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Chapter 1

GEOMETRY, ALGEBRA AND

ANALYSIS IN SEVERAL

VARIABLES

1.1 Algebra and Geometry in Rn

1.1.1 Geometry, Algebra and Calculus

The basic questions studied in single variable calculus – finding the slope of the tangent line to the

graph of a function, and finding the area under the graph of a function – involve geometry in an

obvious way. However, the geometry involved is by and large simple planar geometry. The essential

core of the subject may appear therefore to be the theory of limits, in which most of the subtlety of

the subject resides.

In multivariable calculus, geometry plays a much more central role, and the geometric issues that

we must contend with in order to solve problems in multivariable calculus are more challenging than

the simple planar geometric issues that typically arise in the solution of single variable problems.

Fortunately, powerful algebraic and analytic methods have been devised that facilitate treatment of

these geometric problems.

Consider a geometric object, such a sphere in three dimensional space. The surface of the

sphere is a two dimensional object in the obvious intuitive sense. The simplest sort of multivariable

differential calculus problems concern such matters as finding the “tangent plane” to such a surface

at a given point. Already, the problem of determining a “tangent plane” raises interesting issues.

Tangent lines to the graph of a single variable function f(x) are a simple matter: If f is differentiable

at x0, then the point (x0, y0) = (x0, f(x0)) is on the tangent line at x0, and the slope of this tangent

line is f ′(x0), the derivative of f at x0. A point (x, y) in the plane lies on the tangent line if and only

c© 2012 by the author.
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if x and y solve the equation

y = y0 + f ′(x0)(x− x0) .

Tangent planes can be described in an analogous manner, but will require a system of two equations,

and the analog of the slope will be a “vector” and not a number.

The methods with which we deal with tangent planes and their higher dimensional analogs are

largely algebraic, and this is a very fortunate thing: While it is at least easy to visualize tangent

planes in three dimensional space, we will be concerned with problems involving arbitrarily many

variables. While the location of a point in three dimensional space can be described by specifying

three “coordinates”, we are often concerned with both the position and attitude of objects in three

dimensional space. If the object is an airplane, it likely matters where the nose is pointed and if the

wings are horizontal or not. The position and attitude of an airplane – even treating it in the first

approximation as a rigid body – requires 6 variables; 3 variables to specify the position of the center

of mass, and 3 other variables to specify the attitude. (The three other variables may be taken to

be Euler angles, which will be introduced later.) More complicated but equally natural problems

require many more variables. It will not be enough to be able to deal with tangent planes in three

dimensional space. To solve many natural problems, we will need to be able to deal with their higher

dimensional analogs in arbitrarily many dimensions. We now lay the groundwork for this.

1.1.2 Vector variables and Cartesian coordinates

Many problems in science and engineering lead to the consideration of functions taking several vari-

ables as input, and returning several variables of output.

• Multivariable functions are simply functions that take an ordered list of numbers as their input, or

return an ordered list as output, or both.

For instance, one such function might give the current temperature, barometric pressure, and

relative humidity at a given point on the earth, as specified by latitude and longitude. In this case,

there are two input variables, and three output variables. You will also recognize the input variables

in this example as coordinates. Our subject has its real beginning with a fundamental idea of Rene

Descartes, for whom Cartesisan coordinates are named.

Descarte’s idea was to specify points in three dimensional Euclidean space using lists of three

numbers (x, y, z), such lists are now known as vectors. To do this one first fixes a reference system,

by specifying a “base point” or “origin” that we shall denote by 0, and also a set of three orthogonal

directions. For instance, if you are standing somewhere on the surface of the Earth, you might take

the point at which you stand as the origin 0, and you might take East to be the first direction, North

to be the second, and “straight up” to be the third. All of these directions are orthogonal to one

another. Let us use the symbols e1, e2 and e3 to denote these three directions.
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The brilliant idea of Descartes is this:

•We can describe the exact position of any point in physical space by telling how to reach it by moving

in the directions e1, e2 and e3. This is simply a matter of “giving directions”: Start at the origin 0,

and go out x units of distance in the e1 direction, then go out y units of distance in the e2 direction,

and finally go out z units of distance in the e3 direction. The numbers x, y and z may be positive of

negative (or zero). If, say, x is negative, this means that you should go |x| units of distance in the

direction opposite to e1.

Thus, following Descartes’ idea, we can specify the exact position of any point in physical space

by giving the ordered list of numbers (x, y, z) that describes how to reach it from the origin of our

reference system. The three numbers x, y and z are called the coordinates of the point with respect

to the given reference system. (It is important to note that the reference system is part of the

description too: Knowing how far to go in each direction is not much use if you do not know the

directions, or the starting point.)

This representation of points in space as ordered triples of numbers, such as (x, y, z) allows one to

use algebra and calculus to solve problems in geometry, and it literally revolutionized mathematics.
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We now define a three dimensional vector to be an ordered triple (x, y, z) of real numbers. The

geometric interpretation is that we regard x, y and z as the coordinates of a unique point in physical

space – the one you get to by starting from the origin and moving x units of distance in the e1

direction, y units of distance in the e2 direction, and z units of distance in the e3 direction. We may

identify the vector (x, y, z) with this point in physical space, once again keeping in mind that this

identification depends on the reference system, and that what the vector really represents is not the

point itself, but the translation that carries the origin to that point.

As we have said, this way of identifying three dimensional vectors with points in physical space is

extremely useful because it brings algebra to bear on geometric problems. For instance, referring to

the previous diagram, you see from (two application of) the Pythagorean Theorem that the distance

from the origin 0 to the point represented by the vector (x, y, z) is√
x2 + y2 + z2 .

This distance is called the length or magnitude of the vector x = (x, y, z). The vector x also has

a direction; namely the direction of the displacement that would carry one directly from 0 to x. It is

useful to associate to each direction the vector corresponding to a unit displacement in that direction.

This provides a one-to-one correspondence between directions and unit vectors, i.e., vectors of unit

length.

The unit sphere is defined to be the set of all unit vectors; i.e., all points a unit distance from

the origin. Thus, a point represented by the vector x = (x, y, z) lies on the unit sphere if and only if

x2 + y2 + z2 = 1 . (1.1)

You are probably familiar with this as the equation for the unit sphere. But before Descartes,

geometry and algebra were very different subjects, and the idea of describing a geometric object in

terms of an algebraic equation was unknown. It revolutionized mathematics.

1.1.3 Parameterization

Writing down the equation for the unit sphere is only a first step towards solving many problems

involving spheres, such as, for example, computing the surface area of the unit sphere. Often the

second step is to solve the equation. Now, for an equation like x2 = 1, we can specify the set of

all solutions by writing it out: {−1, 1}. But for x2 + y2 + z2 = 1, there are clearly infinitely many

solutions, and we cannot possibly write them all down.

What we can do, however, is to parameterize the solution set. Let us go through an example

before formalizing this fundamental notion. Better yet, let us start with something even simpler:

Consider the equation

x2 + y2 = 1 (1.2)

in the x,y plane. (The x,y plane is the set of points (x, y, z) with z = 0.) You recognize (1.2) as the

equation for the unit circle in the x,y plane. Recall the trigonometric identity

cos2 θ + sin2 θ = 1 . (1.3)
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Thus for all θ, the points

(x, y) = ( cos θ, sin θ)

solve the equation (1.2).

Conversely, consider any solution (x, y) of (1.2). From the equation, −1 ≤ x ≤ 1, and hence we

may define

θ :=

 arccos(x) y ≥ 0

−arccos(x) y < 0
(1.4)

By the definition of the arccos function, −π < θ ≤ π. Since cos θ is an even function of θ, it follows

that x = cos θ, and then one easily sees that y = sin θ.

Thus, we have a one-to-one correspondence between the points in the interval (−π.π] and the

set of solutions of (1.2). The correspondence is given by the function

θ 7→ ( cos θ, sin θ)

from (−π.π] onto the unit circle. This is an example of a parameterization: As the parameter θ varies

over (−π.π], ( cos θ, sin θ) varies over the unit circle, covering each point for exactly one value of the

parameter θ.

Since the function in (1.4) is one-to-one and onto, it is invertible. The inverse is simply the map

(x, y) 7→ θ (1.5)

where for x and y solving x2 + y2 = 1, θ is given by (1.4). The function in (1.5) is called the angular

coordinate function on the unit circle. As you see in this example, finding a parameterization of the

solution set of some equation and finding a system of coordinates on the solutions set are two aspects

of the same thing. We will make formal definitions later; for now let us continue with examples.

For r > 0,

x2 + y2 = r2

is the equation of the centered circle of radius r in the x,y plane. Since

x2 + y2 = r2 ⇐⇒
(x
r

)2

+
(y
r

)2

= 1 ,

we can easily transform our parameterization of the unit circle into a parameterization of the circle

of radius r: The parameterization is given by

θ 7→ (r cos θ, r sin θ) (1.6)

while its inverse, the coordinate function, is given by

(x, y) 7→ θ :=

 arccos
(
x/
√
x2 + y2

)
y ≥ 0

−arccos
(
x/
√
x2 + y2

)
y < 0

(1.7)

which specifies the angular coordinate as a function of x and y. Since x2 + y2 = r2 > 0, we never

divide by zero in this formula.
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For our next example, let us parameterize the unit sphere; i.e., the solution set of (1.1). Note

that x2 + y2 + z2 = 1 implies that −1 ≤ z ≤ 1. Recalling (1.3) once more, we define

φ = arccos(z) , (1.8)

so that 0 ≤ φ ≤ π, and z = cosφ.

It follows from (1.1) and (1.3) that x2 + y2 = sin2 φ, and then, since sinφ ≥ 0 for 0 ≤ φ ≤ π,

sinφ =
√
x2 + y2 .

Evidently, for x and y not both zero, (x, y) lies on the circle of radius sinφ. We already know

how to parameterize this: Setting r = sinφ in (1.6), the parameterization function is

θ 7→ ( sinφ cos θ, sinφ sin θ) = (x, y) .

Since (1.8) gives us z = cosφ, we combine results to obtain the parameterization

(θ, φ) 7→ ( sinφ cos θ, sinφ sin θ, cosφ) = (x, y, z) .

Define the three functions

x(θ, φ) := sinφ cos θ , y(θ, φ) := sinφ sin θ and z(θ, φ) := cosφ . (1.9)

Every solution (x, y, z) of the equation x2 + y2 + z2 = 1 is of the form (x(θ, φ), y(θ, φ), z(θ, φ))

for some (θ, φ) ∈ [−π, π] × [0.π]. Conversely, for all (θ, φ) ∈ [−π, π] × [0.π], (x(θ, φ), y(θ, φ), z(θ, φ))

solves the equation x2 + y2 + z2 = 1.

Let S2 denote the set of solutions to the equation x2 +y2 +z2 = 1. That is, S2 is the unit sphere.

(This is a standard mathematical notation; the 2 in the exponent indicated that we are referring to

the two dimensional sphere. In the same spirit, S1 is a standard notation for the unit circle in the

plane. Later we will encounter Sn for arbitrary natural numbers n.)

Define a function X from [−π, π]× [0, π] to S2 using the formula (1.9) by

X(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)) . (1.10)

Then X maps [−π, π]× [0, π] onto S2. The function X is not one-to-one, but only because at (0, 0, 1),

the “North pole”, and at (0, 0,−1), the “South pole”, the value of θ is irrelevant. That is, when

φ = 0 or when φ = π, the dependence of X(θ, φ) on θ drops out. However, the restriction of X to the

smaller domain (−π, π] × (0, π) is one-to-one and onto the “punctured sphere” that has the North

Pole and South Pole removed. This restricted function is therefore invertible, and we already have

formulas for the inverse: If (x, y, z) ∈ S2, then θ is given by (1.7) and φ is given by (1.8). These

formulas may be regarded as specifying the coordinates (θ, φ) of a point (x, y, z) of the punctured

sphere.

We have now arrived at an important question: Are θ and φ coordinates, or are they parameters,

or are they variables, and what is the difference? The answer depends on the context.

The function X defined in (1.10) is the parameterization function from (−π, π] × (0, π) to the

punctured sphere. Considered as variables in the domain of this function, θ and φ are parameters,

and the function X gives a description of the punctured sphere as a parametrized surface.
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On the other hand, the variables θ and φ lie in the range of the inverse function X−1 defined

on the punctured sphere. In this context, θ(x, y, z) and φ(x, y, z) are the coordinates of a point

(x, y, z) ∈ S2, and X−1 is the coordinate function on S2 associated to the parameterization of S2

that we have given. (There are many other ways to parameterize the sphere, or, what is effectively

the same thing, to introduce coordinates on the sphere. We will encounter others later on.)

We have not yet given a formal definition of the terms coordinate function or parameterization

function, only an example. But in all cases, like this one, the two functions are inverse to one another,

and the coordinate functions maps variables in a simple, usually “flat” set, here (−π, π] × (0, π), in

a one-to-one manner onto an “interesting, more complicated” set, here the punctured sphere.

Now that we have a parameterization of the (punctured) sphere at hand, we can turn to the

problem of finding a precise mathematical description of the tangent plane at a given point S2. We

will proceed relying somewhat on geometric intuition and things you may know about equations for

planes – namely that every plane in three dimensional space is the set of points whose coordinates

(x, y, z) satisfy the equation

ax+ by + cz = d

for some fixed set of numbers a, b, c and d. We also refrain from giving a precise definition of the

term “tangent plane” at this point, but the it is the natural generalization of the notion of a tangent

line as the line that gives the “best fit” to the graph of a differentiable curve at a given point.

The North Pole is the point with coordinates (0, 0, 1). The set of all point (x, y, z) such that

z = 1 is a plane: It is the “horizontal plane” passing though (0, 0, 1), and this is the tangent plane

to S2 at the North Pole; among all planes, it clearly gives the “best fit” to S2 at the North Pole.

Therefore, this is the equation of the tangent plane to S2 at the North Pole. Likewise, the equation

for the tangent plane at the South Pole is z = −1.

Now consider any other point (x0, y0, z0) on S2. This naturally lies on the punctured sphere.

Let (θ0, φ0) be the coordinates of this point so that with X(θ, φ) given by (1.9) and (1.10),

X(θ0, φ0) = (x0, y0, z0) .

To be concrete, let us consider the case in which θ0 = φ0 = π/4, so that

(x0, y0, z0) = (1/2, 1/2, 1/
√

2) .

Let us consider values of the parameters θ and φ that are very close to θ0 and φ0 respectively. To

write these conveniently, we introduce variables s and t by

s := θ − θ0 and t := φ− φ0 .

Then θ = θ0 + s and φ = φ0 + t. For small s and t, we have

sin(φ0 + s) ≈ 1√
2

+
1√
2
s and sin(θ0 + t) ≈ 1√

2
+

1√
2
t ,

and we have

cos(φ0 + s) ≈ 1√
2
− 1√

2
s and cos(θ0 + t) ≈ 1√

2
− 1√

2
t .
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These are simply the “tangent line” approximations to sin and cos at the relevant points, which are

simply the first-order Taylor approximations.

Substitute these approximations into the formula (1.9) and discard all quadratic terms in s and

t – remember, we are thinking of s and t a being very small, so that st, say, is negligibly small

compared to either s or t. The result is:

x(θ0 + s, φ0 + t) ≈ 1

2
+

1

2
s− 1

2
t

y(θ0 + s, φ0 + t) ≈ 1

2
+

1

2
s+

1

2
t

z(θ0 + s, φ0 + t) ≈ 1√
2
− 1√

2
s .

The function

(s, t) 7→
(

1

2
+

1

2
s− 1

2
t ,

1

2
+

1

2
s+

1

2
t ,

1√
2
− 1√

2
s

)
is the parameterization of the plane in three dimensional space that “best fits” S2 at the point

(x0, y0, z0) = (1/2, 1/2, 1/
√

2); it is the tangent plane at this point. Parameterization of planes is

discussed thoroughly in the rest of this chapter, and we will see how to pass from a parameterization

of a plane to an equation for the plane. For now, we simply give then answer: As you can check, for

all s, t,
1

2
x(θ0 + s, φ0 + t) +

1

2
y(θ0 + s, φ0 + t) +

1√
2
z(θ0 + s, φ0 + t) = 1 .

Therefore, the equation of the tangent plane can be written in the form ax + by + cz = d with

a = b = 1/2, c = 1/
√

2 and d = 1.

We have just completed our first tangent plane calculation. Later, we will have more efficient

methods to expedite such calculations, but there are several observations we can make now that will

give a useful perspective on where we are headed:

(1) Much of the work went into finding a parameterization of the sphere, and for this we used algebra

and geometry, and not calculus per se.

(2) The only calculus per se that we used was single variable calculus. We were ably to apply single

variable methods “one variable at a time”.

(3) Once we had a parameterization of the sphere, we readily obtained a parameterization of the

tangent plane at (x0, y0, z0), but to get an equation for the tangent plane, there was still more

geometry and algebra to deal with.

The short take-away from all of this is that we need some powerful algebraic and geometric tools

to proceed efficiently. In the rest of this chapter, we develop those tools from the beginning. Before

proceeding, we close this section with a brief discussion of why computing equations for tangent

planes is a useful thing to do.

Geometry is very helpful in finding minima and maxima for functions of several variables. You

learned in single variable calculus that if the tangent line to the graph of y = f(x) is not horizontal at

some point x0 in the interior (a, b) of the interval [a, b], then x0 cannot possibly minimize or maximize

the function f , even locally: Since the graph has a non-zero slope, you can move to higher or lower

values by moving a little bit to either the left or to the right. Hence the only candidates for interior
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maxima and minima are the critical points; that is, points at which the tangent line to the graph is

horizontal.

Now consider a very simple real valued function f(x, y) = x2 + y2. The graph of this function is

the set of points (x, y, z) for which z = f(x, y); i.e., z = x2 + y2. This graph is a parabolic surface in

three dimensional space. It is parameterized by the function

X(x, y) = (x, y, x2 + y2) .

At each point on the surface there is a tangent plane, which is the plane that “best fits” the graph at

the point in a sense quite analogous to the sense in which that tangent line provides the “best fit”

to the graph of a single variable differentiable function at a given point.

Here is a three a picture showing the portion of the graph of z = x2 + y2 for −2 ≤ x, y ≤ 2,

together with the tangent plane to this graph at the point with x = 1 and y = 1.
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Here is another picture of the same thing from a different vantage point, giving a better view of

the point of contact:
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As you can see, the tangent plane is tilted, so there are both uphill and downhill directions at

this point, and so (x, y) = (1, 1) cannot possibly minimize or maximize f(x, y) = x2 + y2 over any

set U in the x, y plane that contains not only (1, 1), but also all points sufficiently close to (1, 1) –

our reasoning requires some “wriggle-room” and does not apply if (1, 1) is on the boundary of U .

Of course, for such a simple function, there are many ways to see this. However, for more
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interesting functions, this sort of reasoning in terms of tangent planes will be very useful, and it will

lead to the following conclusion:

Let f(x, y) be a function of x and y such for each x0 and y0, there is a well-defined tangent plane to

the graph z = f(x, y) at (x0, y0). Then if (x0, y0) maximizes or minimizes f for all (x, y) in some set

U containing all points sufficiently close to (x0, y0), then it is necessarily the case that the tangent

plane to the graph z = f(x, y) at (x0, y0) is horizontal.

Better yet, the same reasoning applies to functions f(x1, . . . , xn) of arbitrarily many variables,

except then we can not longer visualize the corresponding graphs and need a more algebraic or

analytic interpretation of “horizontal”.

To make use of this sort of reasoning, we first need effective means of working with lines and

planes and such that will allows us to express the words in the paragraph above in terms of equations

which we can then solve. As indicated above, we not only need the two or three dimensional version

of this, but a version that works for any number of dimensions – though in more than two variables

it will be a “tangent hyperplane” that we will be computing.

There are many other subjects we shall study involving the calculus – both integral and differ-

ential – of functions that take vectors as input, or return them as output, or even both.

This concludes our necessarily somewhat vague look ahead in which we have balanced the goal of

giving some perspective on where we are headed against the burden of providing too many technical

definitions up front, which would make things precise, but then the trees would hide the forest.

We now shift gears. In the rest of this chapter, we proceed from the beginning with well-defined

terms as we begin developing the algebraic and geometric tools that we shall use throughout the

course.

1.1.4 The vector space Rn

Definition 1 (Vectors in Rn). A vector is an ordered list of n numbers xj, j = 1, 2, . . . , n, for some

positive integer n, which is called the dimension of the vector. The integers j = 1, 2, . . . , n that order

the list are called the indices, and the corresponding numbers xj are called the entries. That is, for

each j = 1, 2, . . . , n, xj is the jth entry on the list. The set of all n dimensional vectors is denoted

by Rn.

Bold face is used to denote vectors, and x ∈ Rn says that x is a vector in Rn. To write x out in

terms of its entries, we list the entries in a row, ordered left to right. The generic vector x ∈ R3 is

x = (x1, x2, x3) ,

where x1, x2 and x3 are real numbers. When n is 2 or 3, it is often simpler to dispense with the

subscripts, and distinguish the entries by using different letters. In this way, writing (x, y) to denote

a generic vector in R2 or (x, y, z) to denote a generic vector in R3. We use 0 to denote the vector in

Rn with 0 in every entry.

Finally, we shall often consider sets of vectors {x1, . . . ,xm} in Rn where the different vectors are

distinguished by subscripts. A subscript on a boldface variable such as xj always indicates the jth
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vector in a lsit of vectors and not the jth entry of a vector x. When we need to refer to the kth entry

of xj , we shall write (xj)k.

Definition 1 may not be what you expected. You may have seen two and three three dimensional

vectors defined as “quantities with length and direction”. When the term vector was coined, people

had in mind the description of the position and motion of points in three dimensional physical space.

For such vectors, the length and the direction have a clear geometric meaning.

But what about vectors like (2, 1, 3,−1, 0, 2) ∈ R6? What would we mean by the length of such

a vector, and what would we mean by the angle between two vector in R6?

Perhaps surprisingly, there is a useful notion of length and direction in any number of dimensions.∗

But until we define direction and magnitude, we cannot use these notions to define vectors them-

selves! Therefore, the starting point is the definition of vectors in Rn as ordered lists of n real

numbers.

The vector space Rn is more than just the set of all of the vecotrs in Rn; it is, by definition, this

set further quipped with a simple algebraic structure, consisting of two algebraic operations: scalar

multiplication and vector addition. As we have already stated, Descartes’ idea had such an enormous

impact because it brought together what had been two quite separate branches of mathematics –

algebra and geometry. Our plan for the rest of this section is to develop the algebraic aspects of

Descartes’ idea, and then show how the algebra may be leveraged to apply our geometric intuition

about three dimensional vectors to vectors of any dimension.

Definition 2 (Scalar Multiplication). Given a number a ∈ R and a vector x = (x1, x2, . . . , xn),

define the product of a and x, denoted ax, is defined by

ax = (ax1, ax2, . . . , axn) .

For any vector x, −x denotes the product of −1 and x.

Example 1 (Multiplying numbers and vectors). Here are several examples:

2(− 1, 0, 1) = (− 2, 0, 2)

π(− 1/2, 1/2) = (− π/2, π/2) = −(π/2,−π/2)

0(a, b, c) = (0, 0, 0) = 0 .

Definition 3 (Vector Addition). Given two vectors x and y in Rn for some n, define their vector

sum, x + y, by summing the corresponding entries:

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) .

We define the vector difference of x and y, x− y by x− y = x + (−y).

Note that vector addition does not mix up the entries of the vectors involved at all: For each j,

(x + y)j = xj + yj .

∗By “useful”, we mean useful for solving equations, among other things In other words, useful in a practical sense,

even in, say, eight dimensions.
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The third entry, say, of the sum depends only on the third entries of the summands.

• For this reason, vector addition inherits the commutative and associative properties of addition in

the real numbers. It is just the addition of real numbers “done in parallel”.

That is: vector addition is commutative, meaning that x + y = y + x and associative, meaning

that (x + y) + z = x + (y + z). In the same way, one sees that scalar multiplication distributes over

vector addition:

a(x + y) = (ax) + (ay) and (a+ b)x = ax + bx .

Example 2 (Vector addition).

(− 3, 2, 5) + (1, 1, 1) = (− 2, 3, 6)

(8,−2, 4,−12) + (0, 0, 0, 0) = (8,−2, 4,−12)

(8,−2, 4,−12) + (− 8, 2,−4, 12) = (0, 0, 0, 0) = 0 .

There is a geometric way to think about vector addition in R2. Identify the vector (x, y) ∈ R2

with the point the Euclidean plane having these Cartesian coordinates. We can then represent this

vector geometrically by drawing an arrow with its tail at the origin and its head at (x, y). The

following diagram shows three vectors represented this way: x = (−1/2, 1/2), y = (3/2, 1) and their

sum, x + y = (1, 3/2).

The vectors x, y and x+y themselves are drawn in bold. There are also two arrows drawn more

lightly: one is a parallel copy of x “transported” so its tail is at the head of y. The other is a parallel

copy of y “transported” so its tail is at the head of x. These four arrows run along the sides of the

parallelogram whose vertices are the origin, and the points corresponding to x, y and x + y. As you

see, the arrow representing x + y is the diagonal of this parallelogram that has its “tail end” at the

origin.

A similar diagram could be drawn for any pair of vectors and their sum, and you see that we

can think of vector addition in the plane as corresponding to the following operation:

• Represent the vectors by arrows as in the diagram. Transport one arrow without turning it – that

is, in a parallel motion – to bring its tail to the other arrow’s head. The head of the transported arrow

is now at the point corresponding to the sum of the vectors.
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Example 3 (Subtraction of vectors). Let x and y be two vectors in the plane R2, and let w = x−y.

Then, using the associative and commutative properties of vector addition,

x = x + (y − y) = (x− y) + y = y + w .

Using the same diagram, with the arrows labeled a bit differently, we see that w = x−y is the arrow

running from the head of y to the head of x, “parallel transported” so that its tail is at the origin.

Definition 4 (Linear combination and Span). Let {v1, . . . ,vm} be any set of m vectors in Rn, for

any finite m. A linear combination of these vectors is any expression of the form

m∑
j=1

tjxj

where t1, . . . , tm are real numbers.

Let V ⊂ Rn be any set of vectors in Rn, finite or not. The span of V is the set of all possible

linear combinations
∑m
j=1 tjxj formed using finite subsets {v1, . . . ,vm} ⊂ V . The span of V is

denoted by Span(V ).

Remark 1. The the subset symbol as used here simply mean the set on the left is a subset, not

necessarily proper, of the set on the right. That is A ⊂ B does not exclude A = B. Sometimes

a more elaborate notation is used to distinguish proper and non-proper subsets, but that would be

cumbersome here.

Let V ⊂ Rn. For any v ∈ V , we can write v as a linear combination in the trivial way, taking

m = 1 and t1 = 1 so that v = 1v. This shows that V ⊂ Span(V ).

In general, given two subsets V and W of Rn with V ⊂ W , every linear combination that one

can form using vectors in V can also be formed using vectors in W since it includes V . That is

V ⊂W ⇒ Span(V ) ⊂ Span(W ) . (1.11)

However, it can happen that when V is strictly contained in W , then Span(V ) = Span(W ). For

example, consider the case in which V is the singleton set V = {(1, 1, 1)} in R3, Then the

Span(V ) = {(t, t, t) : t ∈ R } .
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which has infinitely many elements. Define W = Span(V ), and then certainly it is the case that V is

a proper subset of W . However, by definition Span(V ) = W , and it is also true that Span(W ) = W .

Any vector in Span(W) is a linear combination of multiples of (1, 1, 1), and therefore it is a multiple of

(1, 1, 1), and hence belongs to W . That is, W is its own span, and in this case Span(V ) = Span(W ).

The same reasoning leads to the following general conclusion:

Theorem 1. Let V be an subset of Rn, and let W = Span(V ). Then Span(W ) = W

Proof. By what we have noted above, V ⊂ W , and then by (1.11), W = Span(V ) ⊂ Span(W ). To

complete the proof, we need to show that Span(W ) ⊂ Span(V ) = W

Given two elements w1 and w2 of V , there arem1,m2 ∈ N, v1, . . .vm1+m2
∈ V and t1, . . . , tm1+m2

∈

R so that w1 =

m1∑
j=1

tjvj and w2 =

m1+m2∑
j=m1+1

tjvj . Therefore, for any s1, s2 ∈ R,

s1w1 + s2w2 =

m1∑
j=1

(s1tj)vj +

m1+m2∑
j=m1+1

(s2tj)vj ,

which is a linear combination of elements of V , and therefore belongs to W . This shows that any

linear combination of two elements of W is again an element of W .

The general case follows by induction: Suppose that for m ∈ N, any linear combination of m of

fewer elements of W belong to W . Then the general linear combination of m+ 1 elements of W has

the form
m+1∑
j=1

sjwj = 1

 m∑
j=1

sjwj

+ sm+1wm+1 .

By the inductive hypothesis,

m∑
j=1

sjwj ∈W , and hence this m + 1 term linear combination is also a

linear combination of 2 elements of W , and hence it belongs to W .

This furnishes the inductive step and since we proved the hypothesis was valid for m = 2, this

shows that for all m ∈ N, any linear combination of m of fewer elements of W belong to W .

Example 4 (The span of 2 vectors in R3). Let v1 = (1, 2,−3) and v2 = (1,−2, 1). We have given

a verbal definition of Span({v1,v2}). Can we find an equation that is satisfied by v = (x, y, z) if and

only if x ∈ Span({v1,v2})? Can we parameterize the solutions set of this equation? Yes:

By definition a given vector v satisfies (x, y, z) ∈ Span({v1,v2}) if and only if for some numbers

s and t,

(x, y, z) = sv1 + tv2 = s(1, 2,−3) + t(1,−2, 1) = (s+ t, 2s− 2t,−3s+ t) .

This single vector equation is equivalent to a system of 3 scalar equations for the unknowns s and t.

(Recall that x, y, and z are given.)

x = s+ t , y = 2s− 2t , z = −3s+ t .

Using the first two equations, 2x+y = (2s+2t)+(2s−2t) = 4s, and hence s = (2x+y)/4. Likewise,

using the same equations. 2x − y = 4t, and hence t = (2x − y)/4. The first two equations have
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determined s and t, and then the third equation says that z = t− 3s =
2x− y

4
− 6x+ 3y

4
= −x− y.

We have found our equation:

A vector (x, y, z) ∈ Span({v1,v2}) if and only if

x+ y + z = 0 . (1.12)

Morover, in this case (x, y, z) = sv1 + tv2 for a unique (s, t) ∈ R2, namely

(s, t) =
1

4
(2x+ y, 2x− y) . (1.13)

You may recognize the equation z = −x− y as the equation of a plane in R3 passing through the

origin, {0}. In the next few sections we shall carefully study lines and planes in R3. The fact that

for each point (x, y, z) in this plane, there is exactly one choice of (s, t) so that (x, y, z) = sv1 + tv2

means that the function

x(s, t) = sv1 + tv2 = (s+ t, 2s− 2t,−3s+ t) ,

is a one-to-one function from R2 onto the solution set of the equation (1.12), which is the same as

Span({v1,v2}). Thus, the function sending (s, t) to x(s, t) = sv1 + tv2 is a parameterization of

Span({v1,v2}).

Example 5 (The span of 3 vectors in R3). Let v1 and v2 be the vectors considered in the previous

example, and now consider also a third vector v3 = (− 2, 1, 1). That is,

v1 = (1, 2,−3) , v2 = (1,−2, 1) , v3 = (− 2, 1, 1) .

What is Span({v1,v2,v3})?
We now have more vectors to take linear combinations of than before, so certainly

Span({v1,v2}) ⊂ Span({v1,v2,v3}) . (1.14)

However, it turns out that v3 is not really a “new” vector: v3 ∈ Span({v1,v2,v3}), to see this,

notice that (− 2, 1, 1) satisfies the equation x+ y + z = 0, and Span({v1,v2,v3}) is the solution set

of this equation, as we saw in the previous example. Moreover, by (1.13),

v3 = sv1 + tv2 where (s, t) = − 1
4(3, 5) .

The general element in Span({v1,v2,v3}) has the form sv1 + tv2 +uv3, but since v3 = − 3
4v1− 5

4v2,

sv1 + tv2 + uv3 = (s− 3
4u)v1 + (t− 5

4u)v2 ∈ Span({v1,v2,v3}) .

This shows that for this choice of v1, v2 and v3,

Span({v1,v2,v3}) ⊂ Span({v1,v2}) . (1.15)

Together with (1.14), this proves that Span({v1,v2,v3}) = Span({v1,v2}). (Note that the relation

(1.14) is general, and would is valid for any set of 3 vectors, but the validity of the relation (1.15)

depended on a special choice for v3.
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Another way to phrase all of this is that for given x, y, z, the system of three equations in the

unknowns s, t, u

x = s+ t− 2u

y = 2s− 2t+ u

z = −3s+ t+ u

has a solution if and only if x + y + z = 0. We can say more: When the equations x + y + z = 0,

there will be infnitely many solutions, one for each choice of the u.

Indeed, when x + y + z = 0, and x = (x, y, z), both x and v3 belong to Span({v1,v2}). By

Theorem 1, for any u ∈ R, so does the linear combination x − uv3. Therefore, for some uniquely

determined s and t, x− uv3 = sv1 + tv2. Hence there is exactly one solution for each choice of the

“free variable” u.

Now let us begin to connect the algebra we have developed in this subsection with Descartes’

ideas. The key is the introduction of the standard basis for Rn:

Definition 5 (Standard basis for Rn). For j = 1, . . . , n, let ej denote the vector in Rn whose jth

entry is 1, and all of whose remaining entries are 0. The ordered set {e1, . . . , en} is the standard

basis for Rn.

For example, if n = 3, we have

e1 = (1, 0, 0) e2 = (0, 1, 0) and e3 = (0, 0, 1) .

In only three dimensions, subscripts are often more of a hinderance than a help and a standard

notation is i = e1, j = e2 and k = e3.

Theorem 2 (Fundamental property of the standard basis). Let {e1, . . . , en} be the standard basis

in Rn. Span({e1, . . . , en}) = Rn, and for each x ∈ Rn, there is exactly one vector of coefficients

(t1, . . . , tn) such that

x =

n∑
j=1

tjej ,

namely (t1, . . . , tn) = (x1, . . . , xn).

Proof: By definition,

n∑
j=1

xjej = x1(1, 0, . . . , 0) + · · ·+ xn(0, 0, . . . , 1) = (x1, x2, . . . , xn).

Thus, any vector x = (x1, x2, . . . , xn) can be written as a linear combination of the standard

basis vectors: Next, by the computation we just made,

n∑
j=1

tjej = (t1, t2, . . . , tn). Thus,

x =

n∑
j=1

tjej ⇐⇒ tj = xj for each j = 1, . . . , n ,

and hence the coordinates are uniquely determined.
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The fact that every vector in Rn can be expressed as a unique linear combination of the standard

basis vectors is a special property of this set. As we have seen in Example5, there are sets {v1,v2v3}
of 3 vectors in R3 such that the span of {v1,v2v3} is not all of R3, and moreover, when x is the

span, so that it is possible to write x = t1v1 + t2v2 + t3v3 for some t1, t2, t3, there are infnitely many

choices of the coefficinents t1, t2, t3.

The standard basis vectors thus provide the analog of a Cartesian frame for Rn, in that one can

get to any vector in Rn by adding up a multiples of the standard basis vectors, just as one can get to

any point by moving along the directions of the vectors in the frame. However, frames were defined

in terms of orthogonality, and so far we have no notion of geometry in Rn, only algebra. The next

subsection brings in the geometry.

1.1.5 Geometry and the dot product

So far, we have considered Rn in purely algebraic terms. Indeed, the modern notion of an abstract

vector space is a purely algebraic construct generalizing the algebraic structure on Rn that has been

the subject of the last subsection.

Additional structure is required to make contact with the notions of length and direction that

have been traditionally associated to vectors. Let us begin with length. We shall identify the length

of a vector with its “distance” from the origin. We introduce the notion of a metric which provides a

measure of the “distance” between two points”, in some set. (The concept of a metric is very general,

and in making the follwing definition, we do not assume that the set X is a set of vectors. It can be

any set.)

Definition 6. Let X be a set. A function % on the Cartesian product X ×X with values in [0,∞)

is a metric on X in case:

(1) %(x, y) = 0 if and only if x = y.

(2) For all x, y ∈ X, %(x, y) = %(y, x).

(3) For all x, y, z ∈ X,

%(x, z) ≤ %(x, y) + %(y, z) .

When % is a metric on X, the pair (X, %) is called a metric space.

At an intuitive level, %(x, y) is supposed to represent the “distance” between x and y, or even more

intuitively, the “length of the shortest path connecting x and y”. This intiutive picture motivates

the three items in the definition: Two points are the same if and only if there is no distance between

them. This leads to (1). The distance from x to y is the same as the distance from y to x; just “go

back” on the same path. This leads to (2). Finally, if you insist on stopping by y on your way from

x to z, the detour can only increase the total distance traveled. This leads to (3).

You might be able to think of some more requirements you would like to impose on the concept

of distance. However, the mathematical value of a definition lies in the applicability of the theorems

one can prove using it. It turns out that the definition of metric that we have just given provides a

framework in which one can prove a great many very useful theorems. It is a very fruitful abstraction

of the notion of distance in physical space. Our first example is the Euclidean metric on Rn.
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Definition 7 (Euclidean distance). The Euclidean length of a vector x = (x1, . . . , xn) ∈ Rn is

denoted by ‖x‖, and is defined by

‖x‖ =

 n∑
j=1

x2
j

1/2

.

The distance between two vectors x,y ∈ Rn is defined by ‖x − y‖. A vector x ∈ Rn is called a unit

vector in case ‖x‖ = 1; i.e., in case x has unit length.

We sometimes think of unit vectors as reprinting “pure directions” . Given any non-zero vector

x, we can write define the unit vector u =
1

‖x‖
x, which is called the normalization of x, and then

we have

x = ‖x‖
(

1

‖x‖
x

)
= ‖x‖u .

This way of writing x expresses it as the product of its length and direction.

As you can check from the definition, for any x ∈ Rn and any t ∈ R,

‖tx‖ = |t|‖x‖ .

As we shall soon see, the function %E defined by

%E(x,y) := ‖x− y‖ (1.16)

is a metric on Rn, and is called the Euclidean metric. Indeed, with this definition of %E on R2, the

distance between two vectors (x, y) and (u, v) is
√

(x− u)2 + (y − v)2. which is of course the usual

formula derived from the Pythagorean Theorem.

It is easy to see that the function %E defined in (1.16) satisfies requirements (1) and (2) in

the definition of a metric. The fact that it also satisfies (3) is less transparent, but fundamentally

important.

The first step towards this is to write ‖x‖ in terms of the dot product, which we now define:

Definition 8 (Dot product). The dot product of two vectors a = (a1, . . . , an) and b = (b1, . . . , bn)

in Rn, a · b, is given by

a · b = a1b1 + a2b2 + · · · anbn .

Note that the dot product is commutative, meaning that a · b = b · a for all a,b ∈ Rn. This

follows directly from the definition and the commutativity of multiplication in R. In the same way

one sees that the dot product distributes in the sense that for all a,b, c ∈ Rn, and all s, t ∈ R,

(sa + tb) · c = s(a · c) + t(b · c) .

However, except when n = 1, it does not make sense to talk about the associativity of the dot

product: For n > 1 and a,b, c ∈ Rn, a · b /∈ Rn, so (a · b) · c is not defined.

From the definitions, we have ‖x‖2 = x · x. Therefore, using the distributive and commutative

properties of the dot product,

‖x− y‖2 = (x− y) · (x− y)

= x · x + y · y − 2x · y ,

= ‖x‖2 + ‖y‖2 − 2x · y . (1.17)
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The formula (1.17) has an interpretation in terms of the lengths of the vectors x and y, and the angle

between these vectors. The key to this is the law of cosines. Recall that if the lengths of the three

sides of a triangle in a Euclidean plane are A, B and C, and the angle between the sides with lengths

A and B is θ, then C2 = A2 +B2 − 2AB cos θ.

Now let x and y be any vectors in the plane R2. Consider the triangle whose vertices are 0, x

and y. Define the angle between x and y to be the angle between the two sides of the triangle issuing

from the vertex at 0. Since the length of the side of the triangle opposite this vertex is ‖x− y‖, by

the law of cosines,

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ .

Comparing this with (1.17), we conclude that x ·y = ‖x‖‖y‖ cos θ. Therefore, in two dimensions, we

have proved that the angle θ between two non-zero vectors x and y, considered as sides of a triangle

in the plane R2, is given by the formula

θ = arccos

(
x · y
‖x‖‖y‖

)
, (1.18)

where the arccosine function is defined on [−1, 1] with values in [0, π].

The same sort of reasoning applies to vectors in R3 since any two non-colinear vectors x and y

in R3 lie in the plane determined by the three points 0, x and y, and then the law of cosines may be

applied in this plane. Thus, the formula (1.18) is valid in R3 as well.

Why not go on from here? It may seem intuitively clear that just as in R3, again in Rn for any

n ≥ 3, any two non-colinear vectors x and y lie in a two dimensional plane in which we can apply

the law of cosines, just as we did in R2 and R3. This suggests that we use use (1.18) to define the

angle between two vectors in Rn:

Definition 9. Let x and y be two non-zero vectors in Rn. Then the angle θ between x and y is

defined to be

θ = arccos

(
x · y
‖x‖‖y‖

)
, (1.19)

Two vectors x and y in Rn are orthogonal in case x · y = 0.

There is an important matter to be checked before going forward: Does this definition make

sense? The issue is that the arccos function is defined on [−1, 1], so it had better be the case that

−1 ≤ x · y
‖x‖‖y‖

≤ 1

for all nonzero vectors x and y in Rn. This certainly is the case for n = 2 and n = 3, where we have

proved the formula (1.18) is true with the classical definition of θ. but what about larger values of

n? The following theorem shows that there is no problem with using (1.19) to define θ no matter

what the dimension n is. (It has many other uses as well!)

Theorem 3 (Cauchy–Schwartz inequality). For any two vectors a,b ∈ Rn,

|a · b| ≤ ‖a‖‖b‖ . (1.20)

There is equality in (1.20) if and only if ‖b‖a = ±‖a‖b
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Proof: Clearly (1.20) is true, with equality, in case either of the vectors is the zero vector, and also

in this case ‖b‖a = ‖a‖b = 0.

Hence we may assume that neither a nor b is the zero vector. Under this assumption, define

x =
a

‖a‖
and y =

b

‖b‖
. Now let us compute ‖x− y‖2:

‖x− y‖2 = (x− y) · (x− y) = x · x + y · y − 2x · y = 2(1− x · y) ,

where we have used the fact that x and y are unit vectors. But since the left had side is certainly

non-negative, is must be the case that x · y ≤ 1.

Likewise, computing ‖x + y‖2 = 2(1 + x · y), we see that x · y ≥ −1. Thus,

−1 ≤ x · y ≤ 1 ,

which is equivalent to (1.20) by the definition of x and y.

As for the cases of equality, |x · y| = 1 if and only if either ‖x − y‖ = 0 or ‖x + y‖ = 0, which

means x = ±y. From the definitions of x and y, this is the same as ‖b‖a = ±‖a‖b.

Theorem 4 (Triangle inequality). For any three vectors x,y, z ∈ Rn,

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ . (1.21)

Proof: Let a = x − y and b = z − y so that x − z = a − b. Then by (1.17), and then the

Cauchy-Schwarz inequality,

‖x− z‖2 = ‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2a · b

≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖

= (‖a‖+ ‖b‖)2 .

Taking square roots of both sides, and recalling the definitions of a and b, we obtain (1.21).

Theorem 5. The Euclidean distance function

%E(x, y) :=
√

(x− y) · (x− y) = ‖x− y‖

is a metric on Rn.

Proof: The function %E(x,y) is non-negative and clearly satisfies conditions (1) and (2) in the

definition of a metric. By Theorem 4, it also satisfies (3).

1.1.6 Parallel and orthogonal components

Given two non-zero vector a in Rn, it is often useful to decompose other vectors x ∈ Rn as a sum of

a two vectors – one that is a muttple of a, and another that is orthogonal to a. There is exactly one

way to do this. Let a 6= 0 be given. For any t ∈ R, we have

x = ta + (x− ta) (1.22)
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which is the general decomposition of x into the sum of a mutiple of a, and any other vector. We

now wish to choose t so that this second vector is orthgogonal to a. Taking the dot products of both

sides of (1.22) with a we find

x · a = t‖a‖2 + (x− ta)a ,

and thus (x− ta) is orthogonal to a if and only if t = ‖a‖−1x · a. Using this value of t in (1.22), we

obtain

x =
x · a
‖a‖2

a +

(
x− x · a
‖a‖2

a

)
,

which we can write more simply in terms of the unit vector u = ‖a‖−1a:

Definition 10 (Parallel and orthogonal components). Given some non-zero vector a ∈ Rn, let

u :=
1

‖a‖
a, which is the unit vector in the direction of a. We can decompose any vector x ∈ Rn into

two pieces, x‖ and x⊥ where

x‖ := (x · u)u and x⊥ := x− (x · u)u .

These two vectors are called, respectively, the parallel and orthogonal components of x with respect

to a, and x = x‖|+ x⊥ is the decomposition of x isto is components parallel and perpendicular to a.

The decomposition of vectors into parallel and orthogonal components is often useful. Here is a

first example of this.

Example 6. A 100 pound weight sits on an slick (frictionless) incline making a 60 degree angle with

the horizontal. It is held in place by a rope attached to the base of the weight and tied down at the

top of the ramp. The tensile strength of the rope is such that it is only guaranteed not to break for

tensions of no more than 80 pounds. Is this a dangerous situation?

To answer this we need to compute the tension in the rope. Let us use coordinates with the rope

lying in the x, y plane, and the y axis being vertical. The gravitational force vector, measured in

pounds, is

f = (0,−100) .

The unit vector pointing down the slope is

u = −(cos(π/3), sin(π/3)) = −1

2
(1,
√

3)
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since 60 degrees is π/3 radians. The tension in the rope must balance the component of the gravitation

force in the direction u; i.e., the direction of possible motion. That is, the magnitude of the tension

will be ‖f‖‖ where f‖ is computed with respect to u. Doing the computation we find

f‖ = (f · u)u = −25
√

3(1,
√

3) ,

and thus ‖f‖‖ = 50
√

3 ≈ 86.6. Look out below!

Here is another way to think about the computation in the previous example. The gravitational

force vector f has a simple expression in standard x, y coordinates, but these coordinates are not well

adapted to the problem at hand since neither coordinate axis corresponds to a possible direction of

possible motion. The direction of possible motion is given by u.

Let us consider a coordinate system built around the direction of u. We then take v to be one of

the two unit vectors in R2 that is orthogonal to u ,which are ±1

2
(−
√

3, 1) We (arbitrarily) choose

v =
1

2
(
√
−3, 1), and then as you can easily check, {u,v} is an orthogonal pair of unit vectors.

Let us write the force vector f in coordinates based on the {u,v} frame of reference. That is,

f = uu + vv (1.23)

for some numbers u and v, which are the coordinates of f with respect to this frame of reference.

The u, v coordinates of f are directly relevant to our problem. In particular u is the magnitude of the

force in the direction u, and is what the tension in the rope must balance. Hence in these coordinates,

our question becomes: Is |u| > 80?.

To compute u (and v), we can fake advantage of the orthogonality of u and v: Taking the dot

product of both sides of f = uu + vv with u we find

f · u = (uu + vv) · u = uu · u + vv · v = u

where we have used the distributive property of the dot product and the orthogonality of u and v.

In the same way, we find f · v = v. Thus, we can re-write (1.23) as

f = (f · u)u + (f · v)v ,

or in other words, u = f · u and v = f · v. Now simple computations show that |u| = |f · u| > 80.

• The first step in solving many problems is to introduce a system of coordinates that is adapted to

the problem, and in particular is “built out of” directions given in the problem.

The most broadly useful and convenient coordinate systems in Rn are those constructed using a

set of n mutually orthogonal unit vectors, such as the set {u,v} of orthogonal unit vectors in R2 that

we have just used to build coordinates for our inclined plane problem. The next subsection develops

this idea in general.

1.1.7 Orthonormal subsets of Rn

Definition 11 (Orthonormal vectors in Rn). A set {u1, . . . ,um} of m vectors in Rn is orthonormal

in case for all 1 ≤ i, j ≤ m

ui · uj =

1 i = j

0 i 6= j
. (1.24)
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Example 7. The set of standard basis vectors {e1, . . . , en} is one very simple example of an or-

thonormal set. Also, any non-empty subset of an orthonormal set is easily seen to be orthonrmal,

so we can get other examples by taking non-empty subsets of {e1, . . . , en}. These are important

examples, but not the only ones. Here is a more invteresting example: Let

u1 =
1

3
(1, 2,−2) u2 =

1

3
(2, 1, 2) and u3 =

1

3
(2,−2,−1) . (1.25)

Then you can easily check that (1.24) is satisfied, so that {u1,u2,u3} is an orthonormal set in R3.

The main theorem concerning orthonormal sets in Rn is the following.

Theorem 6 (Fundamental Theorem on Orthonormal Sets in Rn). Let {u1, . . . ,un} be any orthonor-

mal set in Rn consisting of exactly n vectors. Then every vector x ∈ Rn can be written as a linear

combination of the the vectors {u1, . . . ,un} in exactly one way, namely

x =

n∑
j=1

(x · uj)uj . (1.26)

Moreover, the squared length of x is the sum of the squares of the coefficients in this expansion:

‖x‖2 =

n∑
j=1

(x · uj)2 .

The standard basis of Rn, {e1, . . . , en} is a set of n orthonormal vectors in Rn, and so the

theorem says that

x =

n∑
j=1

xjej =

n∑
j=1

(x · ej)ej

is the unique way to express any x in Rn as a linear combination of the standard basis vectors. This

is the content of Theorem 2. Theorem 6 generalizes this to arbitrary sets of n orthonormal vectors in

Rn. It allows us to take any set of n orthonormal vectors in Rn as the basis of a coordinate system

in Rn. This will prove to be very useful in practice. It will allow us to use coordinates that are

especially adapted to whatever computation we are trying to make. The next definitions pave the

way for this.

Definition 12 (Orthonormal basis). An orthonormal basis in Rn is any set of n orthonormal vectors

in Rn.

The standard basis is one example of many. We have seen in Example 7 that {u1,u2,u3} with

the vectors specified by (1.25) is an orthonormal basis for R3.

Definition 13 (Coordinates with respect to an orthonormal basis). Consider an orthonormal basis

{u1, . . . ,un} of Rn, and a vector x in Rn. Then the numbers x · uj, 1 ≤ j ≤ n, are called the

coordinates of x with respect to {u1, . . . ,un}.

The coordinates of a vector x ∈ Rn with respect to an orthonormal basis behave just like

Cartesian coordinates in that they tell you how to get from 0 to x: If the coordinates are y1, . . . , yn,

start at 0, move y1 units in the u1 direction, then move y2 units in the u2 direction and so forth.

The hard part of the proof of Theorem 6 is contained in the following lemma:
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Lemma 1 (No n+ 1 orthonormal vectors in Rn). There does not exist any set of n+ 1 orthonormal

vectors in Rn.

The proof of this simple statement is very instructive, and very important, but somewhat in-

volved. We give it in full in the next subsection. For now, let us take it on faith, and see how we

may use it to prove Theorem 6. You will probably agree that the lemma is “geometrically obvious”

in R2, or even R3, where you can easily visualize things.

Proof of Theorem 6: Let {u1, . . . ,un} be any set of n orthonormal vectors in Rn, and let x be

ano non-zero vector in Rn. Define the vector z by

z := x−
n∑
j=1

(x · uj)uj .

for each i = 1, . . . , n, we have

z · ui =

x−
n∑
j=1

(x · uj)uj

 · ui = x · ui −
n∑
j=1

(x · uj)uj · ui = x · ui − x · ui = 0 .

Thus, z is orthogonal to each ui.

Now suppose that z 6= 0, Then we may define a unit vector un+1 by un+1 =
1

‖z‖
z. Since this

unit vector is orthogonal to each unit vector in the the orthonormal set {u1, . . . ,un}, the augmented

set {u1, . . . ,un,un+1} would be a set of n + 1 orthonormal vectors in Rn. By Lemma 1, this is

impossible. Therefore, z = 0. By the definition of z, this means that x =

n∑
j=1

(x · uj)uj , which is

(1.26). Thus, every vector x ∈ Rn can be written as a linear combination of the vectors {u1, . . . ,un}.

Moreover, there is only one way to do this, since if x =

n∑
j=1

yjuj , taking the dot product of both sides

with ui yields

x · ui =

 n∑
j=1

yjuj

 · ui =

n∑
j=1

yj(uj · ui) = yi .

That is, each yi must equal x · ui.
Finally, going back to (1.26), we compute

‖x‖2 = x · x =

 n∑
j=1

(x · uj)uj

 ·( n∑
k=1

(x · uk)uk

)

=

n∑
j,k=1

(x · uj)(x · uk)uj · uk =

n∑
j=1

(x · uj)2 .

1.1.8 Householder reflections and orthonormal bases

In this subsection we shall prove Lemma 1. The proof is very interesting, and introduces many

techniques and ideas that will be important later on.
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We begin by introducing an extremely useful class of functions f from Rn to Rn: the Householder

reflections.

First, for n = 2, fix a unit vector u ∈ R2 and consider the line `u through the origin that is

orthogonal to u. Then, for any x ∈ R2, define hu(x) to be the mirror image of x across the line `u.

That it, hu(x) is the reflection of x across the line `u. Here is a picture illustrating the transformation

form x to hu(x):

The transformation from x to hu(x) is geometrically well defined, and you could easily plot the

output point hu(x) for any given input point x. But to do computations, we need a formula. Let us

derive a formula.

The key thing to realize, which you can see in the picture, is that both x and hu(x) have the

same component orthogonal to u (that is, along the line `u) and have opposite components parallel

to u. In formulas, with respect to the direction u,

(hu(x))⊥ = x⊥ and (hu(x))‖ = −x‖ .

Therefore, since hu(x) = (hu(x))⊥ + (hu(x))‖, we have the formula

hu(x) = x⊥ − x‖ . (1.27)

Then since x⊥ = x− (x · u)u and x‖ = (x · u)u, we deduce the more explicit formula

hu(x) = x− 2(x · u)u . (1.28)

We have derived the formula (1.28) for n = 2. However, the formula does not explicitly involve

the dimension and makes sense in any dimension. Now, given any unit vector u ∈ Rn, for any positive

integer n, we use this formula to define the transformation hu from Rn to Rn that we shall call the

Householder reflection on Rn in the direction u:

Definition 14 (Householder reflection in the direction u). For any unit vector u ∈ Rn, the function

hu from Rn to Rn is defined by (1.28).

Example 8. Let u =
1√
3
(− 1, 1,−1). As you can check, this is a unit vector. Let x = (x, y, z)

denote the generic vector in R3. Let us compute hu(x). First, we find

x · u =
y − x− z√

3
and hence (x · u)u =

y − x− z
3

(− 1, 1,−1) .
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Notice that the square roots have (conveniently) gone away! Now, from the definition of hu,

hu(x, y, z) = (x, y, x)− 2y − 2x− 2z

3
(− 1, 1,−1) =

1

3
(x+ 2y − 2z, 2x+ y + 2z,−2x+ 2y + z) .

This is an example of a function, or, what is the same thing, transformation from R3 to R3. If the

input vector is (x, y, z), the output vector is

hu(x, y, z) =

(
x+ 2y − 2z

3
,

2x+ y + 2z

3
,
−2x+ 2y + z

3

)
. (1.29)

To conclude the example, let us evaluate the transformation at particular vector. We choose,

more or less at random, x = (1, 2, 3). Plugging this choice into our formula (1.29) we find

hu(1, 2, 3) =
1

3
(− 1, 10, 5) .

Let us compute the length of hu(x): ‖hu(x)‖ =
1

3
‖(−1, 10, 5)‖ =

1

3

√
1 + 100 + 25 =

√
14. Notice

that ‖x‖ =
√

1 + 4 + 9 =
√

14, so ‖hu(x)‖ = ‖x‖. This will always be the case, as we explain next –

and as should be the case: reflection preserves the lengths of vectors – and more.

Lemma 2 (Householder reflections preserve dot products). For any two vectors x and y in Rn, and

any unit vector u in Rn,

(hu(x)) · (hu(y)) = x · y . (1.30)

In particular,

‖hu(x)‖ = ‖x‖ . (1.31)

Proof. We use (1.27) and the fact that x⊥ is orthogonal to y‖ and that x‖ is orthogonal to y⊥ to

compute:

(hu(x)) · (hu(y)) =
(
x⊥ − x‖

)
·
(
y⊥ − y‖

)
= x⊥ · y⊥ + x‖ · y‖ − x⊥ · y‖ − x‖ · y⊥

= x⊥ · y⊥ + x‖ · y‖ ,

and

x · y =
(
x⊥ −+x‖

)
·
(
y⊥ + y‖

)
= x⊥ · y⊥ + x‖ · y‖ + x⊥ · y‖ + x‖ · y⊥

= x⊥ · y⊥ + x‖ · y‖ ,

Comparing the two computations proves (1.30). Then (1.31) follows by considering the special

case y = x.

In fact, since angles between vectors as well as the lengths of vectors are defined in terms of the

dot product, Householder reflections preserve angles between vectors as well as the lengths of vectors,

as you would expect from the diagram. In particular, Householder reflections preserve orthogonality.

Householder reflections are invertible transformations. In fact, they are their own inverses: For

all x ∈ Rn, hu(hu(x)) = x, That is, hu ◦ hu is the identity function.
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To see this from the defining formula, we compute

hu(hu(x)) = hu(x⊥ − x‖) = x⊥ − (−x‖) = x⊥ + x‖ = x .

That is, reflecting a vector twice (about the same direction) leaves you with the vector you started

with.

Since reflection does not alter the length of a vector, if we are given vectors x and y with

‖x‖ 6= ‖y‖, then we cannot possibly find a unit vector u such that hu(x) 6= y. However, if ‖x‖ = ‖y‖,
but x 6= y, then there is always a “standard” Householder reflection hu such that hu(x) = y:

Lemma 3. Let x,y ∈ Rn, n ≥ 2, satisfy ‖x‖ = ‖y‖, but x 6= y. Then there is a unit vector u ∈ Rn

so that for the corresponding Householder reflection hu,

hu(x) = y .

In particular, one may always choose

u =
1

‖x− y‖
(x− y) . (1.32)

Moreover, with this choice of u, for any z ∈ Rn that is orthogonal to both x and y

hu(z) = z . (1.33)

Proof. Define u by (1.32), and compute

2(x · u)u =
2x · (x− y)

‖x− y‖2
(x− y) . (1.34)

Since ‖x‖ = ‖y‖,

‖x− y‖2 = ‖x|2 + ‖y‖2 − 2x · y = 2(‖x‖2 − x · y) = 2x · (x− y) .

Therefore, from (1.34) we have 2(x · u)u = x− y, and so hu(x) = x− (x− y) = y.

The final part is simple: If z is orthogonal to both x and y, then it is orthogonal to u, and then

(1.33) follows from the definition of hu.

Example 9. Let x =
1

3
(1, 2,−2) and y = e1 = (1, 0, 0). These are both unit vectors, and hence

‖x‖ = ‖y‖, so there is a unit vector u such that hu(x) = y, and u is given by (1.32). We compute

u:

x− y =
1

3
(1, 2,−2)− (1, 0, 0) =

1

3
[(1, 2,−2)− (3, 0, 0)] =

2

3
(−1, 1,−1) .

Normalizing, we find

u =
1√
3

(−1, 1,−1) .

Now simple computations verify that, as claimed, hu(x) = y.

We are now ready to prove Lemma 1, which says that there does not exist any orthonormal set

of n+ 1 vectors in Rn.
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Proof of Lemma 1. First observe that for n = 1, there are exactly two unit vectors, namely (1) and

( − 1). Since these vectors are not mutually orthogonal, there are exactly two orthonormal sets in

R1, namely {(1)} and {(− 1)}, and each consists of exactly one vector. This proves the Lemma for

n = 1.

We now proceed by induction. For any n ≥ 2 we suppose it is proved that there does not

exist any orthonormal set of n vectors in Rn−1. We shall show that then there does not exist any

orthonormal set of n+ 1 vectors in Rn.

Suppose on the contrary that {u1, . . . ,un+1} is an orthonormal set of vectors in Rn. Then there

exists an an orthonormal set {v1, . . . ,vn+1} of vectors in Rn such that vn+1 = en. To see this, note

that if un+1 = en, we already have the desired orthonormal set. Otherwise, by Lemma 3 there exists

a unit vector in Rn such that hu(un+1) = en. Then, since Householder reflections preserve lengths

and orthogonality, if we define vj = hu(uj), j = 1, . . . , n + 1 {v1, . . . ,vn+1} is also an orthonormal

set in Rn, and by construction, vn+1 = en.

Therefore, for each j = 1, . . . , n,

0 = vj · vn+1 = vj · en .

Since vj · en is simply the final entry of vj , this means that for each j = 1, . . . , n, vj has the form

vj = (wj , 0)

where wj is a unit vector in Rn−1.

Since {v1, . . . ,vn} is orthonormal in Rn, {w1, . . . ,wn} is orthonormal in Rn−1, since the final

zero coordinate simply “goes along for the ride”. However, this is impossible, since we know that

there does not exist any orthonormal set of n vectors in Rn−1. We arrived at this contradiction by

assuming that there existed and orthonormal set of n+1 vectors in Rn. Hence this must be false.

1.2 Lines and planes in R3

In this section we shall study the geometry of lines and planes in R3. We shall see that if we

use coordinates based on a well-chosen chosen orthonormal basis, it is very easy to compute many

geometric qunatities such as, for example, the distance between two lines in R3. Of course, to do this,

we need a systematic method for constructing orthonormal bases. In R3, the cross product provides

such a method, and has many other uses as well. In the next subsection, we introduce the cross

product, starting from a question about area that the cross product is designed to answer.

