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1 Introduction

Let (X,M, µ) be a measure space. As a set, L2(X,M, µ) consist of the equivalence classes, under

equivalence almost everywhere with respect to µ, of functions on X that are M-measurable and

such that ∫
X
|f |2dµ <∞ .

For f ∈ L2(X,M, µ), we define

‖f‖2 :=

(∫
X
|f |2dµ

)1/2

. (1.1)

Clearly, if z ∈ C and f ∈ L2(X,M, µ), |zf |2 = |z|2|f |2 is integrable, and if f, g ∈ L2(X,M, µ),

|f + g|2 ≤ (|f |+ |g|)2 ≤ 2(|f |2 + |g|2) . (1.2)

is integrable. Thus, L2(X,M, µ) is a vector space under the usual rules of addition and scalar

multiplication for functions.

We shall soon equip L2(X,M, µ) with a metric topology in which it is complete. The next

theorem plays a key role in this.

1.1 THEOREM (Cauchy-Schwarz inequality for L2(X,M, µ)). Let f, g ∈ L2(X,M, µ). Then fg

is integrable, and ∣∣∣∣∫
X
fgdµ

∣∣∣∣ ≤ ‖f‖2‖g‖2 . (1.3)

Moreover, there is equality in (1.3) is and only if

‖f‖2g = eiθ‖g‖2f (1.4)

where θ ∈ [0, 2π) is such that

e−iθ
∫
X
fgdµ ≥ 0 , (1.5)

with f denoting the complex conjugate of f .
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Proof. If either ‖f‖2 = 0 or ‖g‖2 = 0, the claim is trivially true, so let us suppose that both ‖f‖2
and ‖g‖2 are strictly positive. Define functions u and v by

u =
eiθ

‖f‖2
f and v =

1

‖g‖2
g ,

where θ is given in (1.5).

Then ‖u‖2 = ‖v‖2 = 1, and

‖u− v‖22 =

∫
X
|u|2dµ+

∫
X
|v|2dµ−

∫
X
uvdµ−

∫
X
vvdµ .

However, by the choice of θ,∫
X
uvdµ =

1

‖f‖2‖g‖2
e−iθ

∫
X
fgdµ

=
1

‖f‖2‖g‖2

∣∣∣∣∫
X
fgdµ

∣∣∣∣
=

1

‖f‖2‖g‖2
eiθ
∫
X
gfdµ =

∫
X
vvdµ .

Therefore,

‖u− v‖22 = 2− 2
1

‖f‖2‖g‖2

∣∣∣∣∫
X
fgdµ

∣∣∣∣ ,
or equivalently, ∣∣∣∣∫

X
fgdµ

∣∣∣∣ = ‖f‖2‖g‖2 −
1

2
‖f‖2‖g‖2‖u− v‖22 .

From this identity, it follows that when there is equality in (1.3), u = v, and thus that (1.4) is

satisfied.

1.2 DEFINITION (The L2 inner product). For f, g ∈ L2(X,M, µ), we define

〈f, g〉 =

∫
X
fgdµ . (1.6)

Note that for fixed f ∈ L2(X,M, µ), g 7→ 〈f, g〉 is a linear functional on L2(X,M, µ), while for

fixed g ∈ L2(X,M, µ), f 7→ 〈f, g〉 is a conjugate linear functional on L2(X,M, µ). The sesquilinear

form 〈·, 〉 on L2(X,M, µ) is called the inner product on L2(X,M, µ).

The Cauchy-Scwarz inequality can be economically expressed in terms of the inner product as

follows:

|〈f, g〉| ≤ ‖f‖2‖g‖2 . (1.7)

It is also worth noting that

‖f‖22 = 〈f, f〉 . (1.8)

We are now ready to prove a sharper version of (1.2).

1.3 THEOREM (Minkowski Inequality for L2(X,M, µ)). For all f, g ∈ L2(X,M, µ),

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 . (1.9)
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Proof.

‖f + g‖22 = 〈f + g, f + g〉 = ‖f‖22 + ‖g‖22 + 〈f, g〉+ 〈g, f〉
≤ ‖f‖22 + ‖g‖22 + 2‖f‖2‖g‖2 = (‖f‖2 + ‖g‖2)2 .

