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1 Introduction

Let f be a continuous real valued functions on the interval [a, b]. Since f is necessarily bounded, let

us suppose that the range of f is contained in [c, d]. Riemann’s approach to defining the integral

is based on partitioning the domain [a, b] into small pieces, and Lebesgue’s approach is based on

partitioning the range [c, d] into small pieces.

1 c© 2014 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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It was not obvious, even to Lebesgue, just how advantageous the latter approach could be, until

the theory was fully developed. Lebesgue’s original motivation was pedagogical, and was based on

his observation that the way French shopkeepers tallied up the day’s sales was to arrange the coins

in the till into piles according to their denomination, then to count the coins in each pile, multiply

by the value of the denomination, and then to sum the results for each denomination.

In more mathematical terms, suppose we have a finite sequence {a1, . . . , aN} where each ak
takes its value in the discrete set {v1, . . . , vm}. For j = 1, . . . ,M , define

Ij = { k : ak = vj}

and define m(Ij) to be the cardinality of this set. Then

N∑
k=1

ak =
M∑
j=1

vjm(Ij) . (1.1)

Directly adding up all of the terms on the left, one is computing the sum a la Riemann. Using the

formula on the right, one is computing the sum a la Lebesgue. This is all very simple in a discrete

setting, but it becomes more interesting in the context of integrals of continuous functions. What

is more important is that the Lebesgue approach opens the way to a theory of integration for a

broad class of integrands (measurable functions in place of continuous functions) in which simple

theorems give conditions under which limits may be “taken under the integral sign”.

1.1 The Lebesgue integral for continuous functions

We begin by explaining how to apply (1.1) to the integration of continuos functions. Let f be a

continuous real valued function on [a, b]. Let us assume that its range lies in the interval [c, d].

Let {y1, . . . , yn} be any finite sequence of numbers with

c < y1 < · · · < yn < d .

Define Vj = f−1(yj ,∞), so that each Vj is open and Vj ⊂ Vj−1 for j = 1, . . . , n − 1. Define

V0 = [a, b], Vn+1 = ∅, y0 = c and yn+1 = d. Recall that every open set in [a, b] is a countable

disjoint union of open intervals. For each open set W ⊂ [a, b], define m(W ) to be the sum of the

lengths of these disjoint intervals. We may think of m(W ) as representing the total length of W .

For n = 0, . . . , n, define En = Vn\Vn+1. Then the sets {E1, . . . En} partition [a, b]. That is, they

are mutually disjoint, and their union is [a, b].

By construction, for x ∈ Ej , x ∈ Ej = Vj\Vj+1, so yj ≤ f(x) < yj+1. That is, for all

n = 0, . . . , n,

yn1En ≤ f1En ≤ yn+11En .

Define the function ϕ by

ϕ(x) =
n∑
j=0

yj1Ej (x) .

By what we have said above,

ϕ(x) ≤ f(x) ≤ ϕ(x) + max{yj+1 − yj : j = 0, . . . , n } .
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We are now in a position to adapt (1.1) to a continuous setting. The function ϕ has only

finitely many values, {y0, . . . , yn}. The set on which ϕ takes on the value yj is Ej = Vj\Vj+1. Since

Vj+1 ⊂ Vj , it is natural to define the total length of Ej , m(Ej), by

m(Ej) = m(Vj)−m(Vj+1) .

Then we define the integral of ϕ over [a, b],

∫
[a,b]

ϕdm to be

∫
[a,b]

ϕdm =
M∑
j=1

yjm(Ej) (1.2)

where m(Ej) is the total length of Ej , as defined above.

At this point we elaborate the notation for ϕ to record the finite sequence {y1, . . . , yn} that

generated it, and denote it by ϕ{y1,...,yn}.

We may then define∫
[a,b]

f(x)dm = sup
n∈N,c<y−1<···<yn<d

{∫
[a,b]

ϕ{y1,...,yn}dm

}
.

This construction will give the correct value for

∫
[a,b]

f(x)dm, but it is not exactly how the

Lebesgue integral is defined. The definition will be much easier to work with – and will apply to

a much broader class of integrands f – because before making it, we first extend the total length

function m(E) to a wider class of sets than simply differences of nested open sets. Once this is

done, we can make sense of (1.2) in a very broad setting. As long as m(E) is only defined when E is

a difference of nested open sets, we will not able to integrate much more than continuous functions,

which is what we already know how to do, using the Riemann integral.

So it is natural to ask whether we can extend the total length function to all subsets of [a, b] in

any reasonable answer. The answer is “no”.

1.2 The Existence of Non-measurable Sets

Let X = [0, 1) and equip it with the abelian group structure

x+ y mod 1 =

{
x+ y x+ y < 1

x+ y − 1 x+ y ≥ 1
.

Note that x+ (1− x) mod 1 = 0, so 1− x is the additive inverse of x for this group structure. We

write

x− y mod 1 = x+ (1− y) mod 1 .

If A ⊂ X and x ∈ X, we define

A+ x = {x+ y mod 1 : y ∈ A} .