1.2.1 The cross product in R3

Let a and b be two vectors in R3, neither a multiple of the other, and consider the triangle with

vertices at 0, a, b, which naturally lies in the plane through these three points. The cross product

gives the answer to the following question, and a number of other geometric questions as well:

• How can we express the area of this triangle in terms of the Cartesian coordinates of a and b?
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The classical formula for the area of a triangle in a plane is that it is one half the length of the

base times the height. Let us take the side running from 0 to a as the base, so that the length of the

base is ‖a‖. Then, using θ to denote the angle between a and b, the height is ‖b‖ sin θ. Thus, the

area A of the triangle is

A :=
1

2
‖a‖‖b‖ sin θ .

(Note that since, by definition, θ ∈ [0, π] sin θ ≥ 0.)

Using the identity sin2 θ + cos2 θ = 1, we can write this as

4A2 = ‖a‖2‖b‖2 sin2 θ = ‖a‖2‖b‖2(1− cos2 θ) = ‖a‖2‖b‖2 − (a · b)2 .

Now calculate the right hand side, taking a = (a1, a2, a3) and b = (b1, b2, b3).

We find, after a bit of algebra,

‖a‖2‖b‖2 − (a · b)2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2 .

The square root of the right hand side is the twice area in question. Notice that the right hand side

is also square of the length of a vector in R3, namely, the vector a× b, defined as follows:

Definition 15 (Cross product in R3). Let a and b be two vectors in R3. Then the cross product of

a and b is the vector a× b where

a× b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 . (1.35)

Example 10. Computing from the definition, we find

e1 × e2 = e3 e2 × e3 = e1 and e3 × e1 = e2 . (1.36)

By the computations that led to the definition, we have that

‖a× b‖ = ‖a‖‖b‖ sin θ .

This tells us the magnitude of a× b. What is its direction? Before dealing with this geometric

question, it will help to first establish a few algebraic properties of the cross product.

Notice from the defining formula (1.35) that

a× b = −b× a .

Thus the cross product is not commutative; instead, it is anticommutative. In particular, for any

a ∈ R3,

a× a = −a× a = 0 . (1.37)

Also, introducing a third vector c = (c1, c2, c3), we have from the definition that

a× (b + c)

= [a2(b3 + c3)− a3(b2 + c2))]e1 + [a3(b1 + c1)− a1(b3 + c3)]e2 + [a1(b2 + c2)− a2)b1 + c1)]e3

= (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3

+ (a2c3 − a3c2)e1 + (a3c1 − a1c3)e2 + (a1c2 − a2c1)e3

= a× b + a× c .
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Thus, a × (b + c) = a × b + a × c, which means that the cross product distributes over vector

addition. From this identity and the anticommutivity, we see that (b + c)× a = b× a + c× a; i.e.,

the distributivitiy holds on both sides of the product.

Finally, a similar but simpler proof shows that for any number t, (ta)×b = t(a×b) = a× (tb).

We summarize our conclusions in a theorem:

Theorem 7 (Algebraic properties of the cross product). Let a, b and c be any three vectors in R3,

and let t be any number. Then

a× b = −b× a

a× (b + c) = a× b + a× c

(ta)× b = t(a× b) = a× (tb) .

The following identity relates the cross product and the dot product:

Theorem 8 (Triple product identity). Let a,b, c ∈ R3. Then

(a× b) · c = (b× c) · a . (1.38)

In other words, the triple product (a×b) ·c is unchanged when the vectors in it are cyclicly permuted.

Proof: We compute:

(a× b) · c = (a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3

= (b2c2 − b3c2)a1 + (b3c1 − b1c3)a2 + (b1c2 − b2c1)a3 = (b× c) · a .

Since the dot product is commutative (1.38) is equivalent to

(a× b) · c = a · (b× c) ,

where the order of the vectors is kept the same, but the positions of the dot and cross products are

switched. Therefore, by (1.37) and Theorem 8, for any a,b ∈ R3, (a × b) · b = a · (b × b) = 0.

Likewise,

a · (a× b) = (a× a) · b = 0 .

We have proved:

Theorem 9. Let a,b ∈ R3. Then a× b is orthogonal to both a and b.

Let v1 and v2 be two vectors such that neither is a multiple of the other. Then by Theorem 9,

v1 × v2 is a non-zero vector orthogonal to every vector of the form

sv1 + tv2 s, t ∈ R ,

which is to say that a := v1 × v2 is orthogonal to every vector in the plane in R3 determined by

(passing through) the 3 points 0, v1 and v2. In other words:
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• The cross product v1× v2 gives the direction of the normal line to the plane through 0, v1 and v2,

provided these are non-colinear, so that they do determine a plane.

Theroem 9 says when a × b 6= 0, the unit vector
1

‖a× b‖
a× b is one of the two unit vectors

orthogonal to the plane through 0, a and b. Which one is it?

Definition 16. An orthonormal basis {u1,u2,u3} of R3 is a right-handed orthonormal basis in

case u1 × u2 = u3 and is a left-handed orthonormal basis in case

u1 × u2 = −u3.

Note that every orthonormal basis {u1,u2,u3} of R3 is either left-handed or right-handed, since

u1 × u2 must be a unit vector orthogonal to both u1 and u2, so that ±u3 are the only possibilities.

Also note that the standard basis of R3 is right-handed by (1.36).

Theorem 10. Let {u1,u2,u3} be any orthonormal basis of R3. Then

u1 × u2 = u3 ⇐⇒ u2 × u3 = u1 ⇐⇒ u3 × u1 = u2 . (1.39)

In particular, {u1,u2,u3} is right handed if and only if any one of the identities in (1.39) is valid,

and in that case, all of them are valid.

Proof: Suppose that u1 × u2 = u3. Then by Theorem 6,

u2 × u3 = (u2 × u3 · u1)u1 + (u2 × u3 · u2)u2 + (u2 × u3 · u3)u3 .

Since u2 × u3 orthogonal to u2 and u3, this reduces to

u2 × u3 = (u2 × u3 · u1)u1 . (1.40)

By Theorem 8 and the hypothesis that u1 × u2 = u3, u2 × u3 · u1 = u1 × u2 · u3 = u3 · u3 = 1.

Then (1.40) becomes u2 × u3 = u1. Summarizing, u1 × u2 = u3 ⇒ u2 × u3 = u1. The same sort

of computation also shows that u1 × u2 = u3 ⇒ u3 × u1 = u2 .

Thus, the first of the identities in (1.39) implies the other two. The same sort of computations,

which are left to the reader, show each of them implies the other two, so that they are all equivalent.

Why is the distinction between right and left handed orthonormal bases useful? One consequence

of Theorem 10 is that one can use a formula just like (1.35) to compute the Cartesian components

of a× b in terms of the Cartesian components of a and b for any coordinate system based on a any

right handed orthonormal basis, {u1,u2,u3}, and not only the standard basis {e1, e2, e3}.

Theorem 11 (Invariance under change of basis). Let {u1,u2,u3} be any right handed orthonormal

basis in R3. For any vectors x = (x1, x2, x3) and y = (y1, y2, y3), define a = x1u1 + x2u2 + x3u3

and b = y1u1 + y2u2 + y3u3, so that x and y are the coordinate vectors of a and b with respect to

the coordinate system based on the orthonormal basis {u1,u2,u3}. Then

a× b = (x2y3 − x3y2)u1 + (x3y1 − x1y3)u2 + (x1y2 − x2y1)u3 . (1.41)

In other words, one can compute the cross product of a and b by computing the cross product of their

coordinate vectors for any right handed orthonormal basis.
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Proof. Simply expand a×b = (x1u1 + x2u2 + x3u3)× (y1u1 + y2u2 + y3u3) using Theorem 10, and

the reusult is (1.41).

The next identity, for the cross product of three vectors, has many uses. For example, we shall

use it later on to deduce Kepler’s Laws from Newton’s Universal Theory of Gravitation. It was for

exactly this purpose that Lagrange proved the identity, though he stated it in a different form.

Theorem 12 (Lagrange’s Identity). Let a,b, c ∈ R3. Then

a× (b× c) = (a · c)b− (a · b)c . (1.42)

Proof. Assume that none of a, b or c is the zero vector, since then the identity is trival and both

sides are 0. There is another useful reduction to make: Let b‖ and b⊥ be the components of b that

are parallel and orthogonal to c respectively. Then since b‖ × c = 0

a× (b× c) = a× ((b⊥ + b‖)× c)

= a× (b⊥ × c) + a× (b‖ × c) = a× (b⊥ × c) . (1.43)

Likewise,

(a · c)b− (a · b)c = [(a · c)b⊥ − (a · b⊥)c] + [(a · c)b‖ − (a · b‖)c] ,

and since b‖ = tc for some t, [(a · c)b‖ − (a · b‖)c] = t[(a · c)c− (a · c)c] = 0. Therefore,

(a · c)b− (a · b)c = (a · c)b⊥ − (a · b⊥)c .

Combining this with (1.43), we see that b‖ makes no contribution to either side, and that Lagrange’s

identity is valid for a, b and c if and only if it is valid for a, b⊥ and c. Therefore, we may assume

without loss of generality that b is orthogonal to c.

Proceeding under this assumption (and the original assumption that b 6= 0 and c 6= 0), we define

u1 =
1

‖b‖
b , u2 =

1

‖c‖
c and u3 = u1 × u2 .

By the properties of the cross product, and the orthogonality of b and c, {u1,u2,u3} is a right

handed orthonormal basis for R3. We now compute

b× c = b× c = (‖b‖u1)× (‖c‖u2) = ‖b‖‖c‖u1 × u2 = ‖b‖‖c‖u3 ,

where we have used Theorem 10 in the final step. Next, using Theorem 6, we write

a = (a · u1)u1 + (a · u2)u2 + (a · u3)u3 ,

and compute a× (b× c). By our computation of b× c above, this gives

a× (b× c) = ‖b‖‖c‖[(a · u1)u1 × u3 + (a · u2)u2 × u3 + (a · u3)u3 × u3],

and by Theorem 10 once more, this gives

a× (b× c) = ‖b‖‖c‖[(−a · u1)u2 + (a · u2)u1

= (a · c)b− (a · b)c

which is Lagrange’s identity.
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The identity we get from Theorem 12 in the special case a = b is often useful:

Corollary 1. Let u be any unit vector in R3. Then for all c ∈ R3

c⊥ = −u× (u× c) (1.44)

where c⊥ is the component of c orthogonal to b.

One can rewrite (1.44) as c⊥ = (u× c)× u which resembles the identity c‖ = (u · c)u.

Proof of Corollary 1 . Applying (1.42) with a = b = u, we obtain

u× (u× c) = (c · u)u− (u · u)c = −(c− (c · u)u) = −c⊥ .

Now using the anticommutivity of the cross product, we obtain (1.44).

Thus, one can readily compute orthogonal components by computing cross products. The mag-

nitude of c⊥ is even simpler to compute: Since b× c = b× c⊥, and since ‖b× c⊥‖ = ‖b‖‖c⊥‖,

‖c⊥‖ =
‖b× c‖
‖b‖

.

The cross product is not only useful for checking whether a given orthonormal basis {u1,u2,u3}
is right handed or not; it is useful for constructing such bases. The next example concerns a problem

that often arises when working with lines and planes in R3.

Example 11 (Constructing a right-handed orthonormal basis containing a given direction). Given

a nonzero vector v ∈ R3, how can we find an orthonormal basis {u1,u2,u3} in which u3 is a positive

multiple of v?

Here is one way to do it using the cross product. First, u3 = ‖v‖−1v is the only unit vector that

is a positive multiple of v. Let us next choose u1. This has to be some unit vector that is orthogonal

to v.

If v = (v1, v2, v3) and vj = 0 for any j, then v · ej = vj = 0, and we may take u1 = ej for this

j. On the other hand, if each vj is non-zero, define w := e3 × v = (−v2, v1, 0). This is orthogonal to

v by Theorem 9, and ‖w‖ 6= 0. Now define u1 =
1

‖w‖
w. Finally, define u2 = u3 × u1, so that u2 is

orthogonal to both u3 and u1, and is a unit vector. Thus, {u1,u2,u3} is an orthonormal basis, and

since u3 × u1 = u2, Theorem 10 says that this basis is right handed.

Now we do this for specific vectors. Let v = (2, 1, 2). We set u3 =
1

‖v‖
v =

1

3
(2, 1, 2). Next,

since none of the entries of v is zero, we define w := e3 × v = (− 1, 2, 0), and then

u1 :=
1

‖w‖
w =

1√
5
(− 1, 2, 0) ,

Finally we define

u2 := u3 × u1 =
1

3
√

5
(− 4,−2, 5) .

In the next section we shall see many uses of such constructions.
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1.2.2 Lines and planes in R3

Let a be a non-zero vector in R3, and let x0 be any vector in R3. Consider the two equations in the

vector variable x:

a · (x− x0) = 0 (1.45)

a× (x− x0) = 0 (1.46)

The solution sets of these equations are planes and lines, respectively, in R3.

Let us start with (1.46). Note that a × (x − x0) = 0 is true if and only if x − x0 is a multiple

of a. But x − x0 = ta can be written as x = x0 + ta. As t ranges over the real line, the function

x(t) = x0 + ta traces out a line in R3, passing through x0 at time t = 0, and moving in the direction

given by a.

A line in R3 is determined by two distinct points. Given two distinct points x0 and x1 in R3,

define a = x1 − x0, and then for all t ∈ R, define

x(t) := x0 + ta :

As illustrated below, as t varies, x(t) varies over the set of points that one can reach starting

from x0, and moving only in the direction of a (or its opposite).

Since it is clear that a× (x(t)−x0) = ta×a = 0 for all t, and since very solution of (1.46) equals

x(t) for some uniquely determined value of t, the function sending t to x(t) is a parameterization of

this line; i.e., the solutions set of (1.46). We have just that if one has any one of: (1) a two-point

description of a line, (2) a parameterization of a line, or (3), an the equation specifying a line, it is

very easy to find the other two.

Now let us turn to (1.45). A point x ∈ R3 satisfies (1.45) if and only if x− x0 is orthogonal to

a, and therefore to every multiple ta of a. The line through 0 parameterized by ta is the normal

line to the plane. The vector a is sometimes called the normal vector to the plane, but keep in mind

that a can be replaced by any non-zero multiple of a without changing the plane. Here is a diagram

showing a plane with base point x0, normal vector ta, and two vectors x and y in the plane:
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Example 12 (The equation of a plane specified in terms of a base point and normal vector). Consider

the plane passing through the point x0 = (3, 2, 1) that is orthogonal to the vector a = (1, 2, 3). Then

x = (x, y, z) belongs to this plane if and only if (x− x0) · a = 0. Doing the computations,

((x, y, z)− (3, 2, 1)) · (1, 2, 3) = 0 ⇐⇒ x+ 2y + 3z = 10 .

The equation x+ 2y+ 3z = 10 is an equation specifying this plane, but written without using the dot

product. It may look simpler, but the geometry is not so explicit in this form.

As seen in the last example, an equation specifying a plane can also be written in the form

a · x = d. Indeed, defining d := a · x0,

(x− x0) · a = 0 ⇐⇒ a · x = d .

Example 13 (Parameterizing a plane specified by an equation). Consider the equation a · x = d

where a = (1, 2, 1), and d = 10. Writing x = (x, y, z), the equation becomes x+ 2y + z = 10.

Parameterizing solution sets means solving euations. Solving equations means eliminating vari-

ables. Let us eliminate z:

z = 10− 2y − x .

Thus, x = (x, y, z) belong to the plane if and only if

x = (x, y, 10− 2y − x) = (0, 0, 10) + x(1, 0,−1) + y(0, 1,−2) .

We have expanded the left hand side, and collected terms into a constant vector, a second constant

vector times x and a third constant vector times y. The point of this is that defining

x0 := (0, 0, 10) , v1 := (1, 0,−1) and v2 := (0, 1,−2) ,

a vector x belongs to the plane if and only if it can be written in the form x0 + xv1 + yv2 for some

numbers x and y. Moreover, whenever x can be written in the form x0 + xv1 + yv2, the numbers x

and y are uniquely determined, since direct computation yields

x0 + sv1 + tv2 = (s, t, 10− 2s− t) .

If this is to equal (x, y, z), we must have s = x and y = t.
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Thus there is a one-to-one correspondence between points x in the plane and vectors (s, t) ∈ R2

given by

x(s, t) = sv1 + tv2 .

As (s, t) varies over R2, x(s, t) varies over the plane in question in a one-to one way. Thus, we have

parameterized the plane.

Two distinct points determine a line. Any three points that are not collinear, i.e., do not all ie

on one line, determine a plane: There is a unique plane in R3 that contains these three points.

Example 14 (When do four points belong to one plane?). Consider the points

p1 = (1, 2, 3) p2 = (3, 2, 1) p3 = (1, 3, 2) and p4 = (4,−1, 3) . (1.47)

Do all of these points lie in the same plane?

It is easy to answer this question once we know the equation for the plane determined by the first

three points: Simply plug the fourth point into this equation. If the equation is satisfied, the point is

on the plane, and otherwise it is not.

To find the equation, choose p1 as the base point, and define

x0 := (1, 2, 3) v1 := p2 − x0 = (2, 0,−2) and v2 := p3 − x0 = (0, 1,−1) .

Writing the equation of the plane in the form a · (x−x0) = 0, and plugging in p2 = x0 + v1 and

p3 = x0 + v2, we have

a · v1 = 0 and a · v2 = 0 .

Thus a must be orthogonal to v1 and v2. We get such a vector by taking the cross product of v1 and

v2. Thus we define

a := v1 × v2 = (2, 0,−2)× (0,−1, 1) = (2, 2, 2) .

We then compute a · x = 2x + 2y + 2z and a · x0 = 12 so the equation a · (x − x0) = 0 written

out in terms of x, y and z is 2x+ 2y + 2z = 12, or, what is the same thing,

x+ y + z = 6 . (1.48)

This is the equation for the plane passing through the first three points in the list (1.47). You

should check that these points do satisfy the equation.
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We can now easily decide whether p4 lies in the same plane as the first three points. With x = 4,

y = −1 and z = 3, the equation (1.48) is satisfied, so it is in the plane. It is left as an exercise for the

reader to prove that three points p1, p2 and p3 are not collinear if and only if (p2−p1)×(p3−p1) 6= 0,

as in this example.

Consider again the general equation for a line: a× (x−x0) = 0, which can always be written as

a × x = a × x0. Since x0 and a are both given, we can define d = a × x0, and with this definition,

(1.46) is equivalent to

a× x = d . (1.49)

.

However, for general d ∈ R3, the solution set of (1.49) need not be a line; in fact, it can be

empty.

Example 15 (The equation a × x = d as a system of equations). Let a = (1,−2, 1) and d =

(d1, d2, d3). Computing a× x for x = (x, y, z), we find

(1,−2, 1)× (x, y, z) = (− y − 2z, x− z, 2x+ y) . (1.50)

Hence, a× x = d is equivalent to the system of three equations

−y − 2z = d1

x− z = d2

2x+ y = d3 . (1.51)

We can also write (1.51), and hence (1.50), as

xv1 + yv2 + zv3 = d (1.52)

where v1 = (0, 1, 2), v2 = (− 1, 0, 1) and v3 = (− 2,−1, 0).

Notice that a · vj = 0 for j = 1, 2, 3. From this it is easy to see, as in Example 4 and Example 5

that

Span({v1,v2,v3}) = Span({v1,v2}) = {(x, y, x) : x− 2y + z = 0} .

That is, the span of {v1,v2,v3} is precisely the set of vectors that are orthogonal to a. Therefore,

(1.52) has a solution if and only if a · d = 0. In this case, the third equation in (1.51) is redundant,

and the solution set of all three equations is the same as the solution set of the first two. That is,

when the solution set of (1.51) is not empty, it is equal to the intersection of the two planes described

by its first two equations. In this case, if x0 is any vector in the solution set, a× x0 = d. Choosing

any such vector, we can rewrite the equation a × x = d as a × (x − x0) = 0. As we have seen, the

solution set of this equation is always a line, and therefore the intersection of the two planes discussed

above is exactly this line.

Now take d = (− 1/2, 1, 5/2), which is orthogonal to a. Here is a plot showing the three planes

intersecting in the line described by a× x = d for this choice of d:
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However, each pair of these planes intersects in the same line; to specify the line we only need

any two of the equations. The third equation is redundant.

While for any non-zero a ∈ R3 and any number d, a · x = d is always the equation of a plane,

as we have seen in the last example, the analog of this is not true for a× x = d: The left hand side

is orthogonal to a for all x, and so if the right hand side is not orthogonal to a, there can be no

solution. That is, when a 6= 0 and d · a 6= 0, the solution set of a× x = d is the empty set.

On the other hand, when d is orthogonal to a, Lagrange’s identity tells us

a× (a× d) = (a · d)a− (a · a)d = −‖a‖2d .

Therefore, if we define x0 = −‖a‖−2a× d, we have that d = a×x0, and then a×x = d is equivalent

to a × (x − x0) = 0, which is the equation of a line. Summarizing: For all non-zero a ∈ R3, the

equation a×x = d specifies a line if and only if d · a = 0, in which case the equation is equivalent to

a× (x− x0) = 0 where x0 = −‖a‖−2a× d.

Example 16 (Solving a × x = d). Let a = (1,−2, 1) and d = ( − 1/2, 1, 5/2). We check that

a · d = 0, and hence the solutions set of a× x = d is a line. We then compute ‖a‖2 = 6 and

a× d = (− 6,−3, 0) .

Hence

x0 := − 1

‖a‖2
a× d) = −1

6
(− 6,−3, 0) = (1, 1/2, 0) .

Thus, the solution set is the line parameterized by

x(t) = x0 + ta = (− 1, 1/2, 0) + t(1,−2, 1) = (1 + t, 1/2− 2t, t) .

It is easy to pass from the equation specifying a line in the form a × (x − x0) = 0 to a system

of equations

b1 · x = c1

b2 · x = c2 (1.53)

that specify the line as an intersection of two planes. By the triple product identity, for any v,

v · (a× (x− x0)) = (v × a) · (x− x0) .
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The vector a × (x − x0) is orthogonal to a no matter what x is. Therefore, let {v1,v2,v3} be an

orthonormal basis of R3 in which v3 = ‖a‖−1a. Then a×(x−x0) = 0 if and only if vj ·(a×(x−x0) = 0

for j = 1, 2 since this is automatically the case for j = 3.

Hence a× (x− x0) = 0 is equivalent to the system of equations

(v1 × a) · (x− x0) = 0

(v2 × a) · (x− x0) = 0

which is the same as the system (1.53) is we define bj = vj × a and cj = bj · x0 for j = 1, 2.

Conversely, given a pair of equations such as (1.53) with b1,b2 non-zero, define a = b1 × b2.

Suppose that there exists some solution x0. This need not be the case: If the two planes are parallel

and distinct, they do not intersect. However, as long as one solution x0 can be found, every point of

the form x0 + ta satisfies both equations in (1.53). Moreover, if x is any solution of both equations

in (1.53), then x − x0 is orthogonal to both b1 and b2, and hence has the form ta for some t ∈ R.

Thus, the solution set of (1.53) is precisely the line of vectors of the form x0 + ta, t ∈ R, and this is

the line described by the equation a× (x− x0) = 0.

It is also easy to pass from a system such as (1.53) to a parameterization of the line they describe

– when the planes intersect in a line – without using the cross product.

Example 17 (Parameterizing a line given by a pair of equations for planes). Consider

x+ 2y + 3z = 2

3x+ 2y + z = 4

Use the first equation to eliminate some variable, say x: x = 2− 2y − 3z. Substituting this into

the second equation, it becomes

3(2− 2y − 3z) + 2y + z = 4 which yields y =
1

2
− 2z . (1.54)

This expresses y as a function of z. Go back to x = 2− 2y − 3z, and use (1.54) to eliminate y, thus

to expressing x as a functions of z alone. We obtain x = 1 + z, and we have y = 1/2− 2z.

Substituting these into x = (x, y, z), we see that x belongs to the line if and only if

x = (1 + z, 1/2− 2z, z) = (1, 1/2, 0) + z(1,−2, 1) .

Definng x0 = (1, 1/2, 0) and a = (1,−2, 1), x(t) := x0 + ta is a parameterization of the line,

and a× (x− x0) = 0 is the equation for it.

There are infinitely many ways to parameterize a given line with this scheme: Any point on the

line can serve a the base point x0, and any non-zero vector that runs parallel to the line can serve as

the direction vector. The same is true of planes; any point in the plane can serve as the base point.

1.2.3 Distance problems

Consider a line in R3 given in parametric form by x(u) = x0 + ua. Let p be any point in R3. It

turns out that there is a unique point q on the line that comes closer to p than any other point on
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the line. That is, there is some u0 ∈ R such that

‖x(u0)− p‖ < ‖x(u)− p‖ (1.55)

for all u 6= u0. Then, by definition, the number ‖x(u0)− p‖ is the distance from p to the line.

To see that there exists a u0 ∈ R so that (1.55) is true, note that we may replace a by u = ‖a‖−1a

in x(u) without changing the line itself; this is just another parameterization of the same line. Hence

we may assume without loss of generality that x(u) = x0 + uu and that ‖u‖ is a unit vector. Now

decompose x(u)−p into its components parallel and orthogonal to u: By the Pythagorean Theorem,

‖x(u)− p‖2 = ‖(x(u)− p)‖‖2 + ‖(x(u)− p)⊥‖2

= ((x(u)− p) · u)2 + ‖(x(u)− p)× u‖2 .

Now note that

(x(u)− p) · u = ((x0 − p) + uu) · u = (x0 − p) · u + u ,

and

(x(u)− p)× u = ((x0 − p) + uu)× u = (x0 − p)× u ,

which is independent of u. Therefore,

‖x(u)− p‖2 = ((x0 − p) · u + u)2 + ‖(x0 − p)× u‖2 .

The second term on the right is independent of u, while the first is clearly minimized by choosing

u = u0 with u0 = −(x0 − p) · u. Therefore, q = a(u0) = x0 + ((p− x0) · u)u. Identifying the line as

the solution set of the equation u× (x− x0) = 0, we have proved:

Theorem 13. Let u be a unit vector in R3 and let x0 and p be any two points in R3. There is a

unique point q in the line given by u× (x− x0) = 0 such that ‖q− p‖ < ‖x− p‖ for all other x in

the line. Moreover, ‖q− p‖ = ‖(x0 − p)× u‖ and q = x0 + ((p− x0) · u)u.

Remark 2. We do not need to compute a cross product to compute ‖q − p‖: By the Pythagorean

Theorem,

‖(x0 − p)× u‖2 = ‖x0 − p‖2 − ‖(x0 − p) · u‖2 . (1.56)

Example 18. Consider the line parameterized by x0 + tv with x0 = (2,−2, 3) and v = (1, 2, 1). Let

p = (1, 2, 3). What is the distance from p to this line? We obtain u3 by normalizing v, and then we

apply Theorem 13 and (1.56), finding

‖(p− x0)⊥‖ =

(
‖(− 1, 4, 0)‖2 − 1

6
[(− 1, 4, 0) · (1, 2, 1)]2

)1/2

=

(
17− 49

6

)1/2

.

There is a similar result concerning the distance between a point and a plane: Let u be any unit

vector in R3, and let x0 and p be any vectors in R3. Consider the plane that is the solution set of the

equation u · (x− x0) = 0. Again, there is a unique point q in the plane such that ‖q−p‖ < ‖x−p‖
for all other x in the plane. We call ‖q− p‖ the distance from p to the plane.



1.2. LINES AND PLANES IN R3 41

To see this, let {u1,u2,u3} be a right-handed orthonormal basis of R3 such that u3 = u. Then

x(s, t) = x0 + su1 + tu2 is a parameterization of the plane. By the Pythagorean Theorem, and the

definition x(s, t) = x0 + su1 + tu2,

‖x(s, t)− p‖2 =

3∑
j=1

(x(s, t)− p) · uj)2

=

3∑
j=1

((x0p) · uj + (su1 + tu2) · uj)2 +

= ((x0 − p) · u1 + s)2 + ((x0 − p) · u2 + t)2 + ((x0 − p) · u3)2 .

Evidently we minimize ‖x(s, t)−p‖2 by choosing s = −(x0−p) ·u1 and t = −(x0−p) ·u2. Therefore,

q − p = x(s0, t0) − p = ((x0 − p) · u3)u3. In other words, since u3 = u, q − p is the component of

x0−p parallel to u, (x0−p)‖, A picture will probably convince you that this is the correct formula.

Theorem 14. Let u be a unit vector in R3 and let x0 and p be any two points in R3. There is a

unique point q in the plane given by u · (x − x0) = 0 such that ‖p − q‖ < ‖p − x‖ for all other x

in the plan and q = p + (x0 − p)‖ where (x0 − p)‖ is the component of x0 − p parallel to u, and

therefore

‖q− p‖ = ‖(x0 − p)‖‖ = |(x0 − p) · u|

is the distance from p to the plane.

Example 19 (A point-plane distance problem). Consider the plane given by 2x + y + 2z = 1, and

let p = (1, 1, 1). what point q in the plane comes closest to p, and what is the distance from p to the

plane?

We first find a base point x0 and a unit vector u such that 2x+ y+ 2z = 1 has the same solution

set as u · (x − x0) = 0, and then a unit vector u such that u · (x − x0) = 0 is the equation of this

plane in geometric form.

To find a base point, we simply need any one solution of the equation. Choosing x = z = 0, the

equation reduces to y = 1, and so we choose x0 = (0, 1, 0) as our base point.

The normal vector is a = (2, 1, 2), and normalize this to obtain u =
1

3
(2, 1, 2). Now compute

(p− x0) · u3 =
1

3
(1, 0, 1) · (2, 1, 2) =

4

3
and so the distance to the plane is ‖q − p‖ = 4

3 , and q =

p + 4
3u. That is,

q = p− 4
3u = (1, 1, 1) +

4

9
(2, 1, 2) =

1

9
(1, 5, 1) .

The third question of this type that arises in R3 concerns the distance between two lines. Consider

two lines parameterized by x1(s) = x1 + sv1 and x2(t) = x2 + tv2, respectively. Let us assume that

v1 and v2 are not multiples of one another, so that the lines are not parallel. (The parallel case is

easier; we shall come back to it.) What values of s and t minimize ‖x1(s)− x2(t)‖?
To answer this, let {u1,u2,u3} be an orthonormal basis of R3 in which u1 is orthogonal to both

v1 and v2, and in which u2 is orthogonal to v1 (and of course to u1). To produce this basis, define

u1 =
1

‖v1 × v2‖
v1 × v2 and then u2 =

1

‖v1‖
v1 × u1 ,
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By the properties of the cross product, u1 is a unit vector orthogonal to both v1 and v2, and u2

is a unit vector orthogonal to both u1 and v1. Finally, we define u3 = u1 × u2, and this gives us

the orthonormal basis we seek. Since v1 is orthogonal to both u1 and u2, u3 = u1 × u2 must be a

non-zero multiple of v1.

We compute ‖x1(s) − x2(t)‖2 in terms of coordinates for this basis. To simplify the notation,

define b := x1 − x2. Then

‖x1(s)− x2(t)‖2 = ‖b + sv1 − tv2‖2 (1.57)

= [(b + sv1 − tv2) · u1]2 + [(b + sv1 − tv2) · u2)]2 + [(b + sv1 − tv2) · u3)]2

= [b · u1]2 + [b · u2 − t(v2 · u2)]2 + [b · u3 + s(v1 · u3)− t(v2 · u3)]2

This is a sum of three squares. The first does not depend on s or t. The second depends only

on t, and provided that v2 · u2 6= 0, we can make it zero by choosing

t = t0 :=
b · u2

v2 · u2
(1.58)

Then with this choice of t, provided that v1 · u3 6= 0, we can then make the third term zero by

choosing

s = s0 :=
t0(v2 · u3)− b · u3

v1 · u3
. (1.59)

This then leaves only the first term, which is then the square of the minimal distance. However,

we have to first verify that we are not dividing by zero in (1.58) and (1.59).

First, since u3 is a non-zero multiple of v1, v1 ·u3 6= 0. To show that v2 ·u2 6= 0, we use (for the

first time) our assumption that the lines are not paralellel. Since v2 is orthogonal to u1, we have the

expansion v2 = (v2 · u2)u2 + (v2 · u3)u3. If v2 · u2 were zero, this would reduce to v2 = (v2 · u3)u3,

but then since u3 is a multiple of v1, the two lines would be parallel.

Thus, for any choices of s and t,

‖x1(s)− x2(t)‖ ≥ ‖x1(s0)− x2(t0)‖ = |b · u1| , (1.60)

and there is equality on the left if and only if s = s0 and t = t0. Thus, (1.60) gives the distance

between the two lines. We then define the distance between the two lines to be the distance between

these two closest points, and then (1.58) and (1.59) determine x1(s0) and x2(t0) the two closest

points.

Now, what about the case of parallel lines? It is left to the reader to show that if the lines are

parallel, the distance from any point on the first line to the second line is independent of the choice

of the point on the first line. Thus, this problem reduces to the problem of computing the distance

between a point and a line. Altogether, we have proved:

Theorem 15 (The distance between two lines). The distance between two non-parallel lines in R3

parameterized by x1(s) = x1 + sv1 and x2(s) = x2 + tv2 is

|(x1 − x2) · (v1 × v2)|
‖v1 × v2‖

.
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If the two lines are parallel, so that v1 × v2 = 0, the distance is the distance from x1 to the second

line; i.e., ‖(x1 − x2)⊥‖ where (x1 − x2)⊥ is the component of x1 − x2 orthogonal to v1, or, what is

the same thing, orthogonal to v2.

Notice that the last two distance problems solved in this subsection involved minimizing a squared

distance over two parameters s and t, and that in each case, this minimization problem was rendered

transparent by an appropriate choice of an orthonormal basis.

Example 20 (The distance between two lines in R3). Consider the two lines parameterized by

x1 + sv1 = (1, 2, 3) + s(1, 4, 5) and x2 + tv2 = (2,−1, 1) + t(− 2,−1, 2) .

We compute v1 × v2(1, 4, 5)× (− 2,−1, 2) = (13,−12, 7), and then ‖v1 × v2‖ = ‖(13,−12, 7)‖ =
√

362, u1 =
1√
362

(13,−12, 7). Next, x2−x1 = (1, 2, 3)−(2,−1, 1) = (−1, 3, 2). Finally we compute

(x1 − x2) · (v1 × v2)

‖v1 × v2‖
=

(− 1, 3, 2) · (13,−12, 7)√
362

=
−13− 36 + 14√

362
= − 35√

362
.

Thus, the distance between the two lines is 35/
√

362. If we had wanted to find the point on the first

line that comes closes to the second, and the point of the second line that comes closest to the first, we

would compute the right-handed orthonormal basis {u1,u2,u3} in which u1 = (362)−1/2(13,−12, 7),

and then used (1.58) and (1.59).

We actually proved more than we have recorded in Theorem 15: We found formulas, (1.58) and

(1.59), for the parameter values s0 and t0 that give the two closest points. There is another way

to look at the problem that the provides an easy proof of Theorem 15: Determining the distance

between two lines is actually the problem of determining the distance between a point and a plane

in disguise.

Going back to (1.57), notice that it gives us

‖x1(s)− x2(t)‖2 = ‖(x2 − x1) + sv1 − tv2‖2 .

Define x0 = x2 − x2, w1 = v1 and w2 = −v2. Then

‖x1(s)− x2(t)‖2 = ‖(x0 + sw1 + tw2)− 0‖2 .

Thus, the distance we are seeking is the same as the distance from 0 to the plane parameterized by

x0 + sw1 + tw2. But the equation of this plane is u · (x− x0) = 0 where u = ‖w1 ×w2‖−1w1 ×w2.

Hence our formula for the distance from a point to a plane gives the distance as |u · x0|, which you

can see is the same as the value that is given by the formula in Theorem 15. Moreover, Theorem 14

says that the point on this plane that is closest to 0 is (x0)‖ = (x2 − x1)‖. Therefore, s0 and t0, the

minimizing values of s and t, are given by (x2 − x1)‖ = (x2 − x1) + s0v1 − t0v2, which reduces to

s0v1 − t0v2 = −(x2 − x1)⊥ .

Solving this equation yields the closest points. The previous approach did not require us to solve any

equations; it avoided this by introducing a judiciously chosen orthonormal basis.
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1.3 The Gram-Schmidt Orthonormalization Algorithm

1.3.1 The Gram-Schmidt Orthonormalization Algorithm in R3

We have seen that the cross product is an efficient device for constructing orthonormal bases of R3

that are suited to solving natural geometric problems, such as computing the distance between two

lines in R3. However, the cross product is special to R3. We shall encounter problems in which we

need to construct “custom made” orthonormal bases in Rn for n > 3. How shall we construct them?

There is a very useful procedure for “extracting” a maximal orthonormal set from any collection

of m vectors in Rn for arbitrary m and n. This is the Gram-Schmidt Orthonormalization Algorithm,

which we now describe.

When n = 3 and m = 2, this is already familiar: Consider {v1,v2} ⊂ R3, and suppose that

neither of these vectors is the zero vector. Define u1 to be the direction vector (unit vector) corre-

sponding to v1:

u1 =
1

‖v1‖
v1 . (1.61)

Next, define w2 = v⊥2 , the component of v2 that is perpendicular to u1, and therefore also to

v1. The familiar formula for w2 is

w2 = v2 − (v2 · u1)u1 . (1.62)

Provided w2 6= 0, we can normalize is to obtain a unit vector u2 that is orthogonal to u1:

u2 =
1

‖w2‖
w2 . (1.63)

Example 21. Consider {v1,v2} := {(1, 1, 0), (1, 0, 1)}. Define u1 by normalizing v1, as in (1.61):

u1 :=
1

‖v1‖
v1 =

1√
2
(1, 1, 0) .

Next define w2 by subtracting off from v2 its component that is parallel to u1, as in (1.62): That

is,w2 := v2 − (v2 · u1)u1. Computing, we find v2 · u1 = (1, 0, 1) · 1√
2
((1, 1, 0) =

1√
2

, and hence

w2 = (1, 0, 1)− 1

2
(1, 1, 0) =

1

2
(1,−1, 2) .

We normalize w2 to define u2: In fact, we may as well ignore the 1/2, and normalize (1,−1, 2) since

it is the direction of w2 that concerns us. We compute ‖(1,−1, 2)‖ =
√

6, and so

u2 :=
1√
6
(1,−1, 2) .

Since u2 is a multiple of w2, and since w2 is a linear combination of v1 and v2, so is u2. This gives

us our orthonormal set {u1,u2}.

This procedure for constructing the orthonormal set {u1,u2} out of the original set {v1,v2}
is a special case of the Gram-Schmidt Algorithm. We now explain the geometric content of the

construction in the case that w2 6= 0: The two sets of vectors, {u1,u2} and {v1,v2}, span the same

plane in R3.
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To see this, combine (1.61), (1.62) and (1.63) to obtain

u2 =
1

‖w2‖

(
v2 −

v2 · v1

‖v1‖2
v1

)
=

1

‖w2‖
v2 −

v2 · v1

‖v1‖2‖w2‖
v1 = av1 + bv2

for some a and b that can be read off from the middle line of (1.64). Therefore, (1.64) shows that u2

is a linear combination of v1 and v2. Even more simply, (1.61) displays u1 as a linear combination

of v1 and v2, but of a very simple kind: it is a multiple of v1 alone.

Thus, the procedure described above yields an orthonormal set {u1,u2} such that u1 is a multiple

of v1, and u2 is a linear combination of v1 and v2.

There is also a converse: obviously v1 is a multiple of u1, and (1.62) can be rewritten as

v2 = w2 + (v2 · u1)u1 = ‖w2‖u2 + (v2 · u1)u1 ,

so that v2 is a linear combination of u1 and u2. We therefore have

{u1,u2} ⊂ Span({v1,v2}) and {v1,v2} ⊂ Span({u1,u2}) .

By Theorem 1, this means that whenever u2 is defined,

Span({v1,v2}) = Span({u1,u2}) .

So far, we have assumed that w2 6= 0. However, If w2 = 0, then (1.62) says that

v2 = (v2 · u1)u1 =
v2 · v1

‖v1‖2
v1 ,

so that v2 is a multiple of v1. Conversely, suppose that v2 is a multiple of v1, and hence of u1. Then

for some a ∈ R, v2 = au1, and v2 · u1 = a. Then (v2 · u1)u1 = au1 = v2, and by (1.62), w2 = 0.

Thus: The procedure fails to produce a second unit vector exactly when v1 and v2 are multiples of

one another. In this case, it is clear that the span of {v1,v2} is a line, and we cannot hope to extract

an orthonormal set of two or more vectors form it.

Thus, given any set {v1,v2} of two non-zero vectors in R3, the procedure described above detects

whether the set of all vector of the form s1v1 + s2v2, s1, s2 ∈ R, is a plane or a line. Moreover, in

case the set is a plane, the procedure yields an orthonormal set {u1,u2} such that

(t1, t2) 7→ t1u1 + t2u2

is a parameterization of this plane.

Supposing that u2 is defined, we now “flesh out” the orthonormal set {u1,u2} into an orthonor-

mal basis of R3 without using the cross product. Let x be any vector in R3 that is not in the plane

spanned by v1 and v2, or equivalently u1 and u2. Define

w := x− (x · u1)u1 − (x · u2)u2 . (1.64)

Since x /∈ Span({u1,u2}), w 6= 0, A familiar computation gives w ·u1 = w ·u2 = 0, and therefore w

is a non-zero vector orthogonal to both u1 and u2. Define u3 = ‖w‖−1w. Then {u1,u2,u3} is an

orthonormal basis of R3.



46 CHAPTER 1. GEOMETRY, ALGEBRA AND ANALYSIS IN SEVERAL VARIABLES

Example 22. Consider {v1,v2} := {(1, 1, 0), (1, 0, 1)} as in Example 21. The procedure we have

described above yields, as seen in Example 21, the orthonormal set {u1,u2} where

u1 :=
1

‖v1‖
v1 =

1√
2
(1, 1, 0) and u2 :=

1√
6
(1,−1, 2) .

It is not hard to see that e1 /∈ span({v1,v2}), but one way to check this is to make this choice for

x, and then see if the procedure yields u3 or not. If not, make another choice. Applying (1.64) with

x = e1, we compute x · u1 = 1/
√

2 and x · u1 = 1/
√

6. Hence,

w = e1 − (e1 · u1)u1 − (e1 · u2)u2 = (1, 0, 0)− 1

2
(1, 1, 0)− 1

6
(1,−1, 2) =

1

6
(2,−2,−2) .

This is not the zero vector, confirming that e1 /∈ span({v1,v2}). Normalizing, we find

u3 =
1√
3
(1,−1,−1) .

It is now easy to compute that u1 × u2 = u3 so that our dot product construction has produced the

same result that we would have obtained using the cross product. However in general, this may not

happen: The procedure we have described will always produce an orthonormal basis in R3, but it

might be a left handed basis or it might be a right handed basis. For now, let us focus on constructing

orthonormal bases and put aside the issue of whether they are right handed or left handed – a concept

that we have only defined so far in R3.

1.3.2 The Gram-Schmidt Algorithm in general

Definition 17 (The Gram-Schmidt Algorithm). Let {v1, . . . ,vm} be any ordered list of m vectors

in Rn such that at least one of these vectors is not the zero vector.

(1) Let p1 be the least value of j such that vj 6= 0. Define

u1 =
1

‖vp1‖
vp1 .

The vector vp1 is called the first pivotal vector. If p1 = m, the procedure is terminates, and produces

the set {u1}.

(2) Otherwise, starting with j = p1 + 1, compute

w2 = vj − (vj · u1)u1 .

If this is zero for all j > p1 + 1. the procedure is terminates, and produces the set {u1}. Otherwise,

let p2 be the least value of j > p1 such that w2 6= 0, and define

u2 =
1

‖w2‖
w2 .

The vector vp2 is called the second pivotal vector. If p2 = m, the procedure is terminates, and

produces the set {u1,v2}.

(3) Now suppose that {p1, . . . , pk} and {u1, . . . ,uk} have been defined, and pk < m. Starting with

j = pk + 1,

wj = vj −
k∑
`=1

(vj · u`)u` .
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If this is zero for all j > pk + 1, the procedure is terminates, and produces the set {u1, . . .uk}.
otherwise, let pk+1 be the least value of j > pk such that wpk+1

6= 0, and define

uk+1 =
1

‖wpk+1
‖
wpk+1

.

The vector vpk+1
is called the (k+ 1)st pivotal vector. If pk+1 = m, the procedure is terminates, and

produces the set {u1, . . . ,uk+1}. Otherwise, repeat the procedure until it terminates, which it must

do after at most m steps.

Example 23 (Using the Gram-Schmidt Algorithm). Let v1 = (1, 2,−3), v2 = (1,−2, 1), v3 =

(− 2, 1, 1) and v4 = (0, 1, 1). Applying the Gram-Schmidt Algorithm to {v1,v2,v3,v4}, we see that

since v1 6= 0, p1 = 1 and

u1 =
1√
14

(1, 2,−3) .

We then compute

v2 − (v2 · u1)u1 = (1,−2, 1) +
6

14
(1, 2,−3) =

1

7
(10,−8,−2) .

Since this is not the zero vector, we renormalize it to obtain p2 = 2, and

u2 =
1√
42

(5,−4,−1) .

There are more vectors left in our list, so we go on to compute

v3 − (v3 · u1)u1 − (v3 · u2)u2 = (− 2, 1, 1) +
3

14
(1, 2,−3) +

15

42
(5,−4,−1)

= (0, 0, 0)

Since we got the zero vector, we cannot normalize, so we go on to try the same thing for v4:

v3 − (v3 · u1)u1 − (v3 · u2)u2 = (0, 1, 1) +
1

14
(1, 2,−3) +

5

42
(5,−4,−1)

=
2

3
(1, 1, 1)

Since this is not the zero vector, p3 = 4. Normalizing, we find u3 =
1√
3
(1, 1, 1).

We have now reached the end of our list of vectors, and the procedure terminates, providing the

set of vectors {u1,u2,u3}.

The set {u1, . . . ,ur} that the Gram-Schmidt algorithm produces from {v1, . . . ,vm} is orthonor-

mal, and it has the same span as the original set: We now prove this and more:

Theorem 16 (Properties of the output of the Gram-Schmidt algorithm). Let {v1, . . . ,vm} be a set

of m vectors in Rn, not all of which are the zero vector. Let {u1, . . . ,ur} be the set produced from it

by the Gram-Schmidt Algorithm. Then:

(1) The set {u1, . . . ,ur} is orthonormal, and r ≤ min{m,n},

(2) There are r pivotal vectors {vvp1 , . . . ,vpr} and

Span({u1, . . . ,ur}) = Span({v1, . . . ,vm}) = Span({vp1 , . . . ,vpr}) . (1.65)

(3) For each j = 1 . . . , r, uj · vpj > 0.
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Proof. By definition, each pivotal vector yields one vector in the set {u1, . . . ,ur}, and so there are

exactly r pivotal vactors {vp1 , . . . ,vpr}. Also by definition, for each 1 < j ≤ r, the jth pivotal vector

vpj and {u1, . . . ,uj} are related by

uj := ‖wpj‖−1wpj where wpj := vpj −
j−1∑
i=1

(vpj · ui)ui . (1.66)

For all ` < j, one readily checks that wpj ·u` = 0, and hence uj is a unit vector that is is orthogonal

to u` for all ` < j. Thus, {u1, . . . ,ur} is orthonormal. By Lemma 1, r ≤ n, and since at most m of

the vectors in {v1, . . . ,vm} can be pivotal, r ≤ m. This proves (1).

We may rearange (1.66) to obtain vpj = ‖wpj‖uj +
∑j−1
i=1 (vj · ui)ui, which shows that each vpj

belongs to Span({u1, . . . ,ur}). That is,

{vp1 , . . . ,vpr} ⊂ Span({u1, . . . ,ur}) (1.67)

Consider the non-pivotal vectors, if any. Any such vector belongs to Span({u1, . . . ,ur}): If

vj = 0, this is trivially true – the zero vector is in the span of any non-empty set of vectors. If vj is

non-zero and non-pivotal, this means, by definition, that with k(j) being the number of pivotal vectors

with indices less than j, wj = 0 where wj := vj −
∑k
`=1(vj · u`)u`. Hence vj =

∑k
`=1(vj · u`)u`,

which means that vj belongs to Span({u1, . . . ,ur}). Combing this with (1.67), each vj , pivotal or

not, belongs to Span({u1, . . . ,ur}), so that

{v1, . . . ,vm} ⊂ Span({u1, . . . ,ur}) . (1.68)

We now show that for each k = 1, . . . , r, uk ∈ Span({vj1 , . . . ,vjk}. For k = 1 this is clear

since by definition, u1 = ‖vj1‖−1vj1 . Now suppose we know that for some k = 2, . . . , r, u` ∈
Span({vj1 , . . . ,vj`} for all 1 ≤ ` ≤ k − 1. Then (1.66) says that wpk is a linear combinations of

vectors in Span({vj1 , . . . ,vjk}), and by Theorem 1, then wpk itself belongs to Span({vj1 , . . . ,vjk}).
But since uk is a multiple of wpk , this means that uk ∈ Span({vj1 , . . . ,vjk}). This is the inductive

step, and thus for each k = 1, . . . , r, uk ∈ Span({vj1 , . . . ,vjk}). That is,

{u1, . . . ,ur} ⊂ Span({vp1 , . . . ,vpr}) . (1.69)

Theorem 1 says that for any set W ⊂ Rn, Span(Span(W )) = Span(W ), and hence for any

V ⊂ Rn with V ⊂ Span(W ), Span(V ) ⊂ Span(W ). Applying this to (1.67), (1.68) and (1.69), and

the obvious fact that {vp1 , . . . ,vpr} ⊂ Span({v1, . . . ,vm}

Span({vp1 , . . . ,vpr}) ⊂ Span({v1, . . . ,vm} ⊂ Span({u1, . . . ,ur}) ⊂ Span({vp1 , . . . ,vpr}) .

Hence all of these sets are equal to one another. This proves (2).

Finally, by (1) and (1.66), uj · vpj = uj ·wpj = ‖wpj‖ > 0.

Corollary 2 (Corollary of Theorem 16). Let {v1, . . . ,vm} be a set of m vectors in Rn, not all of

which are the zero vector. A non-zero vector v` is non-pivotal for the Gram-Schmidt Algorithm if

and only if it is a linear combination of the vectors in {v1, . . . ,v`−1}.
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Proof. Apply the Gram-Schmidt Algorithm to the set {v1, . . . ,v`}, which contains at least one non-

zero vector, namely v`. Let {u1, . . . ,ur} be the resulting orthonormal set.

Suppose that v` is not pivotal. Then one gets the same set {u1, . . . ,ur} applying the Gram-

Schmidt Algorithm to the set {v1, . . . ,v`−1} – the additional vector v` adds nothing new. By (2) of

Theorem 16, applied twice

Span({v1, . . . ,v`−1}) = Span({u1, . . . ,ur}) = Span({v1, . . . ,v`}) .

Therefore, v` ∈ Span({v1, . . . ,v`−1}).
Conversely, if v` ∈ Span({v1, . . . ,v`−1}), and {u1, . . . ,us} is the orthonormal set one gets ap-

plying the Gram-Schmidt Algorithm to the set {v1, . . . ,v`−1}, then by (2) of Theorem 16, v` ∈
Span({u1, . . . ,us}), and v` −

∑s
j=1(v` · uj)uj = 0. Therefore, v` is non-pivotal.

1.3.3 Subspaces of Rn

For n > 3, subsets of Rn of the form Span({v1, . . . ,vm}) are the natural higher dimensional analogs

of lines and planes through the origin in R3. These special subsets of Rn are called subspaces of

Rn. The Gram-Schmidt Algorithm provides the means to answer all sorts of geometric questions

concerning subspaces.

We begin with some preliminary observations: Let V ⊂ Rn be non-empty. Suppose V has the

properties that:

(1) V is closed under scalar multiplication, meaning that if t ∈ R and v ∈ V , then tv ∈ V .

(2) V is closed under vector addition, meaning that if v2,v2 ∈ V , then v1 + v2 ∈ V .

Then for every v1,v2 ∈ V and t1, t2 ∈ R, t1v1 + t2v2 ∈ V . Moreover, for any additional t3 ∈ R,

and v3 ∈ V ,

t1v1 + t2v2 + t3v3 = (t1v1 + t2v2) + t3v3 ∈ V ,

and by induction we see that for all m and all t1, . . . , tm ∈ R and all {v1, . . . ,vm} ⊂ V ,

m∑
k=1

tkvk ∈ V .

This shows that Span(V ) ⊂ V , and since we always have V ⊂ span(V ), our hypotheses on V imply

that V = Span(V ). Conversely, if V = Span(V ), V is closed under scalar multiplication and vector

addition since every linear combination of vectors in V belongs to V .

Definition 18 (Subspaces of Rn). A non-empty subset V ⊂ Rn is a subspace of Rn in case V is

closed under scalar multiplication and vector addition, or, equivalently, in case V = span(V ).

We have seen that every subset of Rn having the form Span({v1, . . . ,vm}) is a subspace of Rn.

By Theorem 16, provided at least one of the vectors in non-zero, Span({v1, . . . ,vm}) is equal to

Span({u1, . . . ,ur}) for some orthonormal set {u1, . . . ,ur} with r ≤ m.

In fact, every subspace V of Rn that contains something other than the zero vector has the form

V = Span({u1, . . . ,ur})

for some orthonormal set {u1, . . . ,ur} ⊂ V . (The set V = {0}, is a subspace, called the zero subspace,

but there is not much to say about it.) To see this, use the Gram-Schmidt Algorithm as follows:
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First, select a nonzero vector v1 ∈ V , and normalize it to obtain u1. If span({u1}) = V , we

are done. Otherwise, there exists some v2 ∈ V with v2 /∈ Span({u1}). Apply the Gram-Schmidt

Algorithm to {u1,v2} to obtain {u1,u2}, noting that v2 is necessarily pivotal since it is not in

span({u1}). (See the Corollary to Theorem 16). Finally, note that by (1.65), u2 ∈ span({u1,v2}) ⊂
Span(V ) = V , the last equality being true precisely because V is a subspace.

If Span({u1,u2}) = V , we are done. Otherwise, there exists some v3 ∈ V with v3 /∈ Span({u1,u2}).
Apply the Gram-Schmidt Algorithm to {u1,u2,v3} to obtain {u1,u2,u3}, noting that v3 is neces-

sarily pivotal since it is not in span({u1,u2}). By the same reasoning as above, again using the fact

that V is a subspace, {u1,u2,u3} ⊂ V
Continue in this way until the procedure terminates. This must happen by the nth step at most

since Rn does not contain any orthonormal subset consisting of more than n vectors. When the pro-

cedure terminates, we have an orthonormal subset {u1, . . .ur} of V such that V = Span({u1, . . .ur}).
Although the procedure we described involved a largely arbitrary choice of the set of vectors to

which we applied the Gram-Schmidt Algorithm, the number r does not depend on any of the choices

we made. The number r is characteristic of the non-zero subspace V , and is called its dimension.

To prove this important fact, we use the natural parameterization and coordinate functions

associated to {u1, . . .ur}:
Let V be a non-zero subspace of Rn, and let {u1, . . .ur} be any orthonormal subset of V such

that V = Span({u1, . . .ur}). Define the parameterization function P mapping Rr into V by

P ((t1, . . . , tr)) =

r∑
j=1

tjuj .

and define the coordinate function C mapping V into Rn by

C(v) = (v · u1, . . . ,v · ur) .

both maps are one-to one and onto, so that both are invertible, and in fact, they are inverse to each

other.

The function P maps Rr onto V since V = Span({u1, . . .ur}). The function P is one-to-one

since if t, s ∈ Rr, and P (t) = P (s), then for each j = 1, . . . , r, P (t) · uj = P (s) · uj , which is the

same as tj = ss.

This shows that P is invertible, and then tk = (

n∑
j=1

tjuj) · uk = (P ((t1, . . . , tr))) · uk shows that

C is the inverse of P .

The functions P and C are isometries. That is, the both preserves distances and angles between

vectors. To see this, let s and t be two vectors in Rr. We compute

P (s) · P (t) =

 r∑
j=1

sjuj

 ·( r∑
k=1

tkuk

)
=

r∑
j,k=1

sjtkuj · uk =

r∑
j=1

sjtj = s · t .

In short, for all s, t ∈ Rr,

P (s) · P (t) = s · t . (1.70)
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Now let v,w ∈ V . Define s := C(v) and t = C(w). v = P (s) and w = P (t). Then we can rewrite

(1.70) as

v ·w = C(v) · C(w) , (1.71)

for all v,w ∈ V .

The formulas (1.70) and (1.71) have the following consequence: A set {v1, . . . ,vm} ⊂ V is

orthonormal if and only if {C(v1), . . . ,C(vm)} ⊂ Rr is orthonormal. Likewise, as set {s1, . . . , sm} ⊂
Rr is orthonormal if and only if {P (s1), . . . , P (sm)} ⊂ V is orthonormal.

Now let V be a non-zero subspace of Rn, Suppose that {u1, . . . ,ur} and {z1, . . . , zs} are two

orthonormal subsets of V and that both span V . We want to show that s = r. By symmetry, it

suffices to show that s ≤ r.
To do this, use {u1, . . . ,ur} to define a coordinate function C from V to Rr, but use {z1, . . . , zs}

to define a parameterization function P from Rs to V . The composition, C ◦P , is a function from Rs

to Rr. Since it is the compositions of functions that take orthonormal sets into orthonormal sets, C◦P
also has this property. Hence if {e1, . . . , es} is the standard basis for Rs, {C(P (e1)), . . . , C(P (es))}
is orthonormal in Rr. By Lemma 1, s ≤ r. We have proved:

Theorem 17. Let V be a subspace of Rn. Then there exists an orthonormal subset {u1, . . . ,ur} of

V whose span is V , and all such spanning orthonormal subsets of V have the same cardinality r. In

particular, if {u1, . . . ,ur} is an orthonormal set that spans Rn, then r = n.

Definition 19 (Dimension). The dimension of a subspace V of Rn, dim(V ), is the cardinality r of

any orthonormal subset {u1, . . . ,ur} of V that spans V . An orthonormal set of dim(V ) vectors in V

is called an orthonormal basis for V .

If V is a subspace of Rn, n > 3, we say that V is a line through the origin in case dim(V ) = 1,

and a plane through the origin in case dim(V ) = 2. If dim(V ) = n− 1, we say that V is a hyperplane

through the origin of Rn. Subspaces of other dimensions do not have nick-names.

Dimension is often used in proofs that two subspaces are the same:

Theorem 18. Let V and W be subspaces of Rn. If V ⊂W and dim(V ) = dim(W ), then V = W .

Proof. Let d = dim(V ), and let {u1, . . . ,ud} be an orthonormal set of d vectors in V , which ex-

ists by Theorem 17. Suppose there exists some w ∈ W such that w /∈ V = Span({u1, . . . ,ud}).
Then we can apply the Gram-Schmidt Algorithm to {u1, . . . ,ud, z} to produce an orthonormal set

{u1, . . . ,ud,ud+1} in W . But this is impossible if dim(W ) = d.

1.3.4 Orthogonal complements

We have seen that in Rn, n > 3, subspaces of Rn are the natural higher dimensional analogs of lines

and planes through the origin in R3. Lines and planes in R3 are the sets of solutions to certain

equations in R3 that can be written in terms of dot products. Moreover corresponding to any plane

through the origin in R3 is its normal line, the line through the origin consisting of the vectors that

are orthogonal to the plane. There is an orthonormal basis {u1,u2,u3} of R3 such that u3 · x = 0 is

the equation of the plane, and (u1 · x,u2 · x( = (0, 0) is the equation of the line, We have seen that
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this way of writing the equations in terms of an orthonormal basis, is very useful in solving distance

problems , for example,

The extension of all of this to arbitrary dimension involves the useful notion of orthogonal com-

plements which we now define:

Definition 20 (Orthogonal complement). Let S be any subset of Rn, finite or infinite. The orthog-

onal complement of S, S⊥, is the subset of vectors x ∈ Rn that are orthogonal to each v ∈ S.

Note that if S1 ⊂ S2, then a vector y has to satisfy more conditions of the form x · y = 0 to

belong to S⊥2 than to S⊥1 . Hence:

S1 ⊂ S2 ⇒ S⊥2 ⊂ S⊥1 . (1.72)

Example 24 (Orthogonal complements). Let {a} be a non-zero vector in R3, and let S = {a}. Then

S⊥ is the set of all vectors orthogonal to a, i.e., the set of all x ∈ R3 such that

a · x = 0 .

This is the equation of the plane through the origin that is normal to a.

Likewise, let S = {a1,a2} be a set of two non-zero vectors in R3 that are not multiples of one

another. Then S⊥ is the line specified by

a1 · x = 0

a2 · x = 0 .

In both of these examples, S⊥ is a subspace. This is always the case:

Theorem 19. Let S be any subset of Rn. Then S⊥ is a subspace. For any subspace V of Rn,

dim(V ) + dim(V ⊥) = n (1.73)

and

(V ⊥)⊥ = V . (1.74)

Finally, with k := dim(V ), there exists an orthonormal basis {u1, . . . ,uk,uk+1, . . . ,un} of Rn such

that {u1, . . . ,uk} is an orthonormal basis of V , and {uk+1, . . . ,un} is an orthonormal basis of V ⊥.

Proof. Let x,y ∈ S⊥, and let a, b be any two numbers. For any v ∈ S,

(ax + by) · v = a(x · v) + b(y · v) = a0 + b0 = 0 .

