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1 Measures, premeasures and outer measures

Up until this point in the course, we have not proved that any really interesting countably additive

measures exist. We have asserted the existence of Lebesgue measure, but we have not actually

constructed it. In this section of the notes, we finally turn to the problem of constructing a large

class of countably additive measures including Lebesgue measure.

The starting point will be a premeasure on some algebra A of subsets of a set X.

Definition (premeasure) Let A be an algebra of subsets of X. A premeasure on A is a function

m : A → [0,∞] such that:

(1) m(∅) = 0

(2) If A1, . . . , An is any finite collection of disjoint sets in A,

m

 n⋃
j=1

Aj

 =

n∑
j=1

m(Aj) .

For example, if X = R, we have seen that the set of all finite disjoint unions of half open

intervals, i.e., subsets of R of the form {x ∈ R : a < x ≤ b} for some a < b ∈ [−∞,∞], is an

1 c© 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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algebra. Every A ∈ A can be written as a disjoint union of half open intervals in infinitely many

ways, but there is exactly one representation of the following form:

A =
n⋃
j=1

(a,bj ] and −∞ ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ ∞ . (1.1)

We then define the Lebesgue premeasure mL on the half open interval algebra A by

mL(A) =
∞∑
j=1

(bj − aj) .

It is easy to see that this is a premeasue; the proof is left to the reader.

Our goal is to extend a premeasure m on A to a countably additive measure µ on σ(A), the

σ-algebra generated by A. Since every open set in R is a countable union of half open intervals, and

thus a countable union of elements of A, it follows that BR ⊂ σ(A). Also each half open interval is

a Borel set in R. It follows that σ(A) = BR. Therefore, once we succeed (as we shall) in our goal

for this example, we shall have constructed a countably additive extension of the “sum of lengths

of intervals” premeasure to the Borel σ-algebra of R.

The construction of the countably additive measure µL on σ(A) that extends mL on A relies

on a preliminary construction of an outer measure, which is a set function defined on the class of

all subsets of X.

1.1 DEFINITION (outer measure). An outer measure µ∗ on a set X is a set function µ∗ : 2X →
[0,∞] such that

(1) µ∗(∅) = 0

(2) (Monotonicity) If B1 ⊂ B2, then µ∗(B1) ≤ µ∗(B2).

(3) (Subadditivity) If {Bj} is any sequence of subsets of X, then

µ∗

 ∞⋃
j=1

Bj

 ≤ ∞∑
j=1

µ∗(Bj) .

1.2 Remark. Consider a sequence of sets {Bj} such that Bj = ∅ for all j ≥ n, Then by (1) and

(3), we have that

µ∗

 n⋃
j=1

Bj

 ≤ n∑
j=1

µ∗(Bj) .

Thus, outer measures are finitely sub-additive.

The main theorem on outer measures is Caratheodory’s Theorem:

1.3 THEOREM (Caratheodory’s Theorem). Let µ∗ be an outer measure on X. Let M be the

class of subsets X defined as follows:

M = { A ⊂ X : for all E ⊂ X, µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E) } . (1.2)

Then M is a σ-algebra, and the restriction of µ∗ to M is a countably additive measure on M.
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1.4 Remark. Since µ∗ is an outer measure, and hence subadditive, for all E,A ⊂ X,

µ∗(E) ≤ µ∗(A ∩ E) + µ∗(Ac ∩ E) .

Therefore, to show that A ∈M, it suffices to show that

µ∗(E) ≥ µ∗(A ∩ E) + µ∗(Ac ∩ E) for all E ⊂ X . (1.3)

Proof. We carry out the proof in several steps.

Step 1.: We show that M is an algebra. Every σ-algebra is an algebra, so we must show that

M is an algebra. It is obviously closed under taking of complements, since the definition (1.2) is

symmetric in A and Ac. Thus, to showM is an algebra, it suffices to show thatM is closed under

finite unions. Then by induction, it suffices to show that if A,B ∈M, then A ∪B ∈M.

Let A,B ∈M, and let E ⊂ X. Then since A ∈M,

µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E) .

Let F := A∩E. Since B ∈M, µ∗(F ) = µ∗(B ∩F ) +µ∗(Bc ∩F ). Likewise, let G := Ac ∩E. Then

since B ∈M, µ∗(G) = µ∗(B ∩G) + µ∗(Bc ∩G).

Combining these three identities we have

µ∗(E) = µ∗(Ac ∩Bc ∩ E) + µ∗(A ∩Bc ∩ E) + µ∗(Ac ∩B ∩ E) + µ∗(A ∩B ∩ E)

= µ∗((A ∪B)c ∩ E) + [µ∗(A ∩Bc ∩ E) + µ∗(Ac ∩B ∩ E) + µ∗(A ∩B ∩ E)] . (1.4)

Now,

(A ∪B) ∩ E = (A ∩Bc ∩ E) ∪ (Ac ∩B ∩ E) ∪ (A ∩B ∩ E) ,

and thus, by the subadditivity property of outer measures

µ∗((A ∪B) ∩ E) ≤ µ∗(A ∩Bc ∩ E) + µ∗(Ac ∩B ∩ E) + µ∗(A ∩B ∩ E) .

Therefore, (1.4) reduces to

µ∗(E) ≥ µ∗((A ∪B) ∩ E) + µ∗((A ∪B)c ∩ E) . (1.5)

By Remark 1.4, A ∪B ∈M. Thus, M is an algebra.

Step 2: We show that µ∗ is finitely additive on M, and somewhat more than that. Let A,B ∈ M
with A ∩B = ∅. Then since A ∈M, and using E ∩ (A ∪B) in place of E in (1.2), we have that

µ∗(E ∩ (A ∪B)) = µ∗((E ∩ (A ∪B)) ∩A)) + µ∗((E ∩ (A ∪B)) ∩Ac))
= µ∗(E ∩A) + µ∗(E ∩B) .

That is for all A ∈M, and all sets E,B with B ∩A = ∅,

µ∗(E ∩ (A ∪B)) = µ∗(E ∩A) + µ∗(E ∩B) . (1.6)

In particular, taking E = X, we see that µ∗ is finitely additive on M.

Step 3: We show that M is a σ-algebra. Since M is an algebra, it suffices to show that whenever

{Aj} is a sequence of disjoint sets in M, then A := ∪∞j=1Aj ∈M.
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Let E ⊂ X and let {Aj} be a sequence of disjoint sets inM, and let A := ∪∞j=1Aj ∈M. Define

Bn :=
n⋃
j=1

Aj .

Then since M is an algebra, Bn ∈M, and so for all E ⊂ X,

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bc
n) .

Since Bc
n ⊂ Ac, the monotonicity of outer measure implies that µ∗(E ∩Bc

n) ≤ µ∗(E ∩Ac). Thus,

µ∗(E) ≥ µ∗(E ∩Bn) + µ∗(E ∩Ac) . (1.7)

Next, by a simple induction using (1.6), µ∗(E ∩Bn) =

n∑
j=1

µ∗(E ∩Aj). Using this in (1.7), we

have

µ∗(E) ≥
n∑
j=1

µ∗(E ∩Aj) + µ∗(E ∩Ac) .