Therefore, if we define the function d2(f, g) on L2(X,M, µ)× L2(X,M, µ) by

d2(f, g) = ‖f − g‖2 ,

it follows that for all f, g, h ∈ L2(X,M, µ),

d2(f, h) = ‖f − h‖2 = ‖(f − g) + (g − h)‖2 ≤ ‖f − g‖2 + ‖g − h‖2 = d2(f, g) + d2(g, h) .

Thus, f, g 7→ d2(f, g) satisfies the triangle inequality. Since it is also evident that for all f, g ∈
L2(X,M, µ), d2(f, g) = d2(g, f) and that d2(f, g) = 0 if and only if f = g, d2 is a metric on

L2(X,M, µ). It is called the L2 metric.

The following theorem is fundamental, but will also be familiar given the corresponding theorem

that we have proved for L1(X,M, µ).

1.4 THEOREM (Riesz-Fischer Theorem). L2(X,M, µ) equipped with the L2 metric is com-

plete. Moreover, if {fn}n∈N is any Cauchy sequence in L2(X,M, µ), then there is a subsequence of

{fn}n∈N that converges almost everywhere with respect to µ.

Proof. Let {fn}n∈N be a Cauchy sequence in L2(X,M, µ). Recursively define an increasing se-

quence of number {nk}k∈N such that

‖fn − fnk
‖2 ≤ 2−k for all n ≥ nk .

Since {nk}k∈N is increasing, it follows that

‖fnk+1
− fnk

‖2 ≤ 2−k for all k .

Now define

Fm = |fn1 |+
m−1∑
k=1

|fnk
− fnk−1

| .

By Theorem 1.3, applied iteratively,

‖Fm‖2 ≤ ‖fn1‖2 +

m−1∑
k=1

‖fnk
− fnk−1

‖2 ≤ ‖fn1‖2 + 1 .

Thus, by the Lebesgue Monotone Convergence Theorem,

F := lim
m→∞

Fm

is square-integrable and ∫
X
F 2dµ ≤ ‖fn1‖2 + 1 .
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It follows that F <∞ a.e. µ, and thus that

∞∑
k=1

(fnk
− fnk−1

)

is absolutely convergent a.e. µ. But since absolute convergence implies convergence,

lim
m→∞

[
fn1 +

m−1∑
k=1

(fnk
− fnk−1

)

]
= lim

m→∞
fnm

exists almost everywhere. Call this limit f . As a pointwise limit of measurable functions f is

measurable. Also, f ∈ L2(X,M, µ) by Fatou’s Lemma.

Next, |fnm − f |2 ≤ 4F 2, and since 4F 2 is integrable, the Lebesgue Dominated Convergence

Theorem implies that

lim
m→∞

‖fnm − f‖2 = 0 .

Thus, a subsequence of the Cauchy sequence {fn}n∈N converges of f in the L2 metric. But then

the whole sequence converges to the same limit. We have found above a subsequence {fnm}m∈N
that converges to f a.e. µ.

2 Hilbert Space

Let H be a complex vector space. A sesquilinear form on H is a functions on H×H with values in

C such that for fixed f ∈ H, g 7→ 〈f, g〉 is a linear functional on H, while for fixed g ∈ H, f 7→ 〈f, g〉
is a conjugate linear functional on H. The sesquilinear form is positive definite in case 〈f, f〉 > 0

for all f 6= 0.

2.1 DEFINITION (Inner product space). An inner product space is a complex vector space H
equipped with a positive definite sesquilinear form 〈·, ·〉 on H × H. We define the norm ‖f‖ of a

vector f ∈ H by

‖f‖ = 〈f, f〉 . (2.1)

The example behind these definitions is L2(X,M, µ) equipped with the sesquilinear form (1.6).

The Cauchy-Schwarz inequality holds in this more abstract setting:

If f, g ∈ H and ‖f‖ 6= 0 and ‖g‖ 6= 0, let θ ∈ [0, 2π) be such that

e−iθ〈f, g〉 > 0 .

Define u = eiθ‖f‖−1f and v = ‖g‖−1g. Then computations identical to those in the proof of

Theorem 1.1 show that

|〈f, g〉| = ‖f‖2‖g‖2 −
1

2
‖f‖2‖g‖2‖u− v‖22 .