Thus ax + by ∈ S⊥. This shows that S⊥ is a subspace.

Now let V be a non-trivial subspace of Rn, and let {u1, . . . ,uk} be an orthonormal basis of V .

Since V ⊥ is a subspace of Rn, it too has an orthonormal basis {z1, . . . , z`}. Since every vector in V ⊥

is orthogonal to every vector in V , if define uk+j = zj for j = 1, . . . , `,

{v1, . . . ,vk,vk+1, . . . ,vk+`}
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is an orthonormal subset of Rn. Since there does not exist any orthonormal subset of Rn consisting

of more than n vectors, k + ` ≤ n.

Suppose that k + ` < n. Then Span({v1, . . . ,vk,vk+1, . . . ,vk+`}) is a subspace W of Rn of

dimension k + ` < n, and it cannot be all of Rn which has dimension n. Then there exists a vector

x ∈ Rn such that x /∈W . Define

z = x−
k+∑̀
j=1

(x · uj)uj .

Since x /∈W , z 6= 0 and it is easy to check that z is orthogonal to each vector in {v1, . . . , . . . ,vk+`},
and hence to each vector in W . But W contains both V and V ⊥, so that z is orthogonal to every

vector in V and in V ⊥. This means z is in V ⊥, and is also orthogonal to every vector in V ⊥. In

particular, it is orthogonal to itself. Hence ‖z‖2 = z ·z = 0, which is a contradiction. Hence k+` = n.

This proves (1.73), and the final statement is now evident.

Next since every vector in V is orthogonal to every vector in V⊥, V ⊂ V ⊥. Next by (1.73)

applied with V ⊥ in place of V ,

dim(V ⊥) + dim((V ⊥)⊥) = n = dim(V ) + dim(V ⊥) .

It follows that

dim((V ⊥)⊥) = dim(V ) ,

and we have already seen that V ⊂ V ⊥)⊥. By Theorem 18, this proves (1.74).

Theorem 20 (Span and orthogonal complements). Let S be any subset of Rn. Then (S⊥)⊥ =

Span(S).

Proof: Let W be any subspace of Rn such that S ⊂ W . By (1.72), W⊥ ⊂ S⊥, and then by (1.72)

again and (1.74), (S⊥)⊥ ⊂ (W⊥)⊥ = W . In particular, since S ⊂ Span(S), (S⊥)⊥ ⊂ Span(S).

On the other hand, since subspaces are closed under taking linear combinations, and since (S⊥)⊥

contains S, (S⊥)⊥ contains every finite linear combination of vectors in S; i.e., Span(S) ⊂ (S⊥)⊥.

Having proved both (S⊥)⊥ ⊂ Span(S) and Span(S) ⊂ (S⊥)⊥, we have the equality.

Corollary 3. Let V be a subspace of Rn of dimension d. Then there is an orthonormal basis

{u1, . . . ,un} of Rn such that

V = Span({u1, . . . ,ud}) = {ud+1, . . . ,un}⊥ . (1.75)

Proof. Theorem 19 provides the existence of an orthonormal basis {u1, . . . ,un} of Rn such that

V = Span({u1, . . . ,ud}) and V ⊥ = Span({ud+1, . . . ,un}). A vector v is orthogonal to every vector

in {ud+1, . . . ,un} if and only if it is orthogonal to every linear combination of these vectors, and

hence

(Span({ud+1, . . . ,un})⊥ = {ud+1, . . . ,un}⊥ .

By Theorem 20, V = V ⊥⊥ = (Span({ud+1, . . . ,un})⊥, and altogether we have V = {ud+1, . . . ,un}⊥.
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The answers to most questions concerning a d dimensional subspace V of Rn can be answered

by considering the orthonormal basis {u1, . . . ,ud,ud+1, . . . ,un} of Rn provided by Corollary 3, since

the two identities in (1.75) give both a system of equations for V and a parameterization of V .

The identity V = {ud+1, . . . ,un}⊥ says that V is exactly the solution set of the system of

equations uj · x = 0 for j = d + 1, . . . n. When n = 3 and d = 2, this reduces to our standard

geometric form of the equation of a plane through the origin in R3, namely, u3 · x = 0.

Likewise, the identity V = Span({u1, . . . ,ud}) says that the function PV define by

PV ((t1, . . . , td)) =

d∑
j=1

tjuj (1.76)

is a parameterization of V . Its inverse is the coordinate function CV given by

CV (v) = (u1 · v, . . . ,uk · v) . (1.77)

As we have seen in the discussion leading up to Theorem 17, CV and PV take orthonormal sets to

orthonormal sets.

1.3.5 Higher dimensional analogs of lines and planes

What about the generalization of lines and planes that do not pass through the origin? Given any

subset A of Rn, and any x0 ∈ Rn, define the set A− x0 by

A− x0 = {a− x0 : a ∈ A} .

That is, A− x0 is the sets of all vectors that one obtains by subtracting x0 form a vector in A. This

operation “translates” the set A by moving each vector in it the same distance in the same direction.

It simply shifts the position of the set without deforming it in any way.

If A is a plane in R3, and x0 is any point in A, the set A−x0 is therefore again a plane, but now

it contains 0, so that it is a plane through the origin. Moreover, any point x0 in the plane can serve

as the “base point” x0. Since translation relates general planes in R3 so two-dimensional subspaces

of R3, it is natural to use translation to relate their higher-dimensional analogs to subspaces of Rn.

Definition 21 (Affine subsets of Rn). A subset A ⊂ Rn is an affine subset if and only if for some

x0 ∈ A, A− x0 is a subspace V of Rn.

Lemma 4. Let A ⊂ Rn, and suppose that for some x0 ∈ A, V := A− x0 is a subspace of Rn. Then

for every x1 ∈ A, V = A− x1.

Proof. Let x0 and x1 be two elements of A. Suppose V = A − x0 is a subspace. Since x1 ∈ A, the

vector v defined by x1 − x0 belongs to V , and x1 = x0 + v. Therefore, for any a ∈ A,

a− x1 = a− (v + x0) = (a− x0)− v ∈ V

since the difference of two vectors in V belongs to V .

Since the subspace V does not depend on the choice of the base point, the following definition

makes sense:



1.3. THE GRAM-SCHMIDT ORTHONORMALIZATION ALGORITHM 55

Definition 22 (The dimension of an affine subsets of Rn). Let A be an affine subset of Rn. The

dimension of A, dim(A), is defined by dim(A) = dim(V ) where V is the subspace A − x0 for any

x0 ∈ A. If A is an affine subset of Rn and dim(A) = 1, A is a line in Rn. If A is an affine subset of

Rn and dim(A) = 2, A is a plane in Rn. If n > 3 and A is an affine subset of Rn and dim(A) = n−1,

A is a hyperplane in Rn.

Let A be any d -dimensional affine subset of Rn, 1 ≤ d ≤ n− 1. (The cases d = 0 and d = n are

trivial.) Fix any x0 ∈ A, and let V be the subspace V = A − x0. Then by Corollary 3, there is an

orthonormal basis {u1, . . . ,un} of Rn so that V = Span({u1, . . . ,ud}) = {ud+1, . . . ,un}⊥ We have

then seen in the discussion following Corollary 3 that V is exactly the solution set of the system of

equations uj · x = 0 for j = d + 1, . . . n. Therefore, A is exactly the solution set of the system of

equations uj · (x− x0) = 0 for j = d+ 1, . . . n. When n = 3 and d = 2, this reduces to our standard

geometric form of the equation of a plane in R3, namely, u3 · (x− x0) = 0.

Likewise, the identity V = Span({u1, . . . ,ud}) says that the function sending (t1, . . . , td) to∑d
j=1 tjuj is a parameterization of V = A− x0, and therefore the function PA defined by

PA((t1, . . . , td)) = x0 +

d∑
j=1

tjuj (1.78)

is a parameterization of A.

It is now a simple matter to show that if A is any nonempty affine subset of Rn, then for all

p ∈ Rn, there is a unique q ∈ A such that ‖q− p‖ < ‖x− p‖ for all x ∈ A, x 6= q. This is trivial if

d = 0 or d = n, so suppose that 1 ≤ d ≤ n − 1. Pick any x0 ∈ A, and let V be the subspace given

by V = A − x0. Let {u1, . . . ,un} be an orthonormal basis of Rn such that (1.75) is satisfied. The

general point in A us then given by PA((t1, . . . , td)) with PA given by (1.78). By the Pythagorean

Theorem, the squared distance from this point to p is

‖PA((t1, . . . , td))− p‖2 =

n∑
k=1

((PA((t1, . . . , td))− p) · uk)2 .

For k > d, (PA((t1, . . . , td))− p) · uk = (x0 − p) · uk which is independent of t1, . . . , td. For k ≤ d

(PA((t1, . . . , td))− p) · uk = (x0 − p) · uk + tk

Evidently, we minimize the sum of squares by taking tj = −(x0 − p) · uj for j = 1, . . . , d, and only

by this choice. Therefore,

q = x0 +

d∑
j=1

((p− x0) · uj)uj ,

and ‖q − p‖, the distance form p to A is given by ‖q− p‖2 =

d∑
j=1

((p− x0) · uj)2. We could go on

to determine the distance between two affine subsets of Rn, generalizing our results on the distance

between two lines in R3, but this will be easier once we have learned some more about solving systems

of linear equations in Chapter 4. The main point that we want to make here, with which we conclude

this chapter, is that ”well-adapted” orthonormal bases provide the key to a great many geometric

problem that we shall consider, no matter how many variables are involved.
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1.4 Exercises

1.1 Let a = (3,−1), b = (2, 1) and c = (1, 3). Express a as a linear combination of b and c. That

is, find numbers s and t so that a = sb + tc.

1.2 Let a = (5, 2), b = (2,−1) and c = (1, 1). Express each of these three vectors as a linear

combination of the other two.

1.3 Let x = (1, 4, 8) and y = (1, 2,−2). Compute the lengths of each of these vectors, and the angle

between them.

1.4 Let x = (4, 7,−4, 1, 2,−2) and y = (2, 1, 2, 2,−1,−1). Compute the lengths of each of these

vectors, and the angle between them.

1.5 Let x = (4, 7, 4) and y = (2, 1, 2). Compute the lengths of each of these vectors, and the angle

between them.

1.6 Let x = ( − 5, 2,−5) and y = (1, 2, 1). Is the angle between x and y acute or obtuse? Justify

your answer.

1.7 Let

u1 =
1

9
(1,−4,−8) u2 =

1

9
(8, 4,−1) and u3 =

1

9
(4,−7, 4) .

(a) Show that {u1,u2,u3} is an orthonormal basis of R3. Is it a right-handed orthonormal basis?

Justify your answer.

(b) Find numbers y1, y2 and y3 such that

y1u1 + y2u2 + y3u3 = (10, 11,−11) .

What are the lengths of the vectors (10, 11,−11) and (y1, y2, y3)? give calculations or an explanation

in each case.

1.8 Let a,b and c be any three vectors in R3 with a 6= 0. Show that b = c if and only if

a · b = a · c and a× b = a× c .

1.9 Let a = (1, 1, 1)

(a) Find a vector x such that

x× a = (− 7, 2, 5) and x · a = 0 .

(b) There is no vector x such that

x× a = (1, 0, 0) and x · a = 0 .

Show that no such vector exists.

1.10 (a) Let a = (− 1, 1, 2) and b = (2,−1, 1). Find all vectors x, if any exist, such that

a× x = (− 2, 4,−3) and b · x = 2 .
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If none exist, explain why this is the case.

(b) Let a = (− 1, 1, 2) and b = (2,−1, 1). Find all vectors x, if any exist, such that

a× x = (2, 4, 3) and b · x = 2 .

If none exist, explain why this is the case.

(c) Among all vectors x such that ( − 1, 1, 2) × x = ( − 2, 4,−3), find the one that is closest to

(1, 1, 1).

1.11 (a) Let a and b be orthogonal vectors. Define a sequence of vectors {bn} by

bn+1 = a× bn and b0 = b .

Show that for all positive integers m

b2m = (−1)m‖a‖2mb .

How do you have to adjust the formula if the hypothesis that a and b are orthogonal is dropped?

(b) Let a =
1

3
(2,−1, 2) and b = (1, 1, 1). With bn defined as in part (a), compute b99.

1.12 (a) Let a, b and c be three non-zero vectors in R3. Define a transformation f from R3 to R3 by

f(x) = a× (b× (c× x))) .

Show that f(x) = 0 for all x ∈ R3 if and only if b is orthogonal to c, and a is a multiple of c.

1.13 (a) Let a, b and c be three non-zero vectors in R3. Show that

|a · (b× c)| ≤ ‖a‖‖b‖‖c‖

and there is equality if and only if

{
1

‖a‖
a,

1

‖b‖
b,

1

‖c‖
c

}
is orthonormal.

1.14 Let P1 the plane through the three points a1 = (1, 2, 1) a2 = (−1, 2,−3) and a3 = (2,−3,−2).

Let P2 denote the plane through the three points b1 = (1, 1, 0) b2 = (1, 0, 1) and b3 = (0, 1, 1).

(a) Find equations for the planes P1 and P2.

(b) Parameterize the line given by P1 ∩P2, and find the distance between this line and the point a1.

(c) Consider the line through b1 and b2. Determine the point of intersection of this line with the

plane P1.

1.15 Consider the vector v = (1, 4, 3). Find an orthonormal basis of R3 whose third vector is a

multiple of v.

1.16 Consider the vector a = (1, 4, 3) and b = (3, 2, 1). Find an orthonormal basis of R3 whose third

vector is orthogonal to both a and b.

1.17 Consider the plane passing through the three points

p1 = (− 2, 0, 2) p2 = (1,−2, 2) and p3 = (3,−1,−2)
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and the line passing through

z0 = (1, 4,−2) and z1 = (0,−3, 1)

(a) Find a parametric representation x(s, t) = x0 + sv1 + tv2 for the plane.

(b) Find a parametric representation z(u) = z0 + uw for the line.

(c) Find an equation for the plane.

(d) Find a system of equations for the line.

(e) Find the points, if any, where the line intersects the plane.

(f) Find the distance from p1 to the line.

(g) Find the distance from z0 to the plane.

1.18 Consider the plane passing through the three points

p1 = (− 1,−3, 0) p2 = (5, 1, 2) and p3 = (0,−3, 4)

and the line passing through

z0 = (1, 1,−1) and z1 = (1,−2, 2)

(a) Find a parametric representation x(s, t) = x0 + sv1 + tv2 for the plane.

(b) Find a parametric representation z(u) = z0 + uw for the line.

(c) Find an equation for the plane.

(d) Find a system of equations for the line.

(e) Find the points, if any, where the line intersects the plane.

(f) Find the distance from p1 to the line.

(g) Find the distance from z0 to the plane.

1.19 Consider the two lines parameterized by

(1, 1, 0) + t(1,−1, 2) and (2, 0, 2) + s(− 1, 1, 0) .

(a) These lines intersect. Find the point of intersection.

(b) Find an equation for the plane P containing these two lines.

1.20 Consider the plane given by

2x− y + 3z = 4 .

Let p = (− 1,−3, 0). What is the distance from p to the plane?

1.21 Consider the plane given by

x− 3y + z = 2 .

Let p = (− 2,−5, 1). What is the distance from p to the plane?
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1.22 Consider the line ` given by

2x− y + 3z = 4

x+ y + z = 2 .

Find a parametric representation of the line obtained by reflecting this line through the plane x +

3y − z = 1. That is; the outgoing line should have as its base point the intersection of the incoming

line and the plane, and its direction vector should be hu(v) where v is the incoming direction vector,

and u is a unit normal vector to the plane.

1.23 Consider the line ` given by

x− 3y + z = 2

2y + z = 3 .

Find a parametric representation of the line obtained by reflecting this line through the plane x +

2y − z = 1. Find a parametric representation of the line obtained by reflecting this line through the

plane x+ 3y − z = 1. (See the previous exercise.)

1.24 Let x = (5, 2, 4, 2). Let u be a unit vector such that hu(x) is a multiple of e1. What are the

possible values of this multiple? Find four such unit vectors u.

1.25 Consider two lines in R3 given parametrically by x1(s) = x1 + sv1 and x2(t) = x2 + tv2 where

x1 = (1, 2, 1) x2 = (1,−1, 0) v1 = (1, 0,−1) and v2 = (2, 1, 1) .

Compute the distance between these two lines.

1.26 Consider two lines in R3 given parametrically by x1(s) = x1 + sv1 and x2(t) = x2 + tv2 where

x1 = (1, 2, 3) x2 = (2, 0, 2) v1 = (1, 2, 2) and v2 = (− 2, 1, 1) .

Compute the distance between these two lines.

1.27 Consider two lines in R3 given parametrically by x1(s) = x1 + sv1 and x2(t) = x2 + tv2 where

x1 = (3, 2, 1) x2 = (1, 1,−1) v1 = (3,−5,−1) and v2 = (− 1, 3, 3) .

Find the point on the first line that is closest to the second line, the point on the second line that is

closest to the first line, and the distance between these two lines.

1.28 Consider two lines in R3 given parametrically by x1(s) = x1 + sv1 and x2(t) = x2 + tv2 where

x1 = (1, 2,−1) x2 = (2, 1,−5) v1 = (1,−4,−2) and v2 = (1, 1,−2).

Find the point on the first line that is closest to the second line, the point on the second line that is

closest to the first line, and the distance between these two lines.

1.29 Let {u1,u2,u3} be given by

u1 =
1

3
(1, 2,−2) u2 =

1

3
(2, 1, 2) and u3 =

1

3
(2,−2,−1) .
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(a) Verify whether {u1,u2,u3} is, or is not, an orthonormal basis of R3.

(b) Find a unit vector u so that hu(u1) = e1.

(c) With this came choice of u, compute hu(u2) and hu(u3).

1.30 Let {u1,u2,u3} be given by

u1 =
1

9
(1, 4, 8) u2 =

1

9
(8,−4, 1) and u3 =

1

9
(4, 7,−4)) .

(a) Verify whether {u1,u2,u3} is, or is not, an orthonormal basis of R3.

(b) Find a unit vector u so that hu(u1) = e1.

(c) With this came choice of u, compute hu(u2) and hu(u3).

1.31 Let {u1,u2,u3} be given by

u1 =
1

3
(1, 2,−2) u2 =

1√
2
(0, 1, 1) and u3 =

1

3
√

2
(4, 1,−1)) .

(a) Verify whether {u1,u2,u3} is, or is not, an orthonormal basis of R3.

(b) Find a unit vector u so that hu(u1) = e1.

(c) With this same choice of u, compute hu(u2) and hu(u3).

1.32 Let V1 and V2 be two subspaces of Rn.

(a) Show that V1 ∩ V2 is a subspace of Rn.

(b) Define V1 + V2 to be the set of all vectors z ∈ Rn such that z = x + y for some x ∈ V1 and some

y ∈ V2. Show that V1 + V2 is a subspace of Rn.

1.33 Let V1 and V2 be two subspaces of Rn. Using the results and notation from the previous exercise,

show that

dim(V1 ∩ V2) + dim(V1 + V2) = dim(V1) + dim(V2) .

1.34 For n > 3, an n − 1 dimensional V subspace of Rn is called a hyperplane through the origin.

The orthogonal complement V ⊥ is a one dimensional subspace. In this case, starting from the

equation of the hyperplane, it is easy to write down an orthonormal basis {u1, . . . ,un−1,un} such

that {u1, . . . ,un−1} is an orthonormal basis of V , and such that {un} is an orthonormal basis of V ⊥:

Let a be a non-zero vector in Rn, and let V be the solution set of a · x = 0. Define the unit

vector w = (1/‖a‖)a. Let u be a unit vector such that the Householder reflection hu satisfies

hu(w) = en .

Define

uj = hu(ej) for j = 1, . . . , n .

Show that with these definitions, {u1, . . . ,un−1} is an orthonormal basis of V , and such that {un}
is an orthonormal basis of V ⊥.



1.4. EXERCISES 61

1.35 We use the notation and results of the previous exercise. Consider the hyperplane V through

the origin in R4 given by

2x+ 2y − 7z + 4w = 0 .

Let b = (1, 2, 0, 2). Find the point x ∈ V that is closest to b and find the distance between b and V .

1.36 Show that for all vectors a, b, c and d in R3,

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) .

1.37 Show that for all a, b and c in R3,

(b× c) · [(c× a)× (a× b)] = |a · (b× c)|2 .
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Chapter 2

DESCRIPTION OF MOTION

2.1 Functions from R to Rn and the description of motion

In many ways, the simplest multivariable functions are functions from R to Rn for some n ≥ 1.

These are functions that have one input variable (one independent variable), and n output variables

(n dependent variables).

If n = 2 or if n = 3, we can think of the output variable x as the coordinate vector of a point

moving in R2 or R3, and we can think of the input variable t as the time so that the function gives

us the location of a moving point at time t. We then write the function as x(t). Such functions are

also called vector valued functions of a real variable.

Example 25. Consider the function x(t) of the real variable t with values in R3 given by

x(t) = ( cos(t) , sin(t) , 1/t) . (2.1)

Here is a three dimensional plot of the curve traced out by x(t) as for t ≤ 1 ≤ 20. (Since x3(t) = 1/t

is a decreasing function of t, the x(0) end of the curve is at the top.)
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2.1.1 Continuity of functions from R to Rn

Vector valued functions of one real variable that describe particle motion usually have certain regu-

larity properties: For example, particle motions are usually at least continuous:

c© 2012 by the author.
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Definition 23 (Convergence and continuity in Rn). A sequence of vectors {xj} in Rn converges to

z ∈ Rn in case for each ε > 0, there is a natural number Nε so that

j ≥ Nε ⇒ ‖xj − z‖ ≤ ε ,

in which case we say that z is the limit of the sequence and write

lim
n→∞

xj = z .

A function x(t) defined on an open interval (a, b) ⊂ R with values in Rn is continuous at

t0 ∈ (a, b) in case for each ε > 0, there is a real number δε > 0 so that

|t− t0| ≤ δε ⇒ ‖x(t)− x(t0)‖ ≤ ε , (2.2)

in which case we write limt→t0 x(t) = x(t0). The function x(t) is said to be continuous if it is

continuous at each point in its domain. Such a function is often called a curve in Rn.

Checking continuity for functions from (a, b) to Rn can be done one coordinate fucntion at a

time:

Theorem 21. A vector valued function x(t) of a real variable t is continuous at t0 if and only if

each of its entry functions xj(t) is a continuous at t0.

This theorem means we can use everything we know about continuity for real valued fucntions of

one real variable to answer questions about vector valued functions of one real variable. For example,

we know for single variable functions that if limits exist, they are unique: As t → t0, x(t) cannot

converge to two different numbers x and y. It follows that if limt→t0 x(t) = x and limt→t0 x(t) = y,

then y = x. It makes sense to talk about “the limit” whenver limits exist.

The proof of Theorem 21 turns on some very simple general obsevations that we review before

the giving the proof. Observe that if {a1, . . . , an} is any set of n non-negative numbers, then

max{a1, . . . an} ≤
k∑
j=1

ak ≤ n (max{a1, . . . an}) . (2.3)

Now let x and y be any two vectors in Rn. Applying (2.3) with aj = |xj − yj |2, we obtain

max{|x1 − y1|, . . . |xn − yn|} ≤ ‖x− y‖ ≤
√
n (max{|x1 − y1|, . . . |xn − yn|}) . (2.4)

Proof of Theorem 21. Suppose that x(t) is continuous at t0, meaning that limt→0 ‖x(t)−x(t0)‖ = 0.

Then by the inequality on the left in (2.4), for each j, limt→t0 |xj(t)− xj(t0)| = 0, which means that

xj(t) is continuous at t0. On the other hand, suppose that for each j, xj(t) is continuous at t0. Then

limt→t0 |xj(t)− xj(t0)| = 0 for each j, and consequently

lim
t→t0

(√
nmax{|x1(t)− x1(t0)|, . . . |xn(t)− xn(t0)|}

)
= 0 .

Then by the inequality on the right in (2.4), (2.2) is valid.
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2.1.2 Differentiability of functions from R to Rn

The motion of physical particles is only continuous, but differentiable. In fact, as we shall explain

later, as a consequence of Newton’s second law, as long as no infinite forces act on a particle, its

motion will be described by a curve that is at least twice differentiable.

To say that x(t) is differentiable means, roughtly speaking, that if you observe the motion

described by x(t) over a sufficiently short time interval, it looks like constant speed motion along a

parameterized line.

A parameterized line in Rn is a function from R to Rn of the form

x(t) = x0 + tv (2.5)

for fixed vectors x0 and v in Rn, with v 6= 0. For any t0 ∈ R, x(t) = x(t0) + (t− t0)v for all t ∈ R.

Remark 3. Let x0 and v be vectors in Rn. The sets traced out by

x(t) = x0 + tv and x̃(t) = x0 + t3v

as t varies over R are the same line in Rn, as a subset of Rn, but they are different parameterizations

of the same line. When we refer to a function x(t) as a parameterized line, we alway mean a

parameterization of the form (2.5)

Lemma 5. Let x(t) be a paramterized curve in Rn defined for t ∈ (a, b). Fix t0 ∈ (a, b), and define

x0 = x(t0), There is at most one vector v ∈ Rn such that

lim
t→0

‖x(t)− y(t)‖
|t− t0|

= 0 . (2.6)

is satisfied with y(t) = x0 + (t− t0)v.

Proof. uppose that y(t) = x0 + (t − t0)v and z(t) = x0 + (t − t0)w are two parameterized lines

through x0 = x(t0). Suppose that

lim
t→t0

‖x(t)− y(t)‖
|t− t0|

= 0 and lim
t→t0

‖x(t)− z(t)‖
|t− t0|

= 0 . (2.7)

Then since

‖y(t)− z(t)‖ = ‖(y(t)− x(t)) + (x(t)− z(t))‖ ≤ ‖x(t)− y(t)‖+ ‖x(t)− z(t)‖ ,

it follows that

lim
t→t0

‖y(t)− z(t)‖
|t− t0|

= 0 . (2.8)

But
‖y(t)− z(t)‖
|t− t0|

= ‖v −w‖, and so whenever (2.7) is true, v = w.

We now define the important class of functions for which such a line exists.

Definition 24 (Differentiable curves). Let x(t) be an Rn valued function of the variable t. We say

that x(t) is differentiable at t = t0 in case there is a parameterized line x0 + (t − t0)v such that

x0 = x(t0) and

lim
t→t0

‖x(t)− (x0 + (t− t0)v)‖
|t− t0|

= 0 .



66 CHAPTER 2. DESCRIPTION OF MOTION

The unique vector v for which this is true is the derivative of the function x(t) at t = t0, andd it is

denoted by x′(t0). The parameterized line y(t) = x(t0) + (t − t0)x′(t0) is called the tangent line to

the curve x(t) at t = t0.

How do we check for differentiability, and supposing that x(t) is differentiable at t = t0, how do

we compute the derivative v = x′(t0)? For any choice of v, let y(t) = x(t0) + (t− t0)v, and note that

‖x(t)− y(t)‖
|t− t0|

=
‖x(t)− x(t0)− (t− t0)v‖

|t− t0|
=

∥∥∥∥x(t)− x(t0)

t− t0
− v

∥∥∥∥ .

Therefore, (2.6) is true for this choice fo v if and only if

lim
t→t0

x(t)− x(t0)

t− t0
= v ,

and then by Theorem 21, this is the case if and only if for each j = 1, . . . , n,

lim
t→t0

xj(t)− xj(t0)

t− t0
= vj . (2.9)

Summarizing x(t) is differentiable at t = t0 if and only if each of its coordinate functions xj(t) is

differentiable at t = t0 in the usual single variable sense, and in that case, if we define vj = x′j(t0) for

each j, then v = (v1, . . . , vn) = x′(t0). Thus as far as computation of deriviatves per se is concerned,

there is nothing really new going on here: We just differeniate the entries of a vector valued function

of t separately, one at a time.

Example 26 (Computing the derivative of a vector valued function of t). Let x(t) be given by (2.1).

Then for any t 6= 0,

x′(t) = (− sin(t), cos(t),−1/t2) .

Example 27 (A tangent line). Consider the vector valued function

x(t) = (x(t), y(t), z(t)) = (t , 23/2t3/2/3 , t2/2) .

To compute x′(t), compute x′(t) = 1, y′(t) = 21/2t1/2 and z′(t) = t. Hence x′(t) = (1, 21/2t1/2, t).

We now compute the tangent line at t0 = 1. This is parameterized by

x(1) + (t− 1)x
¯
′(1) = (1, 23/2/3, 1/2) + (t− 1)(1, 21/2, 1) . (2.10)

Here is a graph showing both the curve x(t) and the tangent line x(1) + (t− 1)x′(1) for −1 ≤ t ≤ 1:
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As you can see, the straight line is a very close match to the curve for t ≈ t0 = 1: Both curves

pass through x(1) at t = 1, and they do so moving in the same direction. What you cannot see in this

static picture is that they also move through this point at the same speed. That is, the linear motion

and the curved motion “track each other” very well.

Had we “zoomed in more”, and shown the two graphs only for −0.1 ≤ t ≤ 0.1, the two graphs

would have been pretty much indistinguishable. If we keep “zooming in” the two curves, and the

motions along them, will look more and more “equivalent”.

Because we differentiate vectors entry by entry without mixing the entries up in any way, familiar

rules for differentiating scalar valued functions hold for vector valued functions as well. In particular,

the derivative of a sum is still the sum of the derivatives, etc.:

(x(t) + y(t))′ = x′(t) + y′(t) . (2.11)

We now turn to product rules. There are now several types of products to consider: product

rules for scalar-vector multiplication and product rules for both the dot and cross products.

Theorem 22 (Differentiating dot and cross products). Suppose that v(t) and w(t) are differen-

tiable vector valued functions for t in (a, b) with values in Rn, and that both of these functions are

differentiable at t0 ∈ (a, b). Then v(t) ·w(t) is differentiable at t0 and

d

dt
(v(t) ·w(t))

∣∣∣∣
t=t0

= v′(t0) ·w(t0) + v(t0) ·w′(t0) . (2.12)

Also, if n = 3 so that the cross product is defined, v(t)×w(t) is differentiable at t0 and

d

dt
(v(t)×w(t))

∣∣∣∣
t=t0

= v′(t0)×w(t0) + v(t0)×w′(t0) . (2.13)

Proof. By definition we have

d

dt
(v(t) ·w(t))

∣∣∣∣
t=t0

= lim
h→0

1

h
(v(t0 + h) ·w(t0 + h)− v(t0) ·w(t0)) . (2.14)

Now we use the device of “adding and subtracting” that is used to prove the single variable product

rule to write

v(t0 + h) ·w(t0 + h)− v(t0) ·w(t0) = [v(t0 + h)− v(t0)] ·w(t0 + h)

= v(t0) · [w(t0 + h)−w(t0)] (2.15)

Note that this identity is true because we have simply added v(t0) ·w(t0 + h) in the first line on the

right, and subtracted it back out in the second. The advantage is that now in each term, only one of

v and w is changing.

Combining (2.14) and (2.15), we have

d

dt
(v(t) ·w(t))

∣∣∣∣
t=t0

= lim
h→0

(
v(t0 + h)− v(t0)

h
·w(t0 + h)

)
+ lim

h→0

(
v(t0) · w(t0 + h)−w(t0)

h

)
= v′(t0) ·w(t0) + v(t0) ·w′(t0)
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The proof for cross products is exactly the same; simply replace each dot product with a cross

product in the lines above.

Finally there is the case of the product rule for scalar vector multiplication. If g(t) is a real

valued function defined on (a, b), and x(t) is an Rn valued function defined on (a, b), and if both are

differentiable at t0 ∈ (a, b), then

d

dt
(g(t)x(t))

∣∣∣∣
t=t0

= g′(t0)x(t0) + g(t0)x′(t0) . (2.16)

We leave the proof of this to the reader - treat the components one at a time.

We next present a simple consequence of Theroem 22 that we shall frequently use.

Theorem 23 (Othogonality for constant magnitude curves). Let w(t) be a differentiable curve in

Rn defined on (a, b) such that for some % > 0, ‖w(t)‖ = % for all t ∈ (a, b). That is, suppose the

vector w(t) has constant magnitude. Then for all t ∈ (a, b),

w(t) ·w′(t) = 0 .

Proof.

0 =
d

dt
%2 =

d

dt
w(t) ·w(t) = 2w(t) ·w′(t) .

2.1.3 Velocity and acceleration

Let x(t) be a function defined on (a, b) with values in Rn. If n = 3, we can think of x(t) as

representing the position of a point particle in physical space at time t. In this case it is natural to

call x′(t) velocity, and we shall do for all values of n. The velocity gives the rate of change of the

position, or more generally the configuration of some physical system more complicated than a point

particle.

If the function v(t) = x′(t) is differentiable, then v′(t) is called the acceleration, and is often

denoted by a(t), so that a(t) = v′(t) = x′′(t). In this case we say that x(t) is twice differentiable,

and twice continuously differentiable in case a(t) = x′′(t) is continuous. Thus, the acceleration is the

second time derivative of the position (if it is twice differentiable) and gives the rate of change of the

velocity vector.

For a parameterized line x(t) = x0 + tv, we have v(t) = x′(t) = v, and so the velocity is

constant. Therefore, a(t) = v′(t) = 0 for all t. That is, parameterized lines have zero acceleration.

For parameterized circles, matters are different.

Example 28 (Parameterized circle in R3). Let c and a be vectors on R3 with a 6= 0. Let % > 0.

Consider the system of equations

‖x− c‖2 = %2

a · (x− c) = 0 . (2.17)
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The first equation in this system is the equation for the sphere of radius % centered at c. The

second is the equation of the plane passing through c with normal direction along a. The intersection

of the plane and the sphere is a circle of radius % in R3. In fact, if you “slice” a sphere be a plane

through the center of the sphere, you get a so-called great circle on the sphere. Segments of great

circles have a “geodesic property” that we shall study later in this chapter.

In the mean time, let us parameterize the solutions set to (2.17). Let {u1,u2,u3} be an or-

thonormal basis of R3 such that u3 = ‖a‖−1a. We have seen how to construct such an orthonormal

basis.

Note that a · (x− c) = 0 if and only if u3 · (x− c) = 0, and so x satisfies the second equation in

(2.17) if and only if x−c = ((x−c) ·u1)u1 + ((x−c) ·u2)u2. Then x also satisfies the first equation

in (2.17) if and only if

((x− c) · u1)2 + ((x− c) · u2)2 = %2 .

Since all of the solutions of a2 + b2 = %2 are given by (a, b) = %( cos θ, sin θ) for some 0 ≤ θ < 2π,

we must have that (x− c) · u1 = cos θ# and (x− c) · u2 = sin θ for some 0 ≤ θ < 2π,

Thus,

x(θ) := c + % cos θu1 + % sin θu2

for 0 ≤ θ < 2π is a parameterization of the solution set of (2.17).

Now suppose that the angle θ is increasing at a constant rate; i.e., that for some ω > 0, the angle

θ(t) at time t is given by θ(t) = ω(t− t0) for some t0 ∈ R. Then writing x(t) to denote x(θ(t)), we

have

x(t) = c + %[cos(ω(t− t0))u1 + sin(ω(t− t0))u2] .

With this parameterization x(t0) = c + %u1, x(t0 + π/2ω) = c + %u2, and the period of the motion is

2π/ω.

Now. let us compute the velocity and acceleration of x(t). We compute:

v(t) = x′(t) = %ω[− sin(ω(t− t0))u1 + cos(ω(t− t0))u2] ,

and

a(t) = v′(t) = −%ω2[cos(ω(t− t0))u1 + sin(ω(t− t0))u2] .

Note that

‖v(t)‖ = %ω and ‖a(t)‖ = %ω2 . (2.18)

Since ‖v(t)‖ is constant, it follows from Theorem 23 that v(t) and a(t) are orthogonal for each t, as

you can readily check.

In the previous example, speed was constant, and so the acceleration was non-zero only because

the direction of the velocity vector was changing, not its magnitude. In general it is useful to separate

the acceleration vector into two components, one having to do with the rate of change of the speed,

and the other having to do with the rate of change of the direction of motion.
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Definition 25 (Speed and the unit tangent vector). The magnitude of the velocity vector is called

the speed. We denote it by v(t). That is,

v(t) = |v(t)| .

Provided that v(t) 6= 0, we can define a unit vector valued function T(t) by

T(t) =
1

v(t)
v(t) so that v(t) = v(t)T(t) .

The vector T(t) is called the unit tangent vector at time t. It specifies the instantaneous direction of

motion.

Example 29 (Speed and the unit tangent vector). Let x(t) = (t, 23/2t3/2/3, t2/2) for t > 0 as in

Example 26. There we found that v(t) = (1, 21/2t1/2, t), and so the speed v(t) is given by

v(t) =
√

1 + 2t+ t2 = 1 + t .

which is strictly positive for all t > 0, and then we have

T(t) =
1

1 + t
(1, 21/2t1/2, t) .

Theorem 24. Let x(t) be a twice differentiable curve, and suppose that the speed v(t) is nonzero on

some open interval (b, c) so that T(t) is defined for all t in this interval. Let a(t) = a‖(t) + a⊥(t)

where we decompose a(t) using the direction T(t). Then

a‖(t) = v′(t)T(t) and a⊥(t) = v(t)T′(t) . (2.19)

Proof. Since v(t) = v(t)T(t), we have from (2.16) that.

a(t) = (v(t)T(t))′ = v′(t)T(t) + v(t)T′(t) .

By Theorem 23, T(t) and T′(t) are orthogonal, and so v′(t)T(t)+ v(t)T′(t) are orthogonal, and

clearly the first of these vectors is a multiple of T(t). This proves (2.19).

We refer to a‖ as the tangential component of the acceleration, and to a⊥ as the normal component

of the acceleration. We see from (2.19) that the tangential component of the acceleration has to do

with the rate of change of the speed, while the normal component has to do with the rate of change

of the direction of the velocity vector, T(t). In particular, when the speed is constant, a‖(t) = 0 as

in Example 28.

Example 30 (Constant speed circular motion). Let x(t) be the curve in R3

x(t) = c + %[cos(ω(t− t0))u1 + sin(ω(t− t0))u2] . (2.20)

that we considered in Example 28. Recall that %, ω > 0. As we saw there, the speed v(t) has the con-

stant value v = %ω, and so there is no tangential component of the acceleration. By our computations

there,

‖a⊥‖ = ‖a‖ = %ω2 =
v2

%
.

Note that the smaller the radius of the circle, the more “tightly curved” the circle is, and the greater

the magnitude of the acceleration at any given speed v > 0.
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The previous example motivates the following definition.

Definition 26 (Curvature and the unit normal vector). Let x(t) be a twice differentiable curve in

Rn, and suppose that the speed v(t) is nonzero on some open interval (a, b) so that T(t) is defined

for all t in this interval. The curvature κ(t) at time t is defined by

κ(t) =
‖a⊥‖
v2(t)

, (2.21)

and the radius of curvature %(t) at time t is defined by %(t) =
1

κ(t)
. Furthermore, if ‖a⊥‖ 6= 0, we

define the unit normal vector N(t) by

N(t) =
1

‖a⊥‖
a⊥ , (2.22)

Comparing (2.19) and (2.22), we see that N(t) points in the same direction as T′(t). Thus, it

points in the direction in which the curve is turning. Moreover, since whenever ‖a⊥‖ 6= 0,

a⊥ = ‖a⊥‖
1

‖a⊥‖
a⊥ = ‖a⊥‖N ,

it follows from the definition that a⊥ = v2κN. Combining this with Theorem 24 yields:

Theorem 25. Let x(t) be a twice differentiable curve in Rn. Then

a(t) = v′(t)T(t) + v2(t)κ(t)N(t) , (2.23)

and

T′(t) = v(t)κ(t)N(t) . (2.24)

Example 31 (Normal and tangential acceleration). Let x(t) = (t, (2t)3/2/3, t2/2) for t > 0. We

have computed in Example 29 that

v(t) = 1 + t and T(t) =
1

1 + t
(1, (2t)1/2, t) .

Therefore, v′(t) = 1, and so a‖(t) = T(t). Thus, a‖(t) =
1

1 + t
(1, (2t)1/2, t). This is the tangential

component of the acceleration.

We next compute a(t) = x′′(t) = (0, (2t)−1/2, 1). The normal component is

(0, (2t)−1/2, 1)− 1

1 + t
(1, (2t)1/2, t) =

1

1 + t
(1, (1− t)(2t)−1/2, 1) .

From here we compute ‖a⊥(t)‖ =
1√
2t

. Hence

N(t) =

√
2t

1 + t
(− 1, (1− t)(2t)−1/2, 1)

and

κ(t) =

√
2t

(1 + t)2
and %(t) =

(1 + t)2

√
2t

.
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What we have done so far for a twice continuously differentiable curve x(t) can be summarized

as follows: We applied the Gram-Schmidt Algorithm to {x′(t),x′′(t)} to produce the orthonormal

set {T(t),N(t)}. Then since

T′(t) = (v(t)−1x′(t))′ =
v′(t)

v2(t)
x′(t) + v(t)x′′(t) ,

T′(t) lies in Span({x′(t),x′′(t)}) = Span({T(t),N(t)}). Hence

T′(t) = (T′(t) ·T(t))T(t) + (T′(t) ·N(t))N(t) . (2.25)

By Theorem 23, T′(t) ·T(t) = 0. We then defined the curvature κ(t) by v(t)κ(t) = T′(t) ·N(t), so

that (2.25) reduces to

T′(t) = v(t)κ(t)N(t) . (2.26)

In the next subsection, for curves in R3, we complete {T(t),N(t)} to produce a time-dependent

orthnomormal basis {T(t),N(t),B(t)} of R3. One way to do this – which would extend to higher

dimensions – would be to apply the Gram-Schmidt algorithm to {x′(t),x′′(t),x′′′(t)}. However, in

three dimensions, it is traditional to work with right-handed orthonormal bases, so we shall define

B(t) = T(t)×N(t).

2.1.4 Torsion and the Frenet–Seret formulae for a curve in R3

Definition 27 (Binormal vector and osculating plane). Let x(t) be a twice differentiable curve in

R3. Then at each t0 for which v(t0) 6= 0 and κ(t0) 6= 0, so that T(t0) and N(t0) are well defined, the

binormal vector B(t0) is defined by

B(t0) = T(t0)×N(t0) , (2.27)

and the osculating plane at t0 is the plane specified by the equation

B(t0) · (x− x(t0)) = 0 . (2.28)

Since B(t0) is orthogonal to T(t0) and N(t0), (2.28) is the equation of the plane through x(t0)

that contains both T(t0) and N(t0). Since v = vT and a = v′T + v2κN, v×a = v3κB, which yields

the useful formulas

B(t0) =
1

v3(t0)κ(t0)
v(t0)× a(t0) =

1

‖v(t0)× a(t0)‖
v(t0)× a(t0) . (2.29)

It follows that the direction of B is the same as that of v×a. Therefore, the osculating plane at time

t0 is the plane through x(t0) that contains v(t0) and a(t0). For this reason, the osculating plane is

sometimes called the instantaneous plane of motion, and another equation for the osculating plane

at t = t0 is

(v(t0)× a(t0)) · (x− x(t0)) = 0 .

In particular, it is not necessary to go through all the work of computing T, N and then B if all you

wanted to find was an equation for the osculating plane. You can find the equation directly from a

computation of v, a and v × a.
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We emphasize that we are assuming throughout these paragraphs, as in Definition 27, that

v(t0) 6= 0 and κ(t0) 6= 0, so that T(t0) and N(t0) are well defined. Otherwise, it does not make sense

to refer to “the” plane through x(t0) containing v(t0) and a(t0).

Example 32 (An osculating plane). Let x(t) = (t, 23/2t3/2/3, t2/2) for t > 0. We have computed

that

x(1) = (1, 23/2/3, 1/2) v(1) = (1, 21/2, 1) and a(1) = (0, 2−1/2, 1) .

We now compute v(1)× a(1) = (2−1/2,−1, 2−1/2). The equation for the osculating plane then is

(2−1/2,−1, 2−1/2) · (x− 1, y − 23/2/3, z − 1/2) = 0

which reduces to x− 21/2y + z = 6.

Definition 28 (Planar curve in R3). A curve x(t) in R3, a < t < b, is planar in case there is some

plane in R3 that contains x(t) for all a < t < b. In other words, x(t) is planar in case there exists a

non-zero vector n and a constant d such that n · x(t) = d for all a < t < b.

Planar curves are easy to recogonize when the plane is one of the coordinate planes: For example

x(t) := (t, t2, 0) is clearly a planar curve – a parabola in the x, y plane. But planar curves are not

always so easy to recognize. Consider the curve

x(t) := (− 1 + 2t− t3, t+ 3t2 − 2t3, 1 + 2t− 6t2 + 2t3) . (2.30)

As we shall see, this is in fact a planar curve. How can we recognize that, and what is the plane that

contains the curve?

Theorem 26 (The binormal vector and planar curves). Let x(t) be a twice differentiable curve in

R3 defined on (a, b) such that v(t) and κ(t) are non-zero for all a < t < b. Then x(t) is planar if

and only if B(t) is a constant vector on (a, b). In this case, there is exactly one plane containing the

curve, and for any t0 ∈ (a, b), if we define n = B(t0) and d = x(t0) · B(t0), then n · x = d is an

equation for the unique plane containing the curve.

Proof. Suppose that B(t) is constant on (a, b). Then for all a < b < t, and any t0 ∈ (a, b)

(x(t) ·B(t0))′ = x′(t) ·B(t0) = v(t) ·B(t) =
1

‖v(t)× a(t)‖
v(t) · (v(t)× a(t)) = 0

by the triple product identity. Hence for all t ∈ (a, b)

x(t) ·B(t0) = x(t0) ·B(t0) .

This shows that with n := B(t0) and d := B(t0) · x(t0), the plane specified by n · x = d contains

x(t) for all t ∈ (a, b). There can be no other plane containing the curve since the intersection of two

distinct planes in R3 is either empty or is a line. Since by hypothesis x(t) has non-zero curvature, it

is not contained in any line.

On the other hand, suppose that x(t) is planar, and therefore satisfies n · x(t) = d for some

non-zero n and some d. Differentiating twice we obtain

0 = (n · x(t))′ = n · v(t) and then 0 = (n · v(t))′ = n · a(t) .
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Hence for all t ∈ (a, b), n is orthogonal to both v(t) and a(t), Since by hypothesis the curvature is

non-zero, v(t) and a(t) are not multiples of one another, and so

B(t) =
1

‖v(t)× a(t)‖
v(t)× a(t) = ± 1

‖n‖
n .

Since B(t) is continuous, the sign cannot change anywhere in (a, b), and so B(t) is constant whenever

the curve is planar.

Example 33 (Identifying a planar curve). Let x(t) be given by (2.30). Let us compute B(t) for this

curve, and see whether it is constant or not. Before beginning the computation, it will pay to regroup

the entries in x(t). Note that x(t) = w0 + tw1 + t2w2 + t3w3 where

w0 := (− 1, 0, 1) , w1 := (2, 1, 2) , w2 := (0, 3, 6) , and w3 := (− 1,−1, 2) .

Then we have v(t) = w1 + 2tw2 + 3t2w3 and a(t) = 2w2 + 6tw3. Therefore

v(t)× a(t) = (w1 + 2tw2 + 3t2w3)× (2w2 + 6tw3)

= 2(w1 + 3t2w3)×w2 + 6t(w1 + 2tw2)×w3

= 2w1 ×w2 + 6tw1 ×w3 + 6t2w2 ×w3 .

We then compute

w1 ×w2 = 6(− 2, 2, 1) , w1 ×w3 = −3(− 2, 2, 1) , and w2 ×w3 = 3(− 2, 2, 1) .

Altogether then v(t) × a(t) = (12 − 18t + 18t2)( − 2, 2, 1) and hence B(t) = 1
3( − 2, 2, 1). Since

x(0) = ( = 1, 0, 1), B(0) · x(0) = 1. Thus, the plane containing the curve satisfies the equation

−2x+ 2y + z = 1 .

As we have seen in our examples so far, the rate of change of the basis T(t) and B(t) tell us

important information about the shape of a curve: The curvature κ(t) is related to T′(t) through

T′(t) = v(t)κ(t)N(t), and the curve is planar if and only if B′(t) = 0 for all t. But this only scratches

the surface. There is much more to be learned by considering the rates of change of the vectors in

the right handed orthonormal basis

{T(t),N(t),B(t)}

that is carried along by any twice differentiable curve in R3 with non-zero speed and curvature.

First, let us consider B′(t).
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Lemma 6. Let x(t) be a twice differentiable curve in R3 with non-zero speed and curvature. Then

for each t, B′(t) is a multiple of N(t).

Proof. B = T×N and so by Theorem 22

B′ = T′ ×N + T×N′ = T×N′

since T′ is a multiple of N. But T×N′ is orthogonal to T, and so B′ is orthogonal to T. Since B

has constant magnitude, B′ is orthogonal to B by Theorem 23. Since B′ is orthogonal to both T

and B, and since {T,N,B} is an orthonormal basis, B′ must be a multiple of N.

We now define torsion, τ(t), which quantifies the rate of change of the binormal vector B(t), and

therefore quantifies the extent to which the curve is “twisting out of its osculating plane”:

Definition 29 (Torsion). Let x(t) be a twice differentiable curve in R3 with non-zero speed and

curvature for all t ∈ (a, b). Then the torsion at t ∈ (a, b) is the quantity τ(t) defined by

B′(t) = −v(t)τ(t)N(t) . (2.31)

We have already seen that

T′(t) = v(t)κ(t)N(t) . (2.32)

Notice the similarity between (2.31) and (2.32). The resaon for including the minus sign in (2.31)

will become evident soon.

Lemma 7. Let x(t) be a thrice differentiable curve in R3 with non-zero speed and curvature for all

t ∈ (a, b). Then for all t ∈ (a, b),

N′(t) = −v(t)κ(t)T(t) + v(t)τ(t)B(t) . (2.33)

Proof. Since {T,N,B} is a right handed orthonormal basis, N = B×T. Therefore, by Theorem 22

N′ = (B×T)′ = B′ ×T + B×T′

= −vτN×T + B× (vκN)

= vτB− vκT ,

where the last equality again uses the fact that {T,N,B} is a right handed orthonormal basis of R3,

and Theorem 10.

Summarizing the results, we have proved the following:

Theorem 27 (Frenet–Seret formulae). Let x(t) be a thrice differentiable curve in R3 with non-zero

speed and curvature at each t in some open interval so that T(t), N(t) and B(t) are all defined and

differentiable on this interval. Then for all t in this interval,

T′(t) = v(t)κ(t)N(t)

N′(t) = −v(t)κ(t)T(t) + v(t)τ(t)B(t)

B′(t) = −v(t)τ(t)N(t) .
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There is a more useful way to express these three formulae.

Definition 30 (Darboux vector). Let x(t) be a twice differentiable curve with non-zero speed and

curvature at each t in some open interval so that T(t), N(t) and B(t) are all defined on this interval.

The Darboux vector ω is defined on this interval by by

ω(t) = τ(t)T(t) + κ(t)B(t) .

The point of the definition is that since {T,N,B} is constructed to be a right-handed orthonormal

basis of R3, Theorem 10 says that

T×N = B N×B = T and B×T = N ,

and thus,

ω ×T = (τT + κB)×T = κN

ω ×N = (τT + κB)×N = −κT + τB

ω ×B = (τT + κB)×B = −τN .

Comparing with Theorem 2.34, we see that

T′(t) = v(t)ω(t)×T(t)

N′(t) = v(t)ω(t)×N(t)

B′(t) = v(t)ω(t)×B(t) . (2.34)

As we shall see later in this chapter, this means that for small h > 0, the orthonormal basis

{T(t+ h),B(t+ h),B(t+ h)} is, up to errors of size h2, what one would get by applying a rotation

of angle v(t)‖ω(t)‖ about the axis of rotation in the direction of ω(t). That is, the Darboux vector

describes the instantaneous rate and direction of rotation of the orthonormal basis {T(t),B(t),B(t)}.

Example 34 (Curvature and torsion for helices). Consider the curve x(t) given by

x(t) := (r cos(ct), r sin(ct), bct)

for some r > 0 and b, c 6= 0. This curve is a helix: There is circular motion in the x, y variables, and

linear motion in the z variable. A plot of the curve will look something like:
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The plot was made using the values r = 3 and b = 1 for 0 ≤ t ≤ 9.

Let us compute the curvature, torsion, the orthonormal basis {T(t),N(t),B(t)} and the Darboux

vector ω(t). To begin, we compute

v(t) = c(− r sin(ct), r cos(ct), b)

from which it follows that

v(t) = |c|
√
r2 + b2 and T(t) = sgn(c)

r√
r2 + b2

(− sin(ct), cos(ct), b/r) .

We next compute

a(t) = c2(− r cos(ct)− r sin(ct), 0) .

Then since v(t) · a(t) = 0, the parallel component of the acceleration is zero, and so a⊥(t) = a(t).

Since N(t) is the normalization of a⊥(t), and hence in this case of a(t), it follows that

‖a⊥(t)‖ = ‖a(t)‖ = c2r and N(t) = (− cos(ct),− sin(ct), 0) .

The curvature is κ(t) :=
‖a⊥(t)‖
v2(t)

=
r

r2 + b2
. Let us pause to note that this is reasonable: If b = 0,

the helix is simply a circle of radius r in the x, y plane, and so as b approaches zero, we must have

that the curvature approaches 1/r. On the other hand, if b is very large, the motion is essentially

vertical, and the curvature is very small. This is in agreement with the formula we have found.

We next compute

v(t)× a(t) = c3rb( sin(ct),− cos(ct), r/b) .

Hence

B(t) =
1

‖v(t)× a(t)‖
v(t)× a(t) = sgn(c)

b√
r2 + b2

( sin(ct),− cos(ct), r/b) .

Since B(t) and N(t) are so simple in this case, the easiest way to compute the torsion τ(t) is directly

from the defining relation B′(t) = −v(t)τ(t)N(t). We compute

B′(t) =
|c|b√
r2 + b2

( cos(ct), sin(ct), 0) = − |c|b√
r2 + b2

N(t) ,
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Thus

− |c|b√
r2 + b2

= −v(t)τ(t) so that τ(t) =
b

r2 + b2
.

Of course, you could also have computed the curvature and torsion using the formulas from The-

orems ?? and ?? respectively. However, those formulae do not always provide the simplest approach.

Notice that both the curvature and the torsion turn out to be constant. Let us now compute the

Darboux vector ω(t):

ω(t) = τ(t)T(t) + κ(t)B(t) =
rb

r2 + b2
(b/r + r/b)(0, 0, 1) .

Notice that this, too, is constant, despite the fact that neither T(t) nor B(t) are constant.

Here is a plot, once more for r = 3 and b = 1 for 0 ≤ t ≤ 9, but this time showing {T(t),N(t),B(t)}
for t = 7 and t = 9:

The final thing to note before leaving this example is that the curvature and torsion are indepen-

dent of the parameter c, The parameter c determines how fast our parameterization traces out the

helix, and the direction of motion – up for c positive, down for c negative. If we change the value of

c, we do not change either the curvature or the torsion: They are intrinsic geometric properties of

he helix itself, independent of how fast or slow our parameterization may run along it. In the next

subsection we shall see this from a more general point of view.

2.1.5 Curvature and torsion are independent of parameterization.

The same path can be parameterized many ways. For example, consider

x(t) = ( cos(t), sin(t)) and y(u) = ( cos(−u3), sin(−u3)) .

As t and u vary over R, both of these curves trace out the unit circle in R2, but they trace it out in

different speeds, and one traces it out counterclockwise, and the other clockwise.

Definition 31 (Reparameterization). Let x(t) be a curve in Rn defined on an open interval (a, b) ⊂
R, and let y(u) be another curve in Rn defined on an open interval (c, d) ⊂ R. Either a or c may be

−∞, and either b or d may be +∞. Then y(u) is a reparameterization of x(t) in case there is a a

continuous, strictly monotone increasing or decreasing function t(u) from (c, d) onto (a, b) such that

y(u(t)) = x(t) for all t ∈ (a, b) .
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Example 35. Define t(u) = −u3 and u(t) = −t1/3. Then with x(t) = ( cos(t), sin(t)) and y(u) =

( cos(−u3), sin(−u3)), we have both

y(u) = x(t(u)) for all u ∈ R

and

x(t) = y(u(t)) for all u ∈ R .

Thus the x(t) and y(u) are reparameterizations of each other, and they both parameterize the unit

circle.

As in the example, whenever y(u) is a reparameterization of x(t), then x(t) is a reparameteriza-

tion of y(u). Indeed, if t(u) is any continuous, strictly monotone increasing function t(u) from (c, d)

onto (a, b), then it is both one-to-one and onto, and so it has an inverse function u(t) from (c, d) to

(a, b) which is also continuous and strictly monotone increasing.

• It turns out that while any curve can be parameterized in inifinitely many ways, the curvature at a

point on the path is a purely geometric property of the path traced out by the curve – it is independent

of the parameterization. Not only that, so is the unit normal vector, and, up to a sign, so is the unit

tangent vector.

To see this, suppose that x(t) and y(u) are two parameterizations of the same path in Rn.

Suppose that

x(t0) = y(u0)

so that when t = t0 and u = u0, both curves pass through the same point. Let us suppose also that

the two parameterizations are related in a smooth way, so that t(u) is twice continuously differentiable

in u.

Then, by the chain rule,

y′(u) =
d

du
y(u) =

d

du
x(t(u)) =

(
dt

du

)
x′(t(u)) .

Evaluating at u = u0, and recalling that t0 = t(u0), we get the following relation between the speeds

at which the two curve pass through the point in question:

‖y′(u0)‖ =

∣∣∣∣ dt

du

∣∣∣∣ ‖x′(t0)‖ .

Therefore,

1

‖y′(u0)‖
y′(u0) =

(∣∣∣∣ dt

du

∣∣∣∣−1
dt

du

)
1

‖x(t0)‖
x′(t0)

= ± 1

‖x(t0)‖
x′(t0) .

The plus sign is correct is t is an increasing function of u, in which case the two parameterizations

trace the path out in the same direction, and otherwise the minus sign is correct.

This shows that up to a sign, the unit tangent vector T at the point in question comes out the

same for the two parameterizations.
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Next, let us differentiate once more. We find

y′′(u) =
d

du
y′(u) =

d

du

((
dt

du

)
x′(t(u))

)
=

(
d2t

du2

)
x′(t(u)) +

(
dt

du

)2

x′′(t(u)) .

Evaluating at u = u0, and recalling that t0 = t(u0), we find the following formula relating the

acceleration along the two curves as they pass though the point in question:

y′′(u0) =

(
d2t

du2

)
x′(t0) +

(
dt

du

)2

x′′(t0) .

Notice that the first term on the right is a multiple of T, and hence when we decompose y′′(u0)

into its tangential and orthogonal components, this piece contributes only to the tangential compo-

nent. Hence

y′′⊥(u0) =

(
dt

du

)2

x′′⊥(t0) .

Because of the square, y′′⊥(u0) is a positive multiple of x′′⊥(t0), and so these two vectors point in the

exact same direction. That is,

N =
1

‖y′′⊥(u0)‖
y′′⊥(u0) =

1

‖x′′⊥(t0)‖
x′′⊥(t0) ,

showing that the normal vector N is independent of the parameterization.

Next, we consider the curvature. Since

1

‖y′(u0)‖2
‖y′′⊥(u0))‖ =

(
dt

du

)−2
1

|x′(t0)|2

(
dt

du

)2

‖x′′⊥(t0)‖

=
1

‖x′(t0)‖2
‖x′′⊥(t0)‖ ,

we get the exact same value for the curvature at the same point, using either parameterization. This

shows that although in practice we use a particular parameterization to compute the curvature κ and

the unit normal N, the results do not depend on the choice of the parameterization, and are in fact

an intrinsically geometric property of the path that the curve traces out.

So far what we have said about reparameterization is valid in Rn for all n ≥ 2. In R3, there is

more to say. In R3, we also have the binormal vector B = T×N and the torsion τ .

Since B(t) = T(t)×N(t), it follows that B(t) is well defined, independent of the parameterization,

up to a sign: If a reparameterization reverses the direction of travel, then T but not N changes sign,

and hence B changes sign. Otherwise, B does not change. Then, consideration of the formula

B′(t) = −v(t)τ(t)N(t)

shows that like the curvature, the torsion is completely independent of the parameterization. To see

that it does not change sign, fix t0, and define the curve y(t) = x(t − t0) and ỹ(t) = x(t0 − t); the

second curve is the “time reversal” of the first about t = t0. Let N(t) and B(t) be the normal and

binormal for y(t). Likewise, let Ñ(t) and B̃(t) be the the normal and binormal for ỹ(t), By what we

have seen above, since ỹ(t) = y(−t),

Ñ(t) = N(−t) and B̃(t) = −B(−t) .
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Differentiating this last equation, B̃′(0) = B′(0). Therefore, with v(0) and τ(0) being computed for

the y(t) curve,

−ṽ(0)τ̃(0)Ñ(0) = B̃′(0) = B′(0) = −v(0)τ(0)N(0) .

Since ṽ(0) = v(0) and Ñ(0) = N(0), we conclude τ̃(0) = τ(0). This shows that the torsion does not

change sign under time reversal. The conclusion is that the torsion, like the curvature, is determined

by the geometry of the path itself, and not how fast or slow we move along it, or even the direction

of motion.

2.1.6 Speed and arc length

The speed v(t) represents the rate of change of the distance traveled with time. Given some reference

time t0, define

s(t) =

∫ t

t0

v(u)du . (2.35)

Then by the Fundamental Theorem of Calculus,

d

dt
s(t) = v(t)

and clearly s(t0) = 0. Hence the rate of change of s(t) is v(t), which is the rate of change of the

distance traveled with time, as one has moved along the path traced out by x(t).

