ≤ d(x, y) for all

(x, y) ∈ A×B.

To reduce to the compact case, pick any y0 ∈ B, and define

R = max{d(x, y) : x ∈ A }

which exists and is finite since the distance to y is continuous, and A is compact. Define C by

C = {z ∈ B : d(z, y) ≤ 2R} .

Note that C is closed and bounded, and hence is compact by our hypotheses on (X, d). If z ∈ B∩Cc,
and x ∈ A, then by the triangle inequality, d(z, y) ≤ d(z.x) + d(x, y), so that

d(z, x) ≥ d(y, z)− d(x, z) ≥ 2R−R = R .

Since d(y, x) ≤ R, it follows that

inf
(x,w)∈A×B

{d(x,w)} ≥ inf
(x,w)∈A×C

{d(x,w)} .

But since C is compact, were are now reduced to the compact case.

(b) Take A to be the real axis in R2. Take B to be the graph of y = ex in R2. Both are closed

and have empty intersection, but (x, 0) inA, (x, ex) ∈ and |(x, 0)− (x, ex)| = ex → 0 as x→ −∞.

Finally, R2 is complete, and bounded subsets in it are totally bounded.
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6. Define `1 to be the set of complex valued sequences {xj}j∈N such that
∞∑
j=1

|xj | <∞. Define a

function on d`1 on `2 by

d`1 ({xj} , {yj}) =
∞∑
j=1

|xj − yj | .

(a) Show that (`1, d`1) is a metric space.

(b) Show that the metric space (`1, d`1) is complete.

SOLUTION (a) It is clear that for all x, y ∈ `1, d`1(x, y) = d`1(y, x) and that d`1(x, y) = 0 if and

only if x = y. Finally, let x, y and z be in `1. Then for all n,

|xn − zn| ≤ |xn − yn|||yn − zn|

by the triangle inequality in the complex plane. Summing, we obtain the triangle inequality for

d`1 . Thus, d`1 is a metric.

(b) Let {x(n)}n∈N be a Cauchy sequence in `1. Choose an increasing sequence {nk}k∈N of natural

numbers such that

m > nk ⇒ d`1(x(nk), x(m)) < 2−k .

Then
∞∑
k=1

 ∞∑
j=1

|xnk+1)
j − x(nk)

j |

 =
∞∑
k=1

d`1(xnk+1), xnk)) ≤
∞∑
k=1

2−k = 1 .

Therefore, since sums of countably many positive terms can be summed in any order,

∞∑
j=1

( ∞∑
k=1

|xnk+1)
j − x(nk)

j |

)
≤ 1 .

Define zj :=
∑∞

k=1 |x
(nk+1)
j − x(nk)

j |. It follows that
∑∞

k=1 |x
nk+1)
j − x(nk)

j | =
∑∞

j=1 zj ≤ 1. In

particular, the sequence z whose jth entry is zj , belongs to `1.

By the telescoping sum formula, x
(nm)
j = x

(n1)
j +

∑m
k=1(x

(nk+1)
j − x(nk)

j ) and then since since

absolutely convergence series converge,

xj := lim
m→∞

x
(nm)
j = lim

m→∞

[
x

(n1)
j +

m∑
k=1

(x
(nk+1)
j − x(nk)

j )

]

exists, and |xj | ≤ |x(n1)
j |+ zj . Since x(n1) ∈ `1 and z ∈ `1, x ∈ `1.

Next, for each j,

|x(nk)
j = xj | ≤

∞∑
`=k

|x(n`+1)
j − x(n`)

j |

and then summing on j, we obtain d`1(x(nk), x) ≤
∞∑
j=k

zj , and hence

lim
k→∞

d`1(x(nk), x) = 0 .
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Thus, the subsequence {x(nk)}k∈N converges in the `1 metric to x, and then since the original

sequence is Cauchy, it too must converge to the same limit.

7. Let (`2, d`2) Show that a bounded subset X of `2 is totally bounded if and only if for all ε > 0,

there exists Nε ∈ N such that ∑
k>Nε

|xj |2 < ε2

for all {xj} ∈ X.