Taking n to infinity, and using the subadditivity of µ∗ in the last step, we have

µ∗(E) ≥
∞∑
j=1

µ∗(E ∩Aj) + µ∗(E ∩Ac) ≥ µ∗(E ∩A) + µ∗(E ∩Ac) ≥ µ∗(E) . (1.8)

This shows that A ∈M, and thus M is a σ-algebra.

Step 4: Keeping the notation of the previous step, note that all of the inequalities in (1.8) must be

equalities for all E ⊂ X. Choosing E = A, we obtain

µ(A) =
∞∑
j=1

µ∗(Aj) ,

which shows that µ∗ is countably additive on A.

1.5 DEFINITION (Caratheodory σ-algebra). Let µ∗ be an outer measure on X. Then the σ-

algebraM specified by (1.2) is called the Caratheodory σ-algebra determined by the outer measure

µ∗.

The next theorem explains how to construct an outer measure out of a premeasure.

1.6 THEOREM (Outer measures from premeasures). Let A be an algebra of subsets of X, with

X ∈ A. Let m be a premeasure on A. Then for every set B ⊂ X, define µ∗(B) by

µ∗(B) = inf


∞∑
j=1

m(Aj) : E ⊂
∞⋃
j=1

Aj and Aj ∈ A for all j

 .

Then µ∗ is an outer measure on X. Moreover, if M is the σ-algebra of measurable sets determined

by µ∗ as in Caratheodory’s Theorem, then A ⊂M, and for all A ∈ A,

µ∗(A) ≤ m(A) . (1.9)
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Proof. Taking Aj = ∅ for each j, we get a countable cover of ∅ for which
∑∞

j=1m(Aj) =∑∞
j=1m(∅) = 0. Thus, µ∗(∅) = 0. This shows that property (1) in Definition 1.1 is verified.

Second, if B1 ⊂ B2, any countable cover of B2 is a countable cover of B1. Hence condition (2)

of the definition is verified.

Third, to show that condition (3) is satisfied, let {Bj} be any sequence of sets on X. We must

show that

µ∗

 ∞⋃
j=1

Bj

 ≤ ∞∑
j=1

µ∗(Bj) . (1.10)

To do this, fix ε > 0. For each j, find a countable cover of Bj by a sequence of elements of A,

{Aj,k}k∈N, such that

µ∗(Bj) +
ε

2j
≥
∞∑
k=1

m(Aj,k) .

But clearly
∞⋃
j=1

Bj ⊂
∞⋃

j,k=1

Aj,k

and
∞∑

j,k=1

m(Aj,k) ≤
∞∑
j=1

(
µ∗(Bj) +

ε

2j

)
=

∞∑
j=1

µ∗(Bj) + ε .

Since ε > 0 is arbitrary, (1.10) is proved. Thus, µ∗ is an outer measure.

To prove (1.9), consider the obvious countable cover of A ∈ M in which take A1 = A and for

j ≥ 2, take Aj = ∅. For this cover, it is clear that
∑∞

j=1m(Aj) = m(A). The infimum cannot be

larger than this.

It remains to show that A ⊂M. Let A ∈ A. We must show that for each E ⊂ X,

µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E) . (1.11)

Fix ε > 0. Let {Aj} be a sequence of sets in A such that E ⊂ ∪∞j=1Aj , and such that

µ∗(E) + ε ≥
∞∑
j=1

m(Aj) .

Since m is additive on A, m(Aj) = m(Aj ∩A) +m(Aj ∩Ac), and hence

µ∗(E) + ε ≥
∞∑
j=1

m(Aj)

=

∞∑
j=1

m(Aj ∩A) +

∞∑
j=1

m(Aj ∩Ac)

≥
∞∑
j=1

µ∗(Aj ∩A) +

∞∑
j=1

µ∗(Aj ∩Ac)

≥ µ∗(E ∩A) + µ∗(E ∩Ac)

where we have used (1.9) for the first inequality, and subadditivity of µ∗ for the second. Since

ε > 0 is arbitrary, this proves that µ∗(E) ≥ µ∗(E ∩A) +µ∗(E ∩Ac). Then by Remark 1.4, we have

proved (1.11).
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There is one more point to be dealt with: At the present level of generality, we only have the

inequality (1.9) relating m and µ∗. We would like to have µ∗ be an extension of m; i.e.,

µ∗(A) = m(A)

for all A ∈ A. But as it stands, it might be that the following happens: For each A ∈ A, and each

ε > 0, one might find a countable cover of A by a sequence {Aj} in A with
∑∞

j=1m(Aj) < ε. If

this were to happen, then we would have µ∗(A) = 0 for all A ∈ A. This in turn would imply that

µ∗(E) = 0 for all E ⊂ X, and then M would be 2X , and all of our constructions would be trivial.

This can happen.

1.7 EXAMPLE. Let A be the algebra of half open intervals on R. Let F be the function on R
defined by

F (x) =

{
1 x > 0

0 x ≤ 0 .
.

Define m((a, b]) = F (b)−F (a), and extend m to M by making it finitely additive. It is easy to see

that this procedure gives a premeasure on A for any monotone non-decreasing function F . However,

with the choice we have made, the outer measure associated to this premeasure is identically zero.

To see this, note that we can cover (−1, 1] with half open intervals as follows:

(−1, 1] = (−1, 0]
⋃ ∞⋃

j=2

(
1

j
,

1

j − 1

] .

Then m((−1, 0]) = F (0) − F (−1) = 0 − 0 = 0, and for each j ≥ 2, m(1/j, 1/(j − 1)] = F (1/j) −
F (1/(j − 1)) = 1 − 1 = 0. Thus µ∗(−1, 1]) = 0. The same argument applies to show that

µ∗((a, b]) = 0 for any half open interval containing 0, and evidently µ∗((a, b]) = 0 for any half open

interval not containing 0. This implies that µ∗(A) = 0 for all A ∈ A.

To avoid the sort of disaster that arose in the example just above, we need to work with well

behaved premeasures.

1.8 DEFINITION (continuity at the empty set). Let A be an algebra of subsets of X, and let

m be a premeasure on A. Then m is continuous at the empty set if and only if whenever {Aj} is a

decreasing sequence of sets in A such that m(A1) <∞, then

∞⋂
j=1

Aj = ∅ ⇒ lim
j→∞

m(Aj) = 0 .

1.9 DEFINITION (finite, σ-finite and semifinite). Let A be an algebra of subsets of X, and let

m be a premeasure on A. Then m is finite if and only if m(X) < ∞. It is σ-finite if there is a

sequence of sets {An}n∈N in A such that m(An) <∞ for all n and ∪∞n=1An = X. It is semifinite if

and only if whenever A ∈ A has m(A) = ∞, for each r > 0, there exists B ∈ A such that B ⊂ A

and r < m(B) <∞.