Definition 32 (Arc length). The function s(t) defined by (2.35) is called the arc length along the

path traced out by x(t) since time t0.

Example 36 (Computation of arc length). Let x(t) be given by x(t) = (t, 23/2t3/2/3, t2/2) for t > 0

as in Example 10. Then, as we have seen, for all t > 0, v(t) = 1 + t. Therefore,

s(t) =

∫ t

0

(1 + u)du = t+
t2

2
.

If you took a piece of string, and cut it so it can be run along the path from the starting point to the

position at time t, the length of the string would be t+ t2/2 units of distance.

By definition, v(t) ≥ 0, and so s(t) has a non-negative derivative. This means that it is an

increasing function. As long as v(t) > 0; i.e., as long as the particle never comes to even an instan-

taneous rest, s(t) is strictly monotone increasing. Let us suppose that for some t1 > t0, v(t) > 0 for

all t0 < t < t1. Then s(t) is strictly monotone increasing on the interval [t0, t1].

Then for each s ∈ [s(t0), s(t1)], there is exactly one value of t ∈ [t0, t1] so that

s(t) = s . (2.36)

This value of t, considered as a function of s, is the inverse function to the arc length function:

t(s) = t . (2.37)

It answers a very simple question, namely: How much time will have gone by when the distance

travelled is s units of length?
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If you can compute an explicit expression for s(t), such as the result s(t) = t + t2/2 that we

found in Example 9, what you then need to do to answer the question is to find the inverse function

t(s); i.e., to solve (2.36) to find t in terms of s:

Example 37 (Time as a function of arc length). Let x(t) be given by

x(t) = (t, 23/2t3/2/3, t2/2) as in Example 36. Then, as we have seen, for all t > 0, s(t) = t+ (t2/2).

To find t as a function of s, write this as

s = t+
t2

2

and solve for t in terms of s. In this case,

t+
t2

2
=

1

2
((t+ 1)2 − 1)

so t =
√

2s+ 1− 1. That is,

t(s) =
√

2s+ 1− 1 .

This function tells you how long it took to travel a given distance s when moving along the curve.

We can then get a new parameterization of our curve by defining x(s) by

x(s) = x(t(s)) .

This is called the arc length parameterization. We have changed our habits of notation somewhat:

Now we use the sme letter x for both parameterizations to emphasize that they are two parameteri-

zations of the same curve.

Example 38 (Arc length parameterization). Let x(t) = (t, 23/2t3/2/3, t2/2) as in Example 37. Then,

as we have seen, for all t > 0, t(s) =
√

2s+ 1− 1 Therefore,

x(s) = x(t(s)) = (
√

2s+ 1− 1, 23/2(
√

2s+ 1− 1)3/2/3, (
√

2s+ 1− 1)2/2) .

The arc length parameterization generally is complicated to work out explicitly. Even when you

can work it out, it often looks a lot more complicated than whatever t parameterization you started

with. So what is it good for?

The point about the arc length parameterization is that it is purely geometric, so that it helps

us to understand the geometry of the path that a parameterized curve traces out. If we compute the

rate of change of the unit tangent vector T as a function of s, we are computing the rate of turning

per unit distance along the curve. This is an intrinsic property of the curve itself. If we compute rate

of change of the unit tangent vector T as a function of t, we are computing something that depends

on how fast we are moving on the curve, and not just on the curve itself. Indeed, if we use the arc

length parameterization, v(s) = 1 for all s, and so the factors involving speed drop out of all of our

formulas. For example,

d

ds
x(s) = T(s) and

d

ds
T(s) = κ(s)N(s) .

Often, this last formula is taken as the definition of the normal vector N and curvature κ. The

advantage of this definition is that it is manifestly geometric, so that the normal vector N and
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curvature κ do not depend on the parameterization of the curve. The disadvantage is that it is

generally very difficult to explicitly work out the arc length parameterization. In order to more

quickly arrive at computational examples, we have chosen the form of the definition that is convenient

for computation.

2.1.7 Speed, curvaure and torsion are independent of the choice of a right-

handed coordinate system

Consider a parametized curve x(t) in R3, and let {u1,u2,u3} be any right handed orthonormal basis

in R3, and let x0 be any given vector in R3. Define the functions y1(t), y2(t) and y3(t) by

yj(t) = (x(t)− x0) · uj j = 1, 2, 3 .

Then these are the coordinate of x(t) with respect to a coordinate system that has the origin at x0,

and such that the directions of the three coordinate axea are given by u1, u2 and u3.

Define the curve y(t) − (y1(t), y2(t), y3(t)). This is the same curve as the original curve only

described in a new right handed coordinate system. We have:

x(t) = x0 +

3∑
j=1

yj(t)uj .

We now show that speed, curvature and torsion of x(t) and y(t) are the same.

We compute

x′(t) =

3∑
j=1

y′j(t)uj and hence ‖x′(t)‖ = ‖y′(t)‖ .

showing that the speed v(t) is the same for x(t) and y(t). Next, by Theorem 11, and the same sort

of computations of x′′(t) and x′′′(t),

‖x′(t)× x′′(t)‖ = ‖y′(t)× y′′(t)‖ and x′′′(t) · x′′(t)× x′(t) = y′′′(t) · y′′(t)× y′(t) .

Since the speed is the same, the first identity together with Theorem ?? shows that the curvatrue

κ(t) is the same for x(t) and y(t), Then, since the speed and curvarue are the same, the second

identity together with Theorem ?? shows that the torsion τ(t) is the same for x(t) and y(t).

For example, for any given x0 in R3 and any right handed orthonormal basis {u1,u2,u3} in R3,

and numbers r, b and c with r > 0, the curve

x(t) = x0 + r cos(ct)u1 + r sin(ct)u2 + b(ct)u3 (2.38)

has

y(t) = (r cos(ct), r sin(ct), bct) (2.39)

as its cooridnate vector. (Note that in (2.38), x(0) = x0 + ru1; here x0 does not stand for x(0).)

The right hand side of (2.39) is exactly the helix we sudied in Example 34. By what we have

just explained, to compute the speed, curvature and torsion of x(t), we may as well compute using

the cooridnate vector y(t) – the results are the same. Hence the computations of speed, curvature
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and torsion in Example 34 apply to the more general class of helices with a parameterization of the

form (2.38).

We now show that if x(t) is any parameterized curve in R3 with constant, speed curvature and

torsion, there are x0 ∈ R3, a right handed orthonormal basis {u1,u2,u3} in R3, and constants c, r

and b and so that x(t) = x0 + r cos(ct)u1 + r sin(ct)u2 + b(ct)u3. That is, up to a change of the tmes

scale, it is has a parameterization of the form (2.38), and hence is a helix. Of course for the torsion

to be defined, the curve must be thrice differentiable:

Theorem 28 (Curvature, torsion and helices). A thrice differentiable curve with non-zero speed and

curvature is a helix if and only if it has constant curvature and torsion.

We now prove this. We begin with a lemma on the Darboux vector.

Lemma 8 (Constant curvature and torsion). Let x(t)be a thrice differentiable curve with non-zero

speed and curvature for a < t < b. Then the Darboux vector ω(t) is constant on the interval (a,b) if

and only if the curvature κ(t) and the torsion τ(t) are constant on (a, b).

Proof: Suppose first that the curvature κ and torsion τ are constant. Then ω(t) = τT(t) + κB(t).

Differentiating, and using the Frenet-Seret formulae (2.34),

ω′(t) = τT′(t) + κB′(t)

= v(t)τω(t)×T(t) + v(t)κω(t)×B(t)

= v(t)ω(t)× (τT(t) + κB(t))

= v(t)ω(t)× ω(t) = 0 .

Thus, when the curvature and torsion are constant, so is the Darboux vector.

For the converse, suppose that the Darboux vector is constant. Then τ(t) = ω ·T(t), and so

τ ′(t) = ω ·T′(t) = v(t)κ(t)ω ·N(t) = 0

since the Darboux vector is always orthogonal to N. A similar calculation shows that κ′(t) = 0.

Proof of Theorem 28. Consider any thrice differentiable curve with constant curvature and torsion.

Since this property is indpendent of parameterization, we may as well suppose that the curve is

parameterized by arc length. Therefore, consider any thrice differentiable curve parameterized by

arc length, or, what is the same thing, a thrice diffrentiable curve x′(t) such that v(t) = 1 for all t.

Then x′(t) = v(t)T(t) = T(t), and suppose that the curvature and torsion are non-zero constants κ

and τ resepctively. Then by Lemma 8, the Darboux vector ω is constant, and is ortgononal to N(t)

for all t. Define a right handed orthonormal basis {u1,u2,u3} by

u3 =
1√

κ2 + τ2
ω ,u1 = N(0) and u2 = u3 × u1 .

Computing we find

u2 =
1√

κ2 + τ2
(τT(0) + κB(0))×N(0)) =

1√
κ2 + τ2

(τB(0)− κT(0)) ,
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and hence Therefore,

T(0) = − κ√
κ2 + τ2

u2 +
τ√

κ2 + τ2
u3 . (2.40)

We will now use the Frenet-Seret formula to find T(t) for all t. Then since x′(t) = T(t), under

our unit speed assumption, we can integrate this obtain the curve itself. We start with N(t) which

is simpler.

Since N(t) is orthogonal to the Darboux vector, and hence u3, fo all t, we have

N(t) = cos θ(t)u1 + sin θ(t)u2 ,

for some function θ(t). All we are using here is the the sum of the sqaures of the coefficients of u1

abd u2 must be 1 for all t. Differentiating, we find

N′(t) = θ′(t)(− sin θ(t)u1 + cos θ(t)u2) ,

By the Frenet-Seret formulae, and the fact that v(t) = 1,

N′(t) =
√
κ2 + τ2u3 ×N(t) =

√
κ2 + τ2(cos θ(t)u2 − sin θ(t)u1) .

Comparing expression for N′(t) we see that θ′(t) =
√
κ2 + τ2, and then since N(0) = u1, cos θ(0) = 1.

Therefore, we may take θ(0) = 0, and then have θ(t) =
√
κ2 + τ2t. Hence, we have an explicit formula

for N(t):

N(t) = cos(
√
κ2 + τ2t)u1 + sin(

√
κ2 + τ2t)u2 .

Next, again using the fact that v(t) = 1, T′(t) = κN(t), and so we have an explict form formula for

T′(t):

T′(t) = κ cos(
√
κ2 + τ2t)u1 + κ sin(

√
κ2 + τ2t)u2 .

Therefore, by the Fundamental Theorem of Calculus, for all t,

T(t) = T(0) +

[∫ t

0

κ cos(
√
κ2 + τ2s)ds

]
u1 +

[∫ t

0

κ sin(
√
κ2 + τ2s)ds

]
u2

= T(0) +

[
κ√

κ2 + τ2
sin(

√
κ2 + τ2t)

]
u1 −

[
κ√

κ2 + τ2
(cos(

√
κ2 + τ2t)− 1)

]
u2

Combining this with (2.40), we obtain

T(t) =

[
κ√

κ2 + τ2
sin(

√
κ2 + τ2t)

]
u1 −

[
κ√

κ2 + τ2
cos(

√
κ2 + τ2t)

]
u2 +

τ√
κ2 + τ2

u3 .

Then, since x(t) = x(0) +

∫ t

0

T(s)ds integrating one more we obtain that

x(t) = x(0) +

[
κ

κ2 + τ2
(1− cos(

√
κ2 + τ2t))

]
u1 −

[
κ

κ2 + τ2
sin(

√
κ2 + τ2t)

]
u2 + t

τ√
κ2 + τ2

u3

=

[
x(0) +

κ

κ2 + τ2
u1

]
−

[
κ

κ2 + τ2
cos(

√
κ2 + τ2t)

]
u1 −

[
κ

κ2 + τ2
sin(

√
κ2 + τ2t)

]
u2 + t

τ√
κ2 + τ2

u3 .

This has the form (2.38) with

r =
κ

κ2 + τ2
, c =

√
κ2 + τ2 , and b =

κ

κ2 + τ2
,

and hence it is a helix.
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2.1.8 Geodesics in Rn and on the unit sphere

Let u and w be two unit vectors, where w 6= ±u. The intersection of the unit sphere with the plane

passing through u, v and 0 is a circle. Since the intersection is the solution set of the system of

equations

‖x‖2 = 1

(u× v) · x = 0

it is a circle of the sort we have parameterized in Example 28. Such a circle, produced by intersecting

a plane through the origin and the unit sphere is called a great circle on the unit sphere.

As we shall see, when w 6= ±u, the great circle passing through u and w consists of two circular

arcs that may be prameterized using the menthod of Example 28. The one that passes from u to w

without passing through −u will have the lesser arc length of the two. In fact, this cuve will have

less arc length than any other piecwise continuously differentiable curve on the unit sphere that runs

from u to w. Such curves that minimize arclength are called geodesics.

In mathematical writing, it is usual to write S2 to denote the unit sphere in R3, which is a

“smooth” surface in R3, and as such is “two dimensional” in an obvious sort of way.

Here is the problem to be considered: Given two points in S2; i.e., two unit vectors u and w in

R3, we seek to find a continuous curve u(t), defined for 0 ≤ t ≤ T , for some T > 0 that is piecewise

continuously differentiable for 0 < t < T , and such that:

(i) u(0) = u and u(T ) = w.

(ii) u(t) ∈ S2 for all 0 < t < T .

(iii) The arc length of the curve as it runs from u to w is less than or equal to the arc length along

any other curve of this same kind.

The requirement (ii) says that the curve u(t) must stay in the sphere S2. If we dropped this

requirement, it would be valid to consider the curve

u(t) = (1− t)u + tw

for T = 1. This is the straight line segment joining u and v, and since u′(t) = w − u, the speed

along this path is v(t) = ‖u′(t)‖ = ‖w − u‖. Thus, the arc length is∫ 1

0

v(t)dt =

∫ 1

0

‖w − u‖dt = ‖w − u‖ .

As you probably know, this straight line path from u to w has the least arc length among all

piecewise continuously differentiable curves ũ(t) with ũ(0) = u and ũ(T ) = w, i.e., with the condition

(ii) dropped:

Theorem 29 (Shortest paths in Rn). Let x and y be any two distinct points in Rn. Let x(t) be any

curve in Rn that is continuous on [0, T ] for some T > 0, and piecewise continuously differentiable on

(0, T ) with x(0) = x and x(T ) = y. Then the arc length of x(t) for 0 ≤ t ≤ T is at least ‖y − x‖,
and the arc length is exactly ‖y− x‖ if and only if x(t) traverses the straight line segment from x to

y without ever reversing the direction of travel.
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Proof. By the Fundamental Theorem of Calculus

y − x =

∫ T

0

x′(t)dt and consequently ‖y − x‖2 =

∫ T

0

(y − x) · x′(t)dt .

By the Cauchy-Schwarz inequality

(y − x) · x′(t) ≤ ‖y − x‖‖x′(t)‖ , (2.41)

and so

‖y − x‖2 ≤ ‖y − x‖

(∫ T

0

‖x′(t)‖dt

)
.

Dividing through by ‖y − x‖, we have

‖y − x‖ ≤
∫ T

0

‖x′(t)‖dt , (2.42)

and the quantity on the right is the arclength of the curve. There is equality in (2.42) if and only if

there is equality in (2.41) for each t, and this means that the angle between x′(t) and y − x is zero

for each t. That is, for each t, x′(t) is a positive multiple of y− x, which means that x(t) lies on the

straight line segment joining x and y, and never reverses direction.

Now we return to the sphere S2, and let us consider only paths that stay on the sphere. This is

a natural constraint: If you are looking for the shortest path from New York to Beijing, the straight

line segment is not really relevant: You would have to dig an impressive tunnel to travel along it. So

let us try to find a shortest path from u to w where u and w are on S2, and where the path stays

at all times on S2.

For any fixed, distinct u,w ∈ S2, we define Pu,w to be the set of all continuous curves u(t) staying

on S2, that are defined on some interval [0, T ] for some T > 0, and that are piecewise continuously

differentiable on (0, T ), and such that u(0) = u and u(T ) = w.

The arc length function, which assigns the value∫ T

0

‖u′(t)‖dt

to u(t) ∈ Pu,w, is a real valued function on Pu,w. We seek that paths in Pu,w, if any, that minimize

the arc length function on Pu,w. We shall initially suppose that w 6= −u, and come back to this

special case later.

Theorem 30 (Geodesics on S2). Let u and w be any two distinct points in S2 with w 6= −u. Then

the arc length of any path u(t) ∈ Pu,w is at least as large as

arccos(u ·w) ,

and the arc length is exactly arccos(u ·w) if and only u(t) traverses the arc of the great circle through

u and w that does not pass through −u, and without ever reversing the direction of travel.
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Proof. Decompose w into its components orthogonal and parallel to u: w = w⊥+w‖. Since w 6= ±u,

w⊥ 6= 0, and so we may define a unit vector z by

z =
1

‖w⊥‖
w⊥ .

Then define an angle φ1 by

φ1 = arccos(w · u) .

Becasue w 6= ±u, 0 < φ1 < π, and ‖w‖‖2 = cos2 φ1, and ‖w⊥‖2 = 1 − cos2 φ1 = sin2 φ. Since

0 < φ1 < π, sinφ1 > 0, and so w = sinφ1z + cosφ1u. We now define the curve

u(t) := sin(tφ1)z + cos(tφ1)u .

Evidently, u(0) = u, and by what we have seen just above, u(1) = w.

We compute

u′(t) = φ1[− cos(tφ1)z + sin(tφ1)u] ,

and since u and z are orthonormal, ‖u′(t)‖ = φ1. Therefore the arc length of this path is∫ 1

0

‖u′(t)‖dt = φ1 = arccos(w · u) .

Notice that every point on this path lies on the plane through z, u and 0, and so it is an arc of a

great circle, and is the arc of this great circle that does not pass through −u on the way to w. Next

we shall show that no other path does better.

Let us consider any path in Pu,w. Without loss of generality, we may assume that u(t) 6= u and

u(t) 6= w for any t ∈ (0, T ), for if u(t) = u for any t > 0, we may as well start over, and forget about

the part of the path traveled so far, which was wasted travel. Likewise, if u(t) = w for any t < T ,

we may as well stop the path already.

Next, define an angle φ(t) by

φ(t) = arccos(u(t) · u) .

Since φ(0) = 0 and φ(T ) = arccos(w · u), there is a least value of t for which φ(t) = arccos(w · u),

and 0 < T∗ ≤ T . Since the function arccos(s) is continuously differentiable on (0, 1) and since

u(t) · u ∈ (0, 1) for t ∈ (0, T∗), by the chain rule, φ(t) = arccos(u(t) · u) is piecewise continuously

differentiable on (0, T∗), and 0 < φ(t) < π on this interval.

Now decompose u(t) into its components parallel and orthogonal to u: u(t) = u‖(t) + u⊥(t).

We have

u‖(t) = (u(t) · u)u = cosφ(t)u .

Since ‖u⊥‖2 = 1 − ‖u‖‖2 = 1 − cos2 φ(t) = sin2 φ(t) and since 0 < φ(t) < π for 0 < t < T∗,

‖u⊥(t)‖ = sinφ(t) > 0 for all 0 < t < T∗. Thus we can define a time dependent unit vector z(t) by

z(t) =
1

‖u⊥(t)‖
u⊥(t) .

Then u⊥(t) = sinφ(t)z(t) and we have already noted that u‖(t) = cosφ(t)u. Therefore,

u(t) = sinφ(t)z(t) + cosφ(t)u .
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We compute

u′(t) = φ′(t)[cosφ(t)z(t)− sinφ(t)u] + sinφ(t)z′(t) .

Since ‖z(t)‖ = 1 for all 0 < t < T ∗, z′(t) · z(t) = 0 for all such t. Likewise, since z(t) ·u = 0, and

u is constant, differentiaiating yields z′(t) · u = 0 for all t. Thus z′(t) is orthogonal to both z(t) and

u(t). Therefore,

‖u′(t)‖2 = (φ′(t))2‖ cosφ(t)z(t)− sinφ(t)u‖2 + sin2 φ(t)‖z′(t)‖2

= (φ′(t))2[cos2 φ(t) + sin2 φ(t)] + sin2 φ(t)‖z′(t)‖2

= (φ′(t))2 + sin2 φ(t)‖z′(t)‖2

≥ (φ′(t))2 .

Hence, the arc length along the curve for 0 < t < T∗ is∫ T∗

0

‖u′(t)‖dt ≥ φ(t∗) =

∫ T∗

0

|φ′(t)|dt ≥
∫ T∗

0

φ′(t)dt = arccos(u ·w) ,

and there is equality if and only if φ′(t) ≥ 0 for all t z′(t) = 0 for all t, meaning that z(t) is a constant

unit vector z orthogonal to u. In this case,

u(t) = sinφ(t)z + cosφ(t)u

for 0 < t < T∗ with φ(t) monotone increasing from 0 to φ1. Notice that for each such t, u(t) lies in

the plane through z, u and 0, and so is on the great circle through which this plane slices the sphere.

Next, the arc length traversed between 0 < t < T ∗ is less than the arc length traversed between

0 < t < T unless T∗ = T , so that if the arc length of our path is φ1, then T∗ = T and

u(T∗) = w = sinφ(T∗)z + cosφ(T∗)u ,

Then the plane through z, u and 0 is also the plane through w, u and 0. Thus, for the arc length

of the path to equal φ1, it must traverse the arc of the great cicrcle z, u and 0 that does not pass

through −u, and the angle between u(t) and u must be monotone increasing.

There was nothing particularly three dimensional about the proof of Theorem 30. Indeed, it

can be extended to arbitrary dimensions. Define Sn to be the set of all unit vectors in Rn+1. The

geometry of these higher dimensional spheres turns out to be important in many questions concerning

physics and engineering. Indeed, the three dimensional sphere S3 in four dimensional space R4 has

a direct connection with rotations in the three dimensional space R3 that is important in many

applications.

Finally, we come to the case w = −u. To rach −u starting from u, one must first arrive at some

point w̃ that is very close, but not equal to −u. By what we have seen above, the length of this part

of the path is at least arccos(w̃ · u), hence the length of the whole path to u is at least this large.

Taking w̃ closer and closer to −u, we see that the arclength is at least φ for any φ < π, and hence it

is at least π. There are infinitely many planes through −u, u and 0, which are colinear, and so there

are infinitely many great circles connection u to −u. The arc length along any of them is π.
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Definition 33 (The geodesic distance function on S2). Define the function dS2 on the Cartesian

product S2 × S2 by

dS2(u,w) = arccos(u ·w)

for u,w in S2. This is the geodesic distance function on S2

The function dS2(u,w) is a metric on S2. That is,

(1) For all u,w ∈ S2, dS2(u,w) ≥ 0 and dS2(u,w) = 0 if and only if u = w.

(2) For all u,w ∈ S2, dS2(u,w) = dS2(w,u).

(3) For all u,v,w ∈ S2, dS2(u,w) ≤ dS2(u,v) + dS2(v,w).

Property (1) follows form the fact that u ·w < 1 for u 6= w and with u,w ∈ S2. Likewise, (2)

is a consequence of the fact that u ·w = w · u.

The inequality (3) is the triangle inequality on S2. Here is one way to see this using Theorem 30.

Build path from u to w as follows: Let u1(t), t ∈ [0, 1], be a shortest path from u to v. Let

u2(t), t ∈ [0, 1], be a shortest path from v to w. Define a path u(t), t ∈ [0, 2], from u to w by

u(t) =

u1(t) 0 ≤ t ≤ 1

u2(t− 1) 1 ≤ t ≤ 2

This path is continuous and piecewise continuously differentiable. Therefore, by Theorem 30, dS2(u,w) =

arccos(u,w) is less than or equal to the length of this composite path. But by construction, the length

of the composite paths is the sum of the two lengths, namely dS2(u,v) + dS2(v,w)

The proof we have given of the triangle inequality for the geodesic distance funciton on S2 uses

the rather sophisticated Theorem 30. But the triangle inequality simply says that for any three unit

vectors u, v and w in R3,

arccos(u ·w) ≤ arccos(u · v) + arccos(v ·w) . (2.43)

In fact, it is possible to prove this directly, without considering paths.

Given three such unit vectors u, v and w, define

θ = arccos(u · v) and φ = arccos(v ·w) .

Write u = u‖ + u⊥ and w = w‖ + w⊥ where parallel and perpendicular components are taken

with respect to v. Then u ·w = u‖ ·w‖ + u⊥ ·w⊥, and

u‖ ·w‖ = cos θ cosφ and u⊥ ·w⊥ ≥ −‖u⊥‖‖w⊥‖ = − sin θ sinφ ,

where we used the Cauchy-Schwarz inequality. By the angle addition formula,

cos(θ + φ) = cos θ cosφ− sin θ sinφ ≤ u ·w .

Since the cosine function is monotone deacreasing on [0, π], arccos(u · w) ≤ θ + φ, and this proves

the inequality (2.43).



2.1. FUNCTIONS FROM R TO RN AND THE DESCRIPTION OF MOTION 91

Again, in this proof, we did not use any cross products or anything specific to R3. Thus, this

proof shows that (2.43) is valid for any here unit vectors in Rn, for any n, and thus we can define

a metric; i.e., a distance function, on the n dimensional sphere in Rn+1, which is the set of all unit

vectors in Rn+1, by

dSn(u,w) = arccos(u ·w) .

2.1.9 Rotations, continuity and the right hand rule

We now apply some of what we have learned recently to the study of rigid body motion. Imagine a

rigid cubical box moving in three dimensional space. Here is a picture showing the box shaped object

at two times: t = 0 and t = 1:

As it moves, the box carries with it a “reference frame” of three unit vectors u1, u2 and u3. Since

physical motions are continuous, rigid body motion involves a contiuous time dependent orthonormal

frame {u1(t),u2(t),u3(t)}
The orthonormal basis {u1(t),u2(t),u3(t)} is right handed in case u1(t)× u2(t) · u3(t) = 1, and

is left handed in case u1(t) × u2(t) · u3(t) = −1, and ±1 are the only possible values for this triple

product.

Now, if uj(t) is continuus for each j = 1, 2, 3, then u1(t)×u2(t)·u3(t) is a continuouos function of

t. Since it only has two possibles values, and canot jump from one to the other, it must be constant.

That is, under our continuity assumption,

• Let {u1(t),u2(t),u3(t)} be a continuously time dependent orthonormal basis of R3.

Then if {u1(0),u2(0),u3(0)} is right-handed, so is {u1(t),u2(t),u3(t)} for every t.

In particular, it is impossible to “continuously interpolate” between a right-handed orthonormal

basis and a left-handed orthonormal basis: If {u1,u2,u3} is a right-handed orthonormal basis and

{v1,v2,v3} is a left-handed orthonormal basis, there does not exist any continuously time dependent

orthonormal basis {u1(t),u2(t),u3(t)}, 0 ≤ t ≤ 1 with

uj(0) = uj and uj(1) = vj

for j = 1, 2, 3.

However, as we shall now show, if {u1,u2,u3} and {v1,v2,v3} are both right-handed (or both

left-handed), then there is a continuous interpolation between them, and one such interpolation is
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through a “rotation about a fixed axis at constant angular velocity”. The following lemma concerning

Householder reflections is the key to see why this is so.

Lemma 9 (Householder reflections and the cross product). Let u be any unit vector in R3 and let

a and b be any two vectors in R3. Then

hu(a× b) = −hu(a)× hu(b) ,

Proof. Direct computation shows that

hu(a× b) + hu(a)× hu(b) = 2[a× b− (a× b · u)u− (a · u)u× b− (b · u)a× u]

= 2[(a× b)⊥ − (a · u)u× b + (b · u)u× a] (2.44)

where (a× b)⊥ is the component of a× b orthogonal to u.

However, since u is a unit vector, Lagrange’s identity gives us:

(a× b)⊥ = −u× [u× (a× b)]

= −u× [(u · b)a− (u · a)b]

= −(u · b)u× a + (u · a)u× b

Using this in (2.44), one obtains hu(a× b) + hu(a)× hu(b) = 0.

Since Householder reflections preserve dot products, and hence lengths and angles, we know that

whenever {u1,u2,u3} is a right-handed orthonormal basis, then

{v1,v2,v3} := {hu(u1),hu(u2),hu(u3)} (2.45)

an orthonormal basis. By the lemma,

v1 × v2 = hu(u1)× hu(u2) = −hu(u1 × u3) = −hu(u3) = −v3 ,

so that {v1,v2,v3} is left-handed. Likewise if {u1,u2,u3} is left-handed, (2.45) defines a right-handed

orthonormal basis.

Now we are ready to draw some important conclusions.

Theorem 31 (Right handed orthonormal bases and reflection). Let {u1,u2,u3} and {v1,v2,v3} be

two distinct right-handed orthonormal bases. Then there are unit vecturs u and v such that

hv(hu(uj)) = vj for j = 1, 2, 3 . (2.46)

Proof. Since the bases are distinct, we must have uj 6= vj for some j. By cyclicly permuting the

indices, we may suppose that u1 6= v1.

Let u = ‖u1−v1||−1(u1−v1). Then hu(u1) = v1, and we then define wj := hu(uj) for j = 1, 2,

so that we have the left handed orthonormal basis

{v1,w2,w3} = {hu(u1),hu(u2),hu(u3)} .
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Now suppose that w2 = v2. Then we must have w3 = −v3. In this case, we take v := w3.

Then since this vector is orthogonal to both v1 and w2 = v2, hv(v1) = v1 and hv(w2) = w2 = v2.

Finally, hv(w3) = −w3 = v3. That is,

{hv(v1),hb(w2),hv(w3)} = {v1,v2,v3} .

Thus, in this case, successiviely applying hu and then hv transforms {u1,u2,u3} into {v1,v2,v3}
On the other hand, if w2 6= v2, we define v = ‖v2−w2||−1(v2−w2), so that hv(w2) = v2. Note

that w2 and v2 are both orthogonal to v1 since {v1,v2,v3} and {v1,w2,w3} are both orthonormal

bases. But then v is orthogonal to v1, and so hv(v1) = v1.

Now since {v1,w2,w3} is a left handed orthonormal basis,

{hv(v1),hb(w2),hv(w3)} = {v1,v2,hv(w3)}

is a right handed orthonormal basis. Since any two vectors determine the third, and since {v1,v2,v3}
is right handed, it must be that hv(w2) = v3. Either way, we have proved (2.46).

In what follows, let us fix two distinct right-handed orthonormal bases {u1,u2,u3} and {v1,v2,v3},
and let us define f by

f(x) = hv(hu(x))

where hv and hu are the Householder reflections provided by Theorem 31 so that f transforms

{u1,u2,u3} into {v1,v2,v3}.
If it were the case that v = ±u, then we would have hv = hu, and f would be the identity trans-

formation. Since the two orthonormal bases are distinct, v 6= ±u, Decompose v into its components

parallel and orthogonal to u. Since v 6= ±u, v⊥ 6= 0. Define z = ‖v⊥‖−1v⊥, which is a unit vector

ortgonal to u. Then

v = v‖ + v⊥ = (v · u)u + ‖v⊥‖z .

Define Define Θ ∈ [0, π] by

Θ := arccos(v · u) . (2.47)

and then since ‖v⊥‖2 = 1 − ‖v‖‖2 = 1 − cos2(Θ), we have v = cos Θu + sin Θz. We now define a

curve u(t) by

u(t) := cos(tΘ)u + sin(tΘ)z , (2.48)

By construction u(t) is a unit vector for each t, u(0) = u and u(1) = v.

Given this interpolation between u and v, define the t dependent orthogonal transformation ft

by

ft(x) := hu(t)(hu(x)) . (2.49)

Since u(0) = u, and since hu◦hu is the identity, f0 is the identity transformation, and by construction

f1 transforms {u1,u2,u3} into {v1,v2,v3}. Consequently, if we define

uj(t) = ft(uj) j = 1, 2, 3 and 0 ≤ t ≤ 1 ,

{u1(t),u2(t),u3(t)} interpolates between {u1,u2,u3} and {v1,v2,v3}.
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We now claim that the transformation of R3 sending the vector w to the vector ft(w) is a right

handed rotation about the line with direction vector u× v through an angle 2Θt.

To see this, conisder the orthonormal basis {u1,u2,u3} where u1 = u, u2 = z and u3 =

‖u×v‖−1u×v. This is right handed since u×z = ‖u×v‖−1u×v. It is easy to compute the action

of ft in this basis: For any ccordinates x̃0, ỹ0, z̃0,

ft(x̃0u1 + ỹ0u2 + z̃0u3) = (cos(2tΘ)x0 + sin(2tΘ)y0)u1 + (− sin(2tΘ)x0 + cos(2tΘ)y0)u2 + z̃0u3 .

The coordinate vector of ft(x̃0u1 + ỹ0u2 + z̃0u3) is therefore given by

( cos(2tΘ)x0 + sin(2tΘ)y0 , − sin(2tΘ)x0 + cos(2tΘ)y0 , z̃0) .

That is, the cordinate vector rotates at a constant angular velocity around the u3 axis. Looking

down on the x̃, ỹ-plane from above, the rotation in the plane is counterclockwise when Θ > 0; i.e.,

when the angle between u and v is accute. We summarize:

Theorem 32 (Rotations and reflections). Given two unit vectors u and v in R3 with v 6= ±u, define

θ :=
1

2
arccos(v · u) and a :=

1

‖u× v‖
u× v .

Then the transformation f defined by f(x) := hv(hu(x)) is rotation by an angle θ about the axis

along a. Thus, every rotation in R3 can be written as the composition product of two Householder

reflections.

By differentiating ft(x0), we will gain new insight into the Frenet-Seret equations and the meaning

of the Darboux vector.

Fix a vector x0 ∈ R3, and define a curve x(t) by x(t) = ft(x0). Defining y0 = hu(x0), we have

the equivalent formula

x(t) = hu(t)(y0) = x0 − 2(y0 · u(t))u(t) .

Differentiating, and using the fact that reflections are their own inverses so that x0 = hu(t)(x(t))

x′(t) = −2[y0 · u′(t)]u(t)− 2[y0 · u(t)]u′(t)

= −2[hu(t)(x(t)) · u′(t)]u(t)− 2[hu(t)(x(t)) · u(t)]u′(t)

Now note that hu(t)(u(t)) = −u(t), but since u′(t) is orthogonal to u(t), hu(t)(u
′(t)) = u′(t). Hence,

by the identity hu(t)(a) · b = a · hu(t)(b), which is valid for any a and b,

x′(t) = −2[x(t) · u′(t)]u(t) + 2[x(t) · u(t)]u′(t) = 2x(t)× (u′(t)× u(t)) = 2(u(t)× u′(t))× x(t) ,

where we have used Lagrange’s identity. Computing u(t)× u′(t), we find

(cos(tΘ)u + sin(tΘ)z)×Θ(− sin(tΘ)u + cos(tΘ)z) = Θu× z = Θ
u× v

‖u× v‖
.

Therefore, if we define the rotation vector ω by

ω = 2Θ
u× v

‖u× v‖
, (2.50)
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Thus, x(t) satifies the equation x′(t) = ω × x(t). That is, in terms of ft(x0),

d

dt
ft(x0) = ω × ft(x0) . (2.51)

You will recognize this as having the form of the Frenet-Seret equations written in terms of

the Darboux vector. Therfore, what the Frenet-Seret equations describe is the instantous rotation

process that carries the moving frame {T(t),N(t),B(t)} along as t advances: At each time t, it is the

change in {T(t),N(t),B(t)} is the same as if these vectors were undergoing a right-handed rotation

along the direction of the Darboux vector ω and a constant angular speed ‖ω‖. This explains the

general mening of the Darboux vector.

We can finally explain the terminology “right handed orthonormal basis”. We begin by making

an identification of R3 with the physical three dimension space around us. This requires us to identify

the standard basis vectors e1, e2 and e3 in R3 with three orthogonal directions in physical space.

To do this, fix three orthogonal directions in physical space – for instance, East, North and

“straight up” might be good choices for somebody standing anywhere on the Earth except the North

or South Poles. Next, take your right hand, and arrange you thumb and fingers so that your thumb,

index finger and middle finger each point in one of these three orthogonal directions, as in the picture

below. At this stage of the process, we number the directions: Identify e1 with the direction in

which your index finger points, identify e2 with the direction in which your middle finger points, and

identify e3 with the direction in which your index thumb points.

Now let {u1,u2,u3} be some other set of three orthogonal directions. Try to rigidly rotate your

right hand (keeping the index finger, middle finger and thumb orthogonal) around so that your index

finger points in the direction of u1, your middle finder points in the direction of u2, and your thumb

points in the direction of u3, as in the picture:

• If this is possible, then the basis {u1,u2,u3} is right handed, and otherwise, it is not.

Indeed, if this motion of your hand is possible, then the motion of your hand provides a continuous

interpolation between the reference basis {e1, e2, e3} and {u1,u2,u3}. By what we have seen at the

beginning, this means that (u1×u2) ·u3 = (e1× e2) · e3 = 1 and hence {u1,u2,u3} is right handed.

Conversely, if {u1,u2,u3} is right-handed, like {e1, e2, e3}, then there is a rotation process that

carries {e1, e2, e3} over to {u1,u2,u3}. Therefore, if you arrange your right hand so that your index

finger points in the e1 direction, your middle finger in the e2 direction, and your thumb in the e3
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direction, and you then rotate your right hand about the corresponding axis of rotation, through the

corresponding angle of rotation, your right hand will indeed be oriented as in the picture.

We may now also explain the “right-hand rule”: Let a and b be two vectors in R3 such that

neither is a multiple of the other. Let b⊥ be the component of b that is orthogonal to a, and define

a right-handed orthonormal basis by

u1 =
1

‖a‖
a , u2 =

1

‖(b)⊥‖
(b)⊥ and u3 = u1 × u2 .

Then

a× b = a× b⊥ = ‖a‖‖b⊥‖u1 × u3 = ‖a‖‖b⊥‖u3 .

That is, a× b is a positive multiple of u3.

This means that if you configure your right hand as in the picture, with your thumb pointing in

the direction of a, and your index finger in the plane containing a and b, then your middle finger

points in the direction of u3; i.e., in the direction of a × b. This is commonly called the right-hand

rule for the direction of a× b.

2.2 Exercises

2.1 Let x(t) = (t+ 1 , t2). This is a parameterization of the parabola y = (x− 1)2.

(a) Compute v(t) = x′(t) and a(t) = x′′(t).

(b) Compute v(t) and T(t).

(c) Find the tangent line to this curve at t = 1.

2.2 Let x(t) = (t−2 , 4/
√
t , t) for t > 0.

(a) Compute v(t) = x′(t) and a(t) = x′′(t).

(b) Compute v(t) and T(t).

(c) Find the tangent line to this curve at t = 1.

2.3 Let x(t) and y(t) be two continuous curves in Rn. Show that f(t) := x(t) · y(t) is a continuous

real valued function of t. Also for n = 3, show that

z(t) := x(t)× y(t)

is a continuous curve in R3.

2.4 Let x(t) = ( cos(t) , sin(t) , t/r) where r > 0. The curve x(t) is a helix in R3.

(a) Compute v(t) and a(t).

(b) Compute v(t) and T(t).

(c) Compute the curvature κ(t) and the torsion τ(t), as well as N(t) and B(t).

(d) Compute the Darboux vector ω(t).

(e) Find the tangent line to this curve at t = π/4, and the equation of the osculating plane to the

curve at t = π/2. Find the intersection of this line and plane.
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2.5: Let x(t) be the curve given by

x(t) = (et cos t, et sin t, et) .

(a) Compute the arc length s(t) as a function of t, measured from the starting point x(0), and find

an arc-length parameterization of this curve

(b) Compute curvature κ(t) and torsion τ(t) as a function of t.

(c) Find an equation for the osculating plane at time t = 0

2.6: Let x(t) be the curve given by

x(t) = (t3/2, 3t, 6t1/2)

for t > 0.

(a) what is the arc length along the curve between x(1) and x(4)?

(b) Compute curvature κ(t) and torsion τ(t) as a function of t.

(c) Find an equation for the osculating plane at t = 1, and find a parameterization of the tangent

line to the curve at t = 1.

2.7: Let x(t) be the curve given by x(t) = (t, t2/2, t3/3).

(a) Find the equation of the osculating plane at t = 1.

(b) Compute the distance from the origin to the osculating plane at t = 1.

2.8: Let x(t) be the curve given by

x(t) = (2t, t2, t3/3) .

(a) Compute the arc length s(t) as a function of t, measured from the starting point x(0).

(b) Compute curvature κ(t) and torsion τ(t) as a function of t.

(c) Find equations for the osculating planes at time t = 0 and t = 1, and find a parameterization of

the line formed by the intersection of these planes.

2.9 Consider the ellipse in R2 given by the equation

x2

a2
+
y2

b2
= 1

where a, b > 0.

(a) Show that the path traced out by the parameterized curve x(t) = (a cos(t), b sin(t)) is this ellipse.

In other words, x(t) = (a cos(t), b sin(t)) is a parameterization of this ellipse.

(b) Compute the curvature κ(t), and find the minimum and maximum values of curvature on the

ellipse, and the places where the curvature takes on these values.

2.10 Let x(t) be the curve given by x(t) = (t ,
√

2 ln(t) , 1/t) for t > 0.

(a) Find the arc length along the curve from x(1) to x(3).
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(b) Find the arc length along the curve from x(1) to x(t) as a function of t.

(c) Find the arc length parameterization x(s) of this curve.

2.11 Find the arc length along the parabola y = (x − 1)2 from the point (0, 1) to the point (1, 0).

(See Excercise 2.1.)

2.12 Find the arc length parameterization of the curve given by x(t) = (t−2 , 4/
√
t , t) for t > 0.

(See Excercise 2.2.) What is the arc length along the segment of the curve joining x(1) and x(4)?

2.13 Let b = (2, 1, 2). Let x(t) be the curve given satisfying the initial value problem

x′(t) = b× x(t) and x(0) = (1, 1, 1) .

(a) Compute x(π) and find the arc length along the curve from x(0) to x(π).

(b) Compute the curvature and torsion for this curve as a function of t.

2.14 Let b = (4, 7, 4). Let x(t) be the curve given satisfying the initial value problem

x′(t) = b× x(t) and x(0) = (2, 2, 1) .

(a) Compute x(π) and find the arc length along the curve from x(0) to x(π).

(b) Compute the curvature and torsion for this curve as a function of t.

2.15 Show that for b > 0 and 0 ≤ a < 1, the set of points (x, y) that satisfy (??) is an ellipse with

one focus at the origin, and the other at ( − 2f, 0), and semi-major axis R+ where f and R+ are

given in terms of a and b by (??).

2.16 Let x(t) be the curve given by x(t) = (cos t+ 1, cos t+ sin t, sin t+ 1).

(a) Compute curvature κ(t) and torsion τ(t) as a function of t.

(b) Find an equation for the osculating plane at time t = 0

(c) Find the distance between the plane given by x− y + z = 0 to x(t) as a function of t.

2.17 Consider the helix whose Darboux vector is (3, 0, 4), with x(0) = 0, and {T(0),N(0),B(0)} =

{e1, e2, e3}. Find a formula for x(s), the arc-length parameterization of the helix.

2.18 The latitude and longitude of Milan Italy is 45◦ 27′′ N 9◦ 10′′ E. The latitude and longitude

of Cairo Egypt is 30◦ 2′′ N 31◦ 21′′ E. Using this information, and the value of 6371 kilometers for

the radius of the Earth, and the assumption that the Earth is spherical, compute the length of the

shortest route on the surface of the Earth from Milan to Cairo.

2.19 Consider the vectors

u =
1

3
(2, 1, 0, 2) and w =

1

15
(10,−5, 8, 6) .

These vectros both belong to S3, the unit sphere in R4. Find a continuous curve u(t) defined on

some interval [0, T ], some T > 0, that is continuously differentiable on (0, T ), with each u(t) ∈ S3,

u(0) = u, u(T ) = w, and whose arc length is minimal among all such curves.
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2.20 Let a =
1

3
(2, 1, 2). Let u =

1

3
(1, 2,−2), and note that this is a unit vector orthogonal to a. Find

a unit vector v so that f(x) := hv(hu(x)) is the rotation of x through the angle θ = π/3 about the

axis along a, and then compute f((1, 1, 1)).

2.21 Let x(t) be a twice differentiable curve in R3 such that v(t0) > 0. Let v and a denote the

velocity and acceleration at time t0. Let v and κ denote the speed and curvature at time t0. Prove

that

κ =
‖v × a‖
v3

. (2.52)

2.22 Let x(t) be a thrice differentiable curve in R3 such that v(t0) > 0 and κ(t0) > 0. Let v and a

denote the velocity and acceleration at time t0. Let v and κ denote the speed and curvature at time

t0. Prove that τ , the torsion at time t0, is given by

τ =
a′ · v × a

v6κ2
= −x′′′ · x′′ × x′

v6κ2
. (2.53)
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Chapter 3

CONTINUOUS FUNCTIONS

3.1 Continuity in several variables

3.1.1 Functions of several variables

Consider a function f from Rn to Rm. Such a function takes a vector variable x as input, and returns

a vector f(x) as output. For example, consider the function f from R2 to R3 given by

f(x, y) = (x2 + y2 , xy , x2 − y2) . (3.1)

(We will usually use the notation f(x) or f(x, y) instead of the more cumbersome f ((x, y)), but they

all mean the same thing.) Introducing the functions

f1(x) = x2 + y2 f2(x) = xy and f3(x) = x2 − y2 ,

we can write f in (3.1) as a vector whose entries are functions from R2 to R:

f(x) = (f1(x) , f2(x) , f3(x))

Often, the questions we ask about f(x) can be answered by considering the entry functions f1, f2

and f3 one at a time.

What kinds of questions will we be asking about such functions? Many of the questions have to

do with solving equations involving f . For example, consider the equation

f(x) = (2, 1, 0) . (3.2)

We can rewrite this as a system of equations using the entry functions f1 f2 and f3:

f1(x, y) = 2

f2(x, y) = 1

f3(x, y) = 0 .

(3.3)

c© 2012 by the author.
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More explicitly,

x2 + y2 = 2

xy = 1

x2 − y2 = 0 .

(3.4)

To solve a system of equations in several variables, one has to eliminate variables. In this case,

elimination is not hard: Adding the first and third equation, we find 2x2 = 2, or x2 = 1. The third

equation now tells us y2 = x2 = 1. So x = ±1 and y = ±1. Going to the second equation, we we

that if x = 1, then y = 1 also, and if x = −1, then y = −1 also. Hence the equation (3.2) has exactly

two solutions:

x1 = (1, 1) and x2 = (− 1,−1) .

That is, for these vector x1 and x2,

f(x1) = f(x2) = (2, 1, 0) ,

and no other input vectors x yield the desired output.

In general, it is not easy to solve vector equations in vector variables of the form f(x) = b except

in the special case that f : Rn → Rm is linear. In the linear case, as we shall see, there are very

effective algorithms for computing the solution in a finite number of operations. Sometimes, as in

our example just above, one can also do this for non-linear functions f as well.

However, it is not always possible to arrive at the solution of a non-linear equation in finitely

many steps. The way forward is to use, in principle, infinitely many steps. This is not as bad as it

may sound. There are good methods, such as Newton’s method for producing a sequence of vectors

{xk} with the property that

lim
k→∞

xk = z (3.5)

where z is an exact solution of the equation f(x) = b; i.e.,

f(z) = b . (3.6)

Since human beings cannot do infinite computations, we can never carry out all of the computations

needed to arrive at z; we must stop at the kth stage for some k, and be satisfied with the approximation

xk. But this is not so bad. Even with familiar numbers like π, which is one solution to the equation

sin(x) = 0, we can only compute – exactly – a finite number of digits in its decimal representation.

It will be the same here when we apply Newton’s method to solving equations involving functions of

vector variables: We will generate a sequence of approximate solutions of rapidly improving accuracy,

and from this sequence, we can exactly compute any desired number of decimals in each of the entires

of the solution to which the sequence converges.

• In this sense, methods of successive approximations yield methods of exact computation.

As soon as we contemplate methods of successive approximation for the solution of equations

like f(x) = b, we are led to the concept of continuity for functions of a vector variable. Suppose you
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have a sequence {xk} of vectors in the domain of f satisfying (3.5) where z satisfies (3.6). We would

like to think of the vectors xk, at least for large k, as approximate solutions of the equation f(x) = b.

Thus we would hope that for large k, ‖f(xk) − b‖ would be very small. More precisely, we would

hope that:

lim
k→∞

f(xk) = b (3.7)

In this case, we are justified in considering {xk} as a sequence of approximate solutions of the equation

f(x) = b. However, there are functions f , even of one variable, for which (3.5) and (3.6) do not imply

(3.7).

Example 39 (Bad behavior under limits). Let f(x) be the function on R defined by

f(x) =

1 x > 0

0 x ≤ 0

Consider the sequence {xk} given by xk = 1/k. Let z = 0, Then

lim
k→∞

xk = z and f(z) = 0 ,

however

lim
k→∞

f(xk) = 1 6= 0 .

The function f in this example is discontinuous: It has a “jump” at x = 0.

The important class of functions for which (3.5) and (3.6) do imply (3.7) is the class of continuous

functions. However, when the input variable is a vector in Rn, n ≥ 2, the notion of continuity

is somewhat more subtle than it is when the input variable is in R1: A function on R2 can be

discontinuous without having any jumps, as we explain next.

3.1.2 Continuity in several variables

In plain words, but a bit roughly, this is what continuity at x0 means for a function f from Rn to

Rm:

• We are guaranteed that f(x) ≈ f(x0) up to any given small margin of error provided that x ≈ x0

up to some other small enough margin of error: The output of the function will be close to f(x0)

provided the input is sufficiently close to x0.

Let us remove the roughness, and make this precise. There are two margins of error involved –

one on the input, and one on the output. Let δ > 0 denote the margin of error on the input, and let

ε > 0 be the margin of error on the output. We are looking for a guarantee that if ‖x − x0‖ < δ,

then ‖f(x)− f(x0)‖ < ε, and we want there to be such a guarantee with δ > 0 no matter how small

ε > 0 may be. Of course δ, the margin of error on the input, will depend on ε. But continuity means

such a guarantee is possible for all ε > 0.

It is not be possible to make such a guarantee for all functions. Even for the single variable

function in Example 39, such a guarantee is not possible when x0 = 0 and ε is any number less than

1: There exist x arbitrarily close to x0 = 0 with |f(x) − f(x0)| = 1. This function f is somewhat

hypersensitive: You change the input ever so slightly, and the response changes completely.
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Definition 34 (Continuity). A function f from Rn to Rm is continuous at x0 in case for every ε > 0,

there is a δ(ε) > 0 so that

‖x− x0‖ ≤ δ(ε) ⇒ ‖f(x)− f(x0)‖ ≤ ε . (3.8)

for all x in the domain of f . The function f is continuous if it is continuous at each x0 in its domain.

Whether a function is continuous or not is a matter of considerable practical importance.

• If a function f from Rn to Rm is not continuous at a solution x0 of f(x) = b, it is no use at all

to find a vector x1 with even ‖x1 − x0‖ < 10−300 since without continuity, there is no guarantee that

f(x1) is at all close to f(x0) = b.

Without continuity, only exact solutions are meaningful. But these will often involve irrational

numbers that cannot be exactly represented on a computer. Therefore, whether a function is contin-

uous or not is a serious practical matter.

How do we tell if a function is continuous? Sometimes one can check this directly from the

definition:

Example 40 (Continuity of linear functions from Rn to R). Let f : Rn → R be given by

f(x) = a · x .

We may assume a 6= 0, or else f is constant, and hence obviously continuous.

The basis question before us, the question of continuity of f , amounts to the question: How large

is |f(x)− f(x0)| compared to ‖x−x0‖? The Cauchy-Schwarz inequality provides the means to make

the comparison. (Comparisons are exactly what inequalities are all about.) We have:

|f(x)− f(x0)| = |a · x− a · x0|

= |a · (x− x0)|

≤ ‖a‖‖x− x0‖ .

It follows that

‖x− x0‖ ≤
1

‖a‖
ε⇒ |f(x)− f(x0)| ≤ ε .

Thus, with δ = ε/‖a‖, we have the guarantee we seek, and f is continuous at x0. Since x0 was any

vector in Rn, f is continuous on Rn.

A very important special case is that of the coordinate functions

cj(x1, . . . , xn) = xj .

Note that

cj(x) = ej · x ,

and so the coordinate functions are continuous, as a spacial case of the example treated here.

The next theorem says that all questions about the continuity of functions from Rn to Rm reduce

to questions about continuity of functions form Rn to R.
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Theorem 33 (Continuity and continuity of the entry functions). Let f : Rn → Rm where

f(x) = (f1(x), . . . , fm(x)) .

Then f is continuous if and only if each fj is continuous as a function from Rn to R.

Proof: Suppose that f : Rn → Rm is continuous. Then for each ε > 0, there is a δ(ε) > 0 so that

(3.8) is true. Then since for each j, |fj(x)− fj(x0)| ≤ ‖f(x)− f(x0)‖,

‖x− x0‖ ≤ δ(ε) ⇒ |fj(x)− fj(x0)| ≤ ε ,

and thus each fj is continuous.

Conversely, suppose that each fj is continuous. Then for any ε > 0, there is a δj(ε/
√
n) so that

‖x− x0‖ ≤ δj(ε/
√
n) ⇒ |fj(x)− fj(x0)| ≤ ε√

n
.

But since

‖f(x)− f(x0)‖ =

 n∑
j=1

|fj(x)− fj(x0)|2
1/2

≤
√
n max
j=1,...,n

{|fj(x)− fj(x0)| } ,

if we define

δ(ε) = min
j=1,...,n

{δ1(ε/
√
n) , . . . , δn(ε/

√
n) } ,

then δ(ε) > 0 and (3.8) is true, so that f is continuous.

Example 41 (Continuity of linear functions from Rn to Rm). Let f : Rn → Rm have the form

f(x) = (a1 · x, . . . ,am · x) for some set of vectors {a1, . . . ,am} in Rn. As we shall see, the general

linear transformation from Rn to Rm has this form.

Since each of the entry functions in f is continuous, as shown in Example 40, it follows from

Theorem 33 that f is continuous.

The next theorem provides convenient means for checking continuity of functions from Rn to R.

Before presenting the theorem, let us look at an important example to which it pertains.

Example 42. Let f(x, y) be given by

f(x, y) = xy .

This function is a second order polynomial in the two variables x and y. As we shall soon see, all

polynomials, in any finite number of variables, are continuous. The reasons this is true can be readily

grasped by examining this simple example.

To show that f is continuous, pick any x0 = (x0, y0) ∈ R2. We must then compare |f(x, y) −
f(x0, y0)| with ‖x − x0‖ =

√
(x− x0)2 + (y − y0)2. There are two variables involved, and the basic

idea is to add and subtract so that one writes f(x, y)−f(x0, y0) as a sum of differences in which only

one variable at a time is changing. For example,

xy − x0y0 = (x− x0)y + x0(y − y0) (3.9)
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so that

|xy − x0y0| ≤ |x− x0||y|+ |x0||(y − y0)| . (3.10)

As we have observed a number of times,

|x− x0| ≤
√

(x− x0)2 + (y − y0)2 = ‖x− x0‖

and, likewise, |y − y0| ≤ ‖x− x0‖. Therefore,

|f(x, y)− f(x0, y0)| = |xy − x0y0| ≤ (|x0|+ |y|)‖x− x0‖ .

We are getting there, but there is still a factor of |y| on the right hand side, and we would like

the right hand side to be expressed only in terms of constants, such as x0 and y0, and in terms of

‖x−x0‖. However, the factor of |y| is readily dealt with: By the triangle inequality and what we have

said above,

|y| = |y0 + (y − y0)| ≤ |y0|+ |y − y0| ≤ |y0|+ ‖x− x0‖ .

Putting it all together, we have

|f(x, y)− f(x0, y0)| = |xy − x0y0| ≤ (|x0|+ |y0|+ ‖x− x0‖)‖x− x0‖ .

Whenever ‖x− x0‖ ≤ 1, this means that

|f(x, y)− f(x0, y0)| = |xy − x0y0| ≤ (|x0|+ |y0|+ 1)‖x− x0‖ .

Therefore, if

δ(ε) := min

{
ε

|x0|+ |y0|+ 1
, 1

}
,

then

‖x− x0‖ ≤ δ(ε)⇒ |f(x)− f(x0)| ≤ ε .

This shows that f is continuous at x0. Since x0 is any vector in R2, f is continuous on R2. The

same “divide and conquer” strategy that was used in (3.9) can be used to show that the product of

any two continuous functions f and g from Rn to R is continuous. This is part of the next theorem.

Theorem 34 (Building continuous functions from Rn to R). Let f and g be continuous functions

from some domain U in Rn to R. Define the functions fg and f + g by fg(x) = f(x)g(x) and

(f + g)(x) = f(x) + g(x). Then fg and f + g are continuous on U . furthermore, if g 6= 0 anywhere

in U , then f/g defined by (f/g)(x) = f(x)/g(x) is continuous in U . Finally, if h is a continuous

function from R to R, then the composition h ◦ f is continuous on U .

Proof: Consider the case of f + g. Fix any ε > 0, and any x0 in U . Since f and g are continuous

there is a δf (ε/2) > 0 and a δg(ε/2) > 0 so that

‖x− x0‖ ≤ δf (ε/2) ⇒ |f(x)− f(x0)| ≤ ε/2

and

‖x− x0‖ ≤ δg(ε/2) ⇒ |g(x)− g(x0)| ≤ ε/2
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Now define

δ(ε) := max{δf (ε/2) , δg(ε/2)} .

Then, whenever |x− x0| ≤ δ(ε),

|(f + g)(x)− (f + g)(x0)| ≤ |f(x)− f(x0)|+ |g(x)− g(x0)| ≤ ε/2 + ε/2 = ε

so that

|x− x0| ≤ δ(ε) ⇒ |(f + g)(x)− (f + g)(x0)| ≤ ε .

This proves the continuity of f + g. The other cases are similar. In fact, the proof for products

very closely follows the treatment of the special case in Example 42, and the proof for composition

is exactly like the proof in the corresponding single variable theorem. Finally, composition with

h(t) = 1/t allows one to reduce the analysis of disvion to that of multiplication. Therefore, the

proofs for these remaining cases are left as exercises.

Example 43 (Continuity piece by piece). To apply Theorem 34, try to recognize a function as being

built out of known continuous pieces. For example, consider

z(x, y) = cos
(
(1 + x2 + y2)−1

)
.

This is built out of the continuous building blocks

f(x, y) = x g(x, y) = y and h(x, y) = 1 .

Indeed,

z(x) = cos

(
h

h+ ff + gg

)
(x) .

Repeated application of Theorem 34 then shows z(x) is continuous.

Example 44 (Continuity of polynomials and rational functions). A polynomial in several variables

is a sum of monomials, which a functions of the form

f(x1, . . . , xn) = a

n∏
j=1

x
pj
j

where each pj is a non-negative integer, and a is a constant. For example, on R3 with coordinates x,

y, and z,

3x2y3z and − 2x4z2

are monomials. Since the coordinate functions are continuous, as shown in Example 40, and since

products of continuous functions are continuous by Theorem 34, it follows that monomials are con-

tinuous. Then, by Theorem 34 once more, and sum of finitely many monomials is continuous, and

hence every polynomial, e.g.,

f(x, y, z) = 3x2y3z − 2x4z2

is continuous.
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A rational function is a ratio of polynomials; e.g.

f(x, y, z) =
3x2y3z + x− yz

1 + x4y2
.

By Theorem 34 once more, a rational function is continuous at all points x0 where the denominator

is not zero. In the example at hand, the denominator is never zero, and the function is continuous

on all of R3.

3.1.3 Continuity and limits

When we wish to determine whether a given function is continuous or not, one way is to make direct

use of the ε and δ definition. This is a good strategy for many problems, and it is what we have done

until now.

The main theorem of this subsection gives us an alternative to the the ε and δ analysis of

continuity. It provides a characterization of continuity in terms of limits: A function is continuous if

and only if one can “pass limits to the inside of the function”.

Theorem 35 (Characterization of continuity in terms of limits). Let f : Rn → Rm. Then f is

continuous at x0 ∈ Rn if and only whenever {xk} is a sequence in Rn with

lim
k→∞

xk = x0 ,

then

lim
k→∞

f(xk) = f(x0) .

Proof: Suppose that f is continuous, and that limk→∞ xk = x0. We must show that limk→∞ f(xk) =

f(x0).

For this purpose, pick ε > 0. Since f is continuous, there exists δ(ε) > 0 so that ‖f(x)−f(x0)‖ ≤ ε
whenever ‖x−x0‖ < δ(ε). Since limk→∞ xk = x0, there is an Nδ(ε) so that ‖xk−x0‖ ≤ δ(ε) whenever

k ≥ Nδ(ε). Therefore,

k ≥ Nδ(ε) ⇒ ‖f(xk)− f(x0)‖ ≤ ε.

This shows that limk→∞ f(xk) = f(x0).

On the other hand, suppose that f is not continuous at x0, Then for some ε > 0, there is no

δ(ε) > 0 such that every point x with ‖x − x0‖ satisfies ‖f(x) − f(x0)‖ < ε. In particular, for

each natural number k, there exists xk such that ‖xk − x0‖ < 1/k but ‖f(x) − f(x0)‖ ≥ ε. Then

limk→∞ xk = x0, but {f(xk)} cannot possibly converge to f(x0).

Example 45 (Analysis of continuity via limits, 1). Let f(x, y) be given by

f(x, y) =


xy

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

Is f continuous?
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To solve this problem, note that away from (0, 0) f is a continuous rational function. Hence, the

only question is whether it is continuous at 0 = (0, 0). The function is continuous if and only if for

every sequence {xn} with limn→∞ xn = 0, it is the case that limn→∞ f(xn) = f(0) = 0.