It is clear that if A is a finite disjoint union of intervals, then so is A + x, and the total length of

the intervals is the same for A and A+ x. That is, the total length function m(A), defined on sets

A that are finite unions of disjoint intervals, is invariant under the operation A 7→ A + x, which

amounts to “translation by x with periodic boundary conditions”.
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1.1 THEOREM. There does not exist a [0, 1] valued extension of the total length function m(A)

from the set of finite disjoint unions of intervals in X to the set of all subsets of X such that

(1) m(A+ x) = m(A) for all A ⊂ X and all x ∈ X.

(2) If {An}n∈N is any sequence of mutually disjoint sets in X,

m

( ∞⋃
n=1

An

)
=
∞∑
n=1

m(An) .

Proof. Define an equivalence relation ∼ on X by x ∼ y in case

x− y mod 1 ∈ Q .

It is easily checked that this is an equivalence relation. Now define A to be a set containing exactly

one representative of each equivalence class.

We now claim that for each r ∈ (0, 1)∩Q, (A+r)∩A = ∅. To see this, suppose x ∈ (A+r)∩A.

Then x and x− r mod 1 both belong to A. But

x− (x− r) mod 1 = r ,

so that x ∼ x − r mod 1. By construction, A contains exactly one element in each equivalence

class, and hence this is impossible.

It follows that for r 6= q, r < s in (0, 1) ∩Q,

(A+ r) ∩ (A+ s) = (A ∩A+ (s− r)) + r = ∅ .

We now claim that ⋃
r∈[0,1)∩Q

A+ r = [0, 1) .

To see this, fix y ∈ [0, 1). Let z ∈ A be the element of A that is equivalent to y. By definition,

y − z mod 1 = r ∈ [0, 1) ∩Q .

But then y ∈ A+ r.

Now suppose that there does exist a function m defined on the set of all subsets of [0, 1) that

satisfies (1) and (2) and such that m(A) is the total length of A when A is a finite disjoint union

of intervals. Then

1 = m([0, 1)) = m

 ⋃
r∈[0,1)∩Q

(A+ r)

 =
∑

r∈[0,1)∩Q

m(A+ r) =
∑

r∈[0,1)∩Q

m(A) .

This is impossible: If m(A) = 0, the sum on the right is zero. But if m(A) 6= 0, the sum on the

right is infinite.

We are left with two choices: We could give up either properties (1) or (2), and try to forge

ahead defining m(a) for all subsets A of [0, 1), or we can retain properties (1) and (2), and try to

define the extension of the total length function on a smaller domain that the set of all subsets of

[0, 1).
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The second choice is the one that leads to a useful theory. We will develop this theory at first

in an abstract setting in which there is no group structure, and so that translation invariance is not

meaningful, but we shall require that whenever {Am}n∈N is any disjoint sequence of of sets, each

with a well-defined “mass” m(An), then
⋃∞
n=!An has a well defined “mass” m(

⋃∞
n=!An)) and

m

( ∞⋃
n=!

An

)
=

∞∑
n=1

m(An) . (1.3)

That is: The “mass of whole is the sum of the mass of the parts” whenever the mass of the the

parts are defined, and the whole is divided into countably many parts. The restriction to countable

unions is essential since [0, 1) =
⋃
x∈[0,1)[x, x], and of course the length of [x, x] is zero.

Because we shall require (1.3) to be true whenever {Am}n∈N is any disjoint sequence of of sets,

each with m(An) well defined, it is natural to require that the domain of our function m that

measures the “mass” or “volume” of sets should be closed under countable disjoint unions.

Next, it is natural to require that the whole set X is in the domain of m. Then, if A is in the

domain of m, it is natural to require that

m(X) = m(A) +m(Ac)

which would define m(Ac) if both m(A) and m(X) are finite. Thus we shall require that the domain

of our size function m is closed under taking complements. In the next section we study sets of

subset of X that are closed under countable disjoint unions and complements. These are the sets

of subsets of X on which we shall construct measures of the “mass” or “volume” of sets.

2 Algebras, σ-algebras, and measures

2.1 algebras of sets

2.1 DEFINITION (Algebra of sets). A set A of subsets of X is an algebra in case it is closed

under differences and finite unions. That is, A is an algebra in case whenever A and B belong to

A, so do A\B and A
⋃
B.

Note that if A is an algebra, and A,B ∈ A, then

A ∩B = B\(B\A) ,

so algebras are always closed under finite intersections.

The symmetric difference of sets A and B, denoted A∆B, is defined by

A∆B = A
⋃
B\(A ∩B) = (A\B)

⋃
(B\A) .

It follows that algebras are always closed under symmetric differences.

Note the identities

A\B = (A∆B) ∩A and A
⋃
B = (A∆B)∆(A ∩B) .

Thus whenever a set of subsets of X is closed under symmetric differences and finite intersections,

it is an algebra.
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Let A be an algebra, and let A,B ∈ A. Then

1A∩B = 1A1B and 1A∆B = 1A + 1B mod 2 .

Thus, a set A of subsets of X is an algebra if and only if the indicator functions of sets in A
form an algebra over the field Z2 in the usual algebraic sense when this set is equipped with the

usual multiplication of functions and addition of functions mod 2. This algebra has a multiplicative

identity if and only if X ∈ A.