Since for any countably additive finite measure µ defined on a σ-algebra including A,

∞⋂
j=1

Aj = ∅ ⇒ lim
j→∞

µ(Aj) = 0 ,
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our premeasure m must be continuous at the empty set if we are to have m(A) = µ∗(A) for all

A ∈ A. The following theorem says that this necessary condition, together with semifiniteness, is

also sufficient.

1.10 THEOREM (Extensions of premeasures). Let A be an algebra of subsets of X. Let m be a

semifinite premeasure on A that is continuous at the empty set. Let µ∗ be the outer measure on X

determined by m. Then for all A ∈ A,

µ∗(A) = m(A) ,

so that µ∗ extends m

Proof. We need only show that

µ∗(A) ≥ m(A) for all A ∈ A such that m(A) <∞ . (1.12)

Then by the semifiniteness property, whenever m(A) =∞, for all r > 0, there is a B ⊂ A, B ∈ A
with r < m(B) <∞. By (1.12), µ∗(B) ≥ m(B) > r and by monotonicity of µ∗, µ∗(A) > µ∗(B) > r.

Since r > 0 is arbitrary, µ∗(A) =∞.

To show (1.12), pick any ε > 0, and pick a sequence {Aj}j∈N in A with A ⊂ ∪∞j=1Aj and

µ∗(A) + ε >
∞∑
j=1

m(Aj) .

Define sequences of sets {Bj}j∈N and {Cj}j∈N in A as follows: For j = 1 define B1 = A ∩A1. For

j ≥ 2, define

Bj = (A ∩Aj)\(B1 ∪ · · · ∪Bj−1) .

Then {Bj}j∈N is a disjoint sequence in A, and ∪∞j=1Bj = A. Define Cj by

Cj = A ∩ (B1 ∪ · · · ∪Bj)c .

Then for each j, Cj ∈ A, and

∞⋂
j=1

Cj = ∅. Moreover, for each j,

A = B1 ∪B2 ∪ · · ·Bj ∪ Cj ,

and the right hand side is a disjoint union of sets in A. Therefore, since m is additive on A.

m(A) =

n∑
j=1

m(Bj) +m(Cj) .

Then, since m is continuous at the empty set, limj→∞m(Cj) = 0, and so

m(A) =

∞∑
j=1

m(Bj) ≤
∞∑
j=1

m(Aj) < µ∗(A) + ε .

Since ε > 0 is arbitrary, we have the desired result.
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Our next theorem states that when a premeasure m is σ-finite and continuous at the empty set,

the extension to a measure on σ(A) that we have just constructed is the only such extension.

1.11 THEOREM. Let m be a σ-finite premeasure on an algebra A. Then if µ and ν are two

measures such that

µ(A) = ν(A) (1.13)

for all A ∈ A, then (1.13) is valid for all A ∈ σ(A). In particular, if m is continuous at the empty

set, the countably additive extension of m to σ(A) is the unique extension of m to σ(A).

Proof. Let B ∈ A have finite measure. By continuity from below as the σ-finiteness of m, and

hence any extension of m to σ(A), it suffices to show that whenever B ∈ A has m(B) <∞,

µ(B ∩ E) = ν(B ∩ E) . (1.14)

for all E ∈ σ(A). Let S be the sets of all sets E ∈M such that (1.14) is true. Then S is a monotone

class by continuity from below, and continuity from above together with µ(B) = ν(B) <∞. Since

by definition A ⊂ S, S = σ(A).

2 Complete measure spaces and completion

Let m be a premeasure on an algebra A of subsets of X that is semifinite and continuous at the

empty set. The countably additive measure µ extending m that we obtain from Caratheodory’s

Theorem is defined on a σ-algebra M, the Caratheodory σ-algebra of µ∗, that contains σ(A). As

we shall see, it may be strictly larger. The measure space that we obtain form Caratheodory’s

construction has the property of being complete: it includes all subsets of sets of measure zero:

2.1 DEFINITION (Complete measure space). A measure space (X,M, µ) is complete in case

whenever E ⊂ F , and F ∈M with µ(F ) = 0, then E ∈M.

2.2 THEOREM (Completeness Theorem). Let µ∗ be an outer measure on a set X. Let M be

the corresponding Caratheodory σ algebra. Let N denote the set of all null sets in X. That is

N = { B ∈ X : µ∗(B) = 0 }

Then any subset of a null set is a null set, and

N ⊂M .

Proof. Suppose that µ∗(B) = 0. Then for any E ⊂ X,

µ∗(E ∩B) + µ∗(E ∩Bc) ≤ µ∗(B) + µ∗(E) = µ∗(E) .

This follows from property (2) in Definition 1.1 since E ∩ B ⊂ B and E ∩ Bc ⊂ E. Thus, by

Remark 1.4, B ∈M.

The next thoerem says that any measure space may be completed in a simple and cannonical

way:
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2.3 THEOREM. Let (X,M, µ) be a measure space. Let N denote the set of all subsets of sets

of µ measure zero. That is, E ∈ N if and only if there is an f ∈ M with E ⊂ F and µ(F ) = 0.

Define M = {G ∪ E : G ∈M , E ∈ N}. Then

(1) M is a σ-algebra.

(2) If G1 ∪ E1 = G2 ∪ E2 with G1, G2 ∈ M, and E1, E2 ∈ N , then µ(G1) = µ(G2), and hence we

may define a function µ on M by

µ(G ∪ E) = µ(G) for all G ∈M , E ∈ N .

This function µ is a coiuntably additive measure on M.

(3) µ is the unique extension of µ from M to M.

Proof. The proof of (1) is left as an exercise. Under the hypothesis of (2), i G1\G2 ⊂ E2, and hence

G1\G2 ∈ M ∩ N ; i.e., µ(G1\G2) = 0. Hence µ(G1) ≤ µ(G2). By the symmetry, µ(G2) ≤ µ(G1).

Hence µ(G1) = µ(G2). Therefore, µ is well defined. Obviously µ(∅) = 0, and if {Gn ∪ En}n∈N is a

sequence of mutually disjoint sets in M, with each Gn ∈M and each En inN , then

∞⋃
n=1

Gn ∪ En =

( ∞⋃
n=1

Gn

)
∪

( ∞⋃
n=1

En

)
.

Since ∪∞n=1En is contained in a countable union of sets of µ-measure zero, ∪∞n=1En ∈ N . Thus,

µ

( ∞⋃
n=1

Gn ∪ En

)
= µ

( ∞⋃
n=1

Gn

)
=

∞∑
n=1

µ(Gn) =

∞∑
n=1

µ(Gn ∪ En) .

This proves the countable additivity of µ. The proof of (3) is also left as an exercise.

2.4 DEFINITION (Completion of a measure space). Let (X,M, µ) be an measure space. Let

(X,M, µ) be the measure space defined in Theorem 2.3 starting from (X,M, µ). Then (X,M, µ)

is the completion of (X,M, µ).