SOLUTION Let X be a bounded subset of `2, and let ε > 0. Suppose that for all ε > 0, there

exists Nε ∈ N such that ∑
k>Nε

|xj |2 <
ε2

16

for all {xj} ∈ X. Define the map Φ from X ro CN by

Φ(x) = (x1, . . . , xN )

The image Φ(X) is bounded in CN ,and bounded sets in CN are totally bounded. Hence there exists

a finite cover {U1, . . . , UM} of Φ(X) by open sets of diameter no more than ε/2.

If x, y ∈ X,

‖x− y‖2 − ‖Φ(x)− Φ(y)‖2CN =
∑
j>N

|xj − yj |2 ≤ 2
∑
j>N

|xj |2 + 2
∑
j>N

|yj |2 ≤
ε2

4
.

Hence if x, y ∈ X ∩ Φ−1(Uj) for any j,

‖x− y‖ ≤ ε√
2
.

Therefore,

{X ∩ Φ−1(U1), . . . , X ∩ Φ−1(UM )}

is a finite cover of X by sets of diameter ε/
√

2. Now define

Vj =
⋃

x∈Φ−1(Uj)

Bε/10(x) .

Then Vj is open and have diameter no more than ε/
√

2 + ε/5 < ε, and {V1, . . . , VM} covers X.

Since ε > 0 is arbitrary, this proves that X is totally bounded.

Conversely, suppose that X is totally bounded. Pick ε > 0. Cover X by a finite set {V1, . . . , VM}
of open sets of diameter no more than ε/4. For each j, pick x(j) inVj ∩X.

Pick Nj such that ∑
k>Nj

|x(j)
k |

2 <
ε2

4
.

Define N = max{N1, . . . , NM}.
For any x ∈ X, x ∈ Vj for some j.∑

k>N

|xk|2 ≤ 2
∑
k>N

|x(j)
k − xk|

2 + 2
∑
k>N

|x(j)
k |

2

≤ ε2

2
+
ε2

2
= ε2 .
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8. Let (`1, d`1) be defined as in Exercise 6. Show that X ⊂ `1 is totally bounded if and only if for

all ε > 0, there exists Nε ∈ N such that ∑
k>Nε

|xj | < ε

for all {xj} ∈ X. Then show that B1({0}), the ball of radius 1 about the zero sequence, is not

totally bounded, and hence that the closed ball of radius 1 about the zero sequence is not compact.

SOLUTION Let X be a bounded subset of `1, and let ε > 0. Suppose that for all ε > 0, there

exists Nε ∈ N such that ∑
k>Nε

|xj | <
ε

4

for all {xj} ∈ X. Define the map Φ from X ro CN by

Φ(x) = (x1, . . . , xN )

The image Φ(X) is bounded in CN ,and bounded sets in CN are totally bounded. Hence there exists

a finite cover {U1, . . . , UM} of Φ(X) by open sets of diameter no more than ε/(4
√
N).

If x, y ∈ X ∩ Φ−1(Uj) for some j,

d`1(x, y) =
N∑
j=1

|Φ(x)j − Φ(y)j |+
∑
j>N

|xj − yj

≤
√
N‖Φ(x)− Φ(y)‖CN +

∑
j>N

|xj |+
∑
j>N

|yj |

≤ ε

4
+
ε

4
+
ε

4
=

3

4
ε .

{X ∩ Φ−1(U1), . . . , X ∩ Φ−1(UM )}

is a finite cover of X by sets of diameter ε/
√

2. Now define

Vj =
⋃

x∈Φ−1(Uj)

Bε/10(x) .

Then Vj is open and have diameter no more than ε/
√

2 + ε/5 < ε, and {V1, . . . , VM} covers X.

Since ε > 0 is arbitrary, this proves that X is totally bounded.

Conversely, suppose that X is totally bounded. Pick ε > 0. Cover X by a finite set {V1, . . . , VM}
of open sets of diameter no more than ε/2. For each j, pick x(j) inVj ∩X.

Pick Nj such that ∑
k>Nj

|x(j)
k |

2 <
ε

2
.