In particular

|〈f, g〉| ≤ ‖f‖2‖g‖2 . (2.2)

Next, computations identical to those in the proof of Theorem 1.2 show that for all f, g ∈ H,

‖f + g‖ ≤ ‖f‖+ ‖g‖ . (2.3)



EAC November 23, 2014 5

It follows that d(f, g) = ‖f − g‖ is a metric on H. This metric is called the inner-product metric

on H.

There are two important identities that hold in any complex inner product space H: The

parallelogram identity is ∥∥∥∥f + g

2

∥∥∥∥2

+

∥∥∥∥f − g2

∥∥∥∥2

=
‖f‖2 + ‖g‖2

2
. (2.4)

The polarization identity is

〈f, g〉 =
1

4
[〈f + g, f + g〉 − 〈f − g, f − g〉 − i〈f + ig, f + ig〉+ i〈f − ig, f − ig〉]

=
1

4
[‖f + g‖2 − ‖f − g‖2 − i‖f + ig‖3 + i‖f − ig‖2] . (2.5)

The polarization identity shows that the correspondence between inner products and norms is one-

to-one: Every inner product defines a norm, and the inner product may be recovered from the

norm.

2.2 DEFINITION (Hilbert Space). A Hilbert space is a complex vector space H equipped with

a sesquilinear form 〈·, ·〉 such that H is complete in its inner product metric.

We have seen that associated to any measure space (X,M, µ) there is a natural inner product

on H := L2(X,M, µ) making H a Hilbert space. If one takes X = {1, . . . , n},M = 2X , and µ to be

counting measure, L2(X,M, µ) = Cn with its usual inner product structure. Before the invention

of the Lebesgue integral, such finite dimensional Hilbert spaces were all that were known. Infinite

dimensional inner product spaces based on the Riemann integral were known, but these were not

complete. Our next theorem is often invoked in arguments that turn on the completeness of Hilbert

space.

2.3 THEOREM (Projection Lemma). Let K be a closed convex set in a Hilbert space. Then K

contains a unique element of minimal norm. That is, there exists v ∈ K such that ‖v‖ < ‖w‖ for

all w ∈ K, w 6= v.

Proof. Let D := inf{‖w‖ : w ∈ K }. If D = 0, then 0 ∈ K since K is closed, and this is the

unique element of minimal norm. Hence we may suppose that D > 0. Let {wn}n∈N be a sequence

in K such that limn→∞ ‖wn‖ = D. By the parallelogram identity∥∥∥∥wm + wn
2

∥∥∥∥2

+

∥∥∥∥wm − wn2

∥∥∥∥2

=
‖wm‖2 + ‖wn‖2

2
.

By the convexity of K, and the definition of D,

∥∥∥∥wm + wn
2

∥∥∥∥2

≥ D2 and so

∥∥∥∥wm − wn2

∥∥∥∥2

=

(
‖wm‖2 −D2

)
+
(
‖wn‖2 −D2

)
2

.

By construction, the right side tends to zero, and so {wn}n∈N is a Cauchy sequence. Then, by the

completeness that is a defining property of Hilbert spaces, {wn}n∈N is a convergent sequence. Let v

denote the limit. By the continuity of the norm, ‖v‖ = limn→∞ ‖wn‖ = D. Finally, if u is any other

vector in K with ‖u‖ = D, (u + v)/2 ∈ K, so that ‖(u + v)/2‖ ≥ D. Then by the parallelogram

identity once more ‖(u+ v)/2‖ = 0, and so u = v. This proves the uniqueness.
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Next, let H be a Hilbert space and let L be a continuous linear functional on H. Then

L−1({z ∈ C : |z| < 1}

is open and contains 0, and hence for some r > 0, L−1({z ∈ C : |z| < 1} contains {f ∈ H :

‖f‖ < r}. Thus, For all u ∈ H with ‖u‖ < 1, |L(u)| = r−1|L(ru)| < 1. Therefore, the quantity ‖L‖
defined by

‖L‖ = sup{|L(u)| : ‖u‖ ≤ 1} (2.6)

satisfies ‖L‖ ≤ r−1 <∞.

The quantity ‖L‖ is called the norm of L. Any linear functional on H with finite norm is called

a bounded linear functional. Note that it is the restriction to the unit ball about the origin that is

bounded, not the linear functional on all of H.

For any f 6= 0 in H, we may define u = ‖f‖−1f , so that f = ‖f‖u where ‖u‖ = 1. Then since

L is linear,

|L(f)| = |L(‖f‖u)| = |L(u)|‖f‖ ≤ ‖L‖‖f‖.