Now, let A be an algebra, and let m be a semifinite premeasure on A that is continuous at the

empty set. Let m∗ be the corresponding outer measure given by

m∗(E) = inf

{ ∞∑
n=1

m(An) : {An}n∈N ∈ A and E ⊂
∞⋃
n=1

An

}
, (2.1)

Let µ be the restriction of m∗ to σ(A), and let ν be the resstriction of m∗ to the Caratheodory

σ-algebra of m∗, which we shall denote by M. Then (X,σ(A), µ) and (X,M, ν) are two measure

spaces such that σ(A) ⊂ M and ν|σ(A) = µ. The measure space (X,M, ν) is complete by The-

orem 2.2. What is the relation between (X,M, ν) and the completion of (X,σ(A), µ)? At least

when m is σ-finite, they are the same, as we shall now show. To do this, we introduce another

outer measure which, in this context, turns out to coincide wtih m∗.

Let (X,M, µ) be any semifinite measure space, not necessarily complere. Since M is a σ-

algebra, it is well-qualified as an algebra. Likewise, since µ is a countably additive measure on M,

it is certainly a premeasure on M. Let µ∗ be the associated outer measure:

µ∗(E) = inf

{ ∞∑
n=1

µ(An) : {An}n∈N ⊂M and E ⊂
∞⋃
n=1

An

}
. (2.2)
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Define Mµ to be the Caratheodory σ-algebra of µ∗. Then by Theorem 1.6, M ⊂ Mµ. We

refer to Mµ as the σ-algebra of µ-measurable sets. Since continuity at the empty set is a direct

consequnce of continuity from above, and hence the countable additivity of µ, µ is both semifinite

and continuous at the empty set. Thus, by Theorem 1.10, µ∗(A) = µ(A) for all A ∈ M. Define µ

to be the restriction of µ∗ to Mµ. Then by Theorem 2.2, µ is a complete measure that extends µ;

i.e., µ(A) = µ(A) for all A ∈M.

There is an alternate formula for the outer measure µ∗:

2.5 LEMMA. Let (X,M, µ) be any semifinite measure space. Let µ∗ be he outer measure on X

defeined by (2.2). Then

µ∗(E) = inf {µ(A) : E ⊂ A and A ∈M } . (2.3)

This outer measure has the property that µ∗(A) = µ(A) for all A ∈ M, and if ν∗ is any other

outermeasure such that ν∗(A) = µ(A) for all A ∈M, then µ∗ ≥ ν∗.

Proof. Fix any E ⊂ X and ε > 0. By definition, there exists a sequence {An}n∈N ⊂ M such

that µ∗(E) + ε ≥
∞∑
n=1

µ(An). Then, following a by now standard construction, we know that there

exists a seuqence {Bn}n∈N ⊂M of disjoint subsets such that for each n, ∪nj=1Bj = ∪nj=1Aj . Define

A = ∪∞n=1An., which is the same as ∪∞n=1Bn. Then

µ(A) = µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An)

and of course E ⊂
∞⋃
j=1

Bj =

∞⋃
j=1

Aj = A ∈M. Since ε > 0 is arbitrary, this shows that

µ∗(E) ≥ inf {µ(A) : E ⊂ A and A ∈M } .

Then for any A ∈ M with E ⊂ A, consideration of the trivial covering of E by {An}n∈N where

A1 = A and Aj = ∅ for j ≥ 2 shows the oppositie inequality, and this proves (2.3).

Next, we have already seen that µ∗ extends µ. Let ν∗ be any outer measure that extends

µ. Let E ⊂ X, and ε > 0. Then, by definition, there is a set A ∈ M, E ⊂ A such that

µ∗(E) + ε ≥ µ(A) = ν∗(A). Then by monotonicity of ν∗, we have µ∗(E) + ε ≥ ν∗(E). Since ε > 0

is arbitraray, this proves µ∗(E) ≥ ν∗(E).

2.6 LEMMA. Let A be any algebra of subsets of A that includes X. Let m be a σ-finite premeasure

on A that is continuous at the empty set. Let m∗ be the outermeasure defined by (2.1). Let µ be

the restriction of m∗ to σ(A). Let µ∗ be the outer measure defined by in terms of µ by (2.2) with

M = σ(A). Then m∗ = µ∗.

Proof. Since µ∗ extends µ, µ∗(B) = µ(B) for all B ∈ σ(A). Since µ is, by defnition, the restriction

of m∗ to σ(A), we also have that m∗(B) = µ(B) for all B ∈ σ(A). Hence µ∗(B) = m∗(B) for all

B ∈ σ(A).

It now follows from the final part of Lemma 2.5 that m∗ ≤ µ∗. However, since in the definition

of m∗ we only consider coverings of a set E by countale unions of sets in A, while in the definition

of µ∗, we consider the wider class of covering of E by countale unions of sets in σ(A), is is clear

that µ∗ ≤ m∗. Hence µ∗ = m∗.
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2.7 THEOREM (Completion of a σ-finite measure). (X,M, µ) be any σ-finite measure space.

Let µ∗ be the outer measure given by (2.2), let Mµ be its Caratheodory σ-algebra. Then Then for

all F ∈Mµ, there exist sets E and G ∈M such that

E ⊂ F ⊂ G and µ(G\F ) = 0 .

In particular, every E in Mµ is the disjoint union of a set F in M and a set that is contained in

set of µ-measure zero.

Proof. We claim that for all E ∈ Mµ, there exists A ∈ M such that E ⊂ A and µ(E) = µ(A).

If µ(E) = ∞, then we may take A = X. Suppose that µ(E) < ∞. Let µ∗ be the outer measure

on X defeined by (??). We have seen that µ∗ is also given by (2.3). Then for each n ∈ N, there

exists An ∈ M with E ⊂ An and µ(E) + 1/n ≥ µ(An). Let A = ∩∞n=1An. Define Bn = ∩nj=1Aj .

Then {Bn}n∈N is a decreasing sequence of sets in M with E ⊂ Bn for all n, ∩∞n=1Bn = A,

and µ(E) + 1/n ≥ µ(Bn) for all n. By continuity from above, µ(A) = limn→∞ µ(Bn). Hence

µ(E) ≥ µ(A). Since E ⊂ A, and µ(A) = µ(A), the opposite inequality is trivially true. Hence

µ(E) = µ(A)

Now suppose that µ(X) < ∞. For any E ∈ Mµ, let G ∈ M be such that E ⊂ G and

µ(E) = µ(G). Let B ∈ M be such that Ec ⊂ B and µ(Ec) = µ(B). Then Bc ⊂ E, and Bc ∈ M.

Since µ(X) <∞,

µ(Bc) = µ(X)− µ(B) = µ(X)− µ(Ec) = µ(E) .

Then defining F = Bc, we have F ⊂ E ⊂ G with µ(F ) = µ(G) = µ(E), which shows the existence

of the equired sets in case µ(X) <∞.

In case µ is σ-finite. let X −∪∞n=1An express X as the disjoint union of countably many sets in

M, each with finite measure. Applying the above to E ∩An, for each n, we find sets Fn, Gn inM
and contianed in An such that Fn ⊂ E ∩ An ⊂ Gn and µ(Gn\Fn) = 0. Let F = ∪∞n=1Fn and let

G = ∪∞n=1Gn. Then

G\F =
∞⋃
n=1

(Gn\Fn)

expresses G\F as a countable union of sets of measure zero, and hence µ(G\F ) = 0.