Define N = max{N1, . . . , NM}.
For any x ∈ X, x ∈ Vj for some j, and then∑

k>N

|xk| ≤
∑
k>N

|x(j)
k − xk|

2 +
∑
k>N

|x(j)
k |

2

≤ ε

2
+
ε

2
= ε .
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For the second part, note that the closed unit ball B contains the sequences e(n) with

e
(n)
j =

{
1 j = n

0 j 6= n .

Since for any N , when n > N , ∑
j>N

|e(n)
j | = 1

B is not totally bounded, and hence not compact.

9. Let X = [0, 1]. Each x ∈ X has a binary expansion

x =

∞∑
n=1

bn(x)2−n

with each bn(x) ∈ {0, 1}. We stipulate that if x is a dyadic rational, only finitely many of the

bn(x) are non-zero, and under this condition, the bn(x) are uniquely determined, so that bx : X →
{0, 1} ⊂ X is a well-defined function for each n.

(a) Show that no subsequence of {bn}n∈N converges pointwise.

(b) Equip XX with its product topology and note that each bn is a function from X to X, and hence

is an element of XX . Show that no subsequence of {bn}n∈N converges in the product topology, and

thus that the analog of Tychonov’s Theorem for sequential compactness is false.

SOLUTION (a) Suppose {bnk}k∈N is a pointwise convergent subseqeunce. Define x so that the

nth bit of x is zero if n 6= nk for some even k, and is 1 otherwise. Then bnk(x) = 0 for infinitely

many k and bnk(x) = 1 for infinitely many k. Hence limk→∞ bnk(x) does not exist.

(b) By its construction, if {bnk}n∈N converges in the product topology, then for each x ∈ X,

{bnk(x)}n∈N converges in X. But by part (a), this is impossible.

10. Let (X, d) be a compact metric space. Then XN consists of all sequences {xk}k∈N in X. Define

a function d on XN ×XN by

d({xk}k∈N, {yk}k∈N) =
∞∑
k=1

2−kd(xk, yk) .

(a) Show that d is a metric on XN ×XN.

(b) Show that the metric topology in XN induced by d is at least as strong as the product topology.

(c) Show that with the metric topology induced by d, XN is sequentially compact.

(d) Show directly, without invoking Tychonov’s Theorem that XN compact in the product topology.

SOLUTION (a) It is clear that

d({xk}k∈N, {yk}k∈N) = d({yk}k∈N, {kk}k∈N)

and that d({xk}k∈N, {yk}k∈N) = 0 if and only if d(xk, yk) = 0 for each k,which is the ca if and

only if xk = yk for al k. i.e;, {xk}k∈N = {yk}k∈N. As for the triangle inequality, for any {xk}k∈N,

{yk}k∈N and {zk}k∈N, for each k,

d(xk, zk) ≤ d(xk, yk) + d(yk, zk) ,
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and now summing we obtain the triangle inequality for d. Thus, d is a metric.

(b) We must show that every set that is open in the product topology is open in the metric topology.

We know that every open set in the product topology is a union of sets of the form

U = ∩Nj=1{{xk}k∈N : xkj ∈ Brj (yj)}

for some N ∈ N, some k1 < k2 < · · · < kN , and some y1, . . . yN ∈ X and some r1, . . . , rN > 0.

Therefore, it suffices to show that for each j ∈ N, y ∈ X and r > 0,

V := {{xk}k∈N : xj ∈ Br(y)}

id open in the metric topology. Fix any {xk}k∈N ∈ V . For all {zk}k∈N ∈ XN, if

d({xk}k∈N, {zk}k∈N) < s

then certainly

d(xj , zj) ≤ 2js .

So as long as s < 2−j [r − d(xj , yj)], {zk}k∈N) ∈ V . Thus, V contains the open ball of radius

2−j [r − d(xj , yj)] about {xk}k∈N) ∈ V , and this shows that V is open in the metric topology.

(c) This follows easily by a “Cantor diagonal” argument.

(d) By (c), XN is sequentially compact in the metric topology, and hence it is compact in the

metric topology. But then it is compact in any weaker topology. By (a), it is compact in the

product topology.