Note that if A contains X, then A is closed under complements since Ac = X\A. This is

sometimes required in the definition of an algebra, but it will be convenient to distinguish between

algebras containing X and those that do not. By what we have just explained, amounts to distin-

guishing between algebras of sets containing a multiplicative identity, and algebras of sets that do

not.

We now introduce a special class of algebras, the class of σ-algebra. As we shall see, this is the

“right” class of sets on which to attempt to define measures of the “mass” or “volume” of sets.

2.2 σ-algebras of sets

2.2 DEFINITION (σ-algebra of sets). A set M of subsets of X is a σ-algebra in case it is an

algebra containing X that is closed under countable unions. A measurable spaces is a pair (X,M)

where M is a σ-algebra of subsets of X.

Note that if M is a σ-algebra, then it is closed under complements and countable unions.

Conversely, if M is closed under countable unions and complements, then it is a σ-algebra since if

A,B ∈M, A\B = A ∩Bc, so it is an algebra containing X that is closed under countable unions.

Thus, M is a σ-algebra if and only if it is closed under complements and countable unions. This

is often taken as the definition of a σ-algebra.

For examples of σ-algebras, let X be any set and let M = {∅, X}. This is clearly a σ-algebra,

but is a trivial sort of example. Another trivial example is given byM = 2X , the set of all subsets

of X. The σ-algebras that we shall be interested in generally lie between these two extremes. The

σ-algebras that we are interested in are those that are the domains of interesting measures, as

defined in the following subsection.

2.3 Measures

2.3 DEFINITION (Measure). Let (X,M) be a measurable space. A measure µ on (X,M) is a

function µ :M→ [0,∞] such that

(1) µ(∅) = 0.

(2) If {En}n∈N is an sequence of mutually disjoint sets belonging to M,

µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En) . (2.1)

The property (2) is referred to as countable additivity. A measure space is a triple (X,M, µ) where

M is a σ-algebra of subsets of X, and µ is a measure defined on M.
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Foe example, fix x0 ∈ X. Let M be any σ-algebra of subsets in X and for E ∈ M, define

µ(E) = 1 in case x0 ∈ E and µ(E) = 0 in case x0 /∈ E. It is east to see that this is a measure

on M, and though it is actually a useful example, it is very simple. Here is another very simple

example:

2.1 EXAMPLE (Counting measure). Let X N, and M = 2N. For E ⊂ N, define µ(E) to be the

cardinality of E if E i a finite set, and define it to be ∞ otherwise. It is easy to check that this is

a measure. Later we shall construct more interesting examples, but this simple example suffices to

show that at least the definition is not empty.

The definitions of σ-algebras and measures go hand-in-hand. Note for example that since

σ-algebras are closed under complementation, µ(Ec) is defined whenever µ(E) is defined; i.e.,

whenever E ∈M. Next, countable additivity implies additivity: Simply take all but finitely many

of the En in (2) to be the empty set, and then use (1) to eliminate these terms from the sum on

the right. Hence, whenever µ(E) is defined, so is µ(Ec), and we have

µ(X) = µ(E) + µ(Ec) ,

where, if µ(X) = ∞, then at least one of µ(E) and µ(Ec) must be infinite also. However, if

µ(X) < ∞, then we have µ(Ec) = µ(X) − µ(E), as we would expect of a decent measure of the

“mass” of subsets of X.

The following theorem gives several important properties of measures that follow directly from

the definition.

2.1 THEOREM (Properties of measures). Let (X,M, µ) be a measure space. Then

(1.) (Monotonicity) If E,F ∈M, E ⊂ F , then µ(E) ≤ µ(F ).

(2.) (Subadditivity) {En}n∈N is any sequence of sets in M,

µ

( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ(En) .

(3.) (Continuity from below) If {En}n∈N is any sequence of sets in M with En ⊂ En+1 for all n,

then

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ(En) . (2.2)

(4.) (Continuity from above) If µ(X) < ∞, and {Fn}n∈N is any sequence of sets in M with

Fn+1 ⊂ Fn for all n, then

µ

( ∞⋂
n=1

Fn

)
= lim

n→∞
µ(Fn) . (2.3)

Proof. For (1.), note that if E ⊂ F , E,F ∈ M, then F\E ∈ M and F = E
⋃

(F\E) is a disjoint

union of sets in M. Then since countable additivity implies additivity,

µ(F ) = µ(E) + µ(F\E) ≥ µ(E) .
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For (2.), define F1 = E1 and recursively define Fn = En\(E1
⋃
· · ·
⋃
En−1). Then Fn ∈ M

for all n, and
⋃∞
n=1En =

⋃∞
n=1 Fn, and the latter union is disjoint by construction. Hence, by

countable additivity and monotonicity,

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(Fn) ≤
∞∑
n=1

µ(En) .