2.8 THEOREM. Let A be any algebra of subsets of A that includes X. Let m be a σ-finite

premeasure on A that is continuous at the empty set. Let m∗ be the outer measure defined by (2.1).

Let µ be the restriction of m∗ to σ(A). Let ν be the restriction of m∗ to ithe Caratheodory σ-algebra

M of m∗. Then (X,M, ν) is the completion of (X,σ(A), µ). In particular, every set in M is the

disjoint union of a set in σ(A) and a subset of a set of µ-measure zero.

Proof. By Lemma2.8, m∗ = µ∗, so M is the Caratheodory σ algebra of µ∗. It then follows from

Theorem 2.7 that every set F ∈ M is the union (disjoint, even) of a set E ∈ σ(A) and a set H

that is contained in a set of µ-measure zero. Since µ and ν agree on σ(A), any set of µ-measure

zero is also a set of ν-measure zero, and, since (X,M, ν) is complete by Theorem 2.2, H inM and

ν(H) = 0. Hence

ν(F ) = ν(E ∪H) = ν(E) + ν(H) = ν(E) = µ(E) .

This shows that ν = µ.
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3 Lebesgue-Stieltjes measures on R

We are now ready to construct Lebesgue measure on R. At the same time we shall construct a

more general class of measures on R. Our starting point is a premeasure on a. a subalgebra of the

half open interval algebra. Recall that The dyadic rational numbers in (0, 1] are the numbers of the

form j2−n, n ≥ 0, j ∈ Z.

In the rest of this section, let A be the dyadic half-open algebra, which is the algebra consisting

of all finite disjoint unions of intervals of the form (a, b] where a ≤ b are dyadic rational numbers. It

is easy to verify that this is an algebra. The length of such an interval is, of course, b−a. Moreover,

since the dyadic rational numbers are dense in R, it is easy to show that every open set in R is a

countable union of dyadic half open intervals and of course each such interval is a Borel set. Thus,

σ(A) = BR, the Borel σ-algebra of R.

We begin with some definitions and terminology that will be used only in this section. If (a, b]

is any dyadic rational interval with finite endpoints, we may write

(a, b] =

(
j

2n
,
k

2n

]
,

with the same power n in the denominator, and there is a unique least power of n ≥ 0 for which we

can do this. We call this integer n, which can be negative, the rank of the interval. For half open

dyadic intervals of the form (−∞, a] or (a,∞] with a a dyadic rational. Let n be the least integer

so that a = k2−n for some k ∈ Z, we define the rank of such an interval to be n.

An elementary dyadic rational interval is one of the form(
i

2n
,
i+ 1

2n

]
for some i ∈ Z, and some non-negative integer n. Since either i or i+ 1 is odd, the rank of such an

interval is n.

Next, if A ∈ A, then A has a unique decomposition

A = ∪nj=1(a,bj ] where −∞ ≤ a1 < b1 < a2 < b2 < · · · < am < bm ≤ ∞ . (3.1)

we define the rank of A to be the maximum of the ranks of the intervals (aj , bj ]. Now observe that

every finite dyadic half open interval of rank n0 can be written as a disjoint union of elementary

dyadic half open intervals of rank n for any n ≥ n0:(
k

2n0
,
`

2n0

]
=

(`−k)2n−n0⋃
j=1

(
k2n−n0 + j − 1

2n
,
k2n−n0 + j

2n

]
, (3.2)

and making the obvious change in the indexing, this applies also to infinite dyadic half open interval

of rank n0. Then, if A ∈ A has rank n0, and is given by (3.1) where each (aj , bj ] is a dyadic half

open interval of rank n0 with finite endpoints,

(aj , bj ] =
⋃
{ elementary dyadic half open intervals I of rank n : I ∩ (aj , bj ] 6= ∅ } , (3.3)

since this follows from (3.2) applied to (aj , bj ].
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3.1 LEMMA (Inclusion–exclusion property). Let A be any set in the dyadic half open interval

algebra. Then there is a finite value of n0 so that if I is any elementary dyadic interval of rank

n > n0, then either

I ⊂ A or else I ∩A = ∅ .

Proof. Let n0 be the rank of A. By the remarks made above, for each n ≥ n0, we can write A as

a disjoint union of the elementary dyadic rationals of rank n, and to each of these (3.3) applies so

that

A =
⋃
{ elementary dyadic half open intervals I of rank n : I ∩A 6= ∅ } .

With these preliminaries concerning our algebra dealt with, we define the premeasure we shall

use:

Definition (Stieltjes premeasures on A) Let F be an monotone non-decreasing function from

R to R that is right continuous; i.e., for all x ∈ R

F (x) = lim
h↓0

F (x+ h) . (3.4)

Let F (−∞) = limx→−∞ F (x) and F (∞) = limx→∞ F (x).

For any set A in A given by (3.1), define

mF (A) =

m∑
j=1

[F (bj)− F (aj)] . (3.5)

It is readily verified, using only the monotonicity of F , that mF is a premeasure on A. The set of

premeasures obtained in this way is the set of Stieltjes premeasures.

In the special case in which F (x) = xfor all x, mF is the Lebesgue premeasure, and we simply

write m(A) in place of mF (A) for this choice of F .

All Stieltjes premeasure mF are semifinite. Indeed, if A ∈ A and m(A) = ∞, then A contains

a half open interval of the form (a,∞] or (−∞, b]. If

∞ = mF (((a,∞]) = F (∞)− F (a) ,

choose x so that F (x) > F (x) + r, r > 0 which is possible since limx→∞ F (x) = ∞. Then

(a, x] ⊂ (a,∞] and mF ((a, x]) > r. The case of (−∞, b] is handled in the same manner.

It requires more effort to show that m is continuous at the empty set. That is the key to proving

our next theorem.

3.2 THEOREM (Continuity at the empty set of Stieltjes premeasures). Let F be a monotone

non-decreasing and right continuous function from R to R. Then Stieltjes premeasure mF on the

dyadic interval algebra A in R is continuous at the empty set as well as semifinite, and thus extends

to a countably additive measure µ that is defined on a BR = σ(A).
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Proof. Suppose that {Aj} is a decreasing sequence of sets in A; i.e., Aj+1 ⊂ Aj for all j, and

suppose that

lim
j→∞

mF (Aj) = c0 6= 0 , (3.6)

and also m(A1) <∞. Then we must show that

∞⋂
j=1

Aj 6= ∅ .

If F is such that − limx→∞ F (x) = limx→∞ F (x) =∞, then since mF (A1) <∞ A1 contains no

infinite intervals, and hence is bounded. Thus, there is an M ∈ N so that

Aj ⊂ A1 ⊂ (−2M , 2M ] (3.7)

for all j.

If F (∞) <∞, for all ε > 0, there is a dyadic rational y so that F (y) > F (∞)− ε. Then for any

A ∈ A,

mF (Acap(y,∞]) = mF ((y,∞])−mF (Accap(y,∞]) < ε .