11. Let (X, dX) and (Y, dY ) be two compact metric spaces. Let C(X×Y,R) be the set of all valued

functions on X × Y continuous real that are continuous with respect to the product topology. Let

A be the set of functions f on X × Y of the form

f(x, y) =
n∑
j=1

gj(x)hj(y)

for some n ∈ N and some {g1, . . . , gn} ⊂ C(X,R) and some {h1, . . . , hn} ⊂ C(Y,R). Show that A is

dense in C(X×Y,R) in the uniform topology. (Note: The usual notation for A is C(X,R)⊗C(Y,R),

and it is called the tensor product of C(X,R) and C(Y,R).)

SOLUTION It is easy to check that A is an algebra that separates points and included the

constant functions. The result then follows immediately from the Stone-Wierstrass theorem.

12. A topological space is locally compact in case every point has a neighborhood whose closure is

compact. Let (X, dX) and (Y, dY ) be locally compact metric spaces, and suppose that f : X → Y

is continuous and bijective. Show that f−1 is continuous if and only if f−1(K) is compact for all

compact K ⊂ Y .

SOLUTION Let g : Y → X denote f−1. Suppose that g is continuoust. Since the image of a

compact set under a continuous function is always compact, g(K) is compact in X for all compact

K ⊂ Y . For this part, local compactness plays no role.
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To get an idea of how to approach the converse, let us first consider a special case: Suppose

that Xand Y are compact metric spaces. Then the closure of every neightborhood is compact, so

this is certinaly a special case that we have to be able to treat.

To do so, fix any open set V in X. We must show that f(V ) is open in Y . let C = V c, this

is a closed, and hence compact subset of X. since the image of a compact set under a continuous

function is compact, f(C) is compact, and hence closed. But f(V ) = [f(C)]c, which shows f(V )

to be open.

To do the general case, we will have to use the local compactness to restrict to the conisderation

of open sets V whose closure is compact, and then to “cut down” both X and Y to open sets

containing V and f(V ) respectively, whose closeures are compact. In the proof bellow, these “cut

down” replacements for X and Y are the sets g(W ) and W .

Now we turn to the general case. Suppose that g(K) is compact in X for all compact K ⊂ Y .

Let U be any open set in X. We must show that f(U) is open in Y . Since X is locally compact,

each x ∈ U is contained in an open subset Vx of U such that the closure of Vx, Vx, is compact.

Since f(U) = ∪x∈Uf(Vx), it suffices to show that whenever V ⊂ X is open and V is compact, then

f(V ) is open. Consider such an open set V .

Since f is continuous, f(V ) is compact, and so f(V ) may be covered by finitely many open

sets whose closures are compact. Let W be the union of these finitely many open sets. Then W is

compact, and

f(V ) ⊂ f(V ) ⊂W ⊂W .

Moreover, g(W ) is the union of finitely many images of compact sets, so g(W ) is compact, and

V ⊂ g(W ) ⊂ g(W ) .

Let C = g(W ) ∩ V c, which is a closed, and being contained in a compact set, it is compact. Since

f is continuous, f(C) is compact. But f(C) = W ∩ f(V c), and hence , using f(V ) ⊂W ,

f(V ) = W ∩ [f(C)]c = W ∩ [f(C)]c ,

and this displays f(V ) as the intersection of two open sets.

13. Let (X,O) be a compact topological space. Let A and B be non-empty closed and disjoint

subsets of X. Suppose that for every b ∈ B, there exist a continuous function fb : X → [0, 1] such

that fb(b) = 1 and fb(a) = 0 for all a ∈ A. Show that there exist open sets U and V such that

A ⊂ U , B ⊂ V and U ∩ V = ∅.

SOLUTION For each g inB, let fB be a function as given. Define Vx = f−1
b ((2/3∞)), and note

that Vb is open and contains b. Hence B ⊂ ∪b∈BVb, and since B is compact, there exist a finite

subset {b1, . . . , bN} such that

B ⊂ ∪Nj=1Vbj .

Now define

Uj = f−1
bj

((−∞, 1/3) .