For (3.), define F1 = E1 and for n > 1, Fn = En\En−1. Then each Fn ∈ M, and
⋃∞
n=1En =⋃∞

n=1 Fn, and this last union is disjoint by construction. By countable additivity,

µ

( ∞⋂
n=1

En

)
= µ

( ∞⋂
n=1

Fn

)
=

∞∑
n=1

µ(Fn) = lim
n→∞

n∑
m=1

µ(Fm) = lim
n→∞

µ(En) ,

where in the last line we have used the fact that En =
⋃m
m=1(Fm) and that µ is additive.

For (4.), define En = F cn. Then {En}n∈N is an increasing nested sequence of measurable sets,

and then by continuity from below, and additivity,

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ(En) = lim

n→∞
[µ(X)− µ(Fn)] = µ(X)− lim

n→∞
µ(Fn) .

Since µ(X) <∞,

lim
n→∞

µ(Fn)− µ(X)− µ

( ∞⋃
n=1

F cn

)
= µ(X)− µ

(( ∞⋂
n=1

Fn

)c)
= µ

( ∞⋂
n=1

Fn

)
.

2.2 EXAMPLE (Necessity of finite measure for continuity from above). Let X = N, M = 2N,

and let µ be counting measure. Let Fn = {k ∈ N : k ≥ n }. Then µ(Fn) = ∞ for all n, but

∩∞n=1Fn = ∅. Hence it is not the case that µ(cap∞n=1Fn) = lim∞n=1 µ(Fn).

Though the two concepts, that of measure, and that of σ-algebra, are conjugal twins, we will

spend the next several sections studying σ-algebras alone, before returning to measures defined

upon them. It will be quite some time before we actually construct any really interesting measures,

such as Lebesgue measure. Before we do that, we shall thoroughly develop the abstract theory of

measure and integration, showing that whenever one has constructed a measure space (X,M, µ),

there is a very effective theory of integration on it with a well developed set of theorems for taking

limits under integral signs. This will show that constructing measures that satisfy the definitions

given here is a worthwhile enterprise, and only then shall we undertake the construction of Lebesgue

measure.

3 Generated σ-algebras

Let I be an arbitrary set. For each α ∈ I, let Mα be a σ-algebra. Let

M =
⋂
α∈I
Mα .
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Then if A ∈ M, A ∈ Mα for all α. Since Mα is closed under complements, Ac ∈ Mα for all α,

and hence Ac ∈M. Thus,M is closed under complements. The same sort of reasoning shows that

M is closed under countable unions, and then by the remarks made above, M is a σ-algebra.

This has an important consequence: Let E be any set of subsets of X. Then the power set

2X is a σ-algebra containing E , and hence the set of σ-algebras containing E is not empty. The

intersection over the set of all σ-algebras containing E is therefore a σ-algebra containing E that is

contained in every other σ-algebra containing E : In this sense it is the smallest σ-algebra containing

E .

3.1 DEFINITION (Generated σ-algebras). for any set E of subsets of X, σ(E) is the smallest

σ-algebra containing E.

3.1 Borel σ-algebras

3.2 DEFINITION (Borel σ-algebra). Let (X,O) be a topological space. The Borel σ-algebra BX
is σ-algebra containing

mathcalO. That is, BX = σ(O).

The same σ-algebra can be generated by different sets E of generators. It is often useful to

identify “small” sets of generators, and the following theorem is useful in this regard.

3.1 THEOREM. Let E ⊂ F ⊂ 2X . If F ⊂ σ(E), then σ(E) = σ(F).

Proof. It is evident that σ(E) ⊂ σ(F). On the other hand, σ(E) is a σ-algebra containing F . then

by definition, σ(F) ⊂ σ(E).

3.1 EXAMPLE. Let E be the set of all subsets of R of the form (a,∞), a ∈ R. Then σ(E)

contains all sets of the form (a, b], a < b, since

(a, b] = (a,∞) ∩ (b,∞)c .

Next, (a, b) =
⋃∞
n=1(a, b − 1/n). But then every open set in R is the countable union of disjoint

open intervals,and hence σ(E) contains all open sets. By Theorem 3.1, σ(E) = BR.

4 Measurable functions

4.1 DEFINITION (Measurable function). Let (X,M) and (Y,N ) be measurable spaces. Then a

function f : X → Y is measurable in case

f−1(F ) ∈M for all F ∈ N .

If we wish to emphasize the specific σ-algebras, we shall say that f is M,N measurable.

4.1 THEOREM. The composition of measurable functions is measurable. That is, let (X,M),

(Y,N ) and (Z,P) be measurable spaces let f : X → Y and g : Y toZ be measurable. Then g ◦ f :

X → Z is measurable.

Proof. Let H ∈ P. Since g is measurable, g−1(H) ∈ N . Then since f is measurable, f−1(g−1(H)) ∈
M. This shows that (g ◦ f)−1(H) ∈M for all H in P so that g ◦ f is measurable.
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There is a close parallel between the notion of measurability and continuity. In fact, as we show

below, when X and Y are topological spaces, and M and N are their respective Borel σ-algebras

4.2 THEOREM. Let X and Y be sets, and f : X → Y any function. Let M be any σ-algebra of

sets in X.

(1) Define N by

N = {F ⊂ Y : f−1(F ) ∈M } .

Then N is a σ-algebra of sets in Y .