Thus, picking ε < c0/2 we have ∩k(Ak ∩ (y,∞]) = ∅ but m(Ak ∩ (y,∞]) > c0/2 > 0 Thus replacing

each Ak by Ak ∩ (y,∞]) we may assume without loss of generality that A1 ⊂ (−∞, y] for some

dyadic rational y.

Likewise, if F (−∞) > −∞, for all ε > 0, there is a dyadic rational x such that mF ((−∞, x]) < ε,

and arguing as above, we may assume without loss of generality that A1 ⊂ (x, y] for some dyadic

rationals x and y. Pick N so that |x|, |y| ≤ 2N , and then (3.7) is true. Thus, we may assume that

(3.7) is true for some N ∈ N.

Let I0 denote the interval (−2M , 2M ]. We are going to produce, by a successive bisection

procedure a nested sequence of half open dyadic intervals

I0 ⊃ I1 ⊃ I2 ⊃ I3 . . .

in which IJ+1 is obtained by bisecting Ij and keeping one of the two halves. That is, if Ij = (a, b],

we write

Ij = (a, (a+ b)/2] ∪ ((a+ b)/2, b] ,

and choose (using a rule to be specified) Ij+1 to be either the left or right interval. Since we halve

the length each time, and since the length of I0 is 2M+1, IM+1 is an interval of unit length, and is

of the form (k, k + 1] for some integer k. Thus it is an elementary dyadic interval of rank 0.

A bit of reflection shows that if one bisects an elementary dyadic rational interval in this way,

each of the pieces is again an elementary dyadic rational interval whose rank is increased by one.

Indeed, (
k

2n
,
k + 1

2n

]
=

(
2k

2n+1
,
2k + 1

2n+1

]
∪
(

2k + 1

2n+1
,
2k + 2

2n+1

]
.

Therefore, whatever rule we use to pick the left or right halves at each stage, IM+1+n will be

an elementary dyadic interval of order n.

It follows from our inclusion-exclusion lemma that for each fixed k, for all n large enough, either

In ⊂ Ak, or In ∩ Ak = ∅. Thus, if we can show that for all n, In ∩ Ak 6= ∅, we will have the much

stronger statement that In ⊂ Ak for all n sufficiently large.
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Let us suppose that we can do this, and moreover, can arrange that the interval we keep

from each bisection is the one on the right infinitely many times. Let an and bn be such that

In = (an, bn]. Then for all sufficiently large n (depending on k), (an, bn] ⊂ Ak. Since we pick the

right half infinitely often, we can find an n so that

(an+1, bn+1] = ((an + bb)/2, b+ n] ⊂ (an, bn] ⊂ Ak .

But then the closed interval In+1 is contained in In, which is contained in Ak:

In+1 = [(an + bb)/2, b+ n] ⊂ (an, bn] ⊂ Ak .

Since we produce the intervals by bisection, for all k > n+ 1,

Ik ⊂ In+1 ⊂ In+1 ⊂ Ak .

Note that {bk}k∈N is a decreasing sequence, and we have just shown that for all sufficiently large

k, bk ∈ In+1, a closed subset of Ak. Therefore, b := limk→∞ bk exists and belongs to Ak. Since k is

arbitrary, b ∈ ∩k = 1∞Ak, and the intersection is not empty.

Thus, we will have accomplished our goal if we can devise a rule for carrying out the bisection

so that:

(1) The nested sequence {Ij} that we produce has the property that for all j and k, Ij ∩Ak 6= ∅.
(2) In producing our nested sequence {Ij}, we choose the right half interval infinitely often.

We now present the rule that accomplishes this.

Write I0 as the union of its left and right halves

I0 = J left
0 ∪ J right

0 ,

bisecting as above. Since Ak ⊂ I0 for all k, we have from (3.6) that

lim
k→∞

mF (Ak ∩ J left
0 ) + lim

k→∞
mF (Ak ∩ J right

0 ) = lim
k→∞

mF (Ak) = c0 > 0 .

If limk→∞mF (Ak ∩ J right
0 ) > 0, define this number to be c1, and chose I1 = J right

0 . Otherwise,

limk→∞mF (Ak ∩ J left
0 ) = c0, and we define c1 = c0, and I1 = J left

0 . Either way, we have

lim
k→∞

mF (Ak ∩ I1) = c1 > 0 .

We proceed inductively as follows: At the nth stage, with In and cn > 0 defined, we write

In = J left
n ∪ J right

n , and note that

lim
k→∞

mF (Ak ∩ J left
n ) + lim

k→∞
mF (Ak ∩ J right

n ) = lim
k→∞

mF (Ak ∩ In) = cn > 0 .

If limk→∞mF (Ak ∩ J right
n ) > 0, define this number to be cn, and chose In+1 = J right

n . Otherwise,

limk→∞mF (Ak ∩ J left
n ) = cn, and we define cn+1 = cn, and In+1 = J left

n .

In this way, we produce a nested sequences of intervals {In} such that mF (Ak ∩ In) ≥ cn > 0

for each k, and since mF (∅) = 0, this means that Ak ∩ In 6= ∅ for any k and n. Thus (1) is

accomplished.
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Finally we show that the rule leads us to choose the right interval infinitely often. If this were

not the case, then for some n0, we would always choose the left interval in each later step. We

would then have

lim
k→∞

mF (Ak ∩ In) = cn0 > 0 (3.8)

for all n > n0. But since we always choose the left interval for n > n0, for all such n, In = (a, bn]

for some number a and some decreasing sequence {bn}n∈N with limn→∞ bn = a. Therefore, for all

sufficiently large n,

mF (Ak ∩ In) ≤ mF (In) = F (bn)− F (a) ,

Since F is right continuous, the right hand side decreases to zero, (3.8) cannot hold for all n ≥ n0.
Therefore (2) is verified, and the proof is complete.

4 Locally finite Borel measures on R

Let (X,O) be a Hausdorff topological space. Then every compact set K ⊂ X is closed, and hence

is a Borel subset of X.

4.1 DEFINITION (Locally finite, inner and outer regular). Let (X,O) be a Hausdorff topological

space, and let B be the corresponding σ-algebra. LetM be any σ-algebra containing B, and Let µ

be a measure on M. Then:

(1) µ is locally finite in case for each x ∈ X there is an open set U containing x with µ(U) <∞.

(2) µ is outer regular in case for each E ∈M,

µ(E) = inf{µ(U) : U open , E ⊂ U } (4.1)

(3) µ is inner regular in case for each E ∈M

µ(E) = sup{µ(K) : K compact , K ⊂ E } (4.2)

Observe that if µ is a locally finite regular Borel measure on X and K is a compact subset of X,

for each x ∈ K there is an open set Ux containing x such that µ(Ux) is finite. Since K is compact,

there are points x1, . . . , xn ∈ K so that K ⊂ ∪nj=1Uxj . Then

µ(K) ⊂
n∑
j=1

µ(Uxj ) <∞ .

That is, whenever µ is locally finite, µ(K) < ∞ for all compact K. Conversely if X is a locally

compact topological space, and µ is a Borel measure on X with the property that µ(K) <∞ for all

compact K, then µ is locally finite. Consequently, if X is the countable union of compact sets, then

any locally finite Borel measure µ on X is σ-finite. In particlar, every locally finite Borel measure

on R is σ-finite.