Let us try some sequences {xn} that approach 0, starting with some obvious ones. Let the

sequence approach 0 from along the y-axis, taking xn = (1/n, 0). In this case, we get f(xn) = 0 for

all n, so certainly limn→∞ f(xn) = 0. Since the function is symmetric in x and y, the same thing

happens if we take the sequence to approach 0 from along the y-axis; i.e., taking xn = (0, 1/n). But

if we take the the sequence to approach 0 from along the line y = x; that is with xn = (1/n, 1/n), we

find

f(1/n, 1/n) =
1/n2

1/n2 + 1/n2
=

1

2

for all n, and hence for this choice of {xn}, limn→∞ xn = 0, but

lim
n→∞

f(xn) =
1

2
6= 0 = f(0) .

Hence, this function is discontinuous.

In general, as soon as we have found one sequence for which limn→∞ xn = x0, but limn→∞ f(xn) 6=
f(x0), the analysis is over: The function is definitetely not continuous at x0.

As we have seens in the last example, a sequence {xn} can approach a point x0 in a variety of

ways. If the function f is to be continuousat x0, it must be the case that limn→∞ f(xn) = f(x0)

no matter how the terms xn in the sequence appraoch x0, horizontally, vertical along some angle or

ealong some other more complicated curve.

It is therefreo helpful to factor xn−x0 into its magnitude and direction: Given a sequence {xn}
and a point x0, for each n, define

rn = ‖xn − x0‖ and un =
1

rn
(xn − x0) .

Then un is a unit vector and we have limn→∞ xn = x0 if and only if limn→∞ rn = 0. In partticular,

whether {xn} converges to x0 does not depend at all on the sequence of direction vectors {un}. For

this reason, it is often useful to write

f(xn) = f(x0 + (xn − x0)) = f(x0 + fun)

and then to see whether or not

|f(x0 + ru)− f(x0)|

can be seen to be small for small values of r, independent of u.

Example 46 (Analysis of continuity via limits, 2). Let f(x, y) be given by

f(x, y) =


x2y

x4 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

Is f continuous?
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To solve this problem, note that away from (0, 0) f is a continuous rational function. Hence, the

only question is whether it is continuous at 0 = (0, 0). The function is continuous if and only if for

every sequence {xn} with limn→∞ xn = 0, it is the case that limn→∞ f(xn) = f(0) = 0. And since

f(x, y) = 0 everywhere along the x and y axes, if the function is to be continuous, it can only be the

case that limn→∞ f(xn) = 0 for every sequence {xn} that converges to 0.

Therefore, consider any such sequence {xn} = {(xn, yn)}. Define rn = ‖xn‖ =
√
x2
n + y2

n, and

un = r−1
n xn. Since un is a unit vector, we can write it as un = ( cos θn, sin θn) for some angle θ.

Then (xn, yn) = rn( cos θn, sin θn). (That is, we are using polar coordinates.)

Now compute

f(xn, yn) =
r3
n cos2 θn sin θn

r4
n cos2 θn + r2

n sin θn
.

If θn is an integer multiple of π, this is zero, otherwise, we may divide through by r2
n sin2 θn to obtain

f(xn, yn) =

(
rn cos θn cot θn

r2
n cos2 θn cot2 θn + 1

)
.

Let us do a worst case analysis: For fixed rn, what choice of θn makes |f(xn, yn)| as large as possible?

To simplify the analyis, define s = rn cos θn cot θn. As θn varies over the interval (0, 2π), s takes

on all values in (−∞,∞). It is easy to see that the function ϕ(s) = s/(1 + s2) has the maximum

value 1/2, achieved at s = 1/2, and the minimum value −1/2 achieved at s = −1. Thus, for any

sequence {rn} converging to 0, there is a sequence of unit vectors {un} such that f(rnun) = 1/2 for

all n. Since there is another sequence (running along the x-axis, say) for which the corresponding

limit is 0, f is not continuous at 0.

We can even make our worst case analysis more explicit. We found that in the worst case, rn

and θn are related by rn cos θn cot θn = 1, and multiplying through by rn sin θn, this is equivalent to

(rn cos θn)2 = rn sin θn, which is the same as x2
n = yn. That is, we see the worst case behavior when

the seqeunce {xn} approaches the origin oalong the parabola y = x2. (One also has f(x, y) = −1/2,

an equally bad case, along the parabola y = −x2.)

Note that one cannot see the discontinuity of f at the origin by testing only with sequences that

approach the origin alonng a line with a fixed direction. Suppose for example that we choose our

sequence {xn} laong the line x = ay for some number a. If we take xn = 1/n, then yn = a/n.

Clearly with xn = (1/n, a/n), limn→∞ xn = 0, however,

f(1/n, a/n) =
a/n3

1/n4 + a2/n2
=

a/n

1/n2 + a2

for all n, and hence also for this choice of {xn}, limn→∞ xn = 0 = f(0). The same happens if our

sequence approaches along a line of the from y = ax. The lack of continuity is only revealed when we

consider asequence that approaches the orgin along an appropriate curve; lines will not suffice.

In the last two examples, we have shown that functions were discontinuous by finding a sequence

{xn} that converges to 0, but for which {f(xn)} does not converge to f(0). To show that a function

is not continuous, you only need to dsiplay one such sequence.

On the other hand, to prove that a function is continuous at x0, you must show that for every

sequence {xn} that converges to x0, it is always the case that {f(xn)} converges to f(x0). We have



3.1. CONTINUITY IN SEVERAL VARIABLES 111

even seen that it is not enough to look only at sequences that approach x0 from along all lines; it can

be that problems only show up for sequences that approach x0 along some curve, as in Example, 46

or perhaps even in a more complicated way.

The worst case analysis that we used in Example, 46 provides a way forward.

3.1.4 The Squeeze Principle is several variables

As in the single variable calculus, we can use the Squeeze Principle to make comparisons with simple

functions.

Lemma 10 (Squeeze principle). Let f be a given real valued function defined on some open set U

about x0 ∈ Rn. Let R > 0 be such that BR(x0) ⊂ U . so that f is defined on BR(x0). Suppose there

is a continuous function g(r) defined on [0, R] with values [0,∞) and with g(0) = 0 such that for all

unit vectors u ∈ Rn and all r ∈ (0, R],

|f(x0 + ru)− f(x0)| ≤ g(r) . (3.11)

Then f is continuous at x0.

Proof. Consider any sequence {xn} in U (where f is defined) such that limn→∞ xn = x0. Define

rn = ‖xn − x0‖ and un = r−1
n (xn − x0) so that xn = x0 + (xn − x0) = x0 + rnun. Then

0 ≤ |f(xn)− f(x0)| = |f(x0 + rnun)− f(x0)| ≤ g(rn)

for all n such that rn ≤ R. Since g is conitinuous with g(0) = 0, limn→∞ g(rn) = g(limn→∞ rn) =

g(0) = 0. Hence, by the Squeeze Principle for sequences of real numbers, limn→∞ |f(xn)−f(x0)| = 0.

Since the convergent sequence was arbitrary, this proves the continuity.

Example 47 (Anaysis of continuity via the Squeeze Principle, 1). Let f(x, y) be given by

f(x, y) =


x2 + y2√

x2 + y2 + 1− 1
(x, y) 6= (0, 0)

2 (x, y) = (0, 0) .

Is f continuous?

To solve this problem, note that away from (0, 0), f is a continuous function. Hence, the only

question is whether it is continuous at 0.

To apply the Squeeze Principle, write (x, y) = x = ru, and note that

f(x, y)− 2 =
r2

√
r2 + 1− 1

− 2 := g(r) .

In this example, the angular dependence drops out effortlessley! We need to check that if we deine

g(0) = 0, then g is continuous. By l’Hospital’s rule

lim
r→0

r2

√
r2 + 1− 1

= lim
r→0

2r

r/
√
r2 + 1

= 2 ,

and so limr→0 g(r) = 0. This proves that f is continuous at the origin.



112 CHAPTER 3. CONTINUOUS FUNCTIONS

In our next eample, the angular dpeendence does not drop out entirely, but the approach still

leads to a simple proof of continuity.

Example 48 (Anaysis of continuity via the Squeeze Principle, 2). Let f(x, y) be given by

f(x, y) =


x5

x4 + y6
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

.

Is f continuous?

To solve this problem, note that away from (0, 0), f is a continuous function. Hence, the only

question is whether it is continuous at 0.

To apply the Squeeze Principle, write (x, y) = x = ru, and note that with u = ( cos θ, sin θ),

0 ≤ |f(ru)| = r
| cos5 θ|

cos4 θ + r2 sin6 θ
= r

| cos θ|
1 + r2 sin2 θ tan4 θ

.

In this case we can get away with doing a separate worst can analysis of the numerator and denomi-

nator in | cos5 θ|
cos4 θ+r2 sin6 θ

. (Such a separate analysis is not always possible; See Example 46). No matter

what θ is, the numerator is bounded above by 1. Also no matter what θ is, the denominator is boudned

below by 1. Hence the ratio is bounded above by 1. Therefore,

0 ≤ |f(ru)| ≤ r .

Hence we may apply the Squeeze Principle with g(r) = r, whihc is continuous and has g(0) = 0.

Therefore f is conitnuous at the origin.

It is not always necessary to write things out in terms of r and u. Often one can see what is

going on by making simple comparisons. The following inequalities are often helpful in this regard.

Lemma 11 (Sums and powers). For all numbers a, b ≥ 0, and all p > 0

1

2
(ap + bp) ≤ (a+ b)p ≤ 2p(ap + bp) . (3.12)

Also

ab ≤ a2 + b2

2
(3.13)

and the is equality in (3.13) if and only if a = b.

Proof: We may assume b ≤ a. Then a/2 ≤ (a+ b)/2 ≤ a. Since for all p > 0, the pth power function

is monotne increasing, (a
2

)p
≤
(
a+ b

2

)p
≤ ap .

But since (ap + bp)/2 ≤ ap, and ap ≤ ap + bp, we have

1

2

((a
2

)p
+

(
b

2

)p)
≤
(
a+ b

2

)p
≤ ap + bp .

Multiplyng through by 2p we obtain (3.12).
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Finally,

0 ≤ (a− b)2

2
=
a2 + b2

2
− ab ,

which proves the last part.

Before turning to our next example, let us explain how (3.13) can motivate the choice of the

sequence (1/n, 1/n2) that we used in Example 46.

In studying the continuity of ratios, we must compare the sizes of the numerator and denominator.

For the function in Example 46, the denominator is x4 + y2 and the numerator is x2y. By (3.13),

x4 + y2 ≥ 2x2y

with equality if and only if x2 = y. Hence (3.13) this ratio is maximal along the parabola x2 = y,

and this motivates examining the behavior of f along the sequence (1/n, 1/n2).

Example 49 (Anaysis of continuity via the Squeeze Principle, 3). Let f(x, y) be given by

f(x, y) =


2xy

|x|p + |y|p
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

where p > 0. For which values of p is f continuous at 0 = (0, 0)?

To answer this question, focus first on the denominator – that is where the complexity lies. Note

that

|x|p + |y|p = (x2)p/2 + (y2)p/2 .

Hence by (3.12), applied with p/2 in place of p and some rearranging of terms,

2−p/2(x2 + y2)p/2 ≤ (x2)p/2 + (y2)p/2 ≤ 2(x2 + y2)p/2 .

That is,

2−p/2‖x‖p ≤ |x|p + |y|p ≤ 2‖x‖p .

Let us write x = ‖x‖ cos θ and y = ‖x‖ sin θ where θ is the angle between x and the x-axis. (This

ammounts to using polar coordinates). We then have that for x 6= 0,

2−p/2‖x‖2−p2 sin θ cos θ ≤ f(x) ≤ 2‖x‖2−p2 sin θ cos θ .

It is now clear that for p ≥ 2, f does not have a limit at x = 0, while for 0 < p < 2, we have that

|f(x)− 0| ≤ g(‖x‖)

where g(t) = 2t2−p, and limt→0 g(t) = 0. Hence, for these values of p, f is continuous by the Squeeze

Principle.

3.1.5 Continuity versus separate continuity

Many questions about the behavior of a function f : Rn → R can be answered by examining “single

variable slices” of the function. We now explain this fundamental strategy in some detail.
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Given any function f : Rn → R, and any parameterized line x0 + tv in Rn, define the function

g : R→ R by

g(t) = f(x0 + tv) .

The function g is a garden variety single variable function, and it describes a “slice” of the function

f . Studying all such slices, we can learn many useful things about f .

For example, consider the function f(x, y) given by

f(x, y) =
3(1 + x)2 + xy3 + y2

1 + x2 + y2
.

Here is a plot of the graph of z = f(x, y) for −3 ≤ x, y ≤ 3:
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Here is another picture of the same graph, but from a different angle that give more of a side

view:
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In both graphs, the curves drawn on the surface show points that have the same z value, which

we can think of as representing “altitude”. Drawing them in helps us get a good visual understanding

of the “landscape” in the graph. They are called contour curves, and are drawn in on any topographic

map. (The formula for f(x, y) was chosen to produce a graph that looks like a bit of a mountain

landscape.)

Now that we understand what the graph of z = f(x, y) looks like, let’s slice it along a line.

Suppose for example that you are walking on a path in this landscape, and that the projection of

your path on the surface down into the x, y plane is the line x(t) = x0 + tv with

x0 = (1, 1) and v = (1, 1) .

Consider the vertical plane over this line; i.e., the plane in R3 that contain this line and the z-axis.

Here is a picture of this vertical plane slicing through the graph of z = f(x, y):
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The next graph shows the “altitude profile” as we walk along the graph; this curve is where the

surface intersects our vertical plane:
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Compare the last two graphs, and make sure you see how the curve in the second one corresponds

to the intersection of the plane and the surface in the first one.

In this example, we have illustrated the slicing strategy with a function f : R2 → R only so we

could plot graphs and produce visual aids to our understanding. But the basic formula

g(t) = f(x0 + tv)

can be used in any number of dimensions.

The slicing strategy turns out to be a very useful method for studying functions f : Rn → R, as

we shall see. However it has its limitations. For instance, one might hope that a function f : Rn → R
is continuous if and only if for each choice of x0 and v in Rn, the function g(t) = f(x0 + tv) is

continuous. This is not the case.

In fact, we have already seen this in Example 46. While the function f in Example 46 is

discontinuous at the origin, its slice along every line through the origin (and therefore every line,

since the only discontinuity is at the origin) is continuous. You could walk along the “landscape”
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described by f on any straight line path through the origin, but you would never run into a cliff.

Otherwise put, there are no jumps in any linear slice.

Here is an even more dramatic example.

Example 50 (Discontinuity without jumps). Define f : R2 → R by

f(x, y) =


1

x2 + y2

2x4y

x8 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

Since f is the product of rational functions whose denominators vanish only at (0, 0), f itself is

continuous away from (0, 0). Hence the slice of f along any line that does not pass through the origin

is continuous. We will now show that the slice of f along every line is continuous.

By what we have said above, it remains to consider lines through the origin. Notice that f

is identically equal to zero along the y-axis. (There is a factor of x in the numerator.) Constant

functions are certainly continuous, so this slice of f is continuous.

Now consider any other line through the origin. This has the equation y = ax for some a ∈ R,

a 6= 0. On the line y = ax, for x 6= 0,

f(x, ax) =
1

x2 + a2x2

2x5a

x8 + a2x2
=

1

1 + a2

2xa

x6 + a2

which is a continuous – and even differentiable – function of x. Therefore, for each non-zero a ∈ R,

the function g(t) defined by

g(t) := f(0 + t(1, a))

is continuous. Hence, the slice of f along every line through 0 is continuous.

However, f itself is not continuous. To see this, consider the sequence {xn} given by xn :=

(1/n , 1/n4). Evidently, limn→∞ xn = 0, while for each n,

f(xn) =
1

n−2 + n−8

2n−8

2n−8
=

n2

1 + n−6
.

Hence limn→∞ f(xn) = ∞, and so not only is f discontinuous, there are points arbitrarily close to

the origin at which f takes on arbitrarily large positive values.

If you consider the sequence xn := (1/n ,−1/n4), you can see that there are points arbitrarily

close to the origin at which f takes on arbitrarily large negative values.

Yet as you walk along the slice over any straight line through the origin, you never encounter

any jumps or an singularities of any sort.

At this point you might wonder how wise we have been in choosing our definition of continuity.

We are excluding functions f that vary continuously on the line segment connecting any two points

from the class of continuous functions. Are we not being too restrictive?

Let us consider an alternate definition:

Definition 35 (Separate continuity). A function f(x, y) on R2 is separately continuous in case

for each x0, the function y 7→ f(x0, y) is a continuous function of y, and if for y0, the function

x 7→ f(x, y0) is a continuous function of x.
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The function f in Example 50 is separately continuous. Moreover, separate continuity is easier

to check than continuity – it can be done one variable at a time. Could it be that the n dimensional

analog of this is actually a better generalization of continuity to several variables? Unfortunately, no.

Mathematical definitions are made the way they are because of what can be done with them.

They are discarded unless they capture concepts that are useful in problem solving.

Part of the problem-solving value of the concept of continuity lies in its relevance to minimum–

maximum problems. You know from the theory of functions of a single variable that if g is any

continuous function of x, then g attains its maximum on any closed interval [a, b]. That is, there is

a point x0 with a ≤ x0 ≤ b so that for every x with a ≤ x ≤ b,

g(x) ≤ g(x0) .

In this case, we say that x0 is a maximizer of g on [a, b]. Finding maximizers is one of the important

applications of the differential calculus.

In the next section, we show that continuity is the right hypothesis for proving a multi-variable

version of this important theorem, and that separate continuity is not enough. Separate continuity

is easier to check, but alas, it is just not that useful.

3.2 Continuity, compactness and maximizers

3.2.1 Open and closed sets in Rn

In this subsection we introduce the class of subsets of Rn that generalizes the class of bounded, closed

intervals in R.

Definition 36 (Open ball of radius r, and bounded sets). For each x ∈ Rn, and each r > 0, the

open ball of radius r about x is the subset Br(x0) of Rn defined consisting of all y ∈ Rn such that

‖x− y‖ < r. That is,

Br(x) = {y ∈ Rn : ‖x− y‖ < r} .

A set A ⊂ Rn is bounded in case A ⊂ Br(0) for some r > 0.

Definition 37 (Open and closed sets). A set C ⊂ Rn is closed in case whenever {xk} is a sequence

of points belonging to C, and the limit z = limk→∞ xk exists, then z ∈ C. A set U ⊂ Rn is open in

case whenever x ∈ U , there is an r > 0 so that Br(x) ⊂ U . The empty set ∅ is defined to be both

open and closed.

It is a good exercise to use the triangle inequality to show that for each x ∈ Rn and each r > 0,

Br(x) is open. You may be wondering how one could every prove a set with infinitely many points

is closed. Are there not infinitely many sequences to be dealt with in the proof? Yes, and so we had

better do that implicitly. We shall prove a theorem that is useful in this regard. First, we state a

useful definition.
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Definition 38 (Level sets). Given any function f : Rn → R, and any a ∈ R, the set consisting of

all solutions of the equation f(x) = a is called the level set of f at height a. It is written as

{ x : f(x) = a } .

Likewise, the sub-level set of f at height a and the super-level set of f at height a, respectively, are

the sets

{ x : f(x) ≤ a } and { x : f(x) ≥ a } .

Example 51 (Spheres as level sets). Consider the function f(x) = ‖x‖2 =
∑n
j=1 x

2
j . For each r > 0,

the sphere of radius r is the the level set of f through r2.

Theorem 36 (Continuity and closed level sets). Let f : Rn → R be continuous. Then for each

a ∈ R, the level set of f through a is closed, as are the sub-level set of f through a and the super-level

set of f through a.

Proof: Consider the level set { x : f(x) = a }. If this is empty, we are finished, since the empty set

is closed by definition. Otherwise, consider any convergent sequence {xk} such that each xk belongs

to the level set. Since {xk} is convergent, there exists z ∈ Rn with limk→∞ xk = z. Since f is

continuous, we have

lim
k→∞

f(xk) = f(z) .

But since each xk lies in the level set, f(xk) = a for all k. Thus f(z) = a, and hence the limit point

z also belongs to the level set. Since the convergent sequence was an arbitrary convergent sequence

in the level set, this proves that the level set is closed.

The proofs for sub-level sets and super-level sets are very much the same, and are left to the

reader.

Example 52 (Spheres are closed). The function f(x) = ‖x‖2 =
∑n
j=1 x

2
j is continuous. Indeed,

by Example 40, each of the coordinate functions; i.e, the functions sending x to xj, j = 1, . . . , n

are continuous. Then by Theorem 34, the function sending x to
∑n
j=1 x

2
j is continuous. Thus, by

Theorem 36, for each r > 0, the sphere of radius r is closed.

We conclude this subsection with one more relation between open and closed sets that shall be

useful to us later on.

Definition 39 (Complementary sets). For any set A ⊂ Rn, the complement of A, Ac, is the subset

of all x ∈ Rn with x /∈ A.

Theorem 37 (Complementarity of open and closed sets). (1) Let U ⊂ Rn be open. Then U c, the

complement of U , is closed. (2) Let C ⊂ Rn be closed. Then Cc, the complement of C, is open.

Proof: Let U ⊂ Rn be open, and consider any convergent sequence {xk} in U c. We must show that

z = limk→∞ xk ∈ U c.
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Suppose not. Then z = limk→∞ xk ∈ U . Since U is open, for some r > 0, Br(z) ⊂ U . But since

z = limk→∞ xk, for all sufficiently large k, ‖xk − z‖ < r, and this means that all such xk belong to

U . But this is impossible, since each xk ∈ U c. Hence, z = limk→∞ xk ∈ U c.
Next, let C ⊂ Rn be closed. We must show that for each x ∈ Cc, there is some r > 0, Br(x) ⊂ Cc.

Suppose not. Then for each k ∈ N, there is some xk ∈ B1/k(x) ∩ C. By construction, for all ε > 0

k > 1/ε ⇒ ‖xk − x‖ < ε .

Thus, limk→∞ xk = x. Since C is closed and since each xk belongs to C, it would have to be the

case that x ∈ C. However, this is impossible since x ∈ Cc. Therefore, there is some r > 0 with

Br(x) ⊂ Cc.

3.2.2 Minimizers and maximizers

Definition 40 (Minimizers and maximizers). Let f be a function defined on a closed set C ⊂ Rn

with values in R. Then x0 ∈ C is a maximizer of f in C is case

f(x) ≤ f(x0) for all x ∈ C . (3.14)

Likewise, Then x0 ∈ C is a minimizer of f in C is case

f(x) ≤ f(x0) for all x ∈ C . (3.15)

Notice that x0 is a minimizer of f in C if and only if x0 is a maximizer of −f in C. Therefore, it

suffices to prove theorems on the existence of maximizers: Each such theorem implies a corresponding

theorem for minimizers.

We shall show in the next subsection that every continuous real valued function defined on a

bounded closed set C ⊂ Rn has a maximizer in C. First, we show by example that this is not true if

one replace continuity by separate continuity.

Example 53 (Separately continuous, but no maximizer). Consider the function f from Example 50.

As we have seen there, this functions is separately continuous, and even more, its slice along every line

is continuous. Let C = {(x, y) x2 + y2 ≤ 1 } which is plainly bounded, and is closed by Theorem 36.

We will now show that f has neither a maximizer nor a minimizer on C, and in fact, is unbounded

above and below on C, all despite being separately continuous. Indeed, we have already done the work.

We have seen in Example 50 that

f(1/n , 1/n4) =
n2

2
and f(1/n ,−1/n4) = −n

2

2
.

For n > 1 both (1/n, 1/n4) and (1/n,−1/n4) belong to C. Hence f is unbounded above and below

on C.

However, for continuous functions of several variables, there is an analog of the single variable

theorem. This alone makes continuity a much more useful concept than separate continuity.
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3.2.3 Compactness and existence of maximizers

Definition 41 (Compact sets). A set C ⊂ Rn is compact in case it is closed and bounded.

They key to the existence of maximizers, and many other problems as well, is the following

theorem which says that a set is compact if and only if every infinite sequence of points in the set has

a subsequence that converges to a point in C. It is one of the fundamental theorems of mathematical

analysis. The theorem is powerful because often it is easy to check that a set is compact, and then

you know something significant about every infinite sequence in that set. The very interesting proof

relies on the “pigeonhole principle” and the completeness of the real numbers.

Theorem 38 (The Bolzano-Weierstrass Theorem). Let C be a compact subset of Rn. Then for every

sequence {xn} in C, there is a subseuence {xnk
} and a z ∈ C such that

lim
k→∞

xnk
= z .

On the other hand, if C is not compact, then there exists a sequence {xn} in C that has no

convergent subsequence.

Proof: We will prove this for n = 2 so that we can draw pictures. Once you understand the idea for

n = 2, you will see that it applies for all n.

Since C is a closed and bounded set, there are numbers xc, yc and r so that C is contained in

the square

xc ≤ x ≤ xc + r and yc ≤ y ≤ yc + r .

The shaded region is the closed, bounded set C.

Now consider any infinite sequence {xn} of points in C. To obtain a convergent subsequence,

first divide the square into four congruent squares. Since the four squares cover C, by the pigeonhole

principle, at least one of the four squares must be such that it contains infinitely many terms of the

sequences {xn}.
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Here the upper left square contained infinelty many terms and we chose it.

Now define xn1
to be the first term in {xn} that belongs to the chosen square.

Next, subdivide the square in the first step into four smaller squares as in the diagram below.

Again, by the pigeonhole principle, one of these must be such that it contains infinitely many terms

of the sequence {xn}. Choose such a square.

Here we chose the lower left square in the previously selected square.

Now define xn2
to be the first term in {xn} after xn1

that belongs to the chosen square.

Iterating this procedure produces a sequence of points {xnk
} such that for each m > 0, the

sequence {xnk
: k ≥ m} ies in a square of side length r2−m. This follows from the fact that the

procedure described above produces a nested set of squares.
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Since the side length is reduced by a factor of 2 with each subdivision, and since it starts at r/2,

at the mth stage we have a square of side length 2−mr. Thus, for all k, ` ≥ m, xnk
and xm`

belong

to a square of side length 2−mr. How far apart can they possibly be? No further than the length of

the diagonal of the square, which is
√

2 times 2−kr; i.e., 21/2−mr. Thus, for any ε > 0, choose m so

that 21/2−mr < ε, and then for this m,

k, ` ≥ m ⇒ ‖− xnk
− xn`

‖ < ε .

Since for any coordinate index j, |(x`)j − (xm)j | ≤ ‖x` − xk‖,

k, ` ≥ m ⇒ |(xnk
)j − (xn`

)j | < ε .

This means that {(xnk
)j}, where j is fixed and k indexes the terms of the sequence, is a Cauchy

sequence. By the completeness property of the real numbers, or what is the same thing, the con-

struction of the real numbers out of the rational numbers, every Cauchy sequence has a limit, and so

there exists a number zj ∈ R so that

lim
k→∞

(xnk
)j = zj . (3.16)

Now define a vector z by (z)j = zj for j = 1, . . . , n. Then (3.16) implies

lim
k→∞

xnk
= z .

Then, since C is closed, and {xnk
} is in C, z belongs to C.

Our first application of the Bolzano-Weierstrass Theorem is to the existence of maximizers.

Theorem 39 (Continuity and Maximizers). Let f be a continuous function defined on a compact

set C ⊂ Rn with values in R. Then there is point z in C so that

f(x) ≤ f(z) for all x ∈ C . (3.17)

Proof: Let B be the least upper bound of f on C. That is, B is either infinity if f is unbounded on

C, or else it is the least number that is greater than or equal to f(x) for all x ∈ C. We aim to show

that B is finite, and that there is an z ∈ C with f(z) = B. Then z is the maximizer we seek.

First, suppose that B = ∞. Then for each n, there is an xn ∈ C such that f(xn) ≥ n. By

Theorem 38, there is a convergent subsequence {xnk
} with limit z ∈ C. Since f is continuous,

f(z) = lim
k→∞

f(xnk
) .
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However, since f(xnk
) ≥ nk ≥ k for all k, limk→∞ f(xnk

) does not exist. This contradiction shows

that B must be finite.

Now, by the definition of the Least Upper Bound, for each n, the set

{ x ∈ C : f(x) ≥ B − 1/n }

is not empty. Therefore, for each n we may choose xn in this set. By the Squeeze Principle, since

B − 1/n ≤ f(xn) ≤ B, limn→∞ f(xn) = B.

By Theorem 38, the sequence {xn} has a convergent subsequence {xnk
} with limit z ∈ C. Since

f is continuous, f(z) = limk→∞ f(xnk
) = B. Thus, z ∈ C and f(z) = B ≥ f(x) for all x ∈ C.

For the final part, suppose C is not compact. Then either C is not closed, or not bounded, or

both. If it is not closed, there is some sequence {xn} in C that converges to some z /∈ C. In this

case, every subsequence of {xn} converges to z /∈ C, and so no subsequence of {xn} can converge to

an element of C. Likewise if C is unbounded, there is a sequence {xn} in C with ‖xn‖ ≥ n for all n,

and evidently no subsequence of this sequence converges at all. Thus, when C is not compact, there

are sequences in C for which no subsequence converges to an element of C.

The Bolzano-Weierstrass Theorem has many consequences, as we shall see throughout this course.

We close this section by explaining one concerning isometries:

Definition 42. Let f be a function from U ⊂ Rn to Rm with the property that for all x,y ∈ U ,

‖f(x)− f(y)‖ = ‖x− y‖ .

Then f is called an isometry. That is f is an isometry in case it preserves the distances between

points; the distance between the images equals the distance between the original points.

Observe that isometries are always continuous. It is worth writing down a proof with explicit

reference to the definitions involved.

Theorem 40 (Isometries on compact sets are invertible). Let C be a compact set in Rn. Let f be

an isometry defined on C with values in C. Then f is an invertible function from C onto C.

Proof: First, f is one-to-one: If for some x,y ∈ C, f(x) = f(y), then

0 = ‖f(x)− f(y)‖ = ‖x− y‖ ,

and so y = x.

Showing that for each y ∈ C there is an x ∈ C such that f(x) = y takes more effort; we shall

use Theorems 38 and 39 for this.

Suppose there is some y ∈ C such that y 6= f(x) for any x ∈ C. The function

g(x) := ‖f(x)− y‖

is a continuous function on C, being the composition of continuous functions. Thus, by Theorem 39,

there is a z ∈ C with g(z) ≤ g(x) for all x ∈ C. Since y 6= f(z), g(z) := r > 0. and thus there is

some r > 0 such that

‖f(x)− y‖ ≥ r (3.18)
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for all x ∈ C. Now, inductively define the sequence {xn} by defining x1 = y, and then

xn+1 = f(xn)

for all n ≥ 1.

By Theorem 38, there exists a subsequence {xnk
} converging to some z ∈ C. Since every

convergent sequence is a Cauchy sequence, there are k and ` so that k < ` and

‖xnk
− xn`

‖ < r/2 .

But with f (m) denoting the mth composition power of f ,

xnk
= f (nk)(y) and xn`

= f (n`)(y) .

By the isometry property,

r/2 ≥ ‖xnk
− xn`

‖ = ‖f (nk)(y)− f (n`)(y)‖ = ‖y − f (n`−nk)(y)‖ .

Now define x := f (n`−nk−1)(y) so that

f (n`−nk)(y) = f(x) .

Then ‖y − f(x)‖ < r/2 which contradicts (3.18). This contradiction shows that there cannot exist

any y ∈ C such that y 6= f(x) for all x ∈ C. Hence, f maps C onto C. Since we have already seen

that f is one-to-one, this proves f is invertible.

We can now use Theorem 40 to give a short proof of the fundamental Lemma 1, which says that

there does not exist any set of n+ 1 orthonormal vectors in Rn. Indeed, the unit sphere S, consisting

of all unit vectors in Rn is compact, as we have seen in this section.

Second Proof of Lemma 1: Given any set {u1, . . . ,un} of n orthonormal vectors in Rn, define a

function f from Rn to Rn by

f(x1, . . . , xn) =

n∑
j=1

xjuj .

Then, since {u1, . . . ,un} is orthonormal,

‖f(x)− f(y)‖2 =

∥∥∥∥∥
n∑

=1

(xj − yj)uj

∥∥∥∥∥
2

=

n∑
j=1

|xj − yj |2 = ‖x− y‖2 .

Thus, f is an isometry. Likewise, we see ‖f(x)‖ = ‖x‖ so that if x ∈ S, then also f(x) ∈ S. Thus,

the restriction of f to S is an isometry from S into S.

Now consider any other unit vector un+1. By Theorem 40, f not only maps S into S, it maps S

onto S, and since un+1 ∈ S, there is an x = (x1, . . . , xn) ∈ S such that f(x) = un+1; i.e.,

un+1 =

n∑
j=1

xjuj .

Taking the dot product of both sides with un+1, 1 = un+1 ·un+1 =
∑n
j=1 xj(un+1 ·uj). If un+1 were

orthogonal to each uj , the right hand side would be zero, and this is impossible. Hence there does

not exist any set of n+ 1 orthonormal vectors in Rn.
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There is a strong contrast between the two proofs we have given of Lemma 1. The first proof

involved the explicit construction of a product of Householder reflections taking {u1, . . . ,un} into

{e1, . . . , en}. The second proof avoids this, and is much shorter – but this is because it makes use

of the Bolzano-Weierstrass Theorem. Both kinds of proof have their place. Sometimes an explicit

construction will not be possible, and an argument making use of the Bolzano-Weierstrass Theorem

is the only way to proceed. However, when an explicit construction is possible, it is often worhtwhile

to make it: The explicit construction used in our first proof of Lemma 1 is what enabled us to prove

that an orthonormal basis {u1,u2,u3} of R3 is right handed if and only if it is related to {ve1, e2, e3}
by a rotation.

3.2.4 The Squeeze Principle revisited

Let f be a function on Rn that is continuous away from some point x0, and suppose we wish to

determine continuity at x0. We have encountered this situation many times. Fix r > 0, and for all

unit vectors u ∈ Rn define a function hr(u) = |f(x0 + ru) − f(x0)|. Then hr is continuous on the

unit sphere Sn−1 in Rn, which is closed and bounded. Hence there exists a maximizer u? (depending

on r). Let g(r) be this maximal value hr(u?) = |f(x0 + ru?) − f(x0)|. This gives us a well defined

function. We are using the existence of maximizers to define it.

We claim that f is continuous at x0 if and only if limr→0 g(r) = 0. To see this we define

rn = ‖xn − x0‖ and un = r−1
n (xn − x0),

0 ≤ |f(xn)− f(x0)| = |f(x0 + ru)− f(x0)| ≤ g(r) .

If limr→0 g(r) = 0, then by the Squeeze Principle for sequences of real numbers, limn→∞ |f(xn) −
f(x0)| = 0.

On the other hand, if it is not the case that limr→0 g(r) = 0, there is some sequence {rn} of

positive numbers convergent to zero such that limn→∞ g(rn) > 0. Let un be the maximizer of hrn

considered above. Then

g(rn) = |f(x0 + rnun)− f(x0)| ,

and so

lim
n→∞

|f(x0 + rnun)− f(x0)| > 0 .

This shows that f is discontinuous at x0.

In other words, whenever f is continuous at x0, there is an appropriate functions g such that

the Squeeze Principle may be applied to prove the continuity of f , namely the function g(r) defined

here. We could not introduce this function when we proved our theorem on the Squeeze Principle

since it relies on Theorem 39 on the existence of maximizers.

3.3 Exercises

3.1 Complete the proof of Theorem 34.
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3.2 A function f defined domain U ⊂ Rn with values in R is called a Lipschitz continuous function

in case there is some number M so that

‖f(x)− f(y)‖ ≤M‖x− y‖ (3.19)

for all x and y in U .

(a) Show that a Lipschitz continuous function is continuous by finding a valid margin of error on the

input; i.e., a valid δ(ε) that has a very simple form: proportional to ε.

(b) For R > 0, let U denote the ball of radius R about the origin; i.e., U = BR(0). Let f(x) be

defined on U by f(x) = ‖x‖2. Using the identity

‖x‖2 − ‖y‖2 = (x− y) · (x + y)

and the Cauchy-Schwarz inequality, show that f is Lipschitz on U with Lipschitz constant 2R.

(c) Let f : Rn → Rm have the form f(x) = (a1 · x, . . . ,am · x) for some set of vectors {a1, . . . ,am}
in Rn, as in Example 41. Show that is Lipschitz continuous on Rn.

3.3 Consider the function f defined by

f(x1, x2) = sin(x1) cos(x2) .

Note that

f(x1, x2)− f(y1, y2) = (sin(x1)− sin(y1)) cos(x2) + sin(y1)(cos(x2)− cos(y2)) (3.20)

Show that

| sin(x1)− sin(y1)| ≤ |x1 − y1| and | cos(x2)− cos(y2)| ≤ |x2 − y2| .

(This is a single variable problem, and the fundamental theorem of calculus can be applied). Combine

this with the identity (3.20) to show that f satisfies (3.19) with M =
√

2.

3.4 Let f(x, y) be given by

f(x, y) =


x2 sin(xy)

x6 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

(a) For any a, b ∈ R, define the sequence {xn} by xn = (a/n, b/n) . Compute lim
n→∞

f(xn).

(b) For any a, b ∈ R, define the sequence {xn} by xn = (a/n, b/n3) . Compute lim
n→∞

f(xn).

(c) Is the function f continuous? justify your answer.

3.5 Consider the function defined by

f(x, y) =

(x+ y) ln(x2 + y2) (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Is this function is continuous? Justify your answer.
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3.6 Consider the function defined by

f(x, y) =


x2y

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Is this function is continuous? Justify your answer. Hint: You make a ratio larger and simpler at

the same time if you discard a positive term for the denominator.

3.7 Consider the function defined by

f(x, y) =

|x|r sin(y/x) x 6= 0

0 x = 0

where r > 0. For which values of r, if any, is f continuous?

3.8 Let a and b be given vectors in R3 such that neither is a multiple of the other. Define a function

f : R3 → R by

f(x) = a · (b× x) .

Define

x0 =
1

‖a× b‖
a× b .

Show that

f(x) ≤ f(x0)

for all unit vectors x ∈ R3. In other words, show that x0 is the maximizer of f on the unit sphere in

R3.

3.9 Given m vectors {a1, . . . ,am} in Rn, define the function f from Rn to R by

f(x) =

m∑
j=1

(aj · x)2 .

Show that f has a both a maximizer and a minimizer on the closed unit ball

B = {x :
∑n
j=1 x

2
j ≤ 1}, but has only a minimizer, and no maximizer, on the open unit ball

B = {x :
∑n
j=1 x

2
j < 1}. Hint: Show that the maximizer on B lies on the boundary of B.

3.10 Let f be any function from Rn to Rm. For any set A ⊂ Rm, define f−1(A) to be the set of all

points x, if any, in Rn such that f(x) ∈ A. The set f−1(A), which may be the empty set, is called

the preimage of A under f . Do not be misled by the notation: f−1(A) is defined whether or not the

function f itself is invertible.

(a) Prove that f is continuous if and only if whenever A is an open set in Rm, then f−1(A) is an

open set in Rn. This result provides a way to talk about continuity without explicitly bringing ε and

δ into the discussion. It also has other uses:

(b) Use the result of part (a) to give a short proof that whenever f is a continuous function from

Rn to Rm, and g is a continuous function from Rm to R`, then g ◦ f is a continuous function from

Rn to R`.
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3.11 Let K ⊂ Rn be compact. Show that for each x ∈ Rn, there exists at least one point yK(x) ∈ K
(depending on x, as indicated in the notation) such that

‖x− yK(x)‖ ≤ ‖x− z‖

for all z ∈ K. Define the distance from x to K to be the number ‖x − yK(x)‖ for this choice of y.

The function

dK(x) := ‖x− yK(x)‖

then gives the distance from x to K. Show that the function dK is a continuous function on Rn. Is

it Lipschitz continuous?

3.12 Let K ⊂ Rn be compact, and let f be a continuous function from Rn to Rm. Define L ⊂ Rm by

L := {y ∈ Rm : y = f(x) for some x ∈ K } .

Is L necessarily compact? Justify your answer.



Chapter 4

DIFFERENTIABLE FUNCTIONS

4.1 Vertical slices and directional derivatives

4.1.1 Directional derivatives and partial derivatives

We now pick up with the “slicing” idea introduced in Chapter 3, and try to take derivatives along

slices of a function f : Rn → R in order to understand the nature of the graph of xn+1 = f(x) in

Rn+1. Of course, we can only actually plot the graph for n ≤ 2, so we will be especially interested in

the case n = 2 at the beginning.

Definition 43 (Directional derivatives). Given a function f(x) defined in an open subset U of Rn,

and some point x0 ∈ Rn, and also a non zero vector v in Rn, the directional derivative of f at x0 in

the direction v is defined by

lim
h→0

f(x0 + hv)− f(x0)

h
, (4.1)

provided this limit exists. If the limit does not exist, the directional derivative does not exist.

Given f , x0 and v, the function

g(t) = f(x0 + tv) (4.2)

represents the “slice” of f over the line x0 + tv in Rn. Then the directional derivative of f at x0

in the direction v is just g′(0). This means that directional derivatives can be computed by familiar

single variable methods.

Example 54 (Slicing a function along a line). For example, if f(x, y) =
xy2

1 + x2 + y2
, x0 = (1, 1)

and v = (1, 2), then

g(t) = f(1 + t, 1 + 2t) =
(1 + t)(1 + 2t)2

1 + (1 + t)2 + (1 + 2t)2
=

1 + 5t+ 8t2 + 4t3

3 + 6t+ 5t2
.

The result is a familiar garden variety function of a single variable t. It is a laborious but straight-

forward task to now compute that g′(0) = 1. Please do the calculation; you will then appreciate the

better way of computing directional derivatives that we shall soon explain!

c© 2011 by the author.
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Directional derivatives may exist for some directions, but not others:

Example 55 (Sometimes there are directional derivatives only in certain directions). Let f be the

function defined by

f(x, y) =


x2 − y2

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

. (4.3)

Let x0 = (0, 0) and let v = (a, b) for some numbers a and b. The question we now ask is: For which

values of a and b does there exists the directional derivative of f at x0 in direction v?

To answer this, let’s compute f(x0 + hv)− f(x0), divide by h, and try to take the limit h→ 0.

We find that

f(x0) = 0 and f(x0 + hv) =
a2 − b2

a2 + b2
.

(For v 6= 0, as in Definition 43, we do not divide by zero on the right.) Therefore

f(x0 + hv)− f(x0)

h
=

1

h

(
a2 − b2

a2 + b2

)
.

As h → 0, this “blows up”, unless a = ±b, in which case the the right hand side is zero for every

h 6= 0, and so the limit does exist, and is zero. Therefore, for this “bad” function, the directional

derivative exists if and only if the direction vector v is is a non-zero multiple of either (1, 1) or

(− 1, 1).

There are two “special” direction to consider – the direction along the coordinate axes. These

special directional derivatives are called partial derivatives:

Definition 44 (Partial derivatives). Given a function f : Rn → R defined in a neighborhood of x0,

for each 1 ≤ j ≤ n, the partial derivative of f with respect to xj at x0 is denoted by
∂

∂xj
f(x0) and

is defined by
∂

∂xj
f(x0) = lim

h→0

f(x0 + hej)− f(x0)

h
(4.4)

provided that the limit exists.

•Partial derivatives are special cases of directional derivatives – the cases in which the direction vector

v is one of the standard basis vectors ei.

Now, let us see how to compute partial derivatives and directional derivatives: This turns out to

be easy! If g(x) is related to f(x, y) through

g(x) = f(x, y0) ,

then
∂

∂x
f(x0, y0) = lim

h→0

g(x0 + h)− g(x0)

h
= g′(x0) . (4.5)

This is great news: We will not need to make explicit use of the definition of partial derivatives very

often to compute them. When computing a partial derivative, just treat all of the other variables

as constants, and differentiate in the single “active” variable in the usual way. Thus, we can use

everything we know about computing derivatives for functions of a single variable when we are

computing partial derivatives.
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Example 56 (Differentiating in one variable). Let f(x, y) =
√

1 + x2 + y2 and (x0, y0) = (1, 2).

Then with g(x) defined by g(x) = f(x, y0), g(x) =
√

5 + x2. By a simple computation,

g′(x) =
x√

5 + x2

and in particular
∂

∂x
f(1, 2) =

1√
6

.

In single variable calculus, the derivative function g′(x) is the function assigning the “output ”

g′(x0) to the “input” x0.

In the same way, we let
∂

∂x
f(x, y) denote the function of the two variables x and y that assigns the

“output”
∂

∂x
f(x0, y0) to the “input” (x0, y0). The same conventions apply to other other functions

and more variables.

Example 57 (Computing partial derivative functions). Let f(x, y) =
√

1 + x2 + y2. Holding y fixed

– as a parameter instead of a variable – we differentiate with respect to x as in the single variable

calculus, and find
∂

∂x
f(x, y) =

x√
x2 + y2

.

Likewise,
∂

∂y
f(x, y) =

y√
x2 + y2

.

Once more, because computing partial derivatives is just a matter of differentiating with respect

to one chosen variable, everything we know about differentiating with respect to one variable can be

applied – in particular the chain rule and the product rule.

Example 58 (Using the single variable chain rule). The function f(x, y) =
√

1 + x2 + y2 that we

considered in Example 57 can be written as a composition f(x, y) = g(h(x, y)) where

g(z) =
√
z + 1 and h(x, y) = x2 + y2 .

Since

g′(z) =
1

2
√

1 + z
and

∂

∂x
h(x, y) = 2x ,

we have

∂

∂x
f(x, y) =

∂

∂x
g(h(x, y)) = g′(h(x, y))

∂

∂x
h(x, y) =

1

2
√

1 + h(x, y)
2x =

x√
x2 + y2

,

as before.

What we saw in Example 58 is a generally useful fact about partial derivatives: If g is a dif-

ferentiable function of a single variable, and h is a function of two (or more) variables with ∂h/∂x

defined, then
∂

∂x
g(h(x, y)) = g′(h(x, y))

∂

∂x
h(x, y) ,

and similarly with y and any other variables. The validity of this identity need not be formulated as

a theorem, and does not need a new proof: It is true because of the single variable chain rule, and

because we are differentiating in the single variable x.
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• In short, as far as computing partial derivatives goes, there is nothing much new: Just pay attention

to one variable at a time, and differentiate with respect to it as usual.

Now let us see how to compute directional derivatives in terms of partial derivatives. The key is

another chain rule, which is a genuinely multivariable chain rule.

4.1.2 The gradient and a chain rule for functions of a vector variable

We have already seen in our study of continuity that knowing the behavior of “slices” of a function

f along lines does not tell us the whole story about the behavior of the f : We need to look at the

behavior along more general families of curves. It is the same with differentiability.

In this subsection we prove a chain rule for functions of a vector variable that is useful for under-

standing the behavior of f over slices along differentiable curves. That is, let x(t) be a differentiable

vector valued function in Rn. Let f be a function from Rn to R. Consider the composite function

g(t) defined by

g(t) = f(x(t)) .

Here we ask the question:

• Under what conditions on f is g differentiable, and can we compute g′(t) in terms of x′(t) and the

partial derivatives of f?

Before answering this question, we make a useful definition. We organize the partial derivatives

of f into a vector. This definition will figure in most of what we do in the rest of this chapter.

Definition 45 (Gradient). Let f : Rn → R have each of its partial derivatives well defined at x0.

Then the gradient of f at x0 is the vector ∇f(x0) ∈ Rn given by

∇f(x0) =

(
∂

∂x1
f(x0) , . . . ,

∂

∂xn
f(x0)

)
.

Since you know how to compute partial derivatives, you know how to compute gradients: It is

just a matter of organizing the partial derivatives, once you have computed them, into a vector. Here

is an example:

Example 59 (Computing a gradient). With f(x) =
xy2

1 + x2 + y2
, we compute that

∂

∂x
f(x) =

y2(1 + y2 − x2)

(1 + x2 + y2)2

and
∂

∂y
f(x) =

2xy(1 + x2)

(1 + x2 + y2)2
.

Therefore,

∇f(x) =
1

(1 + x2 + y2)2
(y2(1 + y2 − x2) , 2xy(1 + x2) ) .

We are now ready to state our multivariable chain rule:
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Theorem 41 (The chain rule for functions from Rn to R). Let f be any function defined in an

open set U of Rn with values in R. Suppose that each of the partial derivatives of f is defined and

continuous at every point of U . Let x(t) be a differentiable function from R to Rn. Then, for all

values of t so that x(t) lies in U ,

lim
h→0

f(x(t+ h))− f(x(t))

h
= x′(t) · ∇f(x(t)) . (4.6)

This is an important theorem, and before proving it, we make some remarks. First, the chain

rule in Theorem 41 applies to the composition of functions from R to Rn and then from Rn to R.

Both functions involved in this composition are multivariable functions on one end or the other. The

chain rule in Example 58 applies to the composition of functions from Rn to R and then from R
to R. In the latter case, as we have seen, we are really only using the single variable chain rule.

But the chain rule of Theorem 41 describes rates of change when all of the variables x1, . . . , xn are

changing at once. In proving it, we will make essential use of the assumption of continuity of the

partial derivatives. Without this assumption, the theorem would not be true.

Second, Theorem 41 has a simple corollary that gives us a formula for computing directional

derivatives in terms of partial derivatives.

Corollary 4 (Directional derivatives and gradients). Let f be any function defined on an open set U

of Rn with values in R. Suppose that each partial derivative of f is defined and continuous at every

point of U . Then for any x0 in U , and any direction vector v in Rn,

lim
h→0

f(x0 + hv)− f(x0)

h
= v · ∇f(x0) . (4.7)

Proof: Simply consider the case in which x(t) = x0 + tv, and apply Theorem 41.

If you worked through all the calculations in Example 54, you know that computing directional

derivatives “straight from the definition” as we did there can be pretty laborious. The good news is

that Corollary 4 provides a much better way!

Example 60 (Directional derivatives via gradients). Consider f(x) =
xy2

1 + x2 + y2
, x0 = (1, 1) and

v = (1, 2) as in Example 54. In that example, we computed (the hard way) that the corresponding

directional derivative is 1.

But now, from Example 59, we have that

∇f(x) =
1

(1 + x2 + y2)2
(y2(1 + y2 − x2) , 2xy(1 + x2)) ,

and hence, substituting x = 1 and y = 1, we have ∇f(x0) =
1

9
(1, 4). Therefore, v · ∇f(x0) = 1 is

the directional derivative, as we found before with more labor.

The reason that we did not already introduce a special notation for the directional derivative of

f at x0 in the direction v is that Corollary 4 provides one, namely v · ∇f(x0). We couldn’t use it

in the last subsection because we hadn’t yet defined gradients, but now that we have, this will be
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our standard notation for directional derivatives, at least when we are dealing with “nice” functions

whose partial derivatives are continuous.

Corollary 4 provides an efficient means for computing directional derivatives: Once you have

computed the gradient, you can take the dot product with many different direction vectors and

compute many different directional derivatives without doing any more serious work. In the approach

used in Example 54, you would have to start from scratch each time you considered a new direction

vector.

We are finally ready for the proof of Theorem 41. The key to the proof, in which we finally

explain the importance of continuity for the partial derivatives is the Mean Value Theorem from

single variable calculus:

The Mean Value Theorem says that if g(s) has a continuous first derivative g′(s), then for any

numbers a and b, with a < b, there is a value of c in between; i.e., with a < c < b

g(b)− g(a)

b− a
= g′(c) .

The principle expressed here is the one by which the police know that if you drove 100 miles in one

hour, then at some point on your trip, you were driving at exactly 100 miles per hour.

Proof of Theorem 41: We give the proof for n = 2 to keep the notation simple. Once this case is

understood, the general case will be clear.

Fix some t, and some h > 0. To simplify the notation, define the numbers x0, y0, x1 and y1 by

(x0 , y0) = x(t) and (x1 , y1) = x(t+ h) .

Using this notation, note that

f(x(t+ h))− f(x(t)) = f(x1, y1)− f(x0, y0)

=
[
f(x1, y1)− f(x0, y1)

]
+
[
f(x0, y1)− f(x0, y0)

]
.

In going from the first line to the second, we have subtracted and added back in the quantity f(x0, y1),

and grouped the terms in brackets. Why add and subtract the same thing? The point is that in the

first group, only the x variable is varying, and in the second group, only the y variable is varying.

Thus, we can use single variable methods on these groups.

To do this for the first group, define the function g(s) by

g(s) = f(x0 + s(x1 − x0), y1) .

Notice that

g(1)− g(0) = f(x1, y1)− f(x0, y1) .

Then, if g is continuously differentiable, the Mean Value Theorem tells us that

f(x1, y1)− f(x0, y1) =
g(1)− g(0)

1− 0
= g′(c)

for some c between 0 and 1.
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But by the definition of g(s), we can compute g′(s) by taking a partial derivative of f , since as

s varies, only the x component of the input to f is varied. Thus,

g′(s) =
∂

∂x
f(x0 + s(x1 − x0), y1)(x1 − x0) .

Therefore, for some c between 0 and 1,

[
f(x1, y1)− f(x0, y1)

]
=

[
∂

∂x
f(x0 + c(x1 − x0), y1)

]
(x1 − x0) .

In the exact same way, we deduce that for some c̃ between 0 and 1,

[
f(x0, y1)− f(x0, y0)

]
=

[
∂

∂y
f(x0, y0 + c̃(y1 − y0))

]
(y1 − y0) .

Therefore,

f(x(t+ h))− f(x(t))

h
=

[
∂

∂x
f(x0 + c(x1 − x0), y1)

]
x1 − x0

h

+

[
∂

∂y
f(x0, y0 + c̃(y1 − y0))

]
y1 − y0

h
.

Up to now, h has been fixed. But having derived this identity, it is now easy to analyze the limit

h→ 0.

First, as h→ 0, x1 → x0 and y1 → y0. Therefore,

lim
h→0

∂

∂x
f(x0 + c(x1 − x0), y1) =

∂

∂x
f(x0, y0) =

∂

∂x
f(x(t)) ,

and

lim
h→0

∂

∂y
f(x0, y0 + c̃(y1 − y0) =

∂

∂y
f(x0, y0) =

∂

∂y
f(x(t)) .

Also, since x(t) is differentiable

lim
h→0

x1 − x0

h
= lim
h→0

x(t+ h)− x(t)

h
= x′(t)

and

lim
h→0

y1 − y0

h
= lim
h→0

y(t+ h)− y(t)

h
= y′(t)

Since the limit of a product is the product of the limits,

lim
h→0

f(x(t+ h))− f(x(t))

h
=

[
∂

∂x
f(x(t))

]
x′(t) +

[
∂

∂y
f(x(t))

]
y′(t)

= ∇f(x(t)) · x′(t) .

This is what we had to show.

4.1.3 The geometric meaning of the gradient

The gradient of a function is a vector. As such, it has a length, and a direction. To understand the

gradient in geometric terms, let us try to understand what the length and direction are telling us.
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The key to this is the formula

a · b = ‖a‖‖b‖ cos θ . (4.8)

Now pick any point x0 and any unit vector u in Rn. Suppose f : Rn → R has continuous partial

derivatives at x0, and consider the directional derivative of f at x0 in the direction u. By Theorem

1, this is u · ∇f(x0).

By 4.8 and the fact that u is a unit vector (i.e., a pure direction vector),

u · ∇f(x0) = ‖∇f(x0)‖ cos θ

where θ is the angle between ∇f(x0) and u. (This is defined as long as ∇f(x0) 6= 0, in which case

the right hand side is zero.)

As u ranges over the set of unit vectors in Rn, i.e., the n−1 dimensional unit sphere in Rn, cos θ

varies between −1 and 1, and hence

−‖∇f(x0)‖ ≤ u · ∇f(x0) ≤ ‖∇f(x0)‖

Recall that by Theorem 1, u · ∇f(x0) is the slope at x0 of the slice of the graph z = f(x) that

you get when slicing along x0 + tu. Hence we can rephrase this as

−‖∇f(x0)‖ ≤ [slope of a slice at x0] ≤ ‖∇f(x0)‖

That is,

•The magnitude of the gradient, ‖∇f(x0)‖ tells us the minimum and maximum values of the slopes

of all slices of z = f(x) through x0.

The slope has the maximal value, ‖∇f(x0)‖, exactly when θ = 0; i.e., when u and ∇f(x0) point

in the same direction. In other words:

• The gradient of f at x0 points in the direction of steepest increase of f at x0

For the same reasons, we get the steepest negative slope by taking u to point in the direction of

−∇f(x0).

Example 61 (Which way the water runs). Let f(x) =
xy2

1 + x2 + y2
, x0 = (1, 1) and let x0 = (0, 1).

If z = f(x) denotes the altitude at x, and you stood at x0, and spilled a glass of water, which way

would the water run?

For purposes of this question, let’s say that the direction of the positive x axis is due East, and

the direction of the positive y axis is due North.

But now, from Example 59, we have that

∇f(x) =
1

(1 + x2 + y2)2
(y2(1 + y2 − x2) , 2xy(1 + x2)) ,

and hence, substituting x = 0 and y = 1, we have

∇f(x0) =
1

4
(2, 0) .

Thus, the gradient points due East. This is the “straight uphill” direction. The water will run in the

“straight downhill” direction, which is opposite. That is the water will run due West.
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4.1.4 Critical points

Theorem 41 has important application to minimization and maximization problems, which are prob-

lems in which we look for minimum and maximum values of f , and the inputs x that produce them.

Indeed, you see that:

• If ∇f(x0) 6= 0, then there is an “uphill” direction and a “downhill” direction at x0.

If it is possible to “move uphill” from x0, then f(x0) cannot possibly be a maximum value of

f . Likewise, if it is possible to “move downhill” from x0, then f(x0) cannot possibly be a minimum

value of f .

• If we are looking for either minimum values of f or maximum values of f in some open set U ,

and f has continuous partial derivatives everywhere in U , then it suffices to look among only at those

points x at which ∇f(x) = 0.

Notice that it is vitally important that the set U be open. In an open set, starting from any

point, you can move around, at least a little bit, in all directions while staying inside the set. Hence

you can always move at least a little bit in any uphill or downhill direction. However, consider a set

that is not open, and has boundary points. At a boundary point, the uphill direction, say, might

take you out of the set. So the boundary point still might be a maximum. Consider for example the

function f(x, y) = x2 + y2 defined on the closed unit disc. Each of the boundary points ( cos θ, sin θ)

maximizes f on this set, even though the gradient is non-zero at each of them: The uphill direction

specified by the gradient leads outside the set, and the fact that one can go further uphill upon

leaving the set is irrelevant when we seek to maximize the function f in the set.

The discussion so far leads us to the definition of a critical point:

Definition 46 (Critical point). Suppose that f is defined and has all of its partial derivatives con-

tinuous in a neighborhood of some point x0. Then x0 is a critical point of f in case ∇f(x0) = 0.

Example 62 (Computing critical points). Let f(x, y) = x4 + y4 + 4xy. We readily compute

∇f(x, y) = 4(x3 + y, y3 + x) .

We find that ∇f(x, y) = (0, 0) if and only if x9 = x and y = −x3. Thus if x = 0, y = 0, If x 6= 0,

x8 = 1, and so x = ±1, and y = −x. Thus, there are the three critical points, namely

(0, 0) (− 1, 1) and (1,−1) .

The three critical points found in Example 62 are the only points at which f can possibly take

on either a maximum value or a minimum value. Computing the values of f at these critical points,

we find:

f(0, 0) = 0 and f(−1, 1) = f(1,−1) = −2 .

One might be tempted to conclude from this calculation that the maximum value of f on R2

is 0, and the minimum value of f on R2 is −2. The answer is only half-right, and the reasoning is
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wrong: On the basis of what has been worked out so far, we do not know that either a minimum or

a maximum exist.

Indeed, as you can easily check,

lim
n→∞

f(n, n) =∞ .

This means that f has no maximum on R2. On the other hand, f does have a minimum value, and

it is −2. It requires a bit more thinking to see this:

Example 63 (Finding a minimum). Let us show that f(x, y) = x4 + y4 + 4xy does have a minimum

value, and it is −2. First observe that when ‖x‖ is large, f(x) is also large, so there is no point in

looking outside a compact set for the minimum. To make this precise, let us compare f with a function

of ‖x‖, as we did in connection with the squeeze principle in Chapter Two. Using the inequalities

introduced there, we have

x4 + y4 ≥ (x2 + y2)2

2
and 2|xy| ≤ x2 + y2 .

Thus,

f(x) ≥ ‖x‖
2

2
− 2‖x‖ =

1

2
(‖x‖ − 2)2 − 2 .

In particular,

‖x‖ ≥ 4 ⇒ f(x) ≥ 0 . (4.9)

The set C := {(x, y) : ‖x‖ ≤ 4 } is closed and bounded. Therefore, by one of the key theorems

of Chapter 3, f has a minimum and maximum on C. While the maximum may (and in fact, does) lie

on the boundary of C, the minimum does not. Indeed, by (4.9), f(x) ≥ 0 for any x on the boundary

of C, and since f(−1, 1) = f(1,−1) = −2, no such point can be a minimizer of f on C. Hence, the

minimizers all lie in the interior of C, and must be critical points of f .

Hence, there are critical points of f that are minimizers of f . From our computation of critical

points made above, we see that (− 1, 1) and (1,−1) are minimizers of f , and the minimum value of

f is −2.

Later in the course, we shall return to minimization and maximization problems, and study them

in considerable detail. As you see from this example, finding critical points is one important part of

finding maxima and minima, but only one part.

4.1.5 The gradient and tangent planes

Let g be a differentiable function on R. Then the graph of y = g(x) is a curve in R2, and

y = g(x0) + g′(x0)(x− x0) (4.10)

is the equation of the tangent line to this curve at x0. This is the line that “best fits” the graph

y = g(x) at x0

Now consider a differentiable function f from R2 to R. The graph of z = f(x, y) is a surface.