Conversely, suppose that L is an bounded linear functional on H. Then for any f, g ∈ H, since

L is linear,

|L(f)− L(g)| = |L(f − g)| ≤ ‖L‖‖f − g‖ ,

and so L is Lipschitz continuous on H with Lipschitz constant ‖L‖.
The set of continuous linear functional on H is a vector space known as the dual space to H,

which is usually denoted H∗. If L1 and L2 are two elements of H∗, then for any f ∈ H

|(L1 + L2)(f)| = |L1(f) + L2(f)| ≤ |L1(f)|+ |L2(f)| .

Therefore

‖L1 + L2‖ ≤ ‖L1‖+ ‖L2‖ ,

and it readily follows that d(L1, L2) := ‖L1−L2‖ is a metric on H∗. We equip H∗ with this metric.

As an example of a bounded linear functional on H, consider any v ∈ H, and define

Lv(f) = 〈v, f〉 .

Then Lv is linear, and by the Cauchy-Schwarz inequality, |Lv(f)| ≤ ‖v‖‖f‖, so that ‖L‖ ≤ ‖v‖.
Thus, Lv is a bounded linear functional on H. The next theorem says that this is the only sort of

example.

2.4 THEOREM (Riesz Representation Theorem). Let L be bounded linear transformation on H.

Then there is a unique vectorvL ∈ H such that

L(f) = 〈vL, f〉

for all f ∈ H, and moreover, ‖vL‖ = ‖L‖.

Proof. If L(f) = 0 for all f ∈ H, the assertion is trivial, so suppose that ‖L‖ > 0. Define K to be

the set

K := {f ∈ H : <(L(f)) = ‖L‖ } .
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It is readily checked that this is aclosed convex set in H.

If f ∈ K, the ‖L‖‖f‖ ≥ |L(f)| ≥ <(L(f)) = ‖L‖, and hence ‖f‖ ≥ 1. On the other hand, by

the definition of ‖L‖, there is a sequence of unit vectors {un}n∈N such that |L(un)| → ‖L‖, and we

may assume |L(un)| > 0 for all n. Then choosing θn ∈ [0, 2π) so that eiθnL(un) = |L(un)|, we have

that

vn := eiθn
‖L‖
‖L(un)‖

un ∈ K

and ‖vn‖ → 1. Thus,

inf{‖v‖ : v ∈ K} = 1 .

It now follows from the Projection Lemma that there is a unique unit vector u0 ∈ K. That is,

we have found a unit vector u0 such that

‖L‖ = |L(u0)| . (2.7)

Moreover, L(u0) = |L(u)| so that L(u0) = ‖L‖. The crucial use of the Projection Lemma was to

ensure the existence of a unit vector u0 satisfying (2.7). Once this is achieved, by replacing u0 with

eiθu0, one can achieve L(u0) = |L(u)|.
Since for all f with f 6= 0, <(L(f)) ≤ |L(f)| ≤ ‖L‖‖f‖,

<(L(f))

‖f‖
≤ ‖L‖ =

<(L(u0))

‖u0‖
.

Therefore, for any g ∈ H, the function

ϕ(t) =
<(L(u0) + tg)

‖u0 + tg‖

is well defined on an open interval about t = 0, and has a maximum at t = 0. Moreover, one readily

checks that ϕ is differentiable there and computes

ϕ′(0) = <(L(g))− ‖L‖<(〈u0, g〉) .

Since the left hand side is zero for all g, <(L(g)) = ‖L‖<(〈u0, g〉) for all g. Replacing g by ig, the

same is true of the imaginary parts, and so L(g) = 〈‖L‖u0, g〉 for all g. Thus, vL = ‖L‖u0 is such

that L(f) = 〈vL, f〉 for all f ∈ H, and ‖vL‖ = ‖L‖.
If wL were any other vector with L(f) = 〈wL, f〉 for all f ∈ H, we would have 〈vL−wL, f〉 = 0

for all f ∈ H, Taking f = vL − wL, we see that ‖vL − wL‖2 = 0, and so wL = vL, proving the

uniqueness of vL.