We shall show that every locally finite Borel measure µ on R is generated by a Stieltjes premea-

sure mF for some monotone non-decreasing, right continuous function F from R to R. First note

that by the remarks made just above, µ((a, b]) <∞ for all finite half open intervals (a, b].
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4.2 THEOREM (Locally finite Borel measures on R are generated by Stieltjes premeasures). Let

µ be a locally finite measure defined on BR, the Borel σ-algebra of R. Define a function F (x) on R
by

F (x) =


µ((0, x]) x ≥ 0

0 x = 0

−µ((x, 0]) x < 0 ,

(4.3)

noting that the function is well defined since F is locally finite.

Then F is right continuous and monotone increasing. Let mF be the Stieltjes premeasure on

A, the dyadic half open interval algebra, that is generated by F , and let µF is its Caratheodory

extension restricted to σ(A) = BR Then µ = µF . Consequently, every Borel measure on R is the

restriction to BR of a measure obtained from a Stieltjes premeasure via the Caratheodory Extension

Theorem.

Proof. The fact that F is monotone non-decreasing is an immediate consequence of the monotonic-

ity property of measures. Next, for all x ≥ 0

(0, x] = ∩n∈N(0, x+ 1/n]

and µ((0, x+ 1]) = F (x+ 1) <∞ since [0, x+ 1/n] is compact so that µ([0, x+ 1]) <∞. Therefore,

by continuity from above,

lim
n→∞

µ((0, x+ 1/n]) = µ((0, x]) ,

which means that limn→∞ F (x + 1/n) = F (x). Since F is monotone non-decreasing, this means

that F is right continuous at each x ≥ 0.

For x < 0 and n > −1/x, F (x + 1/n) = −µ((x + 1/n, 0]). Since ∪n>−1/x(x + 1/n, 0] = (x, 0],

it follows by continuity from below that limn→∞ F (x + 1/n) = F (x) for x < 0, and then since F

is monotone decreasing, this means that F is right continuous at each x < 0. We have now shown

that F is right continuous as well as monotone non-decreasing.

Now let mF be the Stieltjes premeasure on A, the dyadic half open interval algebra, that is

generated by F , and let µF is its Caratheodory extension restricted to σ(A) = BR. The fact that

µF = µ now follows from Theorem 1.11 since mF is σ-finite.

We have just seen one way to construct an outer measure that extends any locally finite Borel

measure µ on R: Define the monotone right continuous function F by (4.3), and the Stieltjes

premeaure mF . Then let µ∗F be defined as in Theorem 1.6 in terms of covering of an arbitrary set

E ⊂ R with countably many sets in the dyadic half-open interval algebra A,

There is another way to construct this same outermeasure that is more direct. Kowing that the

two procedures give the same outer measure gives useful information about the original measure.

4.3 THEOREM. Let µ be a locally finite Borel measure on R. Let (X,Mµ, µ) denote its com-

pletion, and let µ∗ be the outer masure induced by the premeasure mF where F is defined by (4.3).

Then for all E ⊂ X,

µ∗(E) = inf {µ(U) : E ⊂ U and U open } , (4.4)

and for all B ⊂Mµ,

µ(B) = inf {µ(U) : B ⊂ U and U open } . (4.5)
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Proof. In Theorem 1.6, µ∗ is defined in terms of covering of an arbitrary set E ⊂ R with countably

many sets in the dyadic half-open interval algebra A. Since each set A ∈ A is a finite disjoint

union of dyadic half open intervals, and since any countable union of finite unions is a countable

union, it is the same to cover E by countably many dyadic half open intervals. Then since µ is the

restriction of µ∗ to BR and mF ((a, b]) = µ((a, b]),

µ∗(E) = inf

{ ∞∑
n=1

µ((an, bn]) : an, bn dyadic rational and E ⊂
∞⋃
n=1

(an, bn]

}
. (4.6)

We are now ready to prove (4.4). Fix E ⊂ R. If µ∗(E) = ∞, we may take U = R. Suppose

that µ∗(E) < ∞. Pick ε > 0. Since the open sets are Borel, µ(U) = µ∗(U) ≥ µ∗(E) for all open

sets U with E ⊂ U . Thus it suffices to show that there exists an open set U with E ⊂ U such that

µ(U) ≤ µ∗(E) + ε, or, since µ∗ = µ∗F , that µ(U) ≤ µ∗F (E) + ε

By the definition of µF , there exists a sequence {(aj , bj ]}j∈N of half open dyadic intervals such

that E ⊂ ∪j∈N(aj , bj ] and

µ(E) +
ε

2
≥
∞∑
j=0

mF ((aj , bj ]) .

Since F is right continuous, for each j ∈ N, we may choose cj > bj so that mF ((bj , cj ]) < ε2−j−1.

Let U = ∪∞j=1(aj , cj). Then

µ(U) = µ∗F (U) ≤
∞∑
j=1

µ∗F ((aj , cj ]) ≤
∞∑
j=1

µ∗F ((aj , bj ]) + ε2−j−1 ≤ µ∗F (E) + ε .

Finally (4.5) is true since µ is the restriction of µ∗ to Mµ, according to Theorem 4.5.

4.4 DEFINITION (µ-measurable sets). Let µ be a locally finite Borel measure on R and ket µ∗

be the outer measure given by (??). Let Mµ be the Caratheodory σ-algebra of µ∗, and note that

this contans BR. Let µ be the restriction µ∗ to Mµ, and note that this is an extension of µ to the

larger σ-algebra Mµ, which is called the σ-algebra of µ-measurable sets. In particular, when µ is

Lebesgue meausre, Mµ is the σ-algebra of Lebesgue measurable sets.

4.5 THEOREM. Let µ be a locally finite Borel measure on R, and let (X,Mµ, µ) be the completion

of (R,BR, µ) Then µ is both inner and outer regular. In particular, µ is both inner and outer regular

on BR.

Proof. For any E ∈Mµ, let Ej = E ∩ (j, j+ 1]. Suppose that for any ε > 0, we can find a compact

set Kj ⊂ Ej such that

µ(Kj) = µ(Kj) > µ(Ej)− ε2−|j|+2 . (4.7)

Then for each N ∈ N, define K(N) = ∪Nj=−NKj . Then each K(N) is compact and contained in E,

and

µ(K(N)) = µ(K(N)) ≥ µ(∪Nj=−NEj)− ε .

By continuity from below, limN→∞ µ(∪Nj=−NEj) = µ(E). Thus,

lim
N→∞

µ(K(N)) ≥ µ(E)− ε .
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Since ε > 0 is arbitrary, this would prove that ν is inner regular. Therefore, it remains to show

that we can find a compact subset Kj of Ej so that (4.7) is true.

Let Fj = [j, j + 1]\Ej , and let Uj be an open set containing Fj such that

µ(Uj) < µ(Fj) + ε2−|j|+2 .