(2) Let E ⊂ 2Y . Then f : X → Y is M, σ(F) measurable if and only if f−1(F ) ∈M for all F ∈ F .

Proof. If F ∈ N, f−1(F c) = (f−1(F ))c ∈ M, and so N is closed under complements. Likewise, for

any sequence {Fn}n∈N in N ,

f−1

( ∞⋃
n=1

Fn

)
=

∞⋃
n=1

f−1(Fn) ∈M .

Therefore, N is also closed under countable unions. This proves that N is a σ-algebra.

For the second part, the condition is obviously necessary. To see that it is sufficient, use the

first part to see that N is a σ-algebra that contains F . Hence σ(F) ⊂ N , and hence f−1(F ) ∈M
for all F ∈ σ(F), which shows that f is M, σ(F) measurable.

4.1 Borel measurability of continuous functions

4.3 COROLLARY. Let (X,O) and (Y,U) be topological spaces, and let BXand BY be their

respective Borel σ-algebras. If f : X → Y is continuous, it is BX ,BY measurable

Proof. Since BY = σ(U), and since when f is continuous, for all U ∈ U ,

f−1(U) ∈ O ⊂ BX .

The assertion now follows from part (2) of the previous theorem.

The corollary shows that as far as Borel measurability is concerned, the class of measurable

functions is at least as large as the class of continuous functions. In this sense, the notion of a

measurable function constitutes a generalization of the notion of a continuous function.

5 Measurable functions with values in Rn

Let x = (x1, . . . , xn) denote a point in Rn. Let E denote the set of all subsets of Rn of the form

{x : a < xj < b }

for some a < b in Q and some j ∈ {!, . . . , n}. The σ-algebra σ(E) thus contains all sets of the form

{x : aj < xj < bj , j = 1, . . . , n }

where aj < bj and aj , bj ∈ Q for j = 1, . . . , n. Every open set in Rn is a countable union of such

sets, and hence BRn ⊂ σ(E). however, since each set in E is open, σ(E) ⊂ BRn . Thus,

BRn = σ(E) .
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5.1 THEOREM. Let (X,M) be a measurable space. Then a function f : X → Rn where

f(x) = (f1(s), . . . , fn(x))

is M,BRn measurable if and only if each fj is M,BR measurable.

Proof. Suppose that f is M,BRn measurable. Let pj : Rn → R be given by

pj((y1, . . . , yn)) = yj .

Then pj is continuous, and hence pj is BRn ,BR measurable. Now note that fj = pj ◦ f , and then

the measurability of fj is a consequence of Theorem 4.1.

Now suppose that each fj is measurable. Then for all a < b and j = 1, . . . , n,

f−1
j ((a, b)) = f (−1)({x : a < xj < b}) .

Since f−1
j ((a, b)) ∈ M by the measurability of fj , f

(−1)({x : a < xj < b}) ∈ M. But by the

remarks made at the beginning of this section, the set E of all sets {x : a < xj < b}, a, b ∈ Q and

j = 1, . . . , n, generates BRn . Now the measurability of f follows from Theorem 4.2

The usual identification of R2 and C2 identifies not only the sets but the topologies, so BC = BR2 .

It follows directly that for any measure space (X,M) a function f : X → C is M,BC measurable

if and only if the real and imaginary parts of f are M,BR measurable.

5.2 THEOREM. Let (X,M) be an arbitrary measure space, and let f, g : X → R be M,BR
measurable. Then both fg and f + g are M,BR.

Proof. Consider the function h : X → R2 defined by h(x) = (f(x), g(x)). Then by Theorem 5.1, h

is M,BR2 measurable. But Φ : (s, t) 7→ st and Ψ : (s, t) 7→ s + t are continuos from R2 to R, and

hence are BR2 ,BR measurable. Theorem 4.1 now implies that fg = Φ ◦ h and f + g = Ψ ◦ h are

M,BR measurable.

5.1 Measurability of pointwise limits

5.3 THEOREM. Let (X,M) be a measurable space. Let {gn}n∈N be a sequence of real valued

functions on X that are each M,BR measurable.

(1) The functions

f(x) = inf
n∈N

gn(x)

and

h(x) = sup
n∈N

gn(x)

are both M,BR measurable.

(2) The functions

lim sup
n→∞

gn and lim inf
n→∞

gn

are both measurable.
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(3) The set A on which limn→∞ gn(x) exists is M,BR measurable, and

g(x) := lim
n→∞

1A(x)gn(x)

is M,BR measurable. In particular, if limn→infty gn(x) exists for all x, then g(x) :=

limn→infty gn(x) is M,BR measurable.

Proof. For any a ∈ R, f(x) > a if and only if gn(x) > a for all n, and hence

f−1((a,∞)) =

∞⋂
n=1

g−1((a,∞)) ∈M

Since the σ-algebra generated by the sets of the form (a,∞) is BR, it follows from Theorem 4.2

that f−1(B) ∈ M for all B ∈ BR, and hence f is M,BR measurable. The proof for h is entirely

analogous.