The Riesz Representation Theorem allows us to identify a Hilbert space H with its dual space;

i.e., the space consisting of continuous linear functionals on H. The mapping L→ vL is an isometry

from H∗ onto H. (The range is all of H by our example just before the theorem.) This mapping is

even conjugate linear. Because of this identification, we have used, as is usual, the same notation

for the norms on H and H∗.
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3 Separability and orthonormal bases

A Hilbert space H is separable if is contains a countable dense set. We have seen a number of

examples of this when H is of the formL2(X,M, µ) for some measure space (X,M, µ) whereM is

generated by a countable algebra.

3.1 DEFINITION (Complete orthonormal sets ). Let H be a Hilbert space. To vectors f and g

in H are orthogonal in case 〈f, g〉 = 0. A subset of H is orthonormal in case the vectors in it are

all unit vectors and are all mutually orthogonal. An orthonormal set U ⊂ H is complete if there is

no non-zero vector in H that is orthogonal to every vector in U .

3.2 THEOREM (Existence of complete orthonormal sequences). Let H be a separable Hilbert

space. Then there exists a complete orthonormal sequence {un}n∈N in H.

Proof. Let {fn}n∈N be a dense sequence in H. Apply the Gram-Schmidt orthonormalization pro-

cedure to the sequence {fn}n∈N, producing the sequence {un}n∈N. Now fix any f ∈ H and suppose

that 〈un, f〉 = 0 for all n, but that ‖f‖ > 0. Then there is an m so that ‖f − fm‖ < ‖f‖/2. Since

fm is a linear combination of u1, . . . um by the nature of the Gram-Schmidt process, f is orthogonal

to fm. But then

‖f − fm‖2 = 〈f − fm, f − fm〉 = 〈f, f〉+ 〈fm, fm〉 = ‖f‖2 + ‖fm‖2 ≥ ‖f‖2 ,

and this contradiction proves that there is no such f . Thus, the orthonormal set {un}n∈N is

complete.

Next, given f ∈ H and an orthonormal sequence {un}n∈N, let us try to approximate f by finite

linear combinations
∑n

j=1 αjuj . There is a unique best choice of the coefficients α1, . . . , αn: We

compute ∥∥∥∥∥∥f −
n∑
j=1

αjuj

∥∥∥∥∥∥
2

=

〈
f −

n∑
j=1

αjuj , f −
n∑
j=1

αjuj

〉

= ‖f‖2 −
n∑
j=1

2<(αj〈uj , f〉) +
∑
j=1

|αj |2

= ‖f‖2 −
n∑
j=1

|〈uj , f〉|2 +
n∑
j=1

|αj − 〈uj , f〉|2 . (3.1)

It follows that we achieve the best approximation by taking αj = 〈uj , f〉, in which case we have

Bessel’s identity ∥∥∥∥∥∥f −
n∑
j=1

〈uj , f〉uj

∥∥∥∥∥∥
2

= ‖f‖2 −
n∑
j=1

|〈uj , f〉|2 . (3.2)

Since the left hand side is non-negative, this implies Bessel’s inequality

‖f‖2 ≥
n∑
j=1

|〈uj , f〉|2 . (3.3)
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Therefore, for all f ∈ H, the series
∑∞

j=1 |〈uj , f〉|2 converges, and in particular

lim
m→∞

∞∑
j=m+1

|〈uj , f〉|2 = 0 . (3.4)

Now given f ∈ H and an orthonormal sequence {un}n∈N define

gn :=
n∑
j=1

〈uj , f〉uj ,

so that {gn}n∈N is the sequence of best approximates to f by linear combinations of more and more

terms in our orthonormal sequence.

The sequence {gn}n∈N is a Cauchy sequence. To see this note that for n ≥ m

gn − gm =

n∑
j=m+1

〈uj , f〉uj ,

and so

‖gn = gm‖2 =

n∑
j=m+1

|〈uj , f〉|2 ,

and by (??) for all ε > 0, ‖gn = gm‖2 ≤ ε for all m,n sufficiently large.

Since H is complete, this Cauchy sequence converges to some g ∈ H. Next notice that for all

n > j, since {uj} is orthonormal,

〈uj , gn〉 = 〈uj , f〉.

Then by continuity of Lj := 〈uj , ·〉,

〈uj , g〉 = lim
n→∞

〈uj , gn〉 = 〈uj , ·〉 .