We now show that when f is differentiable, there is a unique plane, the tangent plane that “best fits”

the graph z = f(x) at x0. Again, the derivative of f tells us what the tangent plane is.
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For example here is the graph of z = x2 + y2, together with the tangent plane to this graph at

the point (1, 1).
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Here is another picture of the same thing from a different vantage point, giving a better view of

the point of contact:
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We now ask:

• How does one compute that equation of the tangent plane to the graph of a differentiable function

f from R2 to R at x0 ∈ R2? For that matter, what is the precise definition of this tangent plane?

Let f be such that all of its partial derivatives are continuous in an open set U ⊂ R2. Fix any

x0 ∈ U . Then for some r > 0, U contains every point in the ball of radius r centered on x0. Hence,

whenever ‖x − x0‖ < r, x0 + t(x − x0) ∈ U for all 0 ≤ t ≤ 1. That is, U contains the line segment

connecting x0 with x.

Then by Theorem 41 and the fundamental Theorem of Calculus,

f(x)− f(x0) =

∫ 1

0

d

dt
f(x0 + t(x− x0))dt

=

∫ 1

0

∇f(x0 + t(x− x0)) · (x− x0)dt (4.11)

Now when x− x0 is small, x0 + t(x− x0)) is close to x0 for all t ∈ [0, 1]

Let us suppose that x is very close to x0, so that ‖x− x0‖ is very small. Then, if we make the
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approximation x0 + t(x− x0) ≈ x0, then by the continuity of the partial derivatives of f ,

∇f(x0 + t(x− x0)) ≈ ∇f(x0)

for all t ∈ [0, 1]. But the right hand side is independent of t, and so if we use this approximation in

(4.11), the integral in t is trivial, and we get

f(x)− f(x0) ≈
∫ 1

0

∇f(x0) · (x− x0)dt = ∇f(x0) · (x− x0) . (4.12)

As we shall see below, this is a very good approximation near x0; it is the tangent plane approximation.

Using the approximation

f(x) ≈ f(x0) +∇f(x0) · (x− x0) ,

the graph of z = f(x) is approximated near x0 by the graph of

z = f(x0) +∇f(x0) · (x− x0) .

To better appreciate the simplicity of this, let us write x = (x, y), ∇f(x0) := (a, b) and d :=

f(x0)−∇f(x0) · x0. Then this becomes z = ax+ by + d, or equivalently,

ax+ by − z = d .

This is the equation of a non-vertical plane in R3.

Definition 47 (Tangent plane). Let f be a function on U ⊂ R2 such that all of its partial derivatives

are continuous on U . Let x0 ∈ U . Then the tangent plane to the graph of z = f(x, y) at x0 = (x0, y0)

is given by

z = f(x0) +∇f(x0) · (x− x0) . (4.13)

By what we have noted above, if we define

A =

(
∂

∂x
f(x0, y0) ,

∂

∂y
f(x0, y0) , −1

)
X0 = (x0, y0, f(x0, y0))

X = (x, y, z) ,

the equation (4.13) is equivalent to

A · (X−X0) = 0 .

Notice how the gradient of f at x0 determines, but is not equal to, the normal vector A: The gradient

is a vector in R2, and the normal vector is a vector in R3.

Example 64 (Tangent planes). Consider the function f(x, y) = x2 + y2 with x0 = 1 and y0 = 1.

Since f is a polynomial, its partial derivatives are continuous everywhere. Then f(x0, y0) = 2 and

∇f(x0, y0) = (2, 2). Therefore (4.13) becomes

z = 2 + (2, 2) · (x− 1, y − 1) = 2x+ 2y − 2 .
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Thus the tangent plane to the graph of f at x0 is given by

z = 2x+ 2y − 2 .

Here is a three dimensional graph of f and together with this tangent plane for the region

|x− 1| ≤ 1 and |y − 1| < 1 :

As you see, the graphs are almost indistinguishable for x and y in the region

|x− 1| ≤ 0.2 and |y − 1| < 0.2 .

Let us “zoom in” on this region:

The vertical separation between the graphs is getting to be a pretty small percentage of the dis-

played distances. The graphs are almost indistinguishable. Let’s zoom in by a factor of 10, and have

a look for

|x− 1| ≤ 0.02 and |y − 1| < 0.02 .
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Now, the graphs really are indistinguishable. The geometric meaning of the differentiability of f

at x0 is exactly this “good fit” between the graph of z = f(x, y) and z = f(x0, y0) + (x− x0, y − y0) ·
∇f(x0, y0).

In our definition of the tangent plane, we have included the requirement that all of the partial

derivatives of f be continuous. This is what guaranteed that the tangent plane in the previous

example had the very close fit to the graph of the original function f that we saw in the last example.

As we see in the next example, without the continuity hypothesis, they may be no plane at all that

fits so well, and hence no plane at all deserving to be called a tangent plane.

Example 65 (No tangent plane). Consider the function f defined by

f(x, y) =


2xy

x4 + y4
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
(4.14)

As you can check, both partial derivatives are defined everywhere and

f(0, 0) = 0
∂f

∂x
(0, 0) = 0 and

∂f

∂y
(0, 0) = 0 .

Hence, if we naively applied that tangent plane approximation formula without first checking

continuity, we would conclude that

z = 0

is a food approximation to z = f(x, y) near (0, 0). In fact, it is a terrible approximation. For instance

f(t, t) = t−2

which gets larger and larger as (t, t) approaches (0, 0). The more you zoom in, the worse the approx-

imation looks.

Moreover, no other plane does any better. If we try the approximation f(x, y) ≈ ax+ by + d for

any a, b and d, we have

|f(t, t)− [at+ bt+ d]| = |t−2 − at− bt− d|

and this approaches infinity as (t, t) approaches (0, 0). The problem is that the partial derivatives of

f are not continuous at (0, 0).
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We have just seen that if the partial derivatives of f are not continuous, the tangent plane

approximation may not be at all meaningful. We now show that whenever the partial derivatives are

continuous, then it is a very good approximation, getting better and better the more one “zooms in”

as in Example 64.

First, we define differentiability of a function f from Rn to R so that, for n = 2, it means exactly

that that f has a good tangent plan approximation at x0:

Definition 48 (Differentiability of functions from Rn to R). A function f from Rn to R is dif-

ferentiable at x0 in case there is a vector a ∈ Rn such that for all ε > 0, there is a δε > 0 such

that

‖x− x0‖ < δε ⇒ |f(x)− [f(x0) + a(x− x0)]| < ε‖x− x0‖ . (4.15)

An equivalent way to express (48), which “hides” the ε and δ in the definition of a limit, is

lim
x→x0

|f(x)− [f(x0) + a(x− x0)]|
‖x− x0‖

= 0 . (4.16)

Before going further, let’s carefully what the definition says when n = 2. Note that the graph of

the function h(x) := f(x0)+a(x−x0) is a plane in R3 passing through (x0, y0, f(x0, y0)), as does the

graph of f itself. The definition says that if you “zoom in ” enough – plot the graphs for ‖x−x0‖ < δ

for some sufficiently small δ – then |f(x)− h(x)|, the vertical separation of the graphs of f and h is

an arbitrarily tine percentage of ‖x− x0‖, and of course the graph of h is plane. Thus if you “zoom

in” enough, you will not be able to visually distinguish any difference in the graphs: The graph of f

will appear planar on this scale. Refer back to the pictures in Example 64, and make sure you see

how as ‖x− x0‖ gets small, not only does the vertical also separation get small– it becomes a small

percentage of the the already small quantity ‖x− x0‖.
Having explained the relation between the definition of differentiability and the tangent plane

approximation in n = 2, we return to the general case of arbitrary n.

Now observe that if f is differentiable at x0, so that (4.16) is satisfied for some a, there is exactly

one a for which (4.16) is satisfied, namely a = ∇f(x0). To see this, consider t 6= 0 and x = x0 + tej

for some j ∈ {1, . . . , n}. Then

|f(x)− [f(x0) + a(x− x0)]|
‖x− x0‖

=
|f(x0 + tej)− f(x0)− ta · ej |

|t|

=

∣∣∣∣f(x0 + tej)− f(x0)

t
− a · ej

∣∣∣∣ .
Then (4.16) is satisfied if and only if

lim
t→0

f(x0 + tej)− f(x0)

t
= a · ej .

The left hand side is
∂

∂xj
f(x0) and hence, if f is differentiable at x0, for each j− 1, . . . , n,

∂

∂xj
f(x0)

exists, and the unique vector a for which (4.16) is satisfied is a = ∇f(x0).

Therefore, when f is differentiable at x0, it makes sense to refer to ∇f(x0) as the derivative

of f at x0, and we shall do so. However, as Example 65 shows, mere existence of the partial

derivatives necessary to write down ∇f(x0) is not a sufficient condition for f to be differentiable at

x0. Fortunately, only a little more does suffice:
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Theorem 42. Let f be a function on Rn, and suppose that the partial derivatives of f ,
∂

∂xj
f(x),

j = 1, . . . , n, all exist and are continuous on some open set U ⊂ Rn. Then for any x0 ∈ U , f is

differentiable at x0.

Proof. By the fundamental Theorem of Calculus and the Chian Rule, exactly as in (4.11),

f(x) = f(x0) +

∫ 1

0

∇f(x0 + t(x− x0)) · (x− x0)dt ,

Now substracting f(x0) +∇f(x0) · (x− x0) from both sides, we have

∣∣f(x)− [f(x0) +∇f(x0) · (x− x0)]
∣∣ =

∣∣∣∣∫ 1

0

[∇f(x0 + t(x− x0))−∇f(x0)] · (x− x0)dt

∣∣∣∣ . (4.17)

By the Cauchy-Schwarz inequality,∣∣∇f(x0 + t(x− x0))−∇f(x0)] · (x− x0)
∣∣ ≤ ‖∇f(x0 + t(x− x0))−∇f(x0)]‖‖x− x0‖ . (4.18)

Consider the function g(y) defined by

g(y) := ‖∇f(x0 + y)−∇f(x0)] . (4.19)

Then we may rewite (4.18) as∣∣∇f(x0 + t(x− x0))−∇f(x0)] · (x− x0)
∣∣

‖x− x0‖
≤
∫ 1

0

g(t(x− x0))dt . (4.20)

Since the partial derivatives of f are continuous, g is continuous and g(0) = 0. Thus for all ε > 0,

there is a δε > 0 such that

‖y‖ < δε ⇒ g(y) < ε . (4.21)

Then for x such that ‖x−x0‖ < δε, g(t(x−x0)) < ε for all t ∈ [0, 1], and then

∫ 1

0

g(t(x− x0))dt < ε.

Using this in (4.20), we have

‖x− x0‖ < δε ⇒
∣∣f(x)− [f(x0) +∇f(x0) · (x− x0)]

∣∣ < ε‖x− x0‖ ,

which is (4.15) with a = ∇f(x0).

What makes the tangent plane approximation so useful is that it provides “the best linear

approximation” to the possibly complicated function f(x) − f(x0) by the linear function ax + by

where (a, b) = ∇f(x0). It is the “best” such approximation in that the function h(x) = a · (x− x0)

is such that

lim
x→x0

|(f(x)− f(x0)− h(x)|
‖x− x0‖

= 0

only for for a = ∇f(x0): Any other linear approxiation fails to fit this well: No matter how much

one “zooms in” on the graphs near (x0, y0), they will stay distinguishable.

•They key idea of the differential calculus is to approximate non-linear functions by their “best linear

approximation” wherever possible.
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For functions f from R2 to R that have continuous partial derivatives, it is the tangent plane

that provides the best linear approximation. But what about functions f from Rn to Rm? To move

forward, we need to do three things:

(1) We need to explain what a linear function from Rn to Rm is.

(2) We need to explain what “best linear approximation” means in precise terms.

(3) We need to explain why it is so useful to approximate non-linear functions by linear functions,

and how methods of exact calculation can be based on a sequence of successive linear approximations.

In the next section we deal with the first task.

4.2 Linear functions from Rn to Rm

Definition 49 (Linear functions). Let f be a function defined on Rn with values in Rm. Then f is

a linear function in case for all s, t ∈ R and all x,y ∈ Rn.

f(sx + ty) = sf(x) + tf(y) . (4.22)

Specializing to y = 0, we see that for all s ∈ R and x ∈ Rn,

f(sx) = sf(x) .

A function f : Rn → Rm with this property is said to be homogeneous. Thus, linear functions are

always homogeneous.

Further specializing to s = 0, since 0x = 0 for all x, (4.22) becomes f(0) = 0: A linear function

always has the output value 0 at the input value 0. The following theorem establishes another key

property of linear functions

Theorem 43 (Linear functions respect linear combination). Let f : Rn → Rm be linear. Then for

any linear combination

r∑
j=1

xjxj in Rn,

f

 r∑
j=1

xjxj

 =

r∑
j=1

xjf(xj) . (4.23)

Proof. If r = 2, this follows from the definition of linearity, or the remark made on homogeneity

following this definition. The general case is proved by induction:

f

 r∑
j=1

xjxj

 = f

x1x1 + 1

 r∑
j=2

xjxj

 = x1f(x1) + f

 r∑
j=2

xjxj

 ,

where in the last equality we have used the definition of linearity. Now making the inductive hypoth-

esis that the theorem is true for all linear combinations of r − 1 or fewer vectors,

f

 r∑
j=2

xjxj

 =

r∑
j=2

xjf(xj) .

Combining results, we have proved (4.23).
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4.2.1 The matrix representation of linear functions

Let f : Rn → Rm be linear. Theorem 43 tells us that for any x =

n∑
j=1

xjej ∈ Rn,

f(x) = f

 n∑
j=1

xjej

 =

n∑
j=1

xjf(ej) . (4.24)

The right hand side of (4.24) is a linear combination of the n vectors

f(ej) j = 1, . . . , n .

• All of the data needed to compute f(x) for any x = (x1, . . . , xn) ∈ Rn is the list of the n vectors

f(ej) for j = 1, . . . , n.

Example 66 (Evaluating a linear function f given f(ej), j = 1, . . . , n.). Consider a linear function

f : R3 → R3 such that

f(e1) = (− 2, 1, 2) f(e2) = (1,−2, 2) and f(e3) = (1, 1, 1) . (4.25)

Then,

f(2, 3, 4) = f (2e1 + 3e2 + 4e3)

= 2f(e1) + 3f(e2) + 4f(e3)

= 2(− 2, 1, 2) + 3(1,−2, 2) + 4(1, 1, 1)

= (3, 0, 14) .

• This feature of linear functions is the essence of their simplicity. Though there are infinitely many

possible inputs x at which a linear function f might be evaluated, once you know the values of f(ej)

for each j ∈ {1, . . . , n}, you know how to evaluate f(x) for any x ∈ Rn.

Definition 50 (Matrix of a linear transformation). Let f : Rn → Rm be linear. The matrix Af

corresponding to f is the list of the n vectors {f(e1), . . . , f(en)} in Rm, which is written as an m×n
array with f(ej) in the jth column of the array. We express this by writing

Af = [f(e1), . . . , f(en)] . (4.26)

An m× n matrix A is any such m× n array of numbers. The i, jth entry in the the matrix A is

denoted Ai,j.

Example 67. Let f be the function from R3 to R3 given by (4.25). Then placing the three vectors

f(e1), f(e2) and f(e3), respectively, as the columns in a 3× 3 array, we have

Af :=


−2 1 1

1 −2 1

2 2 1

 .
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With regard to most problems we shall encounter here, it is more helpful to think of matrices as

lists of vectors rather than rectangular arrays of numbers. That is, we will find it useful to think of

the matrix Af in Example 67 as a list of three vectors:

Af = [v1,v2,v3] ,

and sometimes to write the vectors themselves as vertical lists of numbers, departing from our practice

up to now of writing vectors as horizontal lists of numbers. In this vertical list notation, we would

write, still referring to Example 67,

v1 =


−2

1

2

 v2 =


1

−2

2

 and v3 =


1

1

1

 .

Example 68 (The matrix of a Householder reflection in R3). Let u =
1√
3
(− 1, 1,−1), and con-

sider the Householder reflection hu. We have seen in Chapter One that x 7→ hu(x) is a linear

transformation from R3 to R3. What is the 3× 3 matrix that represents this linear transformation?

To answer this question, we need only compute hu(e1), hu(e2) and hu(e3), and place these

vectors in the first, second and third columns of a 3×3 matrix. From the formula hu(x) = x−2(d·u)u,

it is easy to compute hu(e1), hu(e2) and hu(e3), and hence the corresponding matrix. One finds:

Ahu =
1

3


1 2 −2

2 1 2

−2 2 1

 .

This is the 3×3 matrix representing the linear transformation hu. Make sure you do the computations

yourself, in full detail.

Example 69 (The matrix of a cross product transformation). Let b ∈ R3 be given by

b = (a, b, c) .

Consider the function f : R3 → R3 given by

f(x) = b× x .

We have seen in Chapter One that for any s, t ∈ R and x,y ∈ R3,

b× (sx + ty) = s(b× x) + t(b× y) .

Thus, f is linear. What is the 3× 3 matrix that represents this linear transformation?

To answer this question, we need only compute f(e1), f(e2) and f(e3), and place these vectors

in the first, second and third columns of a 3× 3 matrix. The result is:

Af =


0 −c b

c 0 −a
−b a 0

 .

Make sure you do the computations yourself, in full detail.
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Example 70 (The identity matrix). The next example is really simple, but also really important.

The identity transformation Id on Rn is given by

Id(x) = x .

What could be more simple?

Since, by definition,

Id(sx + ty) = sx + ty = sId(x) + tId(y) ,

the identity transformation is linear. What is the corresponding n× n matrix?

Since Id(ej) = ej, it is the n × n matrix with ej, written as column vector, in the jth column.

For example, the 4× 4 identity matrix, representing the identity transformation on R4, is

I4×4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

So far, we have seen that a list of the vectors [f(e1), . . . , f(en)] is all that one needs to compute

f(x) given x = (x1, . . . , xn). How can we automate this computational process?

•The multiplication of matrices and vectors is defined so that if Af is the matrix corresponding to the

linear function f , the matrix product Afx, yields f(x), the value of the function f at x.

Definition 51 (Matrix-vector multiplication). Let A = [v1, . . . ,vn] be an m × n matrix, where the

jth column of A is the vector vj ∈ Rm. For every vector x = (x1, . . . , xn) ∈ Rn, the product of the

matrix A and the vector x is the vector

Ax = [v1, . . . ,vn](x1, . . . , xn) =

n∑
j=1

xjvj . (4.27)

In particular, for a linear function f : Rn → Rm, and Af = [f(e1), . . . , f(en)], we have

Afx = [f(e1), . . . , f(en)](x1, . . . , xn) =

n∑
j=1

xjf(ej) = f

 n∑
j=1

xjej

 = f(x) .

Thus, the definition of matrix-vector multiplication has been arranged so that

f(x) = Afx . (4.28)

By Definition 51, for any m×n matrix A, Aej is the jth column of A. Since Ai,j is by definition

the ith entry of the jth column of A, and since the ith entry of any vector y ∈ Rm is given by

y1 = ei · y, it follows that

Ai,j = (Aej)i = ei ·Aej . (4.29)

So far, we have considered m × n matrices as lists of n vectors in Rm, through the relation

A = [Ae1, . . . , Aen].
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It is also profitable to consider an m× n matrix as a list of m vectors in Rn, namely the n rows

in A. For example, if

A =


−2 1 1 5

1 −2 1 0

2 2 1 −1

 .

the three rows of A, a1, a2 and a3 are

a1 = (− 2, 1, 1, 5 )

a2 = ( 1,−2, 1, 0 )

a3 = ( 2, 2, 1,−1 ) .

(4.30)

Thinking of A as a list of its rows allows us to think of matrix multiplication in terms of the dot

product, and brings geometry into the picture. The key observation is that the ith entry of Ax is

the dot product of the ith row of A with x. Indeed, the ith entry of Ax is given by

(Ax)i = ei ·Ax = ei ·

 n∑
j=1

(Aej)xj

 =

n∑
j=1

(ei ·Aej)xj =

n∑
j=1

Ai,jxj (4.31)

Defining the vector

ai = (Ai,1 . . . , Ai,n), (4.32)

which is the ith row of A, we can rewrite the conclusion of (4.31) as (Ax)i = ai · x. This gives us a

formula for matrix-vector multiplication in terms of the rows of A:

Ax = (a1 · x, · · ·an · x) for A =


a1

...

am

 . (4.33)

Along the way to (4.33) we encountered another formula, with which you may be familiar:

(Ax)i =

n∑
j=1

Ai,jxj . (4.34)

The formulae (4.33) and (4.34) are two ways of expressing the same thing. If one primarily thinks

of m by n matrices as m by n rectangular arrays of numbers, then (4.34) is natural. And it certainly

has its uses.

However, the geometric interpretation of the dot product together with (4.33) will allow us to

use geometric methods to solve equations involving linear transformations. This turns out to be far

more useful that one might expect. Let us summarize:

Theorem 44 (Matrix vector multiplication in terms of matrix rows). Let A =


a1

...

am

 be an n×m

matrix expressed as a list of its m rows. Then for any x ∈ Rn,

Ax = (a1 · x, . . . ,am · x) .
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The “row representation” is closely connected with our practice of writing any sort of function

from Rn to Rm in the form

f(x) = (f1(x), . . . , fm(x)) ,

that is, in terms of a list of m functions from Rn to R. As you see, each fi(x) is given by

fi(x) = ei · f(x) . (4.35)

Now suppose that f happens to be the linear transformation from Rn to Rm given by an m× n

matrix A by f(x) = Ax. Let us write A in terms of its rows: A =


a1

...

am

. Then by (4.31), (4.32)

and (4.33), (4.36) becomes

fi(x) = ei ·Ax = ai · x . (4.36)

The following theorem gives us an alternative way to think about linear functions form Rn to

Rm:

Theorem 45. A function f from Rn to Rm is linear if and only if for some m × n matrix A, and

all x ∈ Rm,

f(x) = Ax .

Proof. We have seen that if f is linear, then with A = [f(e1), . . . , f(en)], f(x) = Ax for all x.

Conversely, suppose A is any m× n matrix, let a1, . . . ,am be its rows so that

Ax = (a1. · x, . . . ,an · x) . (4.37)

Note that fact that for all a, y and z ∈ Rn and all s and t,

a · (sy + tz) = sa · by + ta · z . (4.38)

Taking x = sy + tz in (4.37) and using (4.38) in each entry, A(sy + tz) = aAy + tAz, so the function

defined by sending x to Ax is linear for all n× n matrices A.

As we shall see, there are many convenient “matrix manipulation” methods for solving equations

such as Ax = b. In fact, linear algebra provides a complete set of methods for answering almost

any question concerning linear transformations. There is no such complete theory for non-linear

transformations, which is why linear approximation is so important.

Thus, linear algebra is an essential part of the theory of multivariable calculus, and we shall

introduce many aspects of linear algebra as we develop the theory of multivariable calculus. Of

course in single variable calculus, m = n = 1, and there is not much to say about 1 × 1 matrices:

Linear algebra in one variable is trivial, and it does not get mentioned by name in single variable

calculus. But already with two variables, it plays an essential role.

• Before proceeding, let us be clear on the notation we shall use: Some texts make a distinction

between row vectors and column vectors. We shall not. Instead, we shall simply write vectors in Rn

in either row or column form, using whichever notation seems convenient at the time. In particular,

the dot product of two vectors r and x means exactly what it meant in Chapter 1, even if now we

write one vector as a row and the other as a column.
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4.2.2 Composition of linear functions and matrix multiplication

Let f be a linear function from Rn to Rm, and let g be a linear function from Rm to Rp. Since the

range of f lies in the domain of g, the composition g ◦ f is well defined by

g ◦ f(x) = g(f(x)) .

Let A = [v1, . . . ,vn] be the n× n matrix representing f , so that

bff(x) =
∑n
j=1 xjvj . Then since g is linear, there is an m × p matrix B representing g. We then

have, using first the linearity of g and then the matrix representation,

g ◦ f(x) = g

 n∑
j=1

xjvj

 =

n∑
j=1

xjg(vj) =

n∑
j=1

xjBvj .

In particular, if we define the n×p matrix C by C = [Bv1, . . . , Bvn]. then we have that g◦f(x) = Cx.

Since matrix multiplication is always a linear operation – see Theorem 45 – the composition g◦ f
of linear functions g and f is always linear, and is there fore represented by a matrix. We now define

matrix multiplication so that the matrix representing g ◦ f is the matrix product of the matrices

representing g and f .

Definition 52 (Matrix multiplication). Let A be an m× n matrix with columns v1, . . . ,vn so that

A = [v1, . . . ,vn] .

Let B be an n× p matrix Then the matrix product of B and A is the n× p matrix BA where

BA = [Bv1, . . . ,vn] .

Example 71. Let A =


1 2

2 1

1 1

. Let B =

[
1 2 −2

2 1 −1

]
. Then v1 = (1, 2, 1) and v2 = (2, 1, 1)

be the columns of A. We compute Bv1 = (3, 3) and Bv2 = (2, 4). Writing these vectors in as the

columns of BA we get

BA =

[
3 2

3 4

]
.

Next, let w1 = (1, 2), w3 = (2, 1) and w3 = (− 2,−1) be the columns of B We then compute

Aw1 = (5, 4, 3) , Aw2 = (4, 3, 3) , and Aw2 = (−4,−3,−3) .

Writing these vectors in as the columns of AB we get

AB =


5 4 −4

4 5 −5

3 3 −3

 .

Note that AB 6= BA. That is matrix multiplication is not commutative. In this example AB and

BA are even matrices of different sizes. Even worse, let C be any 2 × 2 matrix. Then, since A is

3× 2, AC is defined, but CA is not even defined.
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Theorem 46 (Matrix multiplication and composition of linear functions). Let f be a linear function

from Rn to Rm, and let g be a linear function from Rm to Rp. Let A be the n×m matrix representing

f , and let B be the m× p matrix representing g. Then g ◦ f is a linear function from Rn to Rp, and

BA is matrix representative.

Proof. By definition, the matrix representing g ◦ f is C := [g ◦ f(e1), . . . ,g ◦ f(en)] by definition of

B, g ◦ f(ej) = Bf(ej). Thus,

C = [Bf(e1), . . . , Bf(en)] = B[f(e1), . . . , f(en)] = BA .

Corollary 5 (Associativity of matrix multiplication). Let A be an n×m, let B be a m× p matrix,

and let C be a p× q matrix. Then

A(BC) = (AB)C .

In other words, matrix multiplication is associative.

Proof. Let f , g and h be the linear transformations corresponding to A, B and C respectively. Then

A(BC) is the matrix representative of f ◦ (g◦h) and (AB)C is the matrix representative of (f ◦g)◦h.

But by definition, for all x,

[f ◦ (g ◦ h)](x) = f(g ◦ h)(x)) = f(g(h(x))) = (f ◦ g)(h(x)) = [(f ◦ g) ◦ h](x) .

In other words, since the composition of functions is associative – linear or not – matrix multiplication

is associative because it directly represents composition of linear functions.

4.2.3 Solving the equation Ax = b

Let f be a linear function from Rn to Rm. Let A := Af be its m× n matrix. Let b be a given vector

in Rm. A basic problem of linear algebra is to find all vectors x ∈ Rn, if any, that satisfy the equation

Ax = b , (4.39)

or what is the same thing, to find all vectors x ∈ Rn, if any, that satisfy f(x) = b. There are two

basic questions: When do solutions exist? Supposing a solution does exist, is it unique? These are

usually referred to as the existence and uniqueness questions.

Concerning the existence question, let A = [v1, . . .vn] be an m × n matrix written as a list of

its columns. If x = (x1, . . . , xn), then Ax =
∑n
j=1 xjvj . Note that the right hand is the general

element of Span({v1, . . . ,vn}). Hence there exists a vector x ∈ Rn such that Ax = b if and only if

b ∈ Span({v1, . . . ,vn}). This proves:

Theorem 47. Let A = [v1, . . .vn] be an m × n, and let b ∈ Rm. Then Ax = b has at least one

solution if and only if b ∈ Span({v1, . . . ,vn}).

Definition 53 (Column space of a Matrix). A = [v1, . . .vn] be an m×n matrix. Then the subspace

of Rm – which may be all of Rm – spanned by the columns of A is called the column space of A, or

the range of A, and is denoted Ran(A). That is, Ran(A) = Span({v1, . . . ,vn})
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We now turn to the uniqueness question, which we shall see is intimately related to the corre-

sponding question for the homogeneous equation

Ax = 0 . (4.40)

While Ax = b may have no solutions, the equation Ax = 0 always has at least one solution, namely

x = 0, which is called the trivial solution.

Theorem 48. Let A =


a1

...

am

 be an m×n matrix. The solution set of the equation Ax = 0 is the

set of vectors that is orthogonal to each row of A; that is, the subspace of Rn given by {a1, . . . ,am}⊥.

Proof. This is an immediate consequence of (4.33), the formula for matrix-vector multiplication in

terms of rows.

The orthogonal complement of any set of vectors in Rn is always a subspace of Rn; see Theo-

rem 19. and moreover, again by Theorem 19, it is also the orthogonal complement of the span of this

set of vectors. That is, Null(A) is the orthogonal complement of the span of the rows of A.

Definition 54 (The null space and the row space of a matrix). The null space of an m×n matrix A,

denoted Null(A), is the orthogonal complement of the set of rows of A, or equivalently by Theorem 48,

the set of solutions of Ax = 0. The row space os A is the subspace of Rn spanned by the rows of A.

Theorem 49. Let A be an m× n matrix. Then solutions of Ax = b are unique whenever they exist

if and only if Null(A) = {0}; i.e., if and only if the only solution of Ax = 0 is the trivial solution.

Proof. If Az = 0 for some z 6= 0, and if Ax0 = b, then for any t ∈ R, A(x0 + tz) = Ax0 + tAz = b,

so that x + tz is a line of infinitely many solutions of Ax = b. Hence Null(A) = {0} is necessary for

solutions to be unique when they exist.

To see that it is sufficient, suppose that Null(A) = {0}, and suppose that Ax1 = b and Ax2 = b.

Then A(x1 − x2) = b − b = 0, so that x1 − x2 = 0. That is, the two solutions x1 and x2 are the

same.

We are now ready to draw some important conclusions. Let A be an m× n matrix. According

to Theorem ??, Ax = b has at least one solution for every b ∈ Rm if and only if Ran(B) = Rm.

According to Theorem 49, solutions of Ax = b are unique when they exist if and only if Null(A) = {0}.
But since Null(A) is the orthogonal complement of the row space of A. Null(A) = {0} if and only if

the row space of A is all of Rn.

Thus, an m × n matrix A defines a linear transformation from Rn to Rm that is onto Rn; i.e.,

for every b ∈ Rm there is at least one x ∈ Rm such that Ax = b if and only if the the column space

of A is all of Rm. Moreover, it is one-to-one; i.e., if Ax1 = b and Ax2 = b, then x1 = x2, if and only

if the row space of A is all of Rn.

Since any function is invertible if and only if it is both onto and one-to-one, the linear transfor-

mation from Rn to Rm defined by an m × n matrix A is invertible if and only if the column space
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of A is all of Rm, and the row space of A is all of Rn. The next theorem says, among other things.

that this can only happen when m = n.

Theorem 50 (Fundamental Theorem of Linear Algebra). Let A be an m × n matrix. Then the

dimension of the columns space of A equals the dimension of the row space of A.

Definition 55 (Rank of a matrix). The rank of an m × n, rank(A), matrix A is the dimension of

its column space, or, equivalently the dimension of its row space.

By Theorem 50 the rank of an m×n matrix A can be no larger than min{m,n}, and hence when

m 6= n, it is impossible to have both that the row space is Rn and the column space is Rm. Thus,

only square matrices; i.e., those with m = n, can ever represent invertible transformations. This is

the negative message coming from Theorem 50.

The positive message is what makes the theorem fundamentally important: Let A be an n × n
matrix. Suppose we know that Ax = b has a solution for every b in Rn. Then the column space of

A is all of Rn, and so the rank of A is n. But then by Theorem 50, the row space of A is all of Rn,

and hence Null(A)) = 0. In short, if Ax = b has a solution for each b, it automatically follows that

this solutions is unique. In other words, if the linear transformation from Rn to Rn represented by

A is onto, it is also one-to-one and hence invertible.

The same reasoning shows that if A is an n× n matrix, and the the linear transformation from

Rn to Rn represented by A is one-to-one, then it is also onto, and hence invertible.

• To prove invertibility of a linear transformation f from Rn to Rn, one need only show that it is

either onto or one-to-one; the rest follows automatically. Moreover, this can be done by computing

the rank of the matrix A that represents f , and showing that the rank is n.

One way to compute the rank of a matrix A is to apply the Gram-Schmidw Algorithm to the

columns of A to produce an orthonormal basis for the column space of A. The rank of A is the

number r of vectors in this orthonormal basis. As we shall see in the next subsection, computing

such an orthonormal basis tells us much more than the rank of A: It is the basis of a powerful method

of solving Ax = b in general, and it is the basis of a simple proof of the Fundamental Theorem of

Linear Algebra.

4.2.4 QR factorization

For special types of matrices A, it is very easy to solve Ax = b. Here is one such case. Suppose m = n,

and let {u1, . . . ,un} be any orthonormal basis of Rn. Let Q be the n × n matrix Q = [u1, . . . ,un].

To explicitly solve Qx = b, all we have to do is to find numbers x1, . . . , xn such that b =

n∑
j=1

xjuj .

Since {u1, . . . ,un} is an orthonormal basis of Rn, b =

m∑
j=1

(b · uj)uj . Therefore, the unique solution

to Qx = b is the vector x defined by

x = (b · u1, . . . ,b · um) =


u1

...

un

b . (4.41)
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Definition 56 (Transpose of a matrix). Let A = [v1, . . . ,vn] be an n× n matrix. The transpose of

A is the n×m matrix AT given by


v1

...

vn

.

Using this definition, we may write (4.41) as x = QTb. Summarizing, if Q is an n × n matrix

with orthonormal columns, for all b ∈ Rn, Qx = b has a unique solutions which is x = QTb.

Example 72. Let Q =
1

3


1 2 −2

2 −2 −1

2 1 2

 and b = (1, 2, 3). As one readily checks, the columns of

Q are orthonormal.

The unique solution of Qx = b is then the vector

x = QTb = (b · u1,b · u2,b · u3) =
1

3
(11, 1, 2) .

Of course there is nothing special about the vector (1, 2, 3).

More generally consider m × r matrix Q = [u1, . . . ,ur] with orthonormal columns. Since the

columns belong to Rm, r ≤ m. If r = m it is essentially the case we just considered, so suppose that

r < m.

By definition, QTQ = [QTu1, . . . , Q
Tur], and for each j, QTuj = (u1 · uj , . . . ,un · uj) = ej .

That is,

QTQ = Ir×r, (4.42)

where Ir×r is the r × r identity matrix.

The identity (4.42) implies that Null(Q) = {0}: If Qx = 0, then x = QTQx = QT0 = 0. In

fact, more is true: If x = (x1, dots, xr), Qx =
∑r
j=1 xjuj , and by the Pythagorean Theorem,

‖Qx‖2 =

∥∥∥∥∥∥
r∑
j−1

xjuj

∥∥∥∥∥∥
2

=

r∑
j=1

x2
j = ‖x‖2 .

We have proved:

Lemma 12. Let Q be an m × r matrix whose columns are orthonormal. Then (4.42) is valid, and

for all x ∈ Rr, ‖Qx‖ = ‖x‖. In particular, Null(Q) = {0}.

Matrices with orthonormal columsn are therefore very special, and square (n×n) matrices with

this property are more special still. Therefore, the fact that we can easily solve Qx = b when Q is

an n× n matrix with orthonormal columns may appear to be an exceptional curiousity. It is not.

Let A = [v1, . . . ,vn] be any m×n matrix. By Theorem ??, the set of vectors b for which Ax = b

has a solution is precisely the span of the columns of A, Span({v1, . . . ,vn}).
Applying the Gram-Schmidt Algorithm to {v1, . . . ,vn} produces an orthonormal set {u1, . . . ,ur}

of r vectors, and we have seen that r ≤ min{m,n}. By Theorem 16,

Span({v1, . . . ,vn}) = Span({u1, . . . ,ur}) . (4.43)
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Therefore, for each 1 ≤ j ≤ n, vj ∈ Span({u1, . . . ,ur}) and hence there are numbers Ri,j , 1 ≤ i ≤ r,
1 ≤ j ≤ n, such that

vj =

r∑
i=1

Ri,jui . (4.44)

Theorem 6 gives us an explicit formula for Rk,j , namely

Ri,j = ui · vj .

Define R to be the r × n matrix whose i, j entry is Ri,j = ui · vj . Define Q to be the m× r matrix

whose kth column is uk. Then since (R1,j , . . . , Rr,j) is the jth column of R, (4.44) says that vj is

the jth column of QR. That is, A = QR. This is the QR factorization of A.

It is extremely important because A is a general m× n matrix, while Q and R are very special:

The columns of Q are orthonormal, while R has a “staircase structure”, which makes R another

particularly simple kind of matrix to deal with.

Example 73 (QR factorization). Consider the 3× 3 matrix A =


1 4 3

2 2 −3

2 5 6

. Write this in the

form A = [v1,v2,v3]. Apply the Gram-Schmidt algorithm to {v1,v2,v3} to produce {u1,u3,u3},

and define Q = [u1,u3,u3]. Doing the computations, one finds Q =
1

3


1 2 −2

2 −2 −1

2 1 2

.

It is now a simple matter to compute

R =


u1 · v1 u1 · v2 u1 · v3

u2 · v1 u2 · v2 u2 · v3

u3 · v1 u3 · v2 u3 · v3

 =


3 6 3

0 3 6

0 0 3

 .

You can now easily check that A = QR, though we have already proved this to be true.

Notice that the matrix R is “upper triangular”, meaning that all of the entries below the main

diagonal are zero.

This is not an accident. By the very nature of the Gram-Schmidt Algorithm, v1 is a linear

combination of u1 alone, v2 is a linear combinations of only u1 and u3. This gives the coefficient

matrix R its triangular structure,

The upper triangular matrix with positive diagonal entries that we encountered in the previous

example belongs to a general class of simple matrices that we now introduce.

Definition 57 (Echelon form). An m×n is in echelon form in case the first non-zero entry in each

row lies strictly to the right of the first non zero entry in the row just above it for all rows after the

first row. The first non-zero entries in each row are called the pivotal entries.

Here is a schematic picture of a 4× 7 matrix in echelon form. In the schematic, a • denotes an
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entry that is definitely non-zero, and an ∗ denotes an entry that may be zero or non zero.
0 • ∗ ∗ ∗ ∗ ∗
0 0 • ∗ ∗ ∗ ∗
0 0 0 0 • ∗ ∗
0 0 0 0 0 0 0

 . (4.45)

Notice that the requirement that the first non-zero entry in each row lies strictly to the right

of the first non zero entry in the row just above it gives such matrices a “staircase” structure, with

steps occurring at each pivotal entry.

Lemma 13. Let {v1, . . . ,vn} be any set of n vectors in Rm. Suppose that the Gram-Schmidt Algo-

rithm applied to {v1, . . . ,vn} yields an orthonormal set {u1, . . . ,ur} of r vectors. Define the r × n
matrix R by Ri,j = ui · vj for all i ≤ i ≤ r and all 1 ≤ j ≤ n. Then R is in echelon form with no

zero rows and all pivotal entries are positive.

Proof. For each 1 ≤ i ≤ r, define define j(i) to be the least value of j such that applying the Gram-

Schmidt Algorithm to {v1, . . . ,vj} produces a set of i vectors. Then, by definition, the vector vj(i)

is not discarded, and

0 6= wi = vj(i) −
i−1∑
k=1

(vj(i) · uk)uk .

Since wi = ‖wi‖ui, taking the dot product of both sides with ui yields ‖wi‖ = ui · vj(i). That is

Ri,j(i) = ui ·vj(i) > 0. Next, for j < j(i), by Theorem 16, vj is a linear combination of {u1,uj(i)−1},
and hence is orthogonal to ui. That is Ri,j = 0 for all j < r(i).

We have proven so far that the first non-zero entry in the ith row of R occurs in the j(i)th

column. It remains to observe that, by its very definition, j(i) is a strictly increasing function of i.

Therefore, the first non-zero entry in each row after the first lies strictly to the right of the first non

zero entry in the row just above.

Theorem 51 (QR factorization). Let A be an m×n matrix, and let r be the rank of A. Then there

exist an m× r matrix Q whose columns are orthonormal, and an r×m matrix in echelon form such

that A = QR.

Proof. The proof is simply a recapitulation of the discussion above, and it tells us how to compute

Q and R. Let A = [v1, . . . ,vn]. Apply the Gram-Schmidt Algorithm to the columns of A to produce

{u1, . . . ,ur}. Define Q = [u1, . . . ,ur]. Next, define R by Ri,j = ui · vj . Then for each j = 1, . . . , n,

vj =

r∑
i=1

(ui · vj)ui =

r∑
i=1

Ri,jui .

The right hand side is simply the matrix-vector product of Q and (R1,j , . . . , Rr,j), which is the jth

column of R. Hence, with rj denoting the jth column of R, we have [v1, . . . ,vn] = [Qr1, . . . , Qrn]

which means that A = QR. Finally, by Lemma 13, R is in echelon form.
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Example 74 (Computing and using aQR factorization). Consider the 3×4 matrix A =


1 4 3 3

2 2 0 −3

2 5 3 6

.

Apply the Gram-Schmidt algorithm to the set of columns {v1,v2,v3,v4}. The result is an orthonor-

mal set of 3 {u1,u3,u3}, and defining Q = [u1,u2,u3] we have Q =
1

3


1 2 −2

2 −2 −1

2 1 2

.

It is now a simple matter to compute

R =


u1 · v1 u1 · v2 u1 · v3 u1 · v4

u2 · v1 u2 · v2 u2 · v3 u2 · v4

u3 · v1 u3 · v2 u3 · v3 u3 · v4

 =


3 6 3 3

0 0 3 6

0 0 0 3

 .

You can now easily check that A = QR, though we have already proved this to be true.

The computation shows that rank(A) = 3, and hence Ax = b has a solution for every b in R3,

and in fact infinitely many of them since Null(A) is a one dimensional subspace of R4.

We can easily solve for these solutions using a 2 step procedure. Since QTQ = I3×3, if Ax = b,

then QTAx = QTb, but QTAx = QTQRx = Rx, and hence Rx = QTb. Because of the echelon

form of R, we can easily find all solutions by back substitution. To carry this out, compute

y := QTb = (u1 · b, u2 · b,u3 · b) ,

For the specific choice b = (1, 23), we found in Example 72 that y = 1
3(11, 1, 2).

Now let us find all solutions x = (x, y, z, w) of Rx = y. This is equivalent to the system

3x+ 6y + 3z + 3w = 11/3

3z + 6w = 1/3

3w = 2/3

Because of the structure of this system – a direct consequence of the fact that R is in echelon

form – we immediately see from the last equation that w = 2/9, and then from the second equation

that z = 1. Using these values in the first equation, it reduces to 3x + 6y = 7/3. Solving for x, we

find x = 7/9− 2y. Hence the general solution of R(x, y, z, w) = 1
3(11, 1, 2) is

x(y) = (7/9− 2y, y, 1, 1/9) .

We have a one parameter family of solutions, parametrized by the “free” or undetermined variable y.

We could have also solved for y in terns of x, and kept x as the parameter, but the choice we made,

taking as the free variable the variable corresponding to a column with no pivot, has some advantages

as we shall see.

Example 75 (QR factorization andAx = 0). Again consider the 3×4 matrix A =


1 4 3 3

2 2 0 −3

2 5 3 6

.



4.2. LINEAR FUNCTIONS FROM RN TO RM 159

As we saw in the previous example, the QR factorization of A is given by Q =
1

3


1 2 −2

2 −2 −1

2 1 2


and R =


3 6 3 3

0 0 3 6

0 0 0 3

.

Suppose that x is any solution of Ax = 0. Then Q(Rx) = 0. Since the columns of Q are

orthonormal, and hence linearly independent, this is possible only in case Rx = 0. Hence is suffices

to find all solutions x = (x, y, z, w) of this latter equation. This is equivalent to the system

3x+ 6y + 3z + 3w = 0

3z + 6w = 0

3w = 0

The last two equations tell us that w = z = 0, and then the first reduces to x+ 2y = 0,which means

that x = −2y. Thus, the general solution is

x(y) = (− 2y, y, 0, 0) = y(− 2, 1, 0, 0) .

That is, the set of all solutions of Ax = 0 is precisely the set of all multiples of the vector x0 given by

x0 = (−2, 1, 0, 0). Notice that from the row vector formula for matrix-vector multiplication, Ax0 = 0

is equivalent to the statement that x0 is orthogonal to each of the rows of A.

We close this subsection by proving the Fundamental Theorem of Linear Algebra.

Proof of Theorem 50. Let A be an m × n matrix, and let A = QR be its QR factorization, By

construction, the columns of Q are an orthonormal basis for Ran(A), so if Q is am m× r matrix, the

column rank of A is r.

Next we claim that Null(A) = Null(R). To see this, suppose that Az = 0, and define y := Rx.

Then Qy = Az = 0. By Lemma 12, ‖Qy‖ = ‖by‖, and hence y = 0. Evidently if Rz = 0,

Az = QRz = A0 = 0. This proves the claim.

By Theorem 19 and Theorem 48 together, the row space of a matrix is the orthogonal complement

of its null space. Therefore, since A and R have the same null space, they have the same row space.

That is, the span of the rows of R is equal to the span of the rows of A. But from the echelon

structure of R, it is evident that applying the Gram-Schmidt algorithm from the bottom up that

each of the r rows yields a new unit vector, and hence the algorithm yields a set of r vectors in Rn.

Hence the row rank of A is also r.

Definition 58 (Linear independence). A set {v1, . . . ,vn} of n vectors in Rm is linearly independent

in case

n∑
j=1

xjvj = 0 if and only if xj = 0 for all j.

It follows immediately from the definition that {v1, . . . ,vn} is linearly independent in Rm if and

only if the matrix A = [v1, . . . ,vn] satisfies Null(A) = {0}, and hence the rows of A span all of Rn,

so that, by the Fundamental Theorem of Linear Algebra, the columns of A also span Rn.
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Conversely, by Theorem 47, Span({v1, . . . ,vn}) = Rn if and only if the column rank of A is n,

and then by the Fundamental Theorem of Linear Algebra, the row rank of A is also n, and hence

Null(A) = {0}, which is the same as saying that {v1, . . . ,vn} spans Rn. This proves:

Theorem 52. A set {v1, . . . ,vn} of n vectors in Rn is linearly independent if and only if it spans

Rn.

Remark 4. The QR factorization method is important because it is the basis of numerically stable

methods of computation for large matrices, and because it leads to an easy proof of the Fundamental

Theorem of Linear Algebra. However, using it with pencil and paper is often laborious since com-

plicated square roots typically arise when doing Gram-Schmidt on the columns of a matrix – our

examples were carefully prepared to avoid this. Other methods that work on the rows of a matrix are

developed in the exercises. In the next section we will deduce formulas for matrix inverses, using the

Fundamental Theorem of Linear Algebra, and with these formulas we will be able to easily solve many

of the equations of the form Ax = b that arise in the next chapters.

4.2.5 Matrix inverses

Theorem 53. Let f be an invertible linear transformation from Rn to Rn. Then its inverse trans-

formation f−1is also linear.

Proof. Suppose f is an invertible linear transformation For any numbers a, b and and x,y ∈ Rn,

f−1(ax + by) is the unique vector z such that

f(z) = ax + by . (4.46)

But since f is linear, f(af−1(x) + bf−1(y)) = af(f−1(x) + bf(f−1(y) = ax + by. Thus, z = af−1(x) +

bf−1(y) solves (4.46), and hence f−1(ax+by) = af−1(x)+bf−1(y) This proves that f−1 is linear.

Now let A := [v1, . . . ,vn] be the matrix of an invertible linear transformation f from Rn to Rn.

Let B be the n×n matrix representation of its inverse. (This makes sense since the inverse is linear,

so it has a matrix). Write B in its row form: B =


w1

...

wn

.

Since for each j = 1, . . . , n, vj = Aej = f(ej), it follows that f−1(vj) = Bvj = ej . By

Theorem 44, it follows that Bvj = (w1 · vj , . . . ,wn·,vj) = ej . That is, we must have:

wi · vj =

1 i = j

0 i 6= j
. (4.47)

This motivates the following theorem:

Theorem 54. Let A := [v1, . . . ,vn] be the matrix of a linear transformation f from Rn to Rn. Then

f is invertible if and only if there exists a set {w1, . . . ,wn} of n vectors in Rn such that (4.47) is

satisfied. In this case, the matrix of f−1 is given by


w1

...

wn

, and the set {w1, . . . ,wn} is unique.
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Proof: By what we have explained above, when f is invertible, there does exist such a set {w1, . . . ,wn}.
Since {w1, . . . ,wn} gives a formula for the inverse of f , and since there is only one inverse of f , there

is exactly one such set {w1, . . . ,wn}.
Conversely, suppose that such a set {w1, . . . ,wn} exists. Define a function g from Rn to Rn by

g(z) := (w1 · z, . . . ,wn · z) .

Since by definition, f(x) =

n∑
j=1

xjvj ,

g (f(x)) = (w1 ·
n∑
j=1

xjvj , . . . ,wn ·
n∑
j=1

xjvj)

= (

n∑
j=1

xj(w1 · vj), . . . ,
n∑
j=1

xj(wn · vj))

= (x1, . . . , xn) = x , (4.48)

where in the last line we have used (4.47).

This shows that f is one to one, since if f(x) = f(y), then g(f(x)) = g(f(y)), and then by (4.48),

x = y. Then by Theorem 50, f is invertible. Now that we know that f is invertible, (4.48) shows

that g is the inverse of f , and that the matrix representation of g is what it was claimed to be.

Before proceeding to the applications, lets us pause for an important point. It may seem that

once we have derived (4.48), we have already proved that g is the inverse of f , and had no need to

invoke Theorem 50. This is not the case.

Indeed, consider the two functions f and g from the set N of the natural numbers into itself that

are given by

f(n) = n+ 1 and g(n) =

1 n = 1

n− 1 n > 1
. (4.49)

Then g(f(n)) = n for all n ∈ N, but neither f nor g is invertible. Indeed, there is no n ∈ N with

f(n) = 1, so that f does not transform N onto N. Also, g(1) = g(2) = 1, so that g is not a one-to-one

transformation of N into into N, though it does transform N onto N.

The pathology seen in this example does not occur for transformations of finite sets into them-

selves. Let X denote the finite set X := {1, . . . , N} where N is some positive integer. Let f be

a function defined on X with values in X; i.e., a transformation from X to X. It is not hard to

show that if f is one-to-one, then f is necessarily onto, and that if f is onto, then f is necessarily

one-to-one. This is left as an exercise.

Thus, for a transformation f on a finite set, to check for invertibility, it suffices to check either

whether f is one-to-one, or whether f is onto. For transformations on infinite sets, such as R3, this

is not necessarily the case, as the example (4.49) shows. However, linear transformations are very

special, and for them we have Theorem 50.

Now let us apply Theorem 54. We begin with n = 2. Let

A =

[
a b

c d

]
so that A = [v1,v2] ,
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where where the columns of A are v1 = (a, c) and v2 = (b, d).

First observe that if v1 = 0, then Ae1 = A0 = 0, so that A is not one-to-one, and therefore not

invertible. Similar considerations apply to v2, and so if A is invertible, neither column is the zero

vector. Therefore, in trying to find an inversion formula for A, we may suppose neither column of A

is the zero vector.

In order to have w1 · v2 = 0 and w2 · v1 = 0, we must have that w1 and w2 are multiples of v⊥2

and v⊥1 , respectively:

w1 = α(− d, b) and w2 = β(− c, a) .

We then compute

w1 · v1 = α(bc− ad) and w2 · v2 = β(ad− bc) .

Thus, it is possible to achieve (4.47) if and only if ad− bc 6= 0, and in this case we have

w1 =
1

ad− bc
(d,−b) and w2 =

1

ad− bc
(− c, a) . (4.50)

Now applying Theorem 54, we conclude:

Theorem 55. Let f be the linear transformation from R2 to R2 whose matrix is

A =

[
a b

c d

]
.

Then f is invertible if and only if ad − bc 6= 0, and in this case the inverse transformation has the

matrix

A−1 :=
1

ad− bc

[
d −b
−c a

]
.

We now turn to n = 3. Let A = [v1,v2,v3]. As before, if A is invertible no column is the zero

vector. But even more is true: Suppose v2 is a multiple of v1; say v2 = tv1 for some t ∈ R. But then

A(e2 − te1) = Ae2 − tAe1 = v2 − tv1 = 0 = A0

and since e2 − te1 = ( − t, 1, 0) 6= (0, 0, 0), the transformation sending x to Ax is not one to one,

and hence is not invertible. It follows that if A is invertible, then no column of A can be a multiple

of any other column of A, or, what is the same thing,

vi × vj 6= 0 for each 1 ≤ i < j ≤ 3 . (4.51)

Therefore, let us assume (4.51), and try to find an inversion formula for A.

Theorem 54 tells us what to look for: We first seek a vector w1 that is orthogonal to v2 and v3,

and also such that w1 · v1 = 1. Because of (4.51), to achieve the orthogonality, we must choose w1

to be a multiple of v2 × v3. We can then achieve w1 · v1 = 1 if and only if v1 · v2 × v3 6= 0, in which

case we must choose

w1 =
1

v1 · v2 × v3
v2 × v3 .

This determines w1. The same sort of reasoning determines w2 and w3. At first it might appear

that one gets different normalization factor each time, but by the properties of the triple product,

v1 · v2 × v3 = v2 · v3 × v1 = v3 · v1 × v2,
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and hence one divides by the same quantity in each case. We arrive at:

Theorem 56. Let f be the linear transformation from R3 to R3 whose matrix is A = [v1,v2,v3].

Then f is invertible if and only if v1 · v2 × v3 6= 0, and in this case the inverse transformation has

the matrix

A−1 :=
1

v1 · v2 × v3


v2 × v3

v3 × v1

v1 × v2

 .

The matrix A−1 corresponding to the inverse of the transformation x 7→ Ax is called the matrix

inverse of A.

The two theorems we have just proved bring us to the following definition:

Definition 59 (Determinants of 2×2 and 3×3 matrices). Let A =

[
a b

c d

]
. Then the determinant

of A, det(A), is defined by det(A) := ad−bc. Let A = [v1,v2,v3] be a 3×3 matrix, specified as a list of

its three column vectors in R3. Then the determinant of A, det(A), is defined by det(A) := v1 ·v2×v3.

The nomenclature is justified by the fact that if A is a 2× 2 or a 3× 3 matrix, then whether the

corresponding linear transformation f(x) := Ax is invertible or not is determined by whether det(A)

differs from zero or not. We shall later define the determinant function on n × n matrices for all n

so that the corresponding statement is true.

We close with one final inverse formula for an important special case. We have seen in the

discussion leading up to Example 72 that if Q is an n × n matrix with orthonormal columns, then

QTQx = x for all x ∈ Rn, and hence Qx = 0 if and only if x = 0. That is, Null(Q) = {0}. Therefore,

the row rank of Q is n and by the Fundamental Theorem of Linear Algebra, the column rank is equal

to n also. Hence Q is invertible. We have seen that QTQ = In×n. It follows that QT represents the

linear transformation that is inverse to the linear transformation represented by Q. Since Q and QT

are inverse to one another, it follows that QQT = In×n.

Notice that while the formula QTQ = In×n follows simply from the fact that Q has n orthonormal

columns, and the row formula for matrix-vector multiplication, the formula QQT = In×n does not.

Indeed, if Q is an m× n matrix with orthonormal columns, it is true, as we have seen, that QTQ =

In×n, but it is not true that QQT = Im×m if m > n. If this were true QT would be the inverse to Q,

and that is not possible since Q is not square.

Definition 60 (Orthogonal matrix). An n×n matrix Q is an orthogonal matrix in case its columns

are orthonormal.

Theorem 57. Q is an orthognal matrix if and only if Q−1 = QT .

Proof. We have seen above the if Q is orthognal, then Q is invertible and Q−1 = QT . Now let

Q = [u1, . . . ,un] and suppose that QTQ = In×n. Then the i, j entry of QTQ is ui · uj and the i, j

entry of In×n is 1 if i = j and 0 otherwise. Thus, {u1, . . . ,un} is orthonormal.

Another simple formula concerning the transpose, that we will often use later on, can be combined

with Theorem 57 to produce a remarkable conclusion.
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Theorem 58. Let A be an m× n matrix. Then for all x ∈ Rn and all y ∈ Rm,

y ·Ax = (ATy) · x . (4.52)

Proof. Let A = [a1, . . . ,an]. Then ATy = (a1 · y, . . . ,an · y), so that

(ATy) · x =

n∑
j=1

(aj · y)xj = y ·

 n∑
j=1

xjaj

 = y ·Ax

where we have used both the row and column formulas for matrix-vector multiplication.

Corollary 6. The columns of an n × n matrix A are orthonormal if and only if the rows of A are

orthonormal.

Proof. Suppose the columns of A are orthonormal. Then A is an orthognal matrix and by Theorem 57,

A is invertible, and A−1 = AT , and hence (AT )−1 = A. Let AT = [v1, . . . ,vn] so that for j = 1, . . . , n,

vj = ATej . Then for 1 ≤ i, j ≤ n, since AAT = In×n,

vi · vj = ATei ·ATvj = ei ·AATej =

1 i = j

0 i 6= j
.

Hence the columns of AT , which are the rows of A are orthonormal.

Now suppose that the rows of A are orthonormal. Then AT os orthognal, and then by the first

part, the columns of (AT )T are orthonormal. But (AT )T = A.

4.2.6 Continuity of matrix inverses

Approximation and convergence are basic notions in analysis. In this subsection, we introduce a

simple but useful notion of the distance between two m×n matrices, and hence a notion of continuity

of matrix valued functions. We then discuss continuity of the matrix inverse function.

Definition 61 (Frobenius norm of a matrix and Frobenius distance). Let A be an m × n matrix.

The non-negative number ‖A‖F defined by

‖A‖F =

 n∑
j=1

m∑
i=1

|Ai,j |2
1/2

(4.53)

is called the Frobenius norm of the matrix A.

Notice that if A =


r1

...

rm

 = [a1, . . . ,an], then

‖A‖2F =

m∑
i=1

‖ri‖2 =

n∑
j=1

‖aj‖2 =

n∑
j=1

‖Aej‖2 . (4.54)
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Theorem 59. Let A be an m× n matrix. Then for all x ∈ Rn,

‖Ax‖ ≤ ‖A‖F‖x‖ . (4.55)

Proof. Let r1, . . . , rm denote the m rows of A. Then, Ax = (r1 · x, . . . , rm · x). Therefore,

‖Ax‖2 =

m∑
i=1

(ri · x)
2 ≤

m∑
i=1

(‖ri‖‖x‖)2
=

(
m∑
i=1

‖ri‖2
)
‖x‖2 ,

from which (4.55) follows by (4.54).

Next, Ax−Ay = A(x− y) so that (4.55) implies ‖Ax−Ay‖ ≤ ‖A‖F‖x− y‖. In particular, if f

is a linear transformation from Rn to Rm, and Af is its corresponding matrix, then for any ε > 0,

‖x− y‖ < ε

‖Af‖F
⇒ ‖f(x)− f(y)‖ < ε .

While finding explicit values of δ to go with given values of ε can be a chore for nonlinear functions,

it is simple in the linear case: simply compute ‖Af‖F.

The Frobenius distance between two m× n matrices A and B is the quantity dF(A,B) given by

dF(A,B) = ‖A−B‖F .

Note that if we may identify an m × n matrix with a vector in Rmn by the simple device of

writing out the rows, one after another in a long vector vA. For example, for A =

[
1 2 3

4 5 6

]
, we

would have

vA = (1, 2, 3, 4, 5, 6) .

Notice that the definition is set up so that ‖A‖F = ‖vA‖. That is, the Frobenius norm of A is nothing

other than the length of the vector one gets by “stretching A out” as a vector vA ∈ Rnm

Notice also that because of the way matrix addition (and subtraction) is defined, for any two

m× n matrices A and B, vA−B = vA − vB .

• It follows from this that the Frobenius distance ’ dF satisfies the triangle inequality

dF(A,C) ≤ dF(A,B) + dF(B,C)

for all m× n matrices A, B and C

Since it is clear that dF(A,B) = 0 if and only if A = B, and that dF(A,B) = dF(B,A), this

shown that dF(A,B) is a metric on the set of m× n matrices. It is therefore correct to refer to it as

a distance.

• The set of m × n matrices equipped with the Frobenius distance dF therefore provides us with an

example of a metric space – albeit one that is essentially just the Euclidean metric space Rmn. Now

we can not only do algebra with matrices: We can do analysis, and use limiting processes to solve

problems.
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Theorem 60 (The Frobenius norm and matrix multiplication). Let A be an m× n matrix, and let

B be an n× p matrix so that the matrix product AB is defined. Then

‖AB‖F ≤ ‖A‖F‖B‖F . (4.56)

Proof. By (4.54) and Theorem 59,

‖AB‖2F =

n∑
j=1

‖AB(ej)‖2 ≤ ‖A‖2F

 n∑
j=1

‖B(ej)‖2
 = ‖A‖2F‖B‖2F .

Theorem 61. Let A be an n× n matrix such that ‖A− In×n‖F = r < 1. Then A is invertible, and

‖A−1‖F ≤
√
n(1− r)−1.

More generally, let B be an invertible n × n matrix, and A is any n × n matrix such that

‖A−B‖F = r‖B−1‖−1
F , with r < 1, then A is invertible, and ‖A−1‖F ≤

√
n(1− r)−1‖B−1‖F.