For (2), note that

lim sup
n→∞

gn = inf
m>0

(
sup
n>m

gn(x)

)
and lim inf

n→∞
gn = sup

m>0

(
inf
n>m

gn(x)
)
,

so that (2) is an immediate consequence of (1).

For (3), Define ϕ(x) = lim supn→∞ gn(x) − lim infn→∞ gn(x) wich is a measurable function by

(2) and Theorem 5.2. Then since A = ϕ−1({0}), A ∈M. Finally, on A,

lim
n→∞

gn(x) = lim sup
n→∞

gn(x)

which is measurable, so

lim
n→∞

[1A(x)gn(x)] = 1A(x)[lim sup
n→∞

gn(x)]

is a product of measurable functions and hence is measurable by Theorem 5.2 once more.

The final part of the theorem says that for an arbitrary measure space (X,M), the class of

M,BR measurable real valued functions on X is closed under pointwise limits. This will play a

crucial role in proving limit theorems for integrals in what follows. Of course it is not true in

general that if (X,O) is a topological space, the set of real valued continuous functions on X is

closed under pointwise limits.

5.2 Egoroff’s Theorem

The following theorem shows an amazing property of pointwise limits of measurable real-valued

functions: On set of finite measure, pointwise convergence is “almost” uniform convergence:

5.4 THEOREM (Egoroff). Ket (X,M, µ) be a measure space with µ(X) < ∞. Let {fn}n∈N be

a sequence of real valued measurable functions on X, and suppose that f(x) = limn→∞ fn(x) exists

for all x ∈ X. Then for all ε > 0, there exists E ∈ N such that µ(E) < ε, and such that fn → f

uniformly on X\E.
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Proof. For m, k ∈ N, define Em,k by

Em,k =
∞⋃
n=m

{ x : |fn(x)− f(x)| > 1/k }|.

Note that for each k, Em+1,k ⊂ Em,k, and ∩∞n=1Em,k = ∅. Since µ(X) <∞, continuity from above

implies

lim
n→∞

µ(Em,k) = 0 .

Fix ε > 0, and choose nk so that µ(Enk
) < ε2−k. Let E =

⋃∞
k=1Enk,k, so that µ(E) < ε. Then, if

x ∈ Ec, x ∈ Ecnk,k
for all k, which means that |fn(x) − f(x)| < 1/k for all n ≥ nk, and hence the

convergence is uniform on the complement of E.

6 σ-algebras generated by algebras

The Borel σ-algebra of Rn is, by definition, generated by the set O of open sets in Rn. But it is

also generated by an algebra A, namely the algebra of half-open rectangles.

We describe this algebra first in the simplest case, n = 1. Let E consist of all sets of the form

(a, b] with a < b in R, all sets of the form (a,∞) with a in R, and finally R itself and the empty

set. These sets in E are the half-open intervals. The algebra A of half open intervals consists, by

definition of all finite disjoint unions of sets in E .

Let us check that A is indeed an algebra. For this purpose the following lemma is useful:

6.1 LEMMA. Let X be any set, and let F be a set of subsets of X such that for all E and F in

F , E\F is a finite disjoint union of elements of F . Then the set A of all finite disjoint union of

elements of F is an algebra.

Proof. We first claim that if E ∈ A and F ∈ F , then A\F ∈ A. To see this, note that every E ∈ A
has the form E =

⋃n
j=1Ej where E1, . . . , Em belong to F and are mutually disjoint and m ∈ N.

Then for any F ∈ F ,

E\F =
n⋃
j=1

Ej\F . (6.1)

Each Ej\F is a finite disjoint union of sets in F . Since for i 6= j Ei and Ej are disjoint, no subset

of Ei\F intersects and subset of Ej\F . Thus, E\F is a finite disjoint union of sets in F , and hence

belongs to A.

Next we claim that A is closed under differences. Let E,F ∈ A, and write F =
⋃n
j=1 Fj where

n ∈ N and F1, . . . , Fn are disjoint elements of F . Define E1 = E\F1 and then for j = 2, . . . , n,

recursively define

Ej = Ej−1\Fj .

Then

En = E\F .

By the first part, E1 ∈ A, and then by a simple induction, Ej ∈ A for each j.Thus E\F ∈ A, so A
is closed under differences.
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Finally, for E,F ∈ A,

E
⋃
F = E

⋃
(F\E) .

Since the union on the right is disjoint, and since the disjoint union of elements of A clearly belongs

to A, E
⋃
F ∈ A. Now by a simple induction, A is closed under finite unions. This concludes the

proof that A is an algebra.

We turn to a fundamntal example:

6.1 DEFINITION (Rational half open rectangles in Rn). A rational half open reactange in Rn

is a set R of the form

R = { (x1, . . . , xn) ∈ Rn : aj < xj ≤ bj for all j = 1, . . . , n }

where for each j = 1, dots, n, aj and bj are rational numbers such that −∞ ≤ aj ≤ bj ≤ ∞. Let

Rn denote the set of all rational half open reactanges in Rn. Note that ∅ and Rn belong to Rn.

6.2 LEMMA (Half open rectangle algebra in Rn). Let E,F ∈ Rn. Then E\F is a finite disjoint

union of sets in Rn.