Then

〈uj , g − f〉 = 0

for all j. If the orthonormal set is complete, then this entails that g = f , and thus that our sequence

of successive approximations actually converges to f . We summarize:

3.3 THEOREM. Let H be a Hilbert space that contains a complete orthonormal sequence {un}n∈N.

Then for every f ∈ H,

f =

∞∑
j=1

〈uj , f〉uj ,

meaning that

lim
n→∞

∥∥∥∥∥∥f −
n∑
j=1

〈uj , f〉uj

∥∥∥∥∥∥ = 0 .

Moreover,

‖f‖2 =
∞∑
j=1

|〈uj , f〉|2 .
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Proof. It remains to observe that the final statement follows from the first and Bessels’ identity.

Notice that whenever H contains a complete orthonormal sequence {uj}j∈N, H is separable

since by the theorem rational finite linear combinations of the vectors in {uj}j∈N are a countable

dense set. Hence complete orthonormal sequences will exist in H if and only if H is separable.

3.4 DEFINITION (Orthonormal basis). Let H be a separable Hilbert space. A complete or-

thonormal sequence in H is called an orthonormal basis for H.

3.5 DEFINITION. Let H = L2(N, 2N, µ) where µ is counting measure. This Hilbert space is

denote `2. The elements of `2 are the square summable sequences. It is easy to check that if we

define uj to be the sequence whose jth term is 1 ,and all other terms are zero, the {uj}j∈N is an

orthonormal basis for `2.

Notice that if H is any separable Hilbert space, and {uj}j∈N is any orthonormal basis in H,

then the transformation that sends f ∈ H to the sequence whose jth term is 〈uj , f〉 is a linear

isometry of H onto `2. That is, every separable Hilbert space can be mapped onto ell2 by a linear

isometry.

3.6 EXAMPLE. Let H = L2(S1,BS1 ,m) be the Hilbert space of Borel functions f(θ) on the

unit circle that are square integrable with respect to Lebesgue measure m on S1 normalized so that

µ(S1) = 1.

It is then readily checked that with uj defined by

un(θ) = einθ,

{un}n∈Z is orthonormal. By the Stone-Wierstrass Theorem, every continuos function on S1 can be

approximated arbitrarily well in the uniform metric by a finite linear combination of the vectors in

our orthonormal set. Since continuous functions are dense in H, this is also true of every f ∈ H.

It follows that {un}n∈Z is complete: If f is any non-zero vector in H such that f is orthogonal to

every un, then by (3.1), ∥∥∥∥∥∥f −
n∑

j=−n
αjuj

∥∥∥∥∥∥ ≥ ‖f‖
no matter how the coefficients α−n . . . , αn are chosen. For ‖f‖ > 0 this is impossible by the density

of such finite linear combinations. Thus, {un}n∈Z is orthonormal basis for H, called the Fourier

basis. It follows that for each f inH,

f = lim
n→∞

n∑
j=−n

〈uj , f〉uj .

The sequence {〈uj , f〉}j∈Z is called the sequence of Fourier coefficients of f . The associated linear

isometry of H onto `2 is the discrete Fourier transform.
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4 Excercises

1. Let H be a separable, infinite dimensional Hilbert space, and let {un}n∈N be an orthonormal

basis for H. Let {cj}∈N be a given sequence of non-negative numbers, and define

Let C ⊂ H be defined by

C = {f ∈ H : ‖f‖ ≤ 1 and |〈uj , f〉| ≤ cj for all j} .

Show that C is always closed and bounded, but is compact if and only if
∑∞

j=1 c
2
j <∞. Taking

each cj = 1, C becomes the unit ball in H, and thus the unit ball is not compact.

2. For real vlaued sqaure integrable functions f on [−1, 1], compute

max{
∫

[−1,1]
x3f(x)dm :

∫
[−1,1]

xjf(x)dm = 0 for j = 0, 1, 2 and

∫
[−1,1]

f2(x)dm = 1}

3. Show that if E is any Borel set in (0, 2π] then

lim
j→∞

∫
E

cos(jx)dm = lim
j→∞

∫
E

sin(jx)dm = 0 .

Next, consider any incrasing sequence {nk} of the natural numbers. Define E to be the set of

all x for which

lim
k→∞

sin(nkx) exists .

Show that m(E) = 0. (The identity 2 sin2 x = 1− cos(2x) and the first part may prove useful.)

4. Prove the polarization identity (2.5).