Proof. For any x ∈ Rn, x = (x−Ax) +Ax, and then by the triangle inequality and Theorem 59,

‖x‖ ≤ ‖(A− In×n)x‖+ ‖Ax‖ ≤ ‖A− In×n‖F‖x‖+ ‖Ax‖ ,

so that

‖Ax‖ ≥ ‖x‖ − r‖x‖ = (1− r)‖x‖ . (4.57)

In particular, Ax = 0 if and only if x = 0. That is, Null(A) = {0}, and then by the Fundamental

Theorem of Linear Algebra, A is invertible. Now applying (4.57) with x = A−1ej , j = 1, . . . , n, we

find

1 = ‖ej‖ = ‖A(A−1ej)‖ ≥ (1− r)‖A−1ej‖ .

Therefore, ‖A−1‖2F =

n∑
j=1

‖A−1ej‖2 ≤
n

1− r
. This proves the first part.

For the second, define C := B−1A, and write A − B = B(C − In×n), so that C − In×n =

B−1(A−B). By Theorem 60,

‖C − In×n‖F ≤ ‖B−1‖F‖A−B‖F .

It follows that since ‖A − B‖F = r‖B−1‖−1
F with r < 1, then ‖C − In×n‖F ≤ r < 1. By the first

part C is then invertible. But since A = BC, A is the product of invertible matrices, and is itself

invertible: A−1 = C−1B−1. By Theorem 60 again, ‖A−1‖F ≤ ‖C−1‖F‖B−1‖F, and the bound on

‖C−1‖F from the first part completes the proof.

In what follows we will often be working with matrix valued functions: The derivative at x of

a differentiable function f = (f1(x), . . . , fm(x)) from Rn to Rm is, as we discuss next, given by an

m× n matrix A(x) whose entries are partial derivatives of the functions fj(x).

Definition 62. Let A(x) be an m × n matrix valued function on Rp. Then A is continuous at

x0 ∈ Rp in case for all ε > 0, there is a δ > 0 so that

‖x− x0‖ < δ ⇒ ‖A(x)−A(x0)‖F < ε .
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There is nothing really new here; “stretching A out” to identify it with the vector vA ∈ Rmn as

above, this is just the notion of continuity of vector valued functions in different notation. However,

combining this definition with Theorem 61 does give us something new and important:

Theorem 62. Let A be a continuous n × n matrix valued function on Rp. Suppose that A(x0) is

invertible. Then there is a δ > 0 so that

‖x− x0‖ < δ ⇒ A(x) is invertible .

In particular, the set U on which A(x) is invertible is open. Moreover, A−1(x) is a continuous

function on U .

Proof. By the continuity of A, there is a δ > 0 so that for ‖x− x0‖ < δ,

‖A(x)−A(x0)‖F <
1

2
‖A−1(x0)‖−1

F ,

and then by Theorem 61, for ‖x−x0‖ < δ, A(x) is invertible. Thus, the set U contains an open ball

of some positive radius about each point in it, which means that U is open.

Moreover, Theorem 61 gives us the bound ‖A−1(x)‖F ≤ 2
√
n‖A−1(x0)‖F for all x such that

‖x− x0‖ < δ. We use this as follows: For any such x, we have identity

A−1(x)−A−1(x0) = A−1(x0)
[
A(x0)−A(x)

]
A−1(x) .

By Theorem 60 and the bound ‖A−1(x)‖F ≤ 2
√
n‖A−1(x0)‖F,

‖A−1(x)−A−1(x0)‖F ≤ ‖A−1(x0)‖F‖A(x0)−A(x)‖F‖A−1(x)‖F

≤
(
2
√
n‖A−1(x0)‖F

)
‖A(x0)−A(x)‖F .

Since A is continuous at x0, limx→x0
‖A(x0)−A(x)‖F = 0, and then limx→x0

‖A−1(x0)−A−1(x)‖F =

0, which means that A−1 is continuous at x0.

4.3 Differentiability of functions from Rn to Rm

4.3.1 Differentiability and best linear approximation in several variables

Definition 63 (Differentiable functions from Rn to Rm). A function f from Rn to Rm is differentiable

at x0 in case there is some m×n matrix A from Rn to Rm such that for each ε > 0, there is a δ(ε) > 0

so that

‖x− x0‖ < δ(ε) ⇒ ‖f(x)− f(x0)−A(x− x0)‖ < ε‖x− x0‖ . (4.58)

An equivalent way to express (4.59), which “hides” the ε and δ in the definition of a limit, it that

lim
x→x0

‖f(x)− f(x0)−A(x− x0)‖
‖x− x0‖

= 0 . (4.59)

In other words, f is differentiable at x0 when for all x “sufficiently close” to x0, the deviation of

f from its value at x0 is given by A(x−x0) for some n×n matrix A, up to errors that are negligibly
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small compared to ‖x − x0‖, where we have chosen ε to be “negligible”. Thus, we have the linear

approximation

f(x)− f(x0) ≈ A(x− x0) . (4.60)

This is a very important definition. We now carefully examine it to become completely familiar

with it.

First of all, suppose A and B are two m × n matrices and for all ε > 0, there is a δ(ε) > 0 so

that whenever ‖x− x0‖ < δ(ε), both

‖f(x)− f(x0)−A(x− x0)‖ < ε‖x− x0‖ and ‖f(x)− f(x0)−B(x− x0)‖ < ε‖x− x0‖

are true. Then, for such x, we have from the triangle inequality,

‖(A−B)(x− x0)‖ = ‖[f(x)− f(x0)−B(x− x0)]− [f(x)− f(x0)−A(x− x0)]‖

≤ ‖f(x)− f(x0)−B(x− x0)‖+ ‖f(x)− f(x0)−A(x− x0)‖

≤ 2ε‖x− x0‖ .

Next, for any j, if 0 < t < δ(ε), then x := x0 + tej satisfies ‖x − x0‖ = t < δ(ε). Evaluating both

sides above for this choice of x, and canceling a factor of t, we obtain ‖(A−B)ej‖ ≤ ε. Since ε can

be chosen arbitrarily small, we conclude ‖(A−B)ej‖ = 0 for each j. But this means that Aej = Bej

for each j, and hence A = B. In summary:

• There can be at most one n×m matrix A for which (4.59) is true for all ε > 0.

The uniqueness of A that we have just proved justifies referring to the approximation in (4.59) as

the best linear approximation to f at x0: It is the only one for which (4.59) is true. Any other linear

approximation entails errors that are not negligible at the first order in ‖x − x0‖. The uniqueness

also allows us to make the following definition.

Definition 64 (Derivative and continuity of derivatives). Let f be a function from Rn to Rm that is

differentiable at some x0 ∈ Rn. Then the unique m× n matrix A such that 4.59 is true for all ε > 0

is called the derivative of f at x0. It is denoted by [Df (x0)], and is sometimes called the Jacobian

matrix of f at x0.

Furthermore, if f is differentiable in an open set U , then we say that f is continuously differen-

tiable in U in case the function x 7→ [Df (x)] is continuous form U to the space of m× n matrices.

Remark 5. Recall that a vector valued function is continuous if and only if all of its entry functions

are continuous. Since the Frobenius distance on the space of m×n matrices is essentially the Euclidean

distance in Rmn, a matrix valued function is continuous if and only if each of its entry functions is

continuous. That is, x 7→ [Df (x)] is continuous on U if and only if x 7→ [Df (x)]i,j is continuous form

U to R for each i, j.

So far we know that the derivative [Df (x0)] is unique when it exits. But how do we decide when

it exists, and how do we compute it? Also, how is this notion of derivative related to the notions of

directional derivatives and partial derivatives? To answer these questions, let us look again at the

definition.
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Let us pick some t 6= 0, some 1 ≤ j ≤ n, and set x := x0 + tej . With this choice of x,

‖f(x)− f(x0)−A(x− x0)‖
‖x− x0‖

=
‖f(x0 + tej)− f(x0)− tAe

¯j
‖

|t|

=

∥∥∥∥ f(x0 + tej)− f(x0)

t
−Ae

¯j

∥∥∥∥ .

By the definition of differentiability, this must approach 0 as t approaches 0, and hence we must have

lim
t→0

f(x0 + tej)− f(x0)

t
= Aej . (4.61)

Therefore, if f is differentiable at x0, (4.61) gives us a formula for the jth column of A = [Df (x0)].

Moreover, this tells us how to compute A = [Df (x0)] by partial differentiation. To do this, write

f(x) = (f1(x), . . . , fm(x)) so that fi(x) = ej · f(x) for each i = 1, . . . , n. Taking the dot product of

both sides of (4.61) by ei we obtain

Ai,j = ei ·Aej = lim
t→0

fi(x0 + tej)− fi(x0)

t
=

∂

∂xj
fi(x0) .

We conclude that if f is differentiable at x0, then each of the partial derivatives

∂

∂xj
fi(x0) 1 ≤ i ≤ m , 1 ≤ j ≤ n

exist, and for each such i and j,

[Df (x0)]i,j =
∂

∂xj
fi(x0) .

There is a nice way to write this: Notice that the ith row of [Df (x0)] is ∇fi(x0), so that

[Df (x0)] =


∇f1(x0)

...

∇fm(x0)

 . (4.62)

One might hope that if all of the partial derivatives of f exist at x0, then f would be differentiable

at x0. However, this is not the case. Fortunately, it is the case if one assumes only a little more:

Theorem 63 (Differentiability of f and partial derivatives). Let f = (f1, . . . , fm) be a function from

Rn to Rm. Suppose that on some open set U including x0, all of the partial derivatives of each

component fi of f exist, and are continuous at x0. Then f is differentiable at x0.

Proof. Divide and conquer:
‖f(x)− f(x0)−A(x− x0)‖

‖x− x0‖
≤

m∑
i=1

|fi(x)− fi(x0)−∇fi(x0) · (x− x0)|
‖x− x0‖

.

Therefore, it suffices to show that for each i,

lim
x→x0

|fi(x)− fi(x0)−∇fi(x0) · (x− x0)|
‖x− x0‖

= 0

under the assumption that the partial derivatives of each fi are continuous. But this has already be

done in Theorem 42.
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Example 76 (Differentiability of rational functions). Let p(x) and q(x) be polynomials in the n

variables x1, . . . , xn. Let U be an open set in Rn such that q(x) 6= 0 for any x ∈ U . Then the rational

function

f(x) :=
p(x)

q(x)

is well-defined on U .

By the quotient rule of single variable calculus, for each j = 1, . . . , n,

∂

∂xj
f(x) =

(
∂

∂xj
q(x)

)−2 [(
∂

∂xj
p(x)

)
q(x)−

(
∂

∂xj
q(x)

)
p(x)

]
.

Since
∂

∂xj
p(x) and

∂

∂xj
q(x) are both polynomials in the n variables x1, . . . , xn, so is

∂

∂xj
f(x),

and the denominator is not zero for any x ∈ U . Therefore, each of the partial derivatives of f is

continuous in U , and hence f is differentiable at each point x in U .

As a special case, f(x, y) = x2 + y2 is differentiable at each (x0, y0) in R2.

4.3.2 The general chain rule

Let f be a a function from Rn to Rm that is differentiable at x0 ∈ Rn. Let g be a differentiable

function from Rm to R` that is differentiable at f(x0). Then for x near x0,

f(x) ≈ f(x0) + [Df (x0)](x− x0) ,

and for y near f(x0),

g(y) ≈ g(f(x0)) + [Dg(f(x0)](y − f(x0)) .

If we take y := f(x), then for x sufficiently close to x0, y will be close to f(x0), and so we will have

g(f(x)) ≈ g(f(x0)) + [Dg(f(x0)](f(x)− f(x0))

≈ g(f(x0)) + [Dg(f(x0)][Df (x0)](x− x0) .

Thus, the composite function g ◦ f will have the linear approximation

g(f(x)) ≈ g(f(x0)) + [Dg(f(x0)][Df (x0)](x− x0)

at x0, which suggests that g◦f is differentiable, and its derivative is the matrix product [Dg(f(x0)][Df (x0)].

Remembering that matrix multiplication represents composition of linear functions, this formula

would be very natural. In fact, it is valid without any extra hypotheses.

Theorem 64. Let f be a a function from Rn to Rm that is differentiable at x0 ∈ Rn. Let g be a

differentiable function from Rm to R` that is differentiable at f(x0). The the composite function g ◦ f

is differentiable at x0 and

[Dg◦f (x0)] = [Dg(f(x0)][Df (x0)] ,

where the right hand side is the product of the Jacobian matrices of f and g at the indicated points.
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Proof. Define y := f(x) and y0 := f(x0) and then define

w := f(x)−
(
f(x0)− [Df (x0)](x− x0)

)
and z := g(y)−

(
g(y0)) + [Dg(y0))](y − y0)

)
.

With the definitions,

g(f(x))− g(f(x0)) = g(y)− g(y0)

= [Dg(y0)](y − y0) + z

= [Dg(y0)](f(x)− f(x0)) + z

= [Dg(y0))]
(
[Df (x0)](x− x0) + w

)
+ z

= [Dg(f(x0))][Df (x0)](x− x0) + [Dg(f(x0)]w + z .

Thus by the triangle inequality, and then Theorem 60,

‖g(f(x))− g(f(x0))− [Dg(f(x0))][Df (x0)](x− x0)‖
‖x− x0‖

≤ ‖[Dg(f(x0))]w‖
‖x− x0‖

+
‖z‖

‖x− x0‖

≤ ‖[Dg(f(x0))]‖F
‖w‖

‖x− x0‖
+

‖z‖
‖x− x0‖

.

Thus, it suffices to prove that lim
x→x0

‖w‖
‖x− x0‖

= 0 and lim
x→x0

‖z‖
‖x− x0‖

. By the definition of w, the

first of these equations is satisfied since is differentiable. Next, recalling the definitions of y and z,

‖z‖
‖x− x0‖

=
‖g(y)−

(
g(y0)) + [Dg(y0))](y − y0)

)
‖

‖y − y0‖
‖y − y0‖
‖x− x0‖

We now claim that as x → x0, not only do we have that y → y0, but also that the ratio
‖y − y0‖
‖x− x0‖

is bounded by some constant M in some open set about x0. Suppose this is true. Then, by the

differentiability of g,

0 ≤ lim
x→x0

‖z‖
‖x− x0‖

≤M lim
y→y0

‖g(y)−
(
g(y0)) + [Dg(y0))](y − y0)

)
‖

‖y − y0‖
= 0 ,

which is what we need.

To conclude, use the definitions of y and y0, add and subtract Df (x0)(x − x0), and use the

triangle inequality and then Theorem 59 to obtain

‖y − y0‖
‖x− x0‖

=
‖f(x)− f(x0)‖
‖x− x0‖

≤ ‖f(x)− f(x0)−Df (x0)(x− x0)‖
‖x− x0‖

+
‖Df (x0)(x− x0)‖
‖x− x0‖

≤ ‖f(x)− f(x0)−Df (x0)(x− x0)‖
‖x− x0‖

+ ‖Df (x0)‖F ,

Again by differentiability of f at x0, the first term on the right goes to 0 as x→ x0, and hence taking

M := 1 + ‖Df (x0)‖F, there is an r > 0 so that ‖y − y0‖ ≤M‖x− x0‖ whenever ‖x− x0‖ < r.

4.4 Newton’s Method

4.4.1 Linear approximation and Newton’s iterative scheme

Let f be a differentiable function from Rn to Rn. Suppose we want to solve the equation f(x) = 0.

For example, if we are given a differentiable function f from Rn to R, and we want to find its critical
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points, than we must solve the equation ∇f(x) = 0. Defining f(x) := ∇f(x), we have arrived at the

equation f(x) = 0.

The equation f(x) = 0 arises in many other ways as well. Let g and h be functions from Rn to

Rn, and suppose that we want to solve g(x) = h(x). Defining f by f(x) := g(x)− h(x), we see that

g(x) = h(x) ⇐⇒ f(x) = 0 .

This example is worth bearing in mind: Many equations can be written in the form f(x) = 0 by the

simple device of “moving everything to the left of the equal sign”.

Newton’s method for solving f(x) = 0 is to successively improve an approximate solution using

the linear approximation to f that is provided by differentiation. The multivariable version works in

exactly the same way as the single variable version.

Recall that the linear approximation to f at x0 is given by

f(x) ≈ f(x0) + [Df (x0)] (x− x0) . (4.63)

Now replace f in the equation f(x) = 0 by its linear approximation to obtain an equation that

approximates (4.63):

f(x0) + [Df (x0)] (x− x0) = 0 , (4.64)

which is the same as [Df (x0)] x = [Df (x0)] x0−f(x0). This is nothing other than the matrix equation

Ax = b where A := [Df (x0)] and b := [Df (x0)] x0 − f(x0) .

As long as the matrix A := [Df (x0)] is invertible, there is a unique solution which is x = A−1b,

or, more explicitly,

x = x0 − [Df (x0)]
−1

f(x0) .

Now, in so far as x0 is an approximate solution to f(x) = 0, so that we may expect there to be

an exact solution nearby, and in so far as (4.63) is a good approximation, we can expect the solution

of (4.64) to be a more accurate approximate solution. That is, defining

x1 := x0 − [Df (x0)]
−1

f(x0) ,

we can hope that x1 is a better approximate solution than x0.

Now simply iterate this “improvement” procedure: Given the starting point x0, we define the

infinite sequence {xn} by

xn+1 := xn − [Df (xn)]
−1

f(xn) . (4.65)

Of course, the construction of the sequence is only meaningful if [Df (xn)] is invertible for each n.

Newton’s method is a “successive approximations method”. It takes a starting guess for the

solution x0, and iteratively improves the guess. The iteration scheme produces an infinite sequence

of approximate solutions {xn}. Under favorable circumstances, this sequence will converge very

rapidly toward an exact solution. In fact, the number of correct digits in each entry of xn will more

or less double double at each step, once you get reasonably close. If you have one digit right at the



4.4. NEWTON’S METHOD 173

outset, you may expect about a million correct digits after 20 iterations – more than you are ever

likely to want to keep!

To explain the use of Newton’s method, we have to cover three points:

(i) How one picks the starting guess x0.

(ii) How the iterative loop runs; i.e., the rule for determining xn+1 given xn, which we have already

explained.

(iii) How to break out of the iterative loop – we need a “stopping rule” which assures us that there

is an actual solution within some prescribed distance ε of xn, and hence we may stop iterating at the

nth step.

We begin by explaining (ii), the nature of the loop. Once we are familiar with the loop, we can

better understand what we have to do to start it and stop it. Let us run through an example.

Consider the following system of non linear equations:

x2 + 2yx = 4

xy = 1 . (4.66)

As noted above, any system of two equations in two variables can be written in the form

f(x, y) = 0

g(x, y) = 0 .

In this case we define f(x, y) = x2 + 2xy − 4 and g(x, y) = xy − 1.

Next, introducing f(x) = (f(x), g(x)), we can write (4.66) as a single vector equation f(x) = 0.

In the case of (4.66), we have

f(x, y) = (x2 + 2yx− 4 , xy − 1) . (4.67)

In this example, we can solve f(x) = 0 by algebra alone: Using the second equation in (4.66) to

eliminate y, the first equation becomes x2 = 2. Hence x = ±
√

2. The second equation says that

y = 1/x and so we have two solutions (
√

2, 1/
√

2) and (−
√

2,−1/
√

2). In other examples, it may be

quite hard to eliminate either variable, and algebra alone cannot deliver solutions. Now let’s see how

Newton’s Method works with this example:

Example 77 (Using Newton’s iteration). Consider the system of equations f(x) = 0 where f is given

by (4.67). We will choose a starting point so that at least one of the equations in the system is satisfied,

and the other is not too far off. This seems reasonable enough. Notice that with x = y = 1, xy−1 = 0,

while x2−2xy−4 = −1. With x0 = (1, 1) we have f(x0) = (−1, 0). Computing the derivative of f , we

find [Df (x)] =

[
2x+ 2y 2x

y x

]
and hence [Df (x0)] =

[
4 2

1 1

]
. Then x1 := x0 − [Df (x0)]

−1
f(x0)

is

x1 = (1, 1)−

[
4 2

1 1

]−1

(− 1, 0) .
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Since

[
4 2

1 1

]−1

= 1
2

[
1 −2

−1 4

]
, we find x1 = (3/2, 1/2). Notice that x1 is indeed considerably

closer to the exact solution (
√

2, 1/
√

2) than x0. Moreover, f(x1) = − 1
4(1, 1). This is a better

approximate solution; it is much closer to the actual solution. If you now iterate this further, you

will find a sequence of approximate solutions converging to the exact solution (
√

2, 1/
√

2). You should

compute x2 and x3 and observe the speed of convergence.

4.4.2 The Geometry of Newton’s Method

To understand when and how Newton’s method works, it is useful to relate the affine approximation

of f to the tangent plane approximation of each of the entry functions fj in f = (f1, . . . , fn).

To be able to draw graphs, and to keep the discussion as geometrically clear as possible, let us

take n = 2, and write f = (f, g). Then f = 0 is equivalent to the system of equations

f(x, y) = 0

g(x, y) = 0 . (4.68)

Replace this by the equivalent system

z = f(x, y)

z = g(x, y)

z = 0 . (4.69)

From an algebraic standpoint, we have taken a step backwards – we have gone from two equations

in two variables to three equations in three variables. However, (4.69) has an interesting geometric

meaning: The graph of z = f(x, y) is a surface in R3, as is the graph of z = g(x, y). The graph

of z = 0 is just the x, y plane – a third surface. Hence the solution set of (4.69) is given by the

intersection of 3 surfaces.

For example, in the plot below you see the three surfaces in (4.69) when f(x, y) = x2 + 2xy − 4

and g(x, y) = xy − 1, as in Example 77. Here, we have plotted 1.3 ≤ x ≤ 1.8 and 0.5 ≤ y ≤ 1, which

includes one exact solution of the system (4.68) in this case. The plane z = 0 is the surface in solid

color, z = f(x, y) shows the contour lines, and z = g(x, y) is the surface showing a grid. You see

where all three surfaces intersect, and that is the where the solution lies.
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You also see in this graph that the tangent plane approximation is pretty good in this region,

so replacing the surfaces by their tangent planes will not wreak havoc on the graph. So here is what

we do: Take any point (x0, y0) so that the three surface intersect near (x0, y0, 0). Then replace the

surfaces z = f(x, y) and z = g(x, y) by their tangent planes at (x0, y0), and compute the intersection

of the tangent planes with the plane z = 0. This is a simple linear algebra problem that we know haw

to solve. Replacing z = f(x, y) and z = g(x, y) by the equations of their tangent planes at (x0, y0)

amounts to the replacement

z = f(x, y) → z = f(x0) +∇f(x0) · (x− x0)

and

z = g(x, y) → z = g(x0) +∇g(x0) · (x− x0)

where x0 = (x0, y0). This transforms (4.69) into

z = f(x0) +∇f(x0) · (x− x0)

z = g(x0) +∇g(x0) · (x− x0)

z = 0 . (4.70)

Now we can eliminate z, and pass to the simplified system

f(x0) +∇f(x0) · (x− x0) = 0

g(x0) +∇g(x0) · (x− x0) = 0 . (4.71)

Since [Df (x0)] =

[
∇f(x0)

∇g(x0)

]
, this is equivalent to (4.64) by the rules for matrix multiplication.

We see from this analysis that how close we come to an exact solution in one step of Newton’s

method depends on how good the tangent plane approximation is at the current approximate solution.

To really understand how well Newton’s method works, we need to understand something about how

the surfaces given by z = f(x, y) and z = g(x, y) “curve away” from their tangent planes at x0.

That is, we will need to know something about the curvature of surfaces. As you may guess from

our investigation of curvature of curves x(t), this will involve second derivatives of functions from

Rn to R. We take up the topic of higher derivatives of functions from Rn to R in the next chapter.

However, there is much that can be accomplished considering only first derivatives.
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4.4.3 Starting and stopping the iteration

It is not always a simple matter to determine how many solutions f(x) = 0 may have, or to find

approximate locations of these solutions. Ideally, before starting the iterative procedure, one would

like to how many solutions f(x) = 0 has, at least in some region of interest, and then one needs to

find a good starting point close to each of these. Let us begin with a simple example where this is

readily accomplished.

Example 78 (Graphical location of starting points). Consider the system

(f(x, y), g(x, y)) = 0

where f(x, y) = x4 + xy, and g(x, y) = 1− y2 − x2.

The equation g(x, y) = 0 is equivalent to the equation x2 + y2 = 1, i.e., the equation of the

unit circle. Therefore, all solutions of g(x, y) = 0 lie on the unit circle, and hence all solutions of

(f(x, y), g(x, y)) = 0 lie on the unit circle.

Now, what about the equation f(x, y) = 0? Can we find a similar explicit description of its

solution set? Yes, since f(x, y) = x(x3 + y), f(x, y) = 0 if and only if x = 0, which is the equation

of the y axis, or if y = −x3, which is the equation of an easily plotted cubic curve.

Hence the solutions of our system of equations are exactly the intersection of the unit circle with

the y-axis, and the intersection of the unit circle with the cubic curve y = −x3. Here is a plot showing

the unit circle, the y-axis and the cubic curve y = −x3.

As you see, the system has four solutions. Two of them are readily given in closed form: The

y-axis intersects the unit circle at the points (0, 1) and (0,−1).

It is actually possible to find an exact formula for the other two solutions by algebraic means.

Substituting y = −x3 into x2 + y2 = 1, we obtain x2 + x6 = 1. Introducing the variable t = x2, this

becomes the cubic equation t + t3 = 1. There is an algebraic formula, known as Cardano’s formula

for the roots of any cubic.

In many applications, what one would want anyhow would be some such decimal approximation,

and not the exact solution obtained by using Cardano’s formula (which is considerably more compli-
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cated than the quadratic formula). Newton’s method provides a more direct route. From the plot you

can see that

(− 0.80 , 0.55) and (0.80 , −0.55)

are decent approximate solutions. Using either one as the starting point for the Newton iteration,

one readily determines 10 (or more) accurate digits. Moreover, since the second solution is exactly

minus the first, one only need to run the iteration for one of these solutions.

If you have more than two variables, plots become harder to use. In such a case, it is often easier

to eliminate from consideration a set of points that cannot possibly contain a solutions, and then to

choose starting points from among the points that are left over. The following lemma tells us where

not to look for solutions.

The basic idea is very simple. Suppose at some point x0, the ith component of f is not zero; i.e.,

fi(x0) 6= 0 .

Suppose for the sake of argument that fi(x0) > 0, so that your “altitude” is too high at x0. To get to

a solution, you have to get downhill by a height h = fi(x0). But if the slope is bounded in magnitude

by C > 0, you cannot lose altitude h without traveling a horizontal distance of at least h/C. Since

any solution x of f(x) = 0 must satisfy fi(x) = 0, there can be no solution within a radius h/C of

x0. Here is the precise version:

Lemma 14 (Elimination lemma). Let B be a bounded closed subset of Rn. Suppose also that B is

convex; i.e., B contains every point on the line segment connecting any two points in C. Let f be

a function from Rn to Rn that is continuously differentiable on some open set containing B, and

suppose that for some constant C, ‖[Df (x0)]‖ ≤ C for all x ∈ B. Then

‖x− x0‖ <
‖f(x0)‖
C

⇒ ‖f(x)‖ > 0 .

Proof. By the Fundamental Theorem of Calculus and the Chain Rule,

f(x)− f(x0) =

∫ 1

0

[Df (x0 + t(x− x0))](x− x0)dt .

By the triangle inequality for integrals and Theorem 59, and our hypothesis in [Df ],

‖f(x)− f(x0)‖ ≤
(∫ 1

0

‖[Df (x0 + t(x− x0))]‖Fdt

)
‖x− x0‖ ≤ C‖x− x0‖ .

Then by the triangle inequality,

‖f(x0)‖ = ‖f(x0)− f(x)‖+ ‖f(x)‖ ≤ C‖x− x0‖+ ‖f(x)‖ .

Hence ‖f(x)‖ ≥ ‖f(x0)‖ − C‖x− x0‖.

One way to use this is to compute an upper bound C, the maximum of ‖[Df (x)]‖F for x ∈ B,

and then to cover B with a square grid of boxes of side length ε. Let x0 be the center of one of the

boxes. For x in the box, ‖x − x0‖ ≤
√
nε/2. Hence if ‖f(x0)‖ > C

√
nε/2, there cannot be any x
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with f(x) = 0 in this box. So to find the solutions, discard all such boxes, and run Newton’s method

from the center of each box that is not eliminated. note that the smaller you make ε, the easier it is

to eliminate individual boxes, however the small ε is, the more boxes there will be to check.

Now, suppose you run Newton’s method from the center of a box, and find a solution in the box.

Is it the only solution in this box? The answer to that has to do with curvature, and we return to

the question later.

Finally there is the matter of stopping Newton’s method. Again, we will return to this later, but

you will observe the following in the exercises: Once you get one or two digits after the decimal point

correct, the number of correct digits approximately doubles with each iteration. Since 220 > 106, it

follows that you will have about 106 correct digits in 20 iterations provided you picked a starting

point, perhaps using one of the methods described above, that has one or two digits to the right of

the decimal point correct.

4.5 Exercises

4.1 Let v1 = (1, 1) and v2 = (0, 1). Let f : R2 → R be differentiable, and suppose that for some

x0 ∈ R2, v1 · ∇f(x0) = 2 and v2 · ∇f(x0) = −2. For v = (2,−3), compute v · ∇f(x0).

4.2 Let v1 = (1, 1) and v2 = (3, 1). Let f : R2 → R be differentiable, and suppose that for some

x0 ∈ R2, v1 · ∇f(x0) = −2 and v2 · ∇f(x0) = 3.

For v = (1,−1), compute v · ∇f(x0).

4.3 Let v1 = (1, 1, 1), v2 = (0, 1, 1) and v3 = (0, 0, 1). Let f : R3 → R be differentiable, and suppose

that for some x0 ∈ R3,

v1 · ∇f(x0) = 5 v2 · ∇f(x0) = 3 and v3 · ∇f(x0) = 2 .

For v = (1, 2, 3), compute v · ∇f(x0).

4.4 Let f : R2 → R be given by f(x, y) = x2y+ yx−xy2. Let x(t) b given by x(t) = (t, t2) Compute
d

dt
f(x(t))

∣∣∣∣
t=1

.

4.5 Let f(x, y) =
xy

(1 + x2 + y2)2
.

(a) Find all of the critical points of f , and find the value of f at each of the critical points.

(b) Does f have a maximum value? Explain why or why not. If it does, find all points at which the

value of f is maximal; i.e, find all maximizers.

(c) Does f have a minimum value? Explain why or why not. If it does, find all points at which the

value of f is minimal; i.e, find all minimizers.

4.6 Let f : R2 → R be given by f(x, y) = x2y + yx− xy2.

(a) Compute the gradient of f , and find all critical points of f ..

(b) Find the equation of the tangent plane to the graph f at the point (1, 1).
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4.7 Let f(x, y) = 3xy − x3 − y3. Find all points (x, y) at which the tangent plane to the graph of f

is orthogonal to the line parameterized by t(3, 3, 1).

4.8 Let f : R2 → R be given by f(x, y) = x3 + y3 + 3xy.

(a) Compute the gradient of f , and find all points (x, y) at which the tangent plane to the graph of

f is horizontal.

(b) Find the equation of the tangent plane to the graph of f at the point (1, 2).

(c) If you were standing at the point (1, 1) and wanted to climb uphill as directly as possible, in

which compass direction would you head? For purposes of this question, take the direction e1 to be

East, and the direction e2 to be North.

4.9 Let v1 = (1, 1, 1), v2 = (0, 1, 1) and v3 = (0, 0, 1). Let f : R3 → R be differentiable, and suppose

that for some x0 ∈ R3,

v1 · ∇f(x0) = 5 v2 · ∇f(x0) = 3 and v3 · ∇f(x0) = 2 .

Find a right-handed orthonormal basis {u1,u2,u3} of R3 such that u1 is parallel to ∇f(x0).

4.10 Let A :=

[
5 2

2 1

]
.

(a) Compute det(A) and the matrix inverse of A.

(b) Find all solutions of the equation Ax = (1, 2).

4.11 Let A :=

[
1 2

1 1

]
.

(a) Compute det(A) and the matrix inverse of A.

(b) Find all solutions of the equation Ax = (3, 1).

4.12 Let A :=


2 0 3

−1 2 1

1 1 3

.

(a) Compute det(A) and the matrix inverse of A.

(b) Find all solutions of the equation Ax = (1, 2, 3).

4.13 Let A :=


1 2 1

2 1 1

1 1 2

.

(a) Compute det(A) and the matrix inverse of A.

(b) Find all solutions of the equation Ax = (4, 0, 8).

4.14 Let f(x, y) = x2y + (x− 1)(y − 1)2.

(a) Find the equations for the tangent planes to the graph of z = f(x, y) at x1 = (2,−1) and at

x2 = (−1, 1).

(b) Parameterize the line that is the intersection of the two planes found in (a).
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(c) Let x0 = (−3, 0, 5). Compute the distance from x0 to the line found in (b), and from x0 to the

second tangent plane found in (a). The distance to the plane should be smaller than the distance to

the line. Explain why.

4.15: Let f(x, y) and g(x, y) be given by

f(x, y) = x2y − 4y + x3 and g(x, y) = 4x2 + 4y2 − 1 .

Define the function f from R2 to R2 by

f(x) = (f(x), g(x)) .

(a) Let x0 = (−1/2, 0). Compute f(x0) and the Jacobian of f at x0; i.e., [Df (x0)].

(b) Use x0 as a starting point for Newton’s method for solving f(x) = 0, and find x1, the next step.

(c) Evaluate f(x1). Comment on your result - how many solutions are there, and how close is x1 to

one of them?

4.16 Let f(x) = (f(x), g(x)) where f(x, y) = x3 + xy, and g(x, y) = 1− 4y2 − x2. Let x0 = e1.

(a) Compute [Df (x)] and [Df (x0)].

(b) Use x0 as a starting point for Newton’s method, and compute the next approximate solution x1.

(c) Evaluate f(x1), and compare this with f(x0).

4.17 Let f(x) = (f(x), g(x)) where f(x, y) =
√
x +
√
y − 3, and g(x, y) = x2 + y2 − 18. Compute

f(x0) for x0 = (3, 3). Does this look like a reasonable starting point? Compute [Df (x0)]. What

happens if you try to use x0 as your starting point for Newton’s method?

4.18: Let f(x, y) and g(x, y) be given by

f(x, y) = (x+ 1)2 + (y + 1)2 − 4 and g(x, y) = 4(x− 1)2 + (y − 1)2 − 5 .

(a) The equation f(x, y) = 0 describes a circle. The equation g(x, y) = 0 describes an ellipse. Sketch

a plot of the circle and the ellipse, and determine how many solutions there are of the system

f(x, y) := (f(x, y), g(x, y)) = 0 .

Note: It is possible to exactly solve this system by algebraic means, but that is not what is being

asked for here.

(b) Your sketch should show one solution of the system in the lower right hand quadrant not too far

from (1,−1). Use x0 = (1,−1) as a starting point, and apply one step of Newton’s method to find

x1, a better approximate solution, and compute f(x1) and g(x1).

4.19 Let f(x) = (f(x), g(x)) where f(x, y) = sin(xy) − x, and g(x, y) = x2y − 1. Let x0 = (1, 1).

(a) Compute [Df (x)] and [Df (x0)].

(b) Use x0 as a starting point for Newton’s method, and compute the next approximate solution x1.

(c) Evaluate f(x1), and compare this with f(x0).
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(d) How many solutions of this system are there in the region −2 ≤ x ≤ 2 and 0 ≤ y ≤ 10? Compute

each of them to 10 decimal places of accuracy – using a computer, of course.

4.20 Let A be a 3 × 3 matrix whose three rows are r1, r2 and r3, and whose three columns are v1,

v2 and v3, so that

A = [v1,v2,v3] =


r1

r2

r3

 .

Show that

det(A) = r1 · r2 × r3 .

That is, show that the triple product of the rows of a 3 × 3 matrix is always equal to the triple

product of it columns, which, by definition, is the determinant.

4.21 Show that for all a, b and c in R3,

(b× c) · [(c× a)× (a× b)] = |a · (b× c)|2 .

4.22 Let f(x) = (f(x), g(x)) where f(x, y) = xy − x3 − 1/4, and g(x, y) = 1− 4y2 − x2.

(a) How many solutions to the system f(x) = 0 are there? Draw a plot showing their approximate

location.

(b) In the previous part, you should have found that there is one solution not too far from

x0 = (−1, 1/2) .

Compute [Df (x)], and then use x0 as a starting point for Newton’s method, and compute the

next approximate solution x1.

(c) Evaluate f(x1), and compare this with f(x0).
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Chapter 5

THE IMPLICIT FUNCTION

THEOREM AND ITS

CONSEQUENCES

5.1 Horizontal slices and contour curves

In previous chapters, we have considered vertical slices of the graph of z = f(x, y). We can gain a

new perspective by considering horizontal slices.

Consider once again the “mountain landscape” that we considered earlier in connection with

vertical slices:

f(x, y) =
3(1 + x)2 + xy3 + y2

1 + x2 + y2
(5.1)

Suppose that a dam is built, and this landscape is flooded, up to an altitude 0.5 in the vertical

distance units. This produces a lake that is shown below, in a top view; i.e., an aerial image:

The other lines on the land are the lines at other constant altitudes, specifically x = 1.5, z = 2.5,

z = 3.5 and so on. On a topographic map, these curves are called contour curves. Here is a sort of

side view showing the lake as a horizontal “slice” through the graph z = f(x, y) at height z = 0.5:

c© 2011 by the author.
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If the water level is raised further, say to the altitude z = 1.5, everything will be flooded up to

the next contour curve:

Comparing with the first picture, you clearly see that everything has been flooded up to the

z = 1.5 contour curve. The isthmus joining the two tall hills is now submerged, and the two regions

of the lake in the first graph have merged.

If you walked along the lake shore, your path would trace out the contour curve at z = 1.5 in

the first picture.

Here is a side view showing the lake at this level. It shows it as a horizontal “slice” through the

graph z = f(x, y) at height z = 1.5:
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If the water level is raised further, to the height z = 2.5, the shore line moves up to the next

contour line. Now a walk along the shoreline would trace out the path along the x = 2.5 contour line

in the first picture. Here is the top view showing the lake at this stage:

The contour curves, which are the results of horizontal slices of the graph of z = f(x, y), tell us

a lot about the function f(x, y). This section is an introduction to what they tell us.

First, let us recall a definition from Chapter 3: Given a function f : Rn → R, the set of points

x ∈ Rn satisfying satisfying

f(x) = c

is the level set of f at c In other words, the level set of f at c is the solution set of the equation

f(x) = c.

Let us consider the case n = 2 more closely. If we think of f(x, y) as representing the altitude at

the point with coordinates (x, y), then the level set of f at height c is the set of all points at which

the altitude is c. The level set at height c would be the “shore line” curve if the landscape were

flooded up to an altitude c.

Now, here is a very important point, whose validity you can more or less see from the pictures

we have displayed:

• Under normal circumstances, the level set of f at c will be a curve in the plane, possibly with several

disconnected components.
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It is for this reason that it is reasonable to refer to level sets as contour curves. We can plot a

number of the level sets on a common graph. A contour plot of a function f(x, y) is graph in which

level curves of f are plotted at several different “altitudes” c1, c2, c3, . . . . You have probably seen

these on maps for hiking.

Here is a contour plot for the function “mountain landscape” function f(x, y) in (5.1):
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0

1

2

3
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–3 –2 –1 1 2 3
x

5.1.1 Implicit and explicit descriptions of planar curves

How could one go about actually drawing the contour curves starting from a formula like (5.1)? That

is not so easy in general. You can see a hint of this in the convoluted form of the contour curves

plotted here. The difficulty lies here:

• The description of contour curves given by the defining equation f(x, y) = c is an implicit descrip-

tion: You have to solve the equation to find the points to plot. A parametric description of the curve

(x(t), y(t)) is explicit: There is no equations to solve; simply evaluate x(t) abd y(t) to get the points

to plot.

To really appreciate this point, one has to understand the distinction between an implicit and

and explicit description of a curve. The unit circle is a great example with which to start.

Let f(x, y) = x2 + y2 and let c = 1. Then the level set of f at height c is the set of points (x, y)

satisfying

x2 + y2 = 1 . (5.2)

This set, of course, is the unit circle. If we drew a contour plot of f showing the level curves at

several altitudes “altitudes” c1, c2, c3, . . . , you would see, several concentric circles.

The equation (5.2) is the implicit equation for the unit circle. To get an explicit description, just

solve the equation (5.2) to find a parameterization of the solutions set. In the case of x2 + y2 = 1,

we know how to do this: As t varies between 0 and 2π,

( cos t, sin t) (5.3)

traces out the unit circle in the counterclockwise direction. This is an explicit description since if you

plug in any value of t, you get a point (x, y) on the unit circle, and as you vary t, you “sweep out”
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all such points. You can easily plot a large number of them and connect the dots to get a good plot

of the circle.

Definition 65 (Implicit and explicit descriptions of curves). An equation of the form f(x, y) = c

provides an implicit description of a curve. A parameterization x(t), possibly with t = x and with

y(x) given as an explicit function of x, provides an explicit description of a curve.

Once one has an explicit description, it is easy to generate a plot, just by plugging in values for

the parameter, plotting the resulting points, and “connecting the dots”. Passing from an implicit

description to an explicit description involves solving the equation f(x, y) = c to find an explicit

parameterization of the solutions set. Generally, that is easier said than done.

Example 79 (From implicit to explicit by means of algebra). Consider the function

f(x, y) = 2x2 − 2xy + y2 .

The level curve at c = 1 for this function is given implicitly by the equation

2x2 − 2xy + y2 = 1 .

This can be rewritten as y2 − 2xy = 1− 2x2. Completing the square in y, we have

(y − x)2 = 1− x2 .

Therefore, we can solve for y as a function of x, finding

y(x) = x±
√

1− x2 .

If we take x as the parameter, evidently y has a real value only for −1 ≤ x ≤ 1. It is now easy to

plot the contour curve:

In this example, it was not so difficult passing from an implicit description to an explicit de-

scription; i.e., a parameterization, since the equation f(x, y) = 1 was quadratic in both x and y: We

know how to deal with quadratic equations.
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Example 80 (Bernouli Lemiscate). Consider the function

f(x, y) = (x2 + y2)2 − 2(x2 − y2) ,

and consider its level set at 0; i.e., the set of all (x, y) such that f(x, y) = 0. It is not so easy to

solve this equation for y as a funcions of x, but we can easily parameterize the solution set if we use

polar coordinates:

For any non-zero point (x, y) in the plane, we let r denote the distance from (x, y) to (0, 0), and

let θ be the angle such that if (1, 0) is rotated counterclockwise through the angle θ, then the rotated

unit vector points in the same direction as (x, y).

It follows from this description that

r =
√
x2 + y2 x = r cos θ and y = r sin θ .

Making these substitutions, f(x, y) = 0 becomes f(r cos θ, r sin θ) = 0, or

r4 − 2r2(cos2 θ − sin2 θ) = r4 − r2 cos(2θ) = 0 .

We already know that (0, 0), corresponding to r = 0, is one solution. For all of the others, r 6= 0,

and we may divide by r2 to obtain

r2 = cos(2θ) . (5.4)

Now notice that the left hand side is always positive, but the right hand side is negative if π/4 < θ <

3π/4, or if 5π/4 < θ < 7π/4. There are evidently no solutions of (5.4) for such θ. On the other

hand, when −π/4 < θ < π/4 or 3π/4 < θ < 5π/4, the right hand side is positive, and since r is

always non-negative by definition (it is a distance), there will be two branches of the solution set,

parameterized by

x(θ) := (r cos θ, r sin θ) = (
√

cos(2θ) cos θ ,
√

cos(2θ) sin θ) .

for

−π
4
< θ <

π

4
and

3π

4
< θ <

5π

4
.

One can now plug in values of θ, evaluate, plot the points, and connect the dots. The result is

The moral is that considering a different system of coordinates on the plane can make it much

easier to find an explicit description of the curve.

This curve has a name: It is the Bernouli lemiscate, where lemiscate comes form the Latin word

for ribbon.

However, changing to polar or other standard coordinate systems is not enough to solve all such

problems. In general, we are going to need to extract information on the contour curves directly from

the implicit description. Fortunately, what we have learned about gradients can help us to do this.
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5.1.2 When is the contour curve actually a curve?

When does the equation f(x, y) = f(x0, y0) acutally define a continuously differentiable curve passing

through (x0, y0)? The following theorem gives the answer.

Theorem 65 (Implicit Function Theorem in R2). Let f be a real valued function defined on an

open set U ⊂ R2, and suppose that f is continuously differentiable in U . Then for any x0 ∈ U such

that ∇f(x0) 6= 0, there is an a > 0 and a continuously differentiable curve x(t), −a < t < a, with

x(0) = x0 such that:

(1) For all |t| < a, f(x(t)) = f(x0),

(2) There is an r > 0 such that every x satisfying f(x) = f(x0) and ‖x− x0‖ < r is of the form

x = x(t)

for exactly one value of −a < t < a.

(3) For −a < t1, t2 < a, x(t1) = x(t2) if and only if t1 = t2, and x′(0) 6= 0.

Remark 6. Note that (1) says that for every t ∈ (−a, a), f(x(t)) = f(x0), while (2) says that in

the open disk Br(x0), there are no solutions x of f(x) = f(x0) that are not on the parameterized

curve t 7→ x(t), and finaly, (3) says that the parameterized curve is one-to-one on (−a, a), and has

a non-zero derivative at t = 0. In particular, it does not just “sit there” at x0, even instantaneously.

Altogether, this parameterized curve gives a complete description of the solutions set of f(x) = f(x0)

in the disk Br(x0). There can be other “branches” of the solution set elsewhere, but not passing

through Br(x0).

Example 81 (Branches of implicitly defined curves). Let f(x, y) = x2−y2, and note that ∇f(x) = 0

if and only if x = 0.

In particular, taking x0 = (1, 0), the Implicit Function Theorem assures us that all solutions of

f(x) = f(x0) that are sufficiently close to x0 lie on a continuously differentiable curve through x0.

Indeed, f(x0) = 1, and the solution of f(x, y) = 1 is an hyperbola. This has two branches given by

x = ±
√
y2 + 1. The branch of the hyperbola passing through x0 = (1, 0) may be parameterized by

x(t) = (
√
t2 + 1 , t) .

Then, with r := 2, all solutions of f(x) = f(x0) with ‖x−x0‖ < r lie on this branch of the hyperbola;

i.e., the curve parameterized by x(t). However, there are other solutions, on the other branch, further

away.
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Example 82 (A level set that is a single point). Let f(x, y) = x2 + y2. Then the level set of f at

height 0 is just the single point (0, 0) and not a curve. One could define x(t) = 0 for all t, and thus

satisfy (1) and (2) of the Implicit Function Theorem, but not (3).

Example 83 (A level curve that crosses itself). Let f(x, y) = (x2+y2)2−2(x2−y2) as in Example 80.

Then the level set of f at height 0, which is the level set of f passing through (0, 0), crosses the origin

twice, as you see from the plot there, in two different directions. Here there are two level directions,

and however you try to parameterize the level set, you must cover (0, 0) twice. Part (3) of the Implicit

Function Theorem cannot be satisied, but then ∇f(0, 0) = 0, so it does not apply.

There is a general conclusion to be drawn from the last example:

• If a contour curve of a continuously differentiable function f on R2 crosses itself at some point,

that point must be a critical point of f Otherwise, the Implicit Function Theorem would preclude the

crossing.

We shall state and prove a more general version of the implicit function theorem, for functions

from Rn to Rm later on. For now, let us focus on what such a theorem is good for, starting with the

version stated above.

Let us see why the condition that f be continuously differentiable at x0 with ∇f(x0) 6= 0

is natural. Notice that since the gradient is continuous, for some δ > 0, ∇f(x) 6= 0 as long as

‖x− x0‖ < δ.

Let x(s) be a smooth curve passing through x0 at s = 0, and we suppose that s is the arc length,

so that x′(s) = T(s), the unit tanglent vector to the curve. Then by the chain rule,

d

ds
f(x(s)) = ∇f(x(s)) ·T(s) .

Hence f will be constant along the curve if and ony if T(s) is orthognal to ∇f(x(s)) for each s. Since

∇f(x0) 6= 0, there is some a > 0 so that ∇f(x(s)) 6= 0 for all −a < s < a. At each such s, we must

have

T(s) = ± 1

‖∇f(x(s))‖
∇f(x(s))⊥ ,

and since the curve is smooth, it must be one sign or the other for all s ∈ (−a, a). Thus, at each

s ∈ (−a, a), the unit tangent vector T(s) is completely specified, up to a choice of moving bacwards

or forwards along the curve.
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Hence if we take the level curve of f at x0 provided by the Implicit Function Theorem, and

re-parameterize it by arc-length, and if necessary, change the direction of travel (i.e., replace s by

-s), we get a curve x(s) that solves the equation

x′(s) =
1

‖∇f(x(s))‖
∇f(x(s))⊥ . (5.5)

for all s near 0, and with x(0) = x0. This is an example of an ordinary differential equation, and the

theory of such equations could be applied to prove that there is a unique solution curve. Intuitively,

you can build the solution curve up by starting out at x0, and taking small steps always in the

direction of ∇f(x)⊥ at whatever point x you are at. The direction in which you must move is

completely specified if and only if ∇f(x) 6= 0. This reasoning can be made rigorous, but we will take

a different approach that have the advantage of also being applicable in higher dimension to deal

with, say, implicitly defined surfaces in R3.

Nonetheless, it is worth remembering form this discussion that once one has proved the Implicit

Function Theorem in R2, one has proved the existence and uniqueness of a solution for the differential

equation (5.5) with x(0) = x0. The Implicit function Theorem plays an important role in the theorey

of ordinary differential equations. We summarize on important comclusion concerning (5.5) for later

use:

Theorem 66. Let f be a real valued function defined on an open set U ⊂ R2, and suppose that f

is continuously differentiable in U . Then for any x0 ∈ U such that ∇f(x0) 6= 0, there is an r > 0

so that the level set of f at height f(x0) in Br(x0) is a diffeterntable curve whose tangent line is

parameterized by

x0 + t∇f(x0)⊥ .

5.2 Constrained Optimization in Two variables

An optimization problem in two variables is one in which we are given a function f(x, y), and a set

D of admissible points in R2, and we are asked to find either the maximum or minimum value of

f(x, y) as (x, y) ranges over D. In the previous chapter we have considered optimization problems

on R2. The new feature here is that we donsider the case in which the set D has a boundary that

might contain a maximizer, a minimizer, or both. We shall also consider the case in which D is a

curve in R2.

Recall that (x0, y0) ∈ D minimizes f in D in case

f(x0, y0) ≤ f(x, y) for all (x, y) in D ,

and (x1, y1) ∈ D maximizes f in D in case

f(x1, y1) ≥ f(x, y) for all (x, y) in D .

While in general it can be the case there is neither a maximum nor a minimum, we have seen in

Chapter 3 that if D is bounded and closed, and if f is a continuous function, then f always has a

minimum and a maximum on D
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To solve an optimization problem is to find all maximizers and minimizers, if any, and the

corresponding maximum and minimum values. Our goal in this section is to explain a strategy for

doing this. As long as D is closed and bounded, and f is continuous, minimizers and maximizers will

exist, and our goal now is to compute them.

Recall that if g(t) is a function of the single variable t, and we seek to maximize it on the closed

bounded interval [a, b], we proceed in two steps:

(1) We find all values of t in (a, b) at which g′(t) = 0. Hopefully there are only finitely many of these,

say {t1, t2, . . . , tn}.

(2) Compute g(t1), g(t2, ) . . . , g(tn), together with g(a) and g(b). The largest number on this finite

list is the maximum value, and the smallest is the minimum value. The maximizers are exactly those

numbers from among {t1, t2, . . . , tn} together with a and b, at which f takes on the maximum values,

and similarly for the minimizers.

The reason this works is that if t belongs to the open interval (a, b), and g′(t) 6= 0, it is possible

to move either “uphill” or “downhill” while staying within [a, b] by moving a bit to the right or the

left, depending on whether the slope is positive or negative. Hence no such point can be a maximizer

or a minimizer. This reasoning does not apply to exclude a or b, since at a, taking a step to the

left is not allowed, and at b, taking a step to the right is not allowed. Thus, we have a short “list of

suspects”, namely the set of solutions of g′(t) = 0, together with a and b, and the maximizers and

minimizers are there on this list.

In drawing up this “list of suspects”, we are applying the Sherlock Holmes principle:

• When you have eliminated the impossible, whatever else remains, however unlikely, is the truth.

When all goes well, the elimination procedure reduces an infinite sets of suspects – all of the

points in [a, b] – to a finite list of suspects: {t1, t2, . . . , tn} together with a and b. Finding the

minimizers and maximizers among a finite list of points is easy – simply compute the value of f at

each point on the list, and see which ones give the largest and smallest values.

We now adapt this to two or more dimensions, focusing first on two. Suppose that D is a closed

bounded domain. Let U be the interior of D and let B be the boundary. For example, if D is the

closed unit disk

D = {x : ‖x‖ ≤ 1} (5.6)

we have

U = {x : ‖x‖ < 1} and B = {x : ‖x‖ = 1} . (5.7)

Notice that in this case, the boundary consists of infinitely many points. This is the big diference

with the one dimensional case. Hence need a “sieve” to filter the boundary B and eliminate the

boundary points that cannot posibly be maximizers or minimizers. Hopefully, one a finite number of

“suspects” will remain.

5.2.1 Lagrange’s criterion for optmizers on the boundary

We begin with a problem so simple it can be solved without any calculus at all, but in which the

geoemetry of the method to be introduced will be particularly clear. For a really simple choice of the
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domain D, we take D to be the unit disk (5.6) so that its interior U and boundary B are given by

(5.7). For a really simple choice of the the function f(x, y), we take f(x, y) = x+ y.

Notice that f(x, y) = (1, 1) · (x, y), and then by the Cauchy-Schwarz inequality, for (x, y) ∈ D,

f(x, y) ≤ ‖(1, 1)‖‖(x, y)‖ =
√

2
√
x2 + y2 ≤

√
2 ,

and there is equality if and only if (x, y) = (1/
√

2, 1/
√

2). Hence this is the only maximizer. Similar

reasoning shows that (− 1/
√

2,−1/
√

2) is the only minimizer.

Now let’s approach this problem from a different point of view to develop a more braodly appli-

cable method. The plot below shows a number of leveal curves of f – there are lines since f is linesr

– superimposed on a plot of B.

Notice that except at two points on B, the tangent lines to B “cut across” level curves of f .

Hence, by moving backwards or forwards along B at such a point, one can move either “uphill”

“downhill”, and no such point can be a maximizer or a mininmizer. The only points that can possibly

be a minimizer or a maximizer are those at which the tanglent line to B is coincides with the tangent

line to the level curve of f through that point. Our next goal is to express this geoemtric condition

in terms of eqautions that we can solve to find possible minimizers or maximizers.

Define g(x, y) := x2 + y2 − 1, and note that (x, y) ∈ B if and only if g(x, y) = 0. Hence B is the

0-level set of g. Since ∇g(x, y) = 2(x, y), the only critical point of g is (0, 0), and in particular, the

conditions of the Implicit function Theorem are met at each point (x, y) ∈ B. (Of course, we know

how to explicitly paprameterize a circle, but let’s try to reason in a way that is generally applicable.)

Therefore, by Theorem 66 applied to g at any x0 ∈ B, the tangnet line to B at x0 is paprameterized

by x0 + t∇g(x0)⊥. Since f has no critical points, Theorem 66 applies to f at x0, and the tangent

line to the level curve of f through x0 is paprameterized by x0 + t∇f(x0)⊥.

These two tangent lines coincide if and only if ∇g(x0)⊥ is a multiple of ∇f(x0)⊥, and evidently

this is the case if and only if ∇g(x0) is a multiple of ∇f(x0). That is the tangent lines coincide if

and only if for some number λ,

∇f(x, y) = λ∇g(x, y) . (5.8)

The vector equation (5.8) is a system of two scalar equation. Combining it with the equation for B,

namely g(x, y) = 0, we have system of 3 equations in the 3 variables x, y, λ. The only points x0 of B
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that can possibly be a maximizer or a minimizer of f on B are those that satisfy (5.8) for some λ.

(Note that the third equation is satisfied by assumption since we assume that x0 ∈ B.)

In our simple example,

∇f(x, y) = (1, 1) and ∇g(x, y) = 2((x, y)) .

Together with g(x, y) = 0, we have the system

1 = 2λx

1 = 2λy

1 = x2 + y2

From either of the first two equations, λ 6= 0, and then 2λx = 2λy reduces to x = y. The third

equation then gives 2x2 = 1, so that x = ±1/
√

2. Since y = x, we have two possible points, namely

(1/
√

2, 1/
√

2) and − (1/
√

2, 1/
√

2) .

Evidently, the first is the maximizer on B, and the second is the minimizer on B.

Finally we return to the consideration of f on D. If a maximizer or a minimizer of f in D is not

on B, it must be in the interior U , and then it maust be a critical ppoint of f . But f has no critical

points at all. Hence the maximizer and minimizer that we found on B are also the maximizer and

minimizer of f on D, just a we found using the Cauchy-Schwarz inequality.

This second method method we used to solve this problem was invented by Lagrange, and the

next thoerem presents it in a general and efficient form in R2, in whch the thord variable λ is elimnated

right away.

Theorem 67 (Lagrange’s Theorem). Suppose that f and g are two functions on R2 with continuous

first order partial derivatives. Let B denote the level curve of g given by g(x, y) = 0. Suppose that

∇g(x, y) 6= 0 at any point along B.

Then if x0 is a maximizer or minimizer of f on B,

det

([
∇f(x0)

∇g(x0)

])
= 0 and g(x0) = 0 . (5.9)

Proof. Let x0 ∈ B. Since ∇g(x, y) 6= 0 at any point along B, Theorem 66 applies to g, and B is

truly given by a paprameterized curve through x0, and the tangent line to B at x0 is paprameterized

by x0 + t∇g(x0)⊥. Now, if ∇f(x0) = 0, (5.9) is evidently satisfied, so we include it in our list of

suspects. Otherwise, ∇f(x0) 6= 0, and by Theorem 66 applied to f , the level curve of f through

x0 is truly a parameterized curve, and the tangnet line to it is paprameterized by x0 + t∇f(x0)⊥.

Unless, these tangent lines coincide, the curve B cuts across level curves of f , and x0 cannot possibly

be a minimizer or a maximizer. The two tangent lines coincide if and only if ∇f(x0)⊥ is a multiple

of ∇g(x0)⊥, and evdiently this is the case if and only if ∇f(x0) is a multiple of ∇g(x0). The 2 × 2

matrix

[
∇f(x0)

∇g(x0)

]
is invertible if and only its rows are linearly independent, and in turn, this is the

case if and only if the first equation in (5.9) is satisfied. Of course since x0 ∈ B, the second equation

in (5.9) is satisfied. Altogether, the only points in B that can possibly be minimizers or maximizers

are those that satsify (5.9).
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5.2.2 Application of Lagrange’s Theorem

Summarizing, our strategy for searching out maximizers and minimizers of a continuously differen-

tiable function f in a region D bounded by a level curve given by an equation of the form g(x, y) = 0.

(1) Find all critical points of f in U , the interior of D.

(2) Find all points on B, the boundary of D, at which (5.9) holds.

(3) The combined list of points found in (1) and (2) is a comprehensive list of potential maximizers

and minimizers. Hopefully it is a finite list. In this case, evaluate f at each of them, and see which

produce the largest and smallest values. Case closed.

Example 84 (Finding minimizers and maximizers). Let f(x, y) = x4 +y4 +4xy. Let D be the closed

disk of radius 4 centered on the origin. We will now find the maximizers and minimizers of f in D.

We can write the equation for the boundary in the form g(x, y) = 0 by putting

g(x, y) = x2 + y2 − 16 .

Part (1): First, we look for the critical points. We have already examined this function in Example ??.

There, we found that f has exactly 3 critical points in all of R2, and all of them happen to be in the

interior of D. They are

(0, 0) (1,−1) and (−1, 1) . (5.10)

Part (2): Next, we look for solutions of (5.9) and g(x, y) = 0. Since

∇f(x, y) = 4(x3 + y, y3 + x) and ∇g(x, y) = 2(x, y) ,

det

([
∇f
∇g

])
= 8 det

([
x3 + y y3 + x

x y

])
= 8(x3y + y2 − y3x− x2) .

Hence (5.9) gives us the equation x3y + y2 − y3x− x2 = 0. Combining this with g(x, y) = 0 we have

the system of equations

x3y + y2 − y3x− x2 = 0

x2 + y2 − 16 = 0

The rest is algebra. The key to solving this system of equations is to notice that x3y+y2−y3x−x2

can be factored:

x3y + y2 − y3x− x2 = (x2 − y2)(xy − 1) ,

so that the first equation can be written as (x2−y2)(xy−1) = 0. Now it is clear that either x2−y2 = 0,

or else xy − 1 = 0.

Suppose that x2−y2 = 0. Then we can eliminate y from the second equation, obtaining 2x2 = 16,

or x = ±2
√

2. If y2 = x2, then y = ±x, so we get 4 solutions of the system this way:

(±2
√

2,±2
√

2) . (5.11)
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On the other hand, if xy − 1 = 0, y = 1/x, and eliminating y from the second equation gives us

x2 + x−2 − 16 = 0 (5.12)

Multiplying through by x2, and writing u = x2, we get u2− 16u = −1, so u = 8±
√

63. Since u = x2,

there are four values of x that solve (5.12), namely ±
√

8±
√

63. The corresponding y values are

given by y = 1/x. We obtain the final 4 solutions of (5.9):

(a, 1/a) with a = ±
√

8±
√

63 . (5.13)

Part (3): We now round up and interrogate the suspects. There are 11 of them: Three from (5.10),

four from (5.11), and four from (5.13).