Then for each j, Uj is open, A ⊂ Uj and Ubj ∩ Uj = ∅. Now define A = ∩Nj=1Uj and V = ∪Nj=1Ubj .

Then U and V are open, A ⊂ U , B ⊂ V , and V ∩ U = ∅.
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14. Let (X,O) be a compact topological space, and let F be a set of functions real valued on X

that is equicontinuous and uniformly bounded. Define

g(x) = sup
f∈F

f(x) .

Is g(x) necessarily continuous? Prove that your answer is correct.

SOLUTION The Arzela-Ascoli Theorem says that F is compact in the uniform metric. Fix n ∈ N.

There exists a finite set {f1, . . . , fM} ⊂ F such that

F ⊂
M⋃
j=1

B1/n(fj) .

Then define

gn(x) = max{ f1(x), . . . , fM (x)} .

Then gn is continuous (since we are taking the maximum over a finite set), and clearly for all x,

gn(x) ≤ g(x) ≤ gn(x) + 1/n .

It follows that the sequence {gn}n∈N converges to g uniformly, and thus g is continuous.

15. Let (X, dX) and (Y, dY ) be metric spaces with Y complete. For L ∈ (0,∞), a function

f : X → Y is L-Lipschitz in case dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X.

Let S be a dense subset of X. Let g : S → Y satisfy

dY (g(x), g(y)) ≤ LdX(x, y) for all x, y ∈ S .

Show that there exists a unique L-Lipschitz function f : X → Y such that the restriction of f to

S is g.

SOLUTION Let x ∈ X, Suppose there is such an extension of g. Let {sn} be any sequence in S

that converges to x. Then

LdX(x, sn) = dY (f(x), f(sn)) = dY (f(x), g(sn)) .

Since the left side goes to 0 as n → ∞, limn→∞ dY (f(x), g(sn)), so if there is any such extension,

it must be given by

f(x) = lim
n→∞

g(sn) .

We now show that this formula does define such an extension. The first issue is to show that f

does not depend on the choice of the approximation sequence.

Let {sn} and {s̃n} be any two sequence in S that converges to x. Then both are Cauchy in X.

Then

dY (g(sn), g(sm)) ≤ LdX(sn, sm) ,

so that {g(sn)}n∈N is Cauchy in Y , and the same reasoning applies to {g(tildesn)}n∈N. Since Y is

complete (or taking the completion of Y to do the extension), {g(sn)}n∈N converges to an element

y inY . Then since dY (s̃n, sn) ≤ LdX(s̃n, sn), {g̃(sn)} converges to the same limit y, no matter

what the approximating sequence is. Thus we may define f(x) = y.
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Now consider any x1, x2 ∈ X. and take {sn} and {tn} converging to x1 and x2 respectively.

Then

dY (f(x1), f(x2)) = lim
n→∞

dY (f(sn), f(tn)) ≤ L lim sup
n→∞

dX(sn, tn) = LdX(x1, x2) .

Thus, the extended function is L-Lipschitz.

16. Let {fn}n∈N be a sequence of continuous real valued functions on [0, 1] that are continuously

differentiable on (0, 1). Suppose that fn(0) = 0 for all n and that there is a continuous function

g : [0, 1] → [0,∞) such that |f ′n(x)| ≤ g(x) for all n ∈ N and all x ∈ (0, 1). Show that there exists

a uniformly convergent subsequence {fnk}k∈N.

SOLUTION Note that for all n, and all x < y ∈ [0, 1],

|f(y)− f(x)| =
∣∣∣∣∫ y

x
f ′(t)dt

∣∣∣∣ =

∫ y

x
g(t)dt .

Since g is continuous, for some L, g(t) ≤ L for all t ∈ [0, 1]. Then we have that

|fn(y)− fn(x)| ≤ L|y − x| ,

for all n.

Moreover, since fn(0) = 0, |fn(x)| ≤ L for all x and n. Hence the functions {fn}n∈N are

uniformly bounded (and hence pointwise bounded) and equicontinuous, and the result now follows

from the Arzela-Ascoli Theorem.