Proof. Consider the case n = 1. Let (a, b] and (c, d] be bounded half open intervals. Then

(a, b]\(c, d] is one of the following:

∅ , (a, b], (d, b], (a, c]
⋃

(d, b], or (a, c] .

Likewise, (a,∞)\(c, d] is one of the following:

(a,∞), (d,∞), or (a, c]
⋃

(d,∞).

(a, b]\(c,∞) is one of the following:

∅ , (a, c], or (a, b] .

Finally,(a,∞)\(c,∞) is either ∅ or (a, c], and the cases if differences involving R or ∅ are trivial.

In the same way, one treats the cases n > 1; the only difference is notational. This is left as an

exercise.

Lemma 6.2 together with Lemma 6.1 tell us the that set of all finite disjoint unions of sets in Rn
is an algebra. Since the rational numbers are countable, and since countable unions of countable

sets are countable, it is clear that this algebra consist of countably many sets. This algebra plays a

fundamental role in the theory of measure and integration on Rn. We give it a name and establish

a standard notation for it:

6.2 DEFINITION (The rational half open rectangle algebra in Rn). The rational half open

rectangle algebra in Rn is the algebra An consisting of all finite disjoint unions of sets in Rn.

6.3 THEOREM (Open sets and An). Every open set in Rn is a countable disjoint union of sets

in Rn. In particular,

BRn = σ(An) .
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Proof. Let U be open in Rn. For every r > 0, and all x ∈ Rn, Br(x) contains a rectangle R in Rn
such that x ∈ R. For each x ∈ U , pick an Rx ∈ Rn such that x ∈ Rx ⊂ U . Let

J = { R ∈ Rn : R = Rx for some x ∈ U } .

Note that J is countable since Rn is countable. Arrange the sets in J into a sequence {Cm}m∈N.

Evidently, U =
⋃
m∈NCm.

Next, define B1 = C1, and for m ≥ 1 define

Bm+1 = Cm+1\

 m⋃
j=1

Cj

 .

Note that for each m,
⋃m
j=1Bj =

⋃m
j=1Cj , and hence Bm+1 = Cm+1\

(⋃m
j=1Bj

)
, which shows that

B`∩Bm = ∅ for ` 6= m. Since Cj ∈ An for all j, and since the algebra is closed under the operations

used to form Bm, Bm ∈ An for all m, and hence is a finite dijoint union of sets in Rn. Since a

countable union of finite unions is countable, we have that U is the disjoint union of countably

many rectangles. in Rn.

For the final part, observe the each set in Rn is a Borel set, and hence σ(An) ⊂ BRn . However,

what we have just proved shows that every open set U in Rn belongs to σ(An). Hence BRn ⊂
σ(A).

6.1 Monotone classes

The main result of this section is a theorem that characterizes σ algebra generated by algebras

including the whole set X as monotone classes:

6.3 DEFINITION (Monotone class). Let X be any set. A set S of subsets of X is a monotone

class in case:

(1) Whenever {An}n∈N is an increasing sequence of sets in S; i.e., An ⊂ An+1 for all n, then⋃
n∈N

An ∈ S .

(2) Whenever {An}n∈N is a decreasing sequence of sets in S; i.e., An+1 ⊂ An for all n, then⋂
n∈N

An ∈ S .

Just as with σ-algebra, if I is an arbitrary index set and for each α ∈ I, Sα is a monotone class,

then ∩α∈ISα is a monotone class, and since 2X is a monotone class, whenever E is any subset of

2X , the intersection of all monotone classes containing E is a monotone class containing E . The is

the smallest monotone class containing E .

6.4 LEMMA. if a set S ⊂ 2X is both an algebra and a monotone class, S is a σ-algebra.

Proof. Suppose that S ⊂ 2X is both an algebra and a monotone class. We must show that S is

closed under arbitrary countable unions.
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Let {An}n∈N be an arbitrary sequence of sets, and define Bn =
n⋃
j=1

An Then Bn ⊂ Bn+1 for all

n, and
∞⋃
n=1

An =
∞⋃
n=1

Bn .

That is, every countable union of sets {An}n∈N can be written as the union of an increasing nested

sequence of sets {Bn}n∈N , and since S an algebra, each Bn ∈ SS since Bn is a finite union of sets

in S, which is closed under finite unions.

Clearly every σ-algebra is a monotone class since σ-algebras are closed under arbitrary countable

unions and intersection, whether or not the sets are nested. However, monotone classes need not

be closed under complements for example, and so the notion of a monotone class is much less

restrictive than that of a σ-algebra: There are many monotone classes that are not σ-algebras. In

fact, while an infinite σ-algebra must always have cardinality at least as large as the continuum,

there are countably infinite monotone classes. Thus, there are subsets E of 2X for which the smallest

monotone class containing E is much smaller than σ(E). However, this does not occur when E is

an algebra continuing X.

6.5 THEOREM (Monotone Class Theorem). Let X be any set, and let A be any algebra of

subsets of A such that X ∈ A. Then the smallest monotone class containing A is also the smallest

σ-algebra containing A.