Let Kj = [j, j + 1]\Uj . Then Kj is closed and bounded, and hence is compact. Moreover, since

Fj ⊂ Uj , and since Ej ⊂ [j, j + 1],

Kj = [j, j + 1]\Uj ⊂ [j, j + 1]\Fj = Ej .

Finally,

µ(Kj) ≥ µ([j, j + 1])− µ(Uj) ≥ µ([j, j + 1])− µ(Fj)− ε2−|j|+2 = µ(Ej)− ε2−|j|+2 .

4.6 THEOREM. Let µ be any locally finite Borel measure on R. For all E ∈ B with µ(E) <∞,

and all ε > 0, there is a set A ∈ A, the dyadic half open interval algebra, such that

µ(E∆A) < ε .

Proof. Let Ej = E ∩ (−j, j]. By continuity from below, limj→∞ µ(Ej) = µ(E), and so there exists

j such that µ(E\Ej) < ε/2.

Define µ̃ by µ̃(F ) = µ(Ej ∩ F ) for all F ∈ B = σ(A). Then µ̃ is a finite measure on σ(A),

and then by a theorem we proved using the Monotone Class Theorem, there exits A ∈ A such that

µ̃(A∆Ej) < ε/2. We can replace A by A ∩ (j, j + 1] without affecting the value of µ̃(A∆Ej), and

then since both A and Ej are subsets of (j, j + 1],

µ((A∆Ej) = µ̃(A∆Ej) < ε/2 .

Finally, we have

µ(A∆E) ≤ µ(A∆Ej) + µ(Ej∆E) < ε .

The previous theorem has many applications. Our first will be to prove tht continuous compactly

supported functions are dense in L1(R,BR, µ) for all locally finite Borel measures µ on R. In fact,

we shall prove somewhat more:

4.7 THEOREM. Let µ be a locally finite Borel measure on R. Then the set C∞c (R) of compactly

supported and inifnitely differentiable functions is dense in L1(R,BR, µ).

Proof. We know that the simple functions are dense in L1(R,BR, µ). Thus, it suffices to show

that for all E ∈ BR with µ(E) < ∞ and all ε > 0, we can find a function ϕ ∈ C∞c (R) such that

‖1E − ϕ‖1 < ε. By Theorem 4.6, there is a set A ∈ A, the half open interval algebra, such that

‖1E − 1A‖1 < ε/2. Then for some m ∈ N and −∞ ≤ a1 < b1 < a2 . . . am < bm ≤ ∞,

1A =
m∑
j=1

1(aj ,bj ] .
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Suppose that a1 =∞. By continuity from below, limn→∞ µ((−n, b1]) = µ((−∞, b1]), and hence

we may replace a1 by −n for sufficiently large n, and still maintain ‖1E − 1A‖1 < ε/2. A similar

arument shows that it is no loss of generality to assume that bm <∞. Thus, we may suppose that

1A is supported in a compact interval. It is now east to “round the corners” on each 1(aj ,bj ] to

prove the theorem.

We close with a theorem on a particularly important locally finite Borel measure, namely

Lebesgue measure. We shall prove the translation invariance of Lebesgue measure on R.

For fixed a ∈ R, define the function τa : R → R by τa(x) = x − a. Clearly this is continuous,

and hence Borel measurable. If E ∈ B, then 1E is a Borel measurable function. Since compositions

of measurable functions are measurable, 1E ◦ τa is measurable. But

1E ◦ τa = 1E+a

where

E + a = {x+ a : x ∈ E } .

This shows that E+a ∈ B whenever E in B, and vice-versa. In this sense, B is translation invariant.

We have proved part of the following theorem:

4.8 THEOREM (Translation invariance of Lebesgue measure on R). Let µ∗ denote Lebesgue

measure on R. For any E ⊂ R, µ∗(E + a) = µ∗(E). Consequently, if µ denotes Lebesgue measure

on B, then For any E ∈ B and a ∈ R, E + a ∈ B and

µ(E + a) = µ(E) .

Proof. Let m denote the Lebesgue premeasure. It is clear form the definition of m that m(A +

a) = m(A). If {An}n∈N is any sequence in A, the dyadic half open interval algebra, such that

E ⊂ ∪∞n=1An, then E+a ⊂ ∪∞n=1(An+a) and vice-versa. By the translation invariance of Lebesgue

premeasure,
∞∑
n=1

m(An) =

∞∑
n=1

m(An + a)

and hence, taking the infimum over all such coverings, µ∗(E) = µ∗(E + a).

The rest of the theorem now follows from what we have noted above about the translation

invariance of B, and the fact that for all E ∈ B, µ(E) = µ∗(E).

5 Exercises

1. Let A be a subset of [0, 1]. Let µ∗ denote Lebesgue outer measures on [0, 1]. Show that an

arbitrary set A ⊂ [0, 1] is Lebesgue measurable if and only if

µ∗(A) + µ∗(Ac) = 1

where Ac is the complement of A.

2. Let µ∗ denote Lebesgue outer measure on R. Let A and B be any two subsets of R that are

separated by a positive distance d. That is, if x ∈ A and y ∈ B, then |x− y| ≥ d > 0. Show that

µ∗(A ∪B) = µ∗(A) + µ∗(B) .
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3. Let µ be Lebesgue measure on R. Let F be a countable family of Lebesgue measurable real

valued functions f on R, and let E ⊂ R be a measurable set with µ(E) < ∞. Suppose that for

each x ∈ E, there is a Mx < ∞ so that f(x) ≤ Mx for all f ∈ F . Show that for each ε > 0, there

exists a closed set F ⊂ E and an M <∞ such that µ(E ∩F c) ≤ ε and f(x) ≤M for all x ∈ F and

f ∈ F .

4. Let µ be Lebesgue measure on R. Given functions fn : [0, 1] → [−1, 1] such that

limn→∞
∫
(a,b) fndµ = 0 for all 0 ≤ a < b ≤ 1, show that for every Lebesgue measurable set

E ⊂ [0, 1],

lim
n→∞

∫
E
fndµ = 0 ,

and then, more generally that for every Lebesgue integrable function on [0, 1],

lim
n→∞

∫
[0,1]

fnfdµ = 0 ,

5. Let µ be Lebesgue measure on [0, 1]. Let f ∈ L1([0, 1]). Show that for all ε > 0, there exists a

compact K ⊂ [0, 1] such that µ(K) < 1− ε and a polynomial p such that |f(x)− p(x)| < ε for all

x ∈.

6. Let µ be Lebesgue measure on [0, 1]. Let f ∈ L1([0, 1]). Show that if∫
[0,1]

f(x)xndµ(x) = 0

for all n ∈ N, then f = 0 a.e.

7. Let µ be Lebesgue measure on [0, 1]. Let A, B, E and F be subsets of [0, 1]. Suppose that F

and F are Lebesgue measurable, A ⊂ E, B ⊂ F and µ(E) + µ(F ) = 1. Show that A and B are

Lebesgue measurable.

8. Let E ⊂ R be non-Lebesgue measurable. Let A ⊂ R be a set of Lebesgue measure zero. Show

that E ∩Ac is not Lebesgue measurable.