Proof. Let S denote the smallest monotone class containing A. By Lemma 6.4 it suffices to show

that S is an algebra. Since X ∈ A ⊂ §, this amounts to showing that S is closed under complements

and finite unions.

Define C by

C = { A ∈ S : Ac ∈ S} . (6.2)

Since A is closed under complementations and A ⊂ S, A ⊂ C. We shall show that C is a monotone

class. Since S is the smallest monotone class containing A, this will show that S ⊂ C, and since by

definition C ⊂ S, we shall have that C = S, which is precisely the statement that S is closed under

complementation.

To see that C is a monotone class, let {An}n∈N be an arbitrary sequence of sets in C. Notice

that

{An}n∈N is an increasing nested sequence ⇐⇒ {Acn}n∈N is a decreasing nested sequence

Thus, if {An}n∈N is an increasing nested sequence in C ⊂ S,( ∞⋃
n=1

An

)c
=

∞⋃
n=1

Acn ∈ S

since {Acn}n∈N is a decreasing nested sequence in C ⊂ S, and S is a monotone class. Thus( ∞⋃
n=1

An

)c
∈ C. An analogous argument shows that whenever {An}n∈N is a decreasing nested

sequence in C, then

( ∞⋂
n=1

An

)c
∈ C, and hence C is a monotone class.
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It remains to show that for all A,B ∈ S, A
⋃
B ∈ S. This is done in two steps. First, fix A ∈ S.

Define CA by

CA = { B ∈ S : A
⋃
B ∈ S} . (6.3)

Since A ∈ A, which is an algebra contained in S, A ⊂ CA. As above, if we show that CA is a

monotone class, it will follow that CA = S. To do this, suppose that {Bn}n∈N is an increasing

nested sequence in CA ⊂ S. Then {A
⋃
Bn}n∈N is an increasing nested sequence, and by the

definition of CA, each A
⋃
Bn ∈ S for all n. Then

A
⋃( ∞⋃

n=1

Bn

)
=
∞⋃
n=1

A
⋃
Bn ∈ S

since S is a monotone class. Thus, CA is closed under countable increasing unions. An exactly

analogous argument shows that CA is closed under countable decreasing intersections, and hence

CA is a monotone class. As noted above, this means that CA = S, and hence A
⋃
B ∈ S for all

A ∈ A and all B ∈ S. Switching the roles of A and B, this shows that A
⋃
B ∈ S for arbitrary

A ∈ S and B ∈ A.

Now fix A ∈ S and define CA as before, but this time with A ∈ S. By what we have just proved,

it is still the case A ⊂ CA. The argument made just above then shows that CA is a monotone class,

and hence that CA = S. This then shows that A
⋃
B ∈ S for all A,B ∈ S, and so S is closed under

finite unions.

6.2 Approximation of measurable sets

6.6 THEOREM. Let (X,M, µ) be a measure space, whereM = σ(A) and A is an algebra of sets

in X. Then for all ε > 0 and all E ∈M there is an A ∈ A such that µ(A∆E) < ε.

Proof. Let S be the set of sets in M that have such an approximation. That is, E ∈ S if and only

if for all ε > 0, there exists A ∈ A such that µ(A∆E) < ε. Clearly A ∈ S since we can approximate

by A itself: µ(A∆A) = 0. If S is a monotone class, it follows from the Monotone Class Theorem

that SS contains a σ-algebra containing A, and hence contains all of M. Thus, it suffices to show

that S is a monotone class,

Let {En}n∈N be an increasing nested sequence in S. Let E =
⋃∞
n=1En. fix ε > 0. We must

find A ∈ A such that µ(A∆E) < ε. By continuity from below, and the fact that µ(E) <∞, there

exists n such that µ(En) > µ(E)− ε/2. Since En ∈ S, there exists A ∈ A so that µ(En∆A) < ε/2

But then since

E∆A ⊂ (E∆En)
⋃

(En∆A) ,

µ(E∆A) < ε. Thus, E ∈ S, and S is closed under unions of increasing nested sequences sets.

The exact same argument using continuity from above in place of continuity from below (and

thus using the fact that µ(X) <∞ in one more way) shows that S is closed under intersections of

decreasing nested sequences of sets. Thus, S is a monotone class.

This theorem tells us something very useful: If we start from an algebra of sets A, and then

extend this to the σ-algebra M = σ(A), we may not have a very concrete description of what is

in – or not in – M. But if we equip M with any finite measure, then, up to a set of arbitrarily

small measure, and set E ∈ M is “well approximated” by sets in A in the sense that we can find
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an A ∈ A that makes µ(E∆A) arbitrarily small. Thus, the extension from A to M = σ(A) does

not “drag in” strange sets that have nothing much to do with sets in A.

7 Exercises

1. Let (X, d) be a separable metric space. Let f : X × R → R be a function such that for each

t ∈ R, x 7→ f(x, t) is continuous on X and such that for each x ∈ X, 7→ f(x, t) is measurable.

Define

g(x) =

∫
{f(x, t) t ∈ R} ,

so that g is a functions from X to [−∞,∞). Show that g is a Borel measurable function.