Now we interrogate the suspects: At the three critical points we have

f(0, 0) = 0 , f(1,−1) = f(−1, 1) = −2 .

From the first group of four boundary points,

f(−2
√

2, 2
√

2) = f(2
√

2,−2
√

2) = 96 and f(2
√

2, 2
√

2) = f(−2
√

2,−2
√

2) = 160

Form the second group of four boundary points,

f(a, 1/a) = 256 for a = ±
√

8±
√

63 .

Evidently, the maximum value of f in D is 258, and the corresponding maximizers are the

four points in (5.13). Also evidently, the minimum value of f in D is −2, and the corresponding

maximizers are the two points (−1, 1) and (1,−1). Notice that the maximizers lie on the boundary,

and the minimizers lie in the interior.

Here is a graph showing the boundary curve g(x, y) = 0, which is the circle of radius 4, and

three contour curves of f , namely the contour curves at levels 258, 160, 96, 0, and −1.95. These

are the levels that showed up in our interrogation of the suspects, except that we have used the level

−1.95 instead of −2 in the graphplot, since there are just two points, (−1, 1) and (1,−1), for which

f(x, y) = −2, and that would not plot well.
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Notice that the plot shows 4 points of tangency along the contour curve at altitude 258, and 2

points of tangency along each of the contour curves at altitudes 160 and 96, corresponding exactly to

our computations.

Sometimes, we are only concerned with minimizers or maximizers on some curve. Then things

are even simpler. As long as the curve is given by an equation g(x, y) = 0, where g is continuously

differentiable and has no critical points on the level set at height 0, Lagrange’s Theorem may be

applied.

In our next example, we use Theorem 67 to compute the distance between a point and a parabola.

The idea is to write the equation for the parabola in the form g(x, y) = 0. For instance, if the parabola

is given by y = x2/2, we can take g(x, y) = x2 − 2y.

Suppose for example that we want to find the distance from (3,−3/2) to this parabola. The

square of the distance from any point (x, y) to (3,−3/2) is

(x− 3)2 + (y + 3/2)2 .

To find the point on the parabola that is closest to (3,−3/2), we use Theorem 1 to find the point

(x0, y0) on the parabola that minimizes (x − 3)2 + (y + 3/2)2 – this is the point on the parabola

that is closest to (3,−3.2). Then, by definition, the distance from (3,−3/2) to the parabola is the

distance from (3,−3/2) to this closest point.

Before proceeding to the calculations, note that the parabola is closed, but not bounded. There-

fore, minima and maxima are not guaranteed to exist. Indeed, the parabola reaches upward for ever

and ever, so there are points on the parabola that are arbitrarily far away from (3,−3/2). That is,

there is no furthest point.

But is it geometrically clear that there is a closest point. Indeed, since (0, 0) is on the parabola,

and the distance of this point from (3,−3/2) is 3
√

5/2, we only need to look for the minimum on

the part of the parabola that lies in the closed disk of radius 3
√

5/2 centered on (3,−3/2). This is

closed and bounded, so a minimizer will exist.

This particular problem can be solved using single variable methods: Substituting y = x2/2 into

f(x, y) we see that the squared distance from (x, x2/2) to (3,−3/2) is

(x− 3)2 + (x2/2 + 3/2)2 =
1

4
(x4 + 10x2 − 24x+ 45) .

Taking the derivative with respect to x, if x is a minimizer of this expression,

x3 − 5x− 6 = 0 .

This is a cubic equation, but a very simple one: It is easy to see that x = 1 is one root, and

hence (x − 1) dividesthat cubic. Factoring it we find x3 − 5x − 6 = (x − 1)(x2 + x + 6). Since

x2 +x+6 = (x+1/2)2 +23/4 ≥ 23/4, the only root is x = 1. Since there is a minimizer, the distance

is minimized at x = 1, and hence y = 1/2. Thus, the closest point on the parabola is (1, 1/2), and

the distance is 2
√

2. We shall now look at this same problem from the point of view of Theorem 67:
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Example 85 (Finding the distance to a parabola). Consider the parabola y = x2/2, and the point

(3,−3/2). As explained above, to find the point on the parabola that is closest to (1, 3), we minimize

f(x, y) = (x− 3)2 + (y + 3/2)2

on the curve g(x, y) = 0 where

g(x, y) = x2 − 2y .

Here is a graph showing the parabola, and some of the contour curves of f . As you can see, there

is exactly one place at which the parabola is tangent to the contour curves. Therefore, when we set up

and solve the system consisting of (5.9) and g(x, y) = 0, we will find only one solution, as we found

in our single variable approach.

To apply Theorem 1, we compute ∇f(x, y) = 2(x− 3, y + 3/2) and ∇g(x, y) = 2(x,−1). There-

fore, (5.9) reduces to

0 = det

([
x− 3 y + 3/2

x −1

])
= 3− 5

2
x− xy .

Now using y = x2/2, to eliminate y, we are left with

x3 + 5x− 6 = 0 ,

which is the same cubic equation that we encountered above. It has only one real root, namely x = 1,

and hence the closest point on the parabola is (1, 1/2), and the distance is 2
√

2, as we found above.

The reason we could use single variable methods to solve this problem was that it was easy to

parameterize the parabola. But such explicit parameterizations can difficult to work with in general.

The strength of Theorem 67 is that it allows us to work with implicit descriptions of the boundary.

With more variables, this will be even more useful.

5.2.3 Optimization for regions with a piecewise smooth boundary

In our next example, we use Theorem 67 to solve an optimization problem in which the boundary is

given in two pieces. This introduces one new feature into the method, as we shall see.
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Example 86 (An optimization problem with a two piece boundary). Let D be the region consisting

of all points (x, y) satisfying

x2 ≤ y ≤ 3 + 2x .

Let f(x, y) = x2y − 3x. We seek to find the minimum and maximum values of f on D, and find all

minimizers and maximizers.

Note that D is a closed, bounded region, and hence minimizers and maximizers in D do exist.

Next, we compute ∇f(x, y) = (2xy − 3, x2). There are clearly no solutions of ∇f(x, y) = (0, 0).

Hence, the minimizers and maximizers will lie on the boundary.

The first step towards finding them is to plot the two curves defining the boundary of the region

D:

The region D lies above the parabola and below the line. Note that the boundary does not have

a tangent direction where the line and parabola meet. Therefore, we have to include these points in

our suspect list: Since there is no tangent at these points, the tangency condition cannot possibly

exclude them.

To find the intersection points, eliminate y from x2 = y and y = 3 + 2x, obtaining

x2 = y = 3 + 2x

and then since x2 − 2x = 3 has the solutions x = −1, 3, we conclude:

• The boundary consists of the points of the parabola y = x2 or on the line y = 3+2x with −1 ≤ x ≤ 3

in either case. The points where the line meets the parabola, namely ( − 1, 1) and (3, 9), must be

included in the suspect list.

We now proceed to check the tangency condition, finding points at which the tangent line to the

contours curves of f are parallel to the tangent lines to the constraint curve. However, as explained

above, the only relevant points are those whose x coordinate lies in the range −1 < x < 3.
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Let us first deal with the parabola. We take g(x, y) = x2 − y. Then the Lagrange condition

∇f = λ∇g implies that

2x3 = 3− 2xy

Combining this with y = x2, we conclude 4x3 = 3. This equation has the unique real solution

x = (3/4)1/3. Hence one possible point to consider is

x1 = ((3/4)1/3, (3/4)2/3) .

Notice the x coordinate is in the relevant range.

Now let us consider the linear part of the boundary. This time we take g(x, y) = y − 2x − 3.

Then the Lagrange condition ∇f = λ∇g implies that

−2x2 = 2xy − 3 .

Substituting in y = 3 + 2x, this becomes 2x2 + 2x = 1, which has the two roots

x = −1±
√

3

2
.

Of these, only (
√

3 − 1)/2 lies in the range of interest, −1 ≤ x ≤ 3. Using y = 3 + 2x, we find our

next possible point:

x2 = ((
√

3− 1)/2,
√

3 + 2) .

As explained above, we must included the points where the line and parabola meet, so we round

out the list of suspects with

x3 = (− 1, 1) and x3 = (3, 9) .

We now compute

f(x1) = − 9

16
31/342/3 ≈ −2.044260667

f(x2) = −2− 3

2

√
3 ≈ −0.598076212

f(x3) = 4

f(x4) = 72

We see that x1 is the minimizer, and x4 is the maximizer. Leaving the corners off the suspect

list would have led to a gross underestimation of the maximum.

5.3 The Implicit Function Theorem via the Inverse Function

Theorem

5.3.1 Inverting coordinate tranformations

Recall that in Example 80, we succeeded in parameterizing the Bernouli lemiscate by writing the

equation that defines it in polar coordinates. We shall now prove the Implicit Function Theorem
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by constructing a well-behaved system of coordinates in which one of the coordinate functions is a

essentially f itself.

Here is the idea: Let f be a continuously differentiable function on some open set U ⊂ R2, and

suppose that at x0 ∈ U , ∇f(x0) 6= 0. Define the unit vectors

u1 =
1

‖∇f(x0)‖
∇f(x0) and u2 = u⊥1 (5.14)

so that {u1,u2} is an orthonormal basis for R2. We next define two functions

u(x) =
1

‖∇f(x0)‖
(f(x)− f(x0)) and v(x) = u2 · (x− x0) . (5.15)

Notice that

u(x) = c ⇐⇒ f(x) = d where d = c‖∇f(x0)‖+ f(x0)

so that every level set of f is a level set of u, and vice-versa.

Also, by construction, u(x0) = v(x0) = 0, so if we define a transformation f from U to R2 by

f(x) :=

[
u(x)

v(x)

]
, we have f(x0) = 0.

For example, let f(x, y) = x2y − xy2 and x0 = (1, 1). Then ∇f(x0) = (1,−1) so that

u1 =
1√
2
(1,−1) and u2 =

1√
2
(− 1,−1) .

Then, since f(x0) = 0,

u(x, y) =
1√
2

(x2y − xy2) and v(x, y) = − 1√
2

(x+ y − 2) .

Here is a plot showing contour lines of u(x) and v(x) in the unit square centered on x = x0:

The contour curves of v(x) are straight lines while the contour curves of u(x) have curvature.

However, if we “zoom in” more, the contour curves of u(x) will look more and more like straight

lines.

Here is a “zoomed in” contour plot showing contour curves of u(x) and v(x) in the square of

side length 0.1 centered on x0:
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As you can see in these plots, the functions u(x) and v(x) define a system of coordinates in a

neighborhood of x0. Thus, we can think of the functions u(x) and v(x) as coordinate functions on a

neighborhood of x0. As we have noted above, every contour curve of u(x) is also a contour curve of

f(x), though generally for a different altitude. Still, each coordinate curve u = c in our coordinate

system is a contour curve of f .

To make effective use of a coordinate system, we not only need to know the coordinate functions

u(x, y) and v(x, y) that specify the new coordinates u and v in terms of x and y, we need the inverse

functions x(u, v) and y(u, v) that express x and y in terms of u and v.

Indeed, when in Example 80 we used the polar coordinate system to parameterize the Bernouli

Lemiscate, we did this by substituting

x(r, θ) = r cos θ and y(r, θ) = r cos θ

into f(x, y) = (x2 + y2)2 − 2(x2 − y2) = 0 to obtain an equation relating r and θ.

In the case of the polar coordinate system, it is easy to solve for x and y as a function of the

alternate cooridinates r and θ. But for other coordinate transformations (u(x, y), v(x, y)) it may not

be possible to explicitly solve for (x(u, v), y(u, v)). In such a case, how can we know that such an

inverse formula even exists?

The key to this is the linear approximation

(u, v) = f(x) ≈ f(x0) + [Df (x0)](x− x0) , (5.16)

valid for x close to x0.

Treating the approximate equality as if it were exact, as in Newton’s method, we can now solve

for x, just as in Newton’s method. We find, provided that [Df (x0)] is invertible,

x ≈ x0 + [Df (x0)]−1(u, v) . (5.17)

Thus under the condition that [Df (x0)] is invertible, there is a good approximate inverse of our

coordinate transformation, at least in a sufficiently small neighborhood of x0 such that (5.16) is a

good approximation. One might therefore hope that under this condition, there is an exact inverse.

When f is continuously differentiable, this is indeed the case, as we shall show.
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First of all, the way we have constructed the functions u(x) and v(x) guarantees that [Df (x0)]

is invertible. Indeed, the Jacobian of f , [Df ] is then given by [Df (x)] =

[
∇u(x)

∇v(x)

]
. We compute

∇u(x) =
1

‖∇f(x0)‖
∇f(x)

so that ∇u(x0) = u1 Also, ∇v(x) = u2 for all x.

Therefore [Df (x0)] =

[
u1

u2

]
, and since u1 and u2 are orthonormal, rank([Df (x0)]) = 2, so that

[Df (x0)] is in vertible. (Better yet, it is an orthogonal matrix, so its inverse is its transpose.) Since

the set of invertible matrices is open, there is an r > 0 such that

‖x− x0‖ ≤ r ⇒ [Df (x)] is invertible .

We now state an important theorem, namely the Inverse function Theorem in Rn, which gives

the n-dimensional analog of what we have been discussing in pictures for n = 2:

Theorem 68 (The Inverse Function Theorem in Rn). Let f be a continuously differentiable function

on some open set U ⊂ Rn with values in Rn, and suppose that at x0 ∈ U , [Df (x0)] is invertible.

Then there is an open set V containing x0 and an open set W containing f(x0) such that f is a

one-to-one transformation of V onto W , and hence so that the inverse function f−1 from W to V is

well defined. Moreover, f−1 is differentiable at each u ∈ W , and [Df (x)] is invertible everywhere on

V , and

[Df−1(u)] =
[
Df (f

−1(u))
]−1

.

Before proving the Inverse Function Theorem, we first show how it implies the Implicit Function

Theorem.

5.3.2 From the Inverse Function Theorem to the Implicit Function The-

orem

Proof of the Implicit Function Theorem for R2, Theorem 65. Let f be continuously differentiable on

U ⊂ R2. Given x0 ∈ U , construct u(x) and v(x) as in (5.15), and then form f(x) = (u(x) , v(x)).

Note that by construction, f(x0) = 0.

The Inverse Function Theorem provides an open set W containing 0 and an open set V con-

taining x0 such that f is one-to-one from V onto W , and hence invertible, and thus has an inverse

transfortmation f−1 from W to V , and moreover, f−1 is differentiable everywhere on W . By con-

struction [Df (x0)] =

[
u1

u2

]
where u1 and u2 are given in (5.14). Since {u1,u2} is orthonormal,

[u1,u2] is an orthognal matrix and by Thoerem 57,

[
u1

u2

]
is its inverse. Therefore, by the Inverse

Function Theorem, [Df−1(x0)] = [u1,u2].

Since W is open and contains 0, for some a > 0, W contains the open ball {u : ‖u‖ < a }.
Since f is continuous and f(x0) = 0, there is an r > 0 such that

‖x− x0‖ < r ⇒ f(x) ∈ {u : ‖u‖ < a } . (5.18)
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Now define the curve

x(v) := f−1(0, v) for − a < v < a .

This is a differentiable curve since f−1 is differentiable. Also, x(0) = f−1(0) = x0 since f(x0) = 0.

Recall the definition (5.15) of f(x) = (u(x),v(x)):

u(x) =
1

‖∇f(x0)‖
(f(x)− f(x0)) and v(x) = u2 · (x− x0) .

For all −a < v < a, f(x(v)) = f(f−1(0, v)) = (0, v), so that u(x(v)) = 0, and hence f(x(v)) =

f(x0): The function f is indeed constant on the curve x(v), −a < v < a passing through x0, so

that item (1) of the theorem is proved. Next, all solutions of f(x) = f(x0) with ‖x − x0‖ < r lie

on this curve: For x such that ‖x − x0‖ < r, x solves f(x) = f(x0) if and only if f(x) = (0, v) for

some v ∈ (−a, a), so that ‖((0, v))‖ < a. But this means that x lies on our curve. Hence item (2)

is proved. Finally, since f−1 is one-to-one of W , which includes the points (0, v) with v ∈ (−a, a),

x(v1) = x(v2) for v1, v2 ∈ (−a, a) if and only if v1 = v2. Moreover, by the chain rule,

x′(0) = [Df−1(0)](0, 1) = [u1,u2](0, 1) = u2 6= 0 ,

and hence item (3) is proved.

5.3.3 Proof of the Inverse Function Theorem.

We turn to the proof of the Inverse Function Theorem.

We first show that f is one-to-one on a neighborhood of x0, assuming for now that [Df (x0)]

has orthonormal rows, like the transformation f that we constructed to prove the Implicit Function

Theorem. Before stating the lemma, we recall some notation from Chapter 3: For any r > 0, Br(x0)

denotes the open ball of radius r centered on x0: Br(x0) = {x : ‖x− x0‖ < r }.

Lemma 15 (The one-to-one property). Let f be a continuously differentiable function on U ⊂ Rn

with values in Rn. Let x0 ∈ U , and suppose that [Df (x0)] is invertible. Then there is an r > 0 so

that

x, x̃ ∈ Br(x0) ⇒ ‖f(x)− f(x̃)‖ ≥ 1

2‖[Df (x0)]−1‖F
‖x− x̃‖ (5.19)

and

x ∈ Br(x0) ⇒ [Df (x)] is invertible . (5.20)

In particular, whenever x and x̃ belong to Br(x0) and f(x) = f(x̃), then x = y.

Proof. Define x(t) := x + t(x̃− x), so that x(0) = x and x(1) = x̃, and x′(t) = x̃− x. By the Chain

Rule and the Fundamental Theorem of Calculus,

f(x̃)− f(x) =

∫ 1

0

[Df (x(t))](x̃− x)dt .

For x and x̃ close to x0, we have [Df (x + t(x̃− x)] ≈ [Df (x0)] since f is continuously differentiable.

This approximation gives us

f(x̃)− f(x) ≈
∫ 1

0

[Df (x0](x̃− x)dt = [Df (x0)](x̃− x) , (5.21)



5.3. THE IMPLICIT FUNCTION THEOREM VIA THE INVERSE FUNCTION THEOREM 205

where we have used the fact that in this approximation, the integrand is constant. Thus, we would

have x̃− x ≈ [Df (x0)]−1(f(x̃)− f(x)). Applying Theorem 60, we would have

‖x̃− x‖ /
∥∥[Df (x0)]−1

∥∥
F
‖f(x)− f(x̃)‖ .

Now we simply control the size of the errors made in this approximation, showing they cost us

no more than a factor of 2. An exact form of (5.21) is

f(x̃)− f(x) =

∫ 1

0

([Df (x0)](x̃− x) + ([Df (x0)](x(t))− [Df (x0)](x̃− x))dt

= [Df (x0)](x̃− x) +

∫ 1

0

([Df (x0)](x(t))− [Df (x0)](x̃− x))dt . (5.22)

Hence, multiplying through by [Df (x0)]−1 and using the triangle inequality and Theorem 60,

‖x− x̃‖ ≤ ‖[Df (x0)]−1‖F‖f(x̃)− f(x)‖

+ ‖x̃− x‖
∫ 1

0

‖[Df (x0)]−1‖F‖[Df (x0)](x(t))− [Df (x0)]‖dt (5.23)

Since f is continuously differentiable, the real valued function ϕ(x)

ϕ(x) := ‖[Df (x0)](x(t))− [Df (x0)]‖F

is continuous, and ϕ(0) = 0. Hence there is an r > 0 such that

‖x− x0‖ < r ⇒ ϕ(x) <
1

2‖[Df (x0)]−1‖F
.

When x and x̃ are in Br(x0), then x(t) ∈ Br(x0) for all 0 ≤ t ≤ 1 (since balls are convex). Then, for

x, x̃ ∈ Br(x0), the integrand in (5.23) is no greater than 1/2 for any t, and hence for x, x̃ ∈ Br(x0),

(5.23) gives

‖x− x̃‖ ≤ ‖[Df (x0)]−1‖F‖f(x̃)− f(x)‖+
1

2
‖x− x̃‖ .

Cancelling
1

2
‖x− x̃‖ from both sides, this gives us (5.19). Finally, since f is continuously differen-

tiable, and since the set of invertible matrices is open, by further decreasing r we may arrange that

(5.20) is valid.

Lemma 16 (The onto property). Let f be a continuously differentiable function on U ⊂ Rn with

values in Rn. Let x0 ∈ U , and suppose that [Df (x0)] is invertible. Let r > 0 be such that (5.19) and

(5.20) are valid, and define

r0 =
1

2‖[Df (x0)]−1‖F
.

Then if y belongs to the ball Br0/2(y0), where y0 := f(x0), there exists x∗ ∈ Br(x0) such that

f(x∗) = y.

Proof. Let y ∈ Br0/2(y0) and define the real valued function g(x) := ‖f(x) − y‖2. Let C be the

closed unit ball of radius r about x0 in Rn. Since C is compact, and since g is continuous, there is a

minimizer x∗ of g on C.
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Suppose we know that the minimizer x∗ cannot lie on the boundary of C. Then x∗ must be a

critical point of g. Computing,

0 = ∇g(x∗) = 2[Df (x∗)](f(x∗)− y) .

Since x∗ ∈ C and since [Df (x)] is invertible for x ∈ C, [Df (x∗)] is invertible, and then f(x∗)−y = 0,

and hence f(x∗) = y.

Hence, to prove the Lemma, we need only show that the minimizer of g on C cannot lie on the

boundary of C. First, we estimate g at the center of C, x0: When y ∈ Br0/2(y0),

g(x0) = ‖f(x0)− y‖2 = ‖y0 − y‖2 < r2
0

4
.

Thereofre, if g(x) ≥ r2
0/4 for all x on the boundary of C, no such point can be a minimizer of g, since

x0 does better. Hence the proof will be complete when we have shown that

‖x− x0‖ = r ⇒ g(x) ≥ r2
0

4
. (5.24)

To see this, note that if ‖x− x0‖ = r, (5.19) gives us

‖f(x)− y0‖ = ‖f(x)− f(x0)‖ > r

2‖[Df (x0)]−1‖F
= r0.

By the triangle inequality, ‖f(x)−y‖ ≥ ‖f(x)−y0‖−‖y−y0‖. Thus for y ∈ Br0/2(y0), ‖f(x)−y‖ ≥
r0/2 proving (5.24).

Proof of the Inverse Function Theorem, Theorem 68. Let x0, y0, r and r0 be as in Lemma 16. By

Lemmas 15 and 16, for each y ∈ Br0/2(y0), there is a unique x ∈ Br(x0) such that f(x) = y. Hence

on f−1 is well defined on Br0/2(y0). It remains to show that f−1 is differentiable at y0, and that the

derivative there is [Df (x0)]−1.

To do this, fix y ∈ Br0/2(y0), and let x := f−1(y). We must show that for all ε > 0, there exists

a δε > 0 such that

‖y − y0‖ < δε ⇒ ‖f−1(y)− f−1(y0)− [Df (x0)]−1(y − y0)‖ < ε‖y − y0‖ . (5.25)

However,

f−1(y)− f−1(y0) − [Df (x0)]−1(y − y0) = x− x0 − [Df (x0)]−1(f(x)− f(x0))

= −[Df (x0)]−1
(
f(x)− f(x0)− [Df (x0)](x− x0)

)
. (5.26)

Hence by Theorem 60,

‖f−1(y)− f−1(y0)− [Df (x0)]−1(y − y0)‖ ≤

‖[Df (x0)]−1‖F‖f(x)− f(x0)− [Df (x0)](x− x0)‖ . (5.27)

Therefore,
‖f−1(y)− f−1(y0)− [Df (x0)]−1(y − y0)‖

‖y − y0‖
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is bounded above by

‖[Df (x0)]−1‖F
‖f(x)− f(x0)− [Df (x0)](x− x0)‖

‖x− x0‖
‖x− x0‖
‖y − y0‖

By Lemmas 15 and 16, there is are r0, r > 0 such that for all y ∈ Br0/2(y0), y = f(x) for a

unique x ∈ Br(x0), and moreover, for all x ∈ Br(x0), ‖x− x0‖ ≤
1

2‖[Df (x0)]−1‖F
‖y − y0‖ which is

the same as
‖x− x0‖
‖y − y0‖

≤ 2‖[Df (x0)]−1‖F .

In particular, x→ x0 as y→ y0. Hence for all y ∈ Br0/2(y0),

‖f−1(y)− f−1(y0)− [Df (x0)]−1(y − y0)‖
‖y − y0‖

≤

2‖[Df (x0)]−1‖2F
‖f(x)− f(x0)− [Df (x0)](x− x0)‖

‖x− x0‖
. (5.28)

Then since f is differentiable at x0, and since x→ x0 as y→ y0, the right hand side of (5.28) tends

to 0 as y→ y0, and then so does the left hand side.

5.4 The general Implicit Function Theorem

We have proved the Inverse Function Theorem for functions f from Rn to Rn. So far, we have only

discussed the Implicit Function Theorem for functions on R2. As we now show, the method we

have used to deduce the Implicit Function Theorem for functions on R2 from the Inverse Function

Theorem readily generalizes to yield a general Implicit Function Theorem in all dimensions.

For the Implicit Function Theorem on R2, recall that the basic idea is this: Given a continuously

differentiable function g(x, y) such that ∇g(x0, y0) 6= 0, construct another continuously differentiable

function u(x, y) such that h(x, y) := (f(x, y), u(x, y)) has an invertible Jacobian at (x0, y0). Then

apply the Inverse Function Theorem to h.

Now consider a function g defined on an open set U in Rn with values in Rk where f(x) =

(g1(x), . . . , gk(x)). If g is continuously differentiable in U , then for x ∈ U , the k × n matrix [Dg(x)]

is given by

[Dg(x)] =


∇g1(x)

...

∇gk(x)

 .

In analogy with what we did in R2, we would like to think of {g1, . . . , gk} as the first k functions in

a system of n coordinate functions {g1, . . . , gk, gk+1, . . . gn} on Rn in some open set U containing some

point x0. Thus, we must “flesh out” the given functions {g1, . . . , gk} with another n−k continuously

differentiable functions {gk+1, . . . , gn} in such a way that if we define

h(x) := (g1(x), . . . , gk(x), gk+1(x) . . . , gn(x)) , (5.29)

the Jacobian of h at x0 is invertible; i.e., [Dh(x0)] is invertible.
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Whatever choice we make for {gk+1, . . . , gn}, when h is defined by (5.29), [Dh(x0)] is invertible

if and only if

{∇g1(x0), . . . ,∇gk(x0),∇gk+1(x0), . . . ,∇gn(x0)}

is linearly independent.

When {∇g1(x0), . . . ,∇gk(x0)} is linearly independent, we can alway keep adding vectors to this

set until we achieve a maximal linearly independent set of n vectors {∇g1(x0), . . . ,∇gk(x0),uk+1, . . . ,un}.
We even have several constructive methods for doing this.

However, we do it, if we define gj(x) by

fg(x) := uj · (x− x0) for j = k + 1, . . . , n , (5.30)

and then use these functions to define h(x), we shall have

[Dh(x0)] =



∇g1(x0)
...

∇gk(x0)

uk+1

...

un


.

By construction, the rows are linearly independent, so [Dh(x0)] is invertible. This enables us to adapt

the strategy we have used to prove the Implicit Function Theorem in R2 to prove a much more general

result. As noted above, the key condition, gesides the condition that g is continuously differentiable

near x0, will be that {∇g1(x0), . . . ,∇gk(x0)} is linearly independent, which is that same as [Df (x0)]

having rank k.

Theorem 69 (Implicit Function Theorem in Rn). Let g be an Rk valued function defined on an

open set U ⊂ Rn, and suppose that g is continuously differentiable at each point x0 ∈ U . Then, in

case [Dg(x0)] has rank k, there is an r0 > 0 and a continuously differentiable function y(x) defined

on the open ball of radius r0 in Rn−k so that

(1) For all (uk+1, . . . , un) with
∑n
j=k+1 u

2
j < r2

0, g(y(uk+1, . . . , un)) = g(x0). That is, each

y(uk+1, . . . , un) solves the equation g(x) = g(x0).

(2) There is an r > 0 such that every x satisfying g(x) = g(x0) and ‖x− x0‖ < r is of the form

x = y(uk+1, . . . , un)

for exactly one (uk+1, . . . , un) such that
∑n
j=k+1 u

2
j < r2.

(3) rank
(
[Dy(0)]

)
= n− k.

The statement of the theorem may seem somewhat involved, although it does at least parallel

the version we have studied earlier for n = 2. All the same, it is worthwhile to go over what the

theorem says before going into the proof or applications.
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Let g̃ be the linear approximation to g at x0. That is,

g̃(x) = g(x0) + [Dg(x0)](x− x0) .

The equation g̃(x) = g̃(x0) is readily solved by the methods of Linear Algebra: Since g̃(x0) = g(x0),

this equation is equivalent to

[Dg(x0)](x− x0) = 0 . (5.31)

By definition, x−x0 solves this linear equation if and only if x−x0 ∈ Null([Dg(x0)]). Since the row

space of [Dg(x0)] is k-dimensional, and since Null([Dg(x0)]) is the orthogonal complement of the row

space of [Dg(x0)], Null([Dg(x0)]) is an n − k dimensional subspace of Rn. Let {u!, . . . ,uk} be an

orthnormal basis for Null([Dg(x0)]). Then the general solution of (5.31) is of the form

x0 +

n∑
j=k+1

ujuj

where (uk+1, . . . , un) ∈ Rn−k. Therefore, the function

y(uk+1, . . . , un) := x0 +

n∑
j=k+1

ujuj

provides a parameterization of the solution set of the equation g̃(x0) = g(x0). This function

y(uk+1, . . . , un) is the function provided by the Implicit Function Theorem in the case that g(x)

is linear. The Implicit Function Theorem says that even if g is not linear, but is continuosly dif-

ferentaible, there is a similar (non linear) parameterization of the solution set of the non linear

equation g(x) = g(x0).

Proof of Theorem 69. Suppose that [Dg(x0)] has rank k. Then we can select vectors {uk+1, . . . ,un}
so that

{∇g1(x0), . . . ,∇gk(x0),uk+1, . . . ,un}

is linearly independent. Define gj(x) := uj · (x − x0), j = k + 1, . . . , n, as in by (5.30), and define

h(x) by

h(x) := (g1(x), . . . , gk(x), gk+1(x) . . . , gn(x)) . (5.32)

Then

[Dh(x0)] = [∇g1(x0), . . . ,∇gk(x0),uk+1, . . . ,un]T .

Since the rows of [Dh(x0)] are linearly independent, by the Fundamental Theorem of Linear Algebra,

[Dh(x0)] in invertible.

Then by the Inverse Function Theorem, there is an open set V ⊂ Rn containing x0 and an

open set W ⊂ Rn containing h(x0) such that h is a one-to-one transformation from V onto W

with a continuously differentiable inverse. By the construction of {gk+1, . . . , gn}, gj(x0) = 0 for

j = k + 1, . . . , n. Thus,

h(x0) = (g1(x0), . . . , gk(x0), 0, . . . , 0) ∈W .

Since W is open, there is an r0 > 0 so that

u2
k+1 + · · ·u2

n < r0 ⇒ (g1(x0), . . . , gk(x0), uk+1, . . . , un) ∈W .
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Let Br0(0) denote the set of vectors (uk+1, . . . , un) ∈ Rn−K such that u2
k+1 + · · ·u2

n < r0. Define

the function y from Br0(0) to Rn by

y(uk+1, . . . , un) := h−1
(
g1(x0), . . . , gk(x0), uk+1, . . . , un

)
. (5.33)

Then, by definition, h(y(uk+1, . . . , un)) = (g1(x0), . . . , gk(x0), uk+1, . . . , un), and since the first k

entries of h are g1, . . . , gk, this means that g
(
y(uk+1, . . . , un)

)
= g(x0), which proves (1).

Next, since h is differentiable, it is continuous, and hence there is an r > 0 so that

‖x = x0‖ < r ⇒ ‖h(x)− h(x0)‖ < r0 .

Since for j > k, hj(x0) = 0, ‖h(x)− h(x0)‖ ≥
∑n
j=k+1 h

2
j (x). Therefore

‖h(x)− h(x0)‖ < r0 ⇒

√√√√ n∑
j=k+1

h2
j (x) < r .

By the definition of h, (5.32), this means that (hk+1(x), . . . hn(x)) ∈ Br0(0).

Now suppose that ‖x = x0‖ < r and g(x) = g(x0). Then by the definition of h, (5.32), and what

we have just proved h(x) = (g1(x0), . . . , gk(x0), uk+1, . . . , un) for some (uk+1, . . . , un) ∈ Br0(0). By

(5.33), this is the same as h(x) = h(y(uk+1, . . . , un)), and therefore, since h is one-to-one on Br(x0),

x = y(uk+1, . . . , un) for some unique (uk+1, . . . , un) ∈ Br0(0). This proves (2).

Finally, recall that h−1 is continuously differentiable with invertible derivative [Dh=1(h(x0))] at

h(x0). Since by definition, y is obtained from h−1 by “freezing” the values of the first k variables in

h−1, its derivative in the remaining n− k variables, uk+1, . . . , un, is given by the (n− k)× n matrix

[Dy(g(x0))] consisting of the bottom n − k rows of [Dh=1(h(x0))]. Since the rows of [Dh=1(h(x0))]

are linearly indpendent, as a consequence of the invertibility of [Dh=1(h(x0))], the n − k rows of

[Dy(g(x0))] are linearly independent. Thus, [Dy(g(x0))] has rank n− k. This proves (3).

5.5 Lagrange’s Theorem in general

We are now ready to state and prove the general form of Lagrange’s Theorem.

Theorem 70 (Lagrange’s Theorem). Let U ⊂ Rn be open, and let g be a continuously differentiable

function defined on U with values in Rk;

g(x) = (g1(x), . . . , gk(x)) .

Suppose that rank
(
[Dg(x)]

)
= k for all x ∈ U . Define D := {x ∈ U : g(x) = c}, and suppose that

c is chosoen so that D is not empty. Let f be a continuosly differentiable function on U with values

in R. Then a necessary condition for x0 ∈ D to be a maximizer or a minimizer of f in D is that

∇f(x0) ∈ Span({∇g1(x0), . . . ,∇gk(x0)}) .

Proof. Let x0 ∈ D and suppose that x0 either maximizes or minimizes f in D. By the Implict Func-

tion Theorem, there is a an r0 > 0 and a continuosly differentialbe function y(uk+1, . . . , un) defined on
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the centered open ball Br0(0) in Rn−k such that for all (uk+1, . . . , un) ∈ Br0(0), g(y(uk+1, . . . , un)) =

g(x0), so that y(uk+1, . . . , un) ∈ D.

For each j = k + 1, . . . , n, consider the curve u(t) := y(tej), −r0 < t < r0. It is contnuously

differentiable since y is cintinuously differentiable, and u(0) = x0. By the Chain Rule

d

dt
f(u(t))

∣∣∣∣
t=0

= ∇f(x0) · u′(0) = ∇f(x0) · ∂

∂uj
y(0) = 0 ,

where we have used the hypothesis that x0 either maximizes or minimizes f in D.

Notice that
∂

∂uj
y(0) is column j of [Dy(g0)] which is an n × (n − k) matrix of rank n − k by

part (3) of the Implicit Function Theorem. Thus, it n − k columns are linearly independent. Since

j ∈ {k + 1, . . . , n} is arbitrary, we conclude that

∇f(x0) · ∂

∂uj
y(0) = 0 , j = k + 1, . . . , n . (5.34)

In the same way, since g is constant on D by definition, for each ` = 1, . . . , k,

∇g`(x0) · ∂

∂uj
y(0) = 0 , j = k + 1, . . . , n . (5.35)

It follows from (5.35) that {∇g1(x0), . . . ,∇gk(x0)} is a subset of

V :=

{
∂

∂uk+1
y(0), . . . ,

∂

∂un
y(0)

}⊥
and it is linearly independent since [Dg(x0)] has rank k. Hence {∇g1(x0), . . . ,∇gk(x0)} spans a

k dimensional subsapce of V , which has dimension k, since it is the orthogonal complement of a

subspace of dimension n − k. Therefore, span({∇g1(x0), . . . ,∇gk(x0)}) = V , and (5.34) says that

∇f(x0) ∈ V .

We now consider some examples of constrained optimization problems in Rn or more variables

with a constrain equation g(x) = 0, where g takes values in Rk, some 1 ≤ k ≤ n− 1.

We begin with the case n = 3 and k = 1. Let g be a continuously differentiable function on R3

with values in R. For example,

g(x, y, z) = x2 + y2 + z2 .

In this case, the level set of f consisting of all the solutions of the equation g(x, y, z) = 1 is the unit

sphere in R3. The equation g(x, y, z) = 1 is the implicit definition of this surface.

The unit sphere is a particularly nice surface, so we can also explicitly parameterize it. Here is

one way: Define

x(s, t) = ( cos s sin t , sin s sin t , cos t) ,

where 0 ≤ s < 2π and 0 ≤ t < π.

Now let us consider a constraint equation g(x) = 0 on R3 where g takes values in R2. This may

be considered as a system of two scalar vlaued constraint equations.

Let g be a continuously differentiable function on R3 with values in R2. For example,

g(x, y, z) =

[
x2 + y2 + z2 − 1

z

]
.
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In this case, set of solutions of the equation g(x, y, z) = (0, 0) is the intersection of the unit sphere

in R3 with the plane z = 0. This is nothing other than the unit circle in x, y plane, which can be

explicitly parameterized by

x(t) = ( sin(t), cos(t), 0) .

The Implicit Fucntion Theorem says that whenever g is differentiable from R3 to R, and∇g(x0) 6=
0, the equation f(x) = f(x0) defines a differentiable parameterized surface in R3 passing through

x0, and including all of the solutions of f(x) = f(x0) in some neighborhood of x0.

It also says that given a system of two such equations g1(x) = g1(x0) and g2(x) = g2(x0), with

{∇g1(x0),∇g(x0)} linearly independent, and therefore non-zero, each of these individual equations

will determine a surface passing through x0, and the inresection of the two surfaces will be a contin-

uously differentialbe curve passing through x0. The points on this curve will be the solutions to the

system g(x) = g(x0) near x0, where g = (g1, g2).

That is, just as with lines and planes in R3, where a · (x− x0) = 0 specifies a plane, but it takes

a system of two such equations to specify a line, one equation g(x) = g(x0) specifies a surface in a

neighborhood of x0, provided ∇g(x0) 6= 0, however it takes two such equations g1(x) = g1(x0) and

g2(x) = g2(x0) to specify a curve passing through x0.

If the surfaces in question are more complicated than planes or spheres and such, it might not be

possible to find explicit parameterizations, but the Implicit Function Theorem at least assures us that

such parameterizations exist. We used this to prove the general form of Lagrange’s Theorem. The

really good news is the to use Lagrange’s Theorem, you do not need to find the parmaeterizations.

We now turn to some examples.

We begin with one constrain in R3, that is, optimization on a surface. Let f and g be a

continuously differentiable functions defined on R3, and define the sets D, U and B by

D := {(x, y, z) : g(x, y, z) ≤ 0 }

U := {(x, y, z) : g(x, y, z) < 0 }

B := {(x, y, z) : g(x, y, z) = 0 } . (5.36)

Then U is the interior of D and B is its boundary.

Let us try to determine the minimizers and maximizers of f on D, if any. Just as before, the

only points in U that can possibly be minimizers or maximizers are the critical points of f in U .

Next, we consider the boundary. By Lagrange’s Theorem, at each point x0 of B, if ∇g(x0) 6= 0,

we must have

∇f(x0) = λ∇g(x0) and g(x0) = 0 . (5.37)

This is a system of 4 equations in the 4 variabbles x, y, z and λ. Since we are in R3, we can

immediately eliminate λ by taking the cross prosuct: ∇f(x0) = λ∇g(x0) for some λ if and only if

∇f(x0)×∇g(x0) = 0. Thus we have the equivalent formulation of (5.37):

∇f(x0)×∇g(x0) = 0 and g(x0) = 0 . (5.38)
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Example 87 (One constraint in three variables). Let f(x, y, z) = xyz, and let g(x, y, z) = x2 + y2 +

z2 − 1. Let us find the minimizers and maximizers of f in the set D given by g(x) ≤ 0, which is the

closed unit ball.

We first compute ∇f(x, y, z) = (yz, xz, zy). Clearly 0 is one critical point. Next, suppose (x, y, z)

is any critical point with x 6= 0. Then dividing (yz, xz, zy) = (0, 0, 0) through by x, we find

(yz/x, z, y) = (0, 0, 0) .

Thus, y = 0 and z = 0. Hence all of the points

(x, 0, 0) with − 1 ≤ x ≤ 1

are critical points of f in D. By symmetry in x, y and z, so are the points (0, y, 0) with −1 ≤ y ≤ 1

and (0, 0, z) with −1 ≤ z ≤ 1. Thus we have infinite many critical points. However, f takes on the

same value, namely 0, at each of them, so this is not so bad.

Next, to look for possible minimizers and maximizers on the boundary B, we compute

∇g(x, y, z) = 2(x, y, z) ,

and then, to use (5.38),

∇f(x)×∇g(x) = 2((y2 − z2)x , (z2 − x2)y , (x2 − y2)z) .

Thus if x = (x, y, z) is on the boundary and is a minimizer or a maximizer, then

(y2 − z2)x = 0

(z2 − x2)y = 0

(x2 − y2)z = 0

x2 + y2 + z2 = 1 .

From the first equation we see that either x = 0 or y2 = z2. Suppose x = 0. Then from the

second and thrid eqautions, we have that either y = 0 or z = 0. Suppose y = 0. Then from the last

equation, we have z2 = 1 so z = ±1. Thus we find the solution (0, 0,±1). If instead we took z = 0,

we would find the solutions (0,±1, 0).

On the other hand, if y2 = z2, either y = z = 0, in which case the fourth equation tells us

x = ±1, giving us the solutions (± 1, 0, 0), or else y2 = z2 > 0, and then the second equation tells us

x2 = z2 as well. Thus, using the fourth equation,

x2 = y2 = z2 =
1

3
.

This gives us 8 more solutions, namely

(± 3−1/2,±3−1/2,±3−1/2) .

By symmetry, we have found all of the solutions, so now let us evaluate f at each of them. Only

the last 8 give non-zero values.

f(± 3−1/2,±3−1/2,±3−1/2) = ±3−3/2
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with the plus sign n the right if there are an even number of minus signs on the left, and the minus

sign on the right otherwise. This gives all of the minimizers and maximizers.

Next, let us consider the problem of finding minmizers and maximizers along an implicitly defined

curve in R3 given by the system of equations

g(x) = 0 where g(x) =

[
∇g1(x)

∇g2(x)

]
.

Let us assume that ∇g1(x0)×∇g2(x0) 6= 0 so that the Implicit Function Theorem does ensure that

the solution of g(x) = 0 near x0 is given by a differentiable curve x(t) passing through x0 at t = 0.

By Lagrange’s Theorem, if x0 is a maximizer or a minimizer on the curve,

∇f(x0) = λ∇g1(x0) + µ∇g2(x0) , (5.39)

which is the traditional Lagrange multiplier formulation of the necessary condition for x0 to be a

maximizer or a minimizer of f on the level set given by g(x) = 0.

Since we are working in R3, we can use the cross product to eliminate the two Lagrange multipliers

as follows: The condition (5.39) is equivalent to

∇f(x0) · ∇g1(x0)×∇g2(x0) = 0 . (5.40)

Example 88 (Two constraints in three variables). Let f(x, y, z) := xyz, and let g1(x, y, z) :=

x2 + y2 + z2 − 1 and g2(x, y, z) = 2x + 2y − z. Let us find the minimizers and maximizers of f on

the curve in R3 given implicitly by g(x) = 0.

Writing out g(x) = 0 explicitly as a system of equations, it becomes

x2 + y2 + z2 = 1

2x+ 2y − z = 0

Thus, the solution set is the intersection of the unit sphere and a plane through the origina, and

it is therefore a great circle (geodesic) on the unit sphere. We could of course easily parameterize it.

But let us instead solve the problem by means of Theorem ??.

We compute

∇g1(x)×∇g2(x) = 2(x, y, z)× (2, 2,−1) = 2((−y − 2z , 2z + x , 2x− 2y) .

Next, we compute ∇f(x) = (yz, xz, zy), and so

∇f(x) · ∇g1(x)×∇g2(x) = 2(−yz(y + 2z) + xz(2z + x) + xy(2x− 2y)) .

Thus, after some grouping, we have the system of equations

z(x2 − y2) + 2z2(x− y) + 2xy(x− y) = 0

x2 + y2 + z2 = 1

2x+ 2y − z = 0
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Substituting z = 2(x+y) from the third equation into the first equation, the first equation becomes

10(x+ y)2(x− y) = 2xy(x− y) .

Thus, either x = y, or

10(x+ y)2 − 2xy = 0 .

The latter is a quadratic equation, and its only solution is x = y = 0, which is a special case of x = y.

Thus, we must have x = y.

Now the last two equations in our system simplify to z = 4x and 2x2 + z2 = 1. Eliminating z,

18x2 = 1 so we have y = x = ± 2

3
√

2
and then from z = 4x, we find our candidates

± 2

3
√

2
(1, 1, 4) .

We then evaluate to find f

(
± 2

3
√

2
(1, 1, 4)

)
= ±1

2
3−3/2, and hence

2

3
√

2
(1, 1, 4) is the maxi-

mizer and − 2

3
√

2
(1, 1, 4) is the minimizer.

Comparing with Example 87, we see that imposing the additional constrain raised the minimum

value and lowered the maximum value, as one would expect.

5.6 Exercises

5.1: Let f : R2 → R be given by f(x, y) = x3y + 2y − 3y2x.

(a) Compute the gradient of f , and find all points (x, y) at which the tangent plane to the graph of

f is horizontal.

(b) Could the following be a contour plot of f? Explain your answer.

–3

–2

–1

0

1

2

3

y

–3 –2 –1 1 2 3
x

5.2: Let f : R2 → R be given by f(x, y) = x2y + yx− xy2.

(a) Compute the gradient of f , and find all critical points of f .

(b) Find a parameterization of the tangent line to the level curve of f through the point (1, 1).

(c) Could either of the following be a contour plot of f? If so, which could, and which could not?

Explain your answer.
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5.3: Let f : R2 → R be given by f(x, y) = x3 + y3 + 3xy.

(a) Compute the gradient of f , and find all points (x, y) at which the tangent plane to the graph of

f is horizontal.

(b) Find the equation of the tangent line to the level curve of f passing through the point (1, 1).

(c) Could the following be a contour plot of f? Explain your answer.

5.4: Let f(x, y) =
xy

(1 + x2 + y2)2
.

(a) Find all of the critical points of f , and find the value of f at each of the critical points.

(b) One of the following is a contour plot for f . Which one is it? Explain your answer to receive

credit.
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5.5: Let f(x, y) = xy2 − xy.

(a) Find all of points at which the tangent plane to the graph of f is horizontal.

(b) Find the equation of the tangent line to the contour curve of f through the point (3/2, 1/3).

(c) Could the following be a contour plot for f? Explain your answer to receive credit.

5.6: Let f(x, y) = (x + y)4 + (x − y)2. Find the minimum and maximum values of f on the unit

circle x2 + y2 = 1, and all of the places on the circle at which f takes on these values.

5.7: Let f(x, y) = xy. Let D denote the region in the plane consisting of all of the points (x, y) such

that x2 + 4y2 ≤ 6. Find the minimum and maximum values of f in this region. Also, find all of the

minimizers and maximizers in this region.

5.8: Let f(x, y) =
xy

(1 + x2 + y2)2
. Find the minimum and maximum values of f in the set where

|x|+ |y| ≤ 1 .

Also, find all of the minimizers and maximizers.

5.9: Let f(x, y) = xy. Find the minimum and maximum values of f the set D ⊂ R2 given by

(x2 + y2)2 ≤ 2x2 − 2y2 ,

and all of the points in D at which f takes on these values. Note that D is the region inside the

Bernoulli lemiscate.

5.10 Let S be closed upper hemisphere of the unit sphere in R3. Let f(x, y, z) = xyz. Find the

minimum and maximum values of f on S, and all of the points at which f takes on these values.

Explain how you are taking into account both of the constraints x2 + y2 + z2 = 1 and z ≥ 0.

5.11: Let f(x, y) = x2 + y2 − xy. Find the minimum and maximum values of f the closed unit disk

D ⊂ R2. That is, D is given by

x2 + y2 ≤ 1 .

5.12: Let f(x, y) = x2 + 2y. Find the minimum and maximum values of f in the set D ⊂ R2 that

lies below the parabola y = 2x− x2 and inside the circle (x− 1)2 + y2 = 1.

5.13: Let f(x, y) = xy+2x−2y. Find the minimum and maximum values of f on the region D ⊂ R2

that lies below the parabola y = 1− x2 and above the x-axis, y = 0.
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5.14: Let D be the region consisting of all points (x, y) satisfying

x2 ≤ y ≤ 3 + 2x .

Let f(x, y) = x2y − 3x. We seek to find the minimum and maximum values of f on D, and find all

minimizers and maximizers.

5.15: Let f(x, y) = x2 +y2−2xy. Find the minimum and maximum values of f the region D defined

by
x2

2
≤ y ≤ 2 .

Also, find all points in D at which f takes on these values; i.e., find all of the minimizers and

maximizers.

5.16: Find the points on the ellipsoid given by x2 + y2 + xy = 1 that minimize and maximize the

distance to the line y = 3− 2x. (Draw a picture, and think about the geometric idea behind the idea

of Lagrange multipliers before plunging into computation.)

5.17: Find the maximum and minimum values of f(x, y, z) = 3x + y − z on the set C of points in

R3 satisfying

x+ y + z = 3

x2 + y2 = 1 .

Notice that C is the intersection of a plane and a cylinder about the z-axis.

5.18: Find the points on the sphere x2 + y2 + z2 = 1 that are closest and farthest from the point

(1, 2, 3).

5.19: Find the point on the paraboloid z = x2 + y2 that is closest and farthest from the point

(1, 3, 4).



Chapter 6

CURVATURE AND QUADRATIC

APPROXIMATION

6.1 Quadratic functions

6.1.1 The matrix form of a purely quadratic function

So far we have developed a number of computational methods that rely on finding the best linear

approximation to a function of several variables. To go further, we need to quatitatively analyze

how much, for example, the graph of z = f(x, y) “curves away” from its tangent plane at a point

(x0, y0). The fundamental subject of this chapter is the curvature of surfaces, such as the graph of

z = f(x, y), and related concepts for functions of more variables. The fundemental method is “best

quadratic appromination”

A purely quadratic function f on R2 is a function of the form f(x, y) = αx2 + 2βxy + γy2 for

some numbers α, β and γ. If we introduce the matrix A =

[
α β

β γ

]
, we can write f in its matrix

form

f(x, y) = (x, y) ·A(x, y) .

More generally, a purely quadratic function f(x) on Rn has the form

f(x1, . . . , xn) =

n∑
i,j=1

αi,jxixj ,

for some numbers αi,j , 1 ≤ i, j ≤ n. Fix any k, ` with 1 ≤ k < ` ≤ n. Since x`xk = xkx`,

the coefficient of xkx` in f is αk,` + α`,k. Therefore, if for each 1 ≤ i, j ≤ n we replace αi,j by

(αi,j + αj,i)/2, we do not change the value of f(x) at any x. We shall always assume that the

coefficents αi,j that specify f satisfy

αi,j = αj,i

c© 2011 by the author.
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for all 1 ≤ i, j ≤ n. Let A be the n × n matrix whose i, j entry is αi,j . Then we may write f in its

matrix form f(x) = x ·Ax.

Notice that the matrix A in this expression is symmetric. That is, Ai,j = Aj,i for all 1 ≤ i, j ≤ n,

or equivalently, A = AT .

Definition 66. An n× n matrix A is symmetric in case A = AT . .

The correspondence between purely quadratic functions and symmetric matrices is one-to-one.

Given a symmetric matrix, define f(x) = x · Ax. Conversely, let the coeffients αi,j that specify f

satisfy the symmetry requirement, αi,j = αj,i and then define A by Ai,j = αi,j .

6.1.2 Purely quadratic functions as sums of squares

Consider the purely quadratic function f(x, y) = x2 − xy + y2. Define new variables u and v by

u = (x+ y)/
√

2 and v = (x− y)/
√

2. Then x = (u+ v)/
√

2 and y = (u− v)/
√

2. Substituting these

expressions into f , we find

f(x, y) = f

(
u+ v√

2
,
u− v√

2

)
=

(u+ v)2 − (u2 − v2) + (u− v)2

2
=
u2 + 3v2

2
.

In terms of the u, v variables, we see that f is a sum of positive multiples of u2 and v2, and therefore

f is never negative, even though xy can have either sign. The expression in terms of u and v is much

more revealing than the expression in terms of x and y. In addition to the non-negativity, notice

that for any constant c > 0, the curve in the u, v plane given by
u2 + 3v2

2
= c is an ellipse with the

major axis running along the u axis, and the minor axis running along the v axis. Here is a plot of

the level curves for c = 0.05, 0.1, 0.3, 1, 1.7, 3.

To “transplant’ this plot to the x.y plane, and get a contour plot of f , note that with u1 =
1√
2
(1, 1)

and u2 =
1√
2
(1,−1), u = u1 · x and v = u2 · x, where of course x = (x, y). Thus, x = uu1 + vu2,

and (u, v) is the coordinate vector for x relative to the orthonormal basis {u1,u2}. The u axis is the

line v = 0, which is the line through the origin and u1. The v axis is the line u = 0, which is the

line through the origin and u2. To draw the level curves of f in the x, y plane, simply draw in the u

and v axes in the x, y plane, and then transplant the figure by drawing it in relative to the u, v axes.

Here is the result:



6.1. QUADRATIC FUNCTIONS 221

We see that the x = (0, 0) minimizes f , and the the graph z − f(x, y) “curves upward” from its

minimum.

It turns out that every quadratic function in any number of variables has a preferred orthonormal

basis such that in coordinates based on that basis, it is given by a sum of multiples of squares. This

makes it easy to understand the nature of its level sets.

We now explain how to find this preferred orthonormal basis. The methods we now develop are

extremely useful in a great many problems; their utility goes far beyond the problem at hand.

6.1.3 Eigenvalues and eigenvectors of a symmetric matrix

Definition 67 (Eigenvectors and eigenvalues). Let A be any n × n matrix. A number µ is an

eigenvalue of A in case there is some non-zero vector v such that

Av = µv .

In this case, the vector v is an eigenvector of A.

There are many kinds of problems involving an n × n matrix in which it is very helpful to find

all of the eigenvectors of A. This is because A has a very simple effect on eigenvectors: If v is an

eigenvector of A, Av is simply a scalar multiple of v.

Some n × n matrices have no eigenvectors in Rn at all: Consider the 2 × 2 rotation matrix

A =

[
0 1

−1 0

]
: A(a, b) = (b,−a). Av is the counter-clockwise rotation of v through the angle π/2,

and hence for any non-zero v, Av cannot be a multiple of v.

However, as the following theorem says, if A is symmetric, there will always be eigenvectors,

and plenty of them: If A is an n × n matrix, there exists an orthonormal basis {u1, . . . ,un} of Rn

consisting of eigenvectors of A. It is one of the most important theorems in Linear Algebra.

Theorem 71 (The Spectral Theorem). Let A be any n × n symmetric matrix. Then there is an

orthonormal basis {u1, . . . ,un} of Rn and a set of n real numbers {µ1, . . . , µn} such that

Auj = µjuj

for each j = 1, . . . , n. That is, the orthonormal basis {µ1, . . . , µn} consists of eigenvectors of A.
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The set of numbers {µ1, . . . , µn} is called the Spectrum of A, hence the name of the theorem.

One way we shall use it is as follows: Given x ∈ Rn, define

y = (y1, . . . , yn) = (x · u1, . . . ,x · un)

so that y is the coordinate vector of x with respect to the orthonormal basis {u1, . . . ,un}. That is,

x =

n∑
j=1

yjuj .

Therefore,

Ax =

n∑
j=1

yjAuj =

n∑
j=1

yjµjuj ,

and hence

x ·Ax =

 n∑
j=1

yjuj

 ·
 n∑
j=1

yjµjuj

 =

n∑
j=1

µjy
2
j , (6.1)

which displays f(x) = x ·Ax as a sum of squares. From here it is easy to prove the following:

Theorem 72. Let A be a symmetric n×n matrix, and let f be the purely quadratic function defined

by f(x) = x ·Ax. Then

f(x) > f(0) = 0 for all x 6= 0

if and only if all of the eigenvalues of A are strictly positive. Likewise,

f(x) < f(0) = 0 for all x 6= 0

if and only if all of the eigenvalues of A are strictly negative.

Proof. Suppose that f(x) > f(0) = 0 for all non-zero x. Taking x = uj , we see that

µj = uj ·Auj = f(uj) > 0

so in this case each eigenvalue is strictly positive. On the other hand, if each eigenvalue is strictly

positive, the identity (6.1) says that f(x) ≥ 0 with equality if and only if each yj = 0. But this is

the case if and only if x = 0. This proves the first assertion; the proof of the second is similar.

Lemma 17. Let A be a symmetric n× n matrix, and define f(x) = x ·Ax. Then f is continuously

differentiable, and

∇f(x) = 2Ax . (6.2)

Proof. Since f(x) is a quadratic polynomial in the variables x1, . . . , xn, it is continuously differen-

tiable. By the chain rule, for any x,v ∈ Rn,

∇f(x) · v = lim
t→0

1

t
(f(x + tv)− f(x)) .

By definition, (f(x + tv) − f(x) = (x + tv) · A(x + tv) − x · Ax = t(x · Av + v · Ax) + t2v · Av.

Therefore,

∇f(x) · v = x ·Av + v ·Ax . (6.3)

Recall the identity y ·Ax = (ATy · x) proved in Theorem 58. Since A is symmetric, x ·Av = Ax · v,

and then (6.3) becomes ∇f(x) · v = 2Ax · v. Since v is arbitrary in Rn, this implies (6.2).
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Lemma 17 says, in particular, that 0 is always a critical point of the quadratic function f(x) =

x ·Ax, and it is the only critical point if and only if A is invertible. More generally, the set of critical

points of f is precisely the null space of A, so that when A is not invertible, there is a continuum of

infnitely many critical points.

The next lemma again makes use of the identity y ·Ax = (ATy · x) proved in Theorem 58.

Lemma 18 (Orthogonality lemma). Let A be a symmetric matrix, and suppose that µ and λ are

two distinct eigenvalues of A, and that Av = µv and Aw = λw. Then v and w are orthogonal.

Proof: By Theorem 58 and the hyptheses on v and w,

µw · v = w · (µv) = w ·Av = Aw · v = λw · v .

Therefore, 0 = (µ− λ)w · v, and since µ 6= λ, w · v = 0

The next lemma is the heart of the matter:

Lemma 19 (Maximum values and eigenvalues). The function f(x) on Rn defined by

f(x) = x ·Ax

has maximizers u on the unit sphere Sn−1 := {x : ‖x‖ = 1 }. The maximum value λ1 := f(u) is

an eigenvalue of A, and every maximizer is an eigenvector with this eigenvalue.

Proof. The function f is a continuous function on the unit sphere Sn−1, and the unit sphere is closed,

and bounded and non-empty. Thus, f has a maximizer on Sn−1.

To see that any maximizer is an eigenvector of A, with eigenvalue λ1, we use the method of

Lagrange multipliers. Let g(x) = ‖x‖2 − 1 so that g(x) = 0 is the equation specifying the unit

sphere. By Lagrange’s Theorem, Theorem 70, any maximizer u of f subject to the constraint g = 0

satisfies the system of equations

∇f(u) = λ∇g(u) (6.4)

as well as the constraint equation g(x) = 0.

Evidently ∇g(u) = 2u, and by Lemma 17 to see that ∇f(u) = 2Au. (One could also apply

Lemma 17 to g with In×n in place of A to see that ∇g(u) = 2u, but since g(x) =
∑n
j=1 x

2
j , this is

not realy needed.) Therefore, Lagrange’s equation (6.4) becomes: Au = λu. This shows that u is an

eigenvector of A. Taking the dot product of both sides with u, and using the constraint equation,

we obtain

f(u) = u ·Au = λu · u = λ .

Therefore, since u is a maximizer, λ is the maximum value of f .

Proof of the Spectral Theorem. Suppose A is an n× n symmetric matrix and introduce the function

f(x) = x ·Ax on Rn. We have already seen that f has maximizers on the unit sphere Sn−1, and that

any maximizer is an eigenvector of A whose eigenvalue is the maximum value of f on Sn−1. Let u1

be any such maximizer, and let λ1 be the corresponding eigenvalue.

We now consider a constrained optimization problem with two constraints. Namely, we seek to

maximize f subject to the constraints ‖x‖ = 1 and x ·u1 = 0. The set of points x satisfying these two
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constraints is the intersection of the unit sphere and a hyperplane through the origin. In particular,

it is closed, bounded, non-empty set for all n ≥ 2. Therefore, f will have a maximum on this set. To

find a maximizer, we introduce

g0(x) = ‖x‖2 − 1 and g1(x) = 2u1 · x .

By Lagrange’s Theorem, any maximizer u of f subject to these constraints satisfies

∇f(u) = λ∇g0(u) + µ1∇g1(u)

for some number λ and µ1. The explicit form of this is Au = λu + µu1. Now, take the dot product

of both sides with respect to u1, and use the fact that u is orthogonal to u1 to obtain u1 ·Au = µ1.

By Theorem 58,

u1 ·Au = (Au1 · u) = λu1 · u = 0 .

Therefore, µ1 = 0, and our equation reduces to Au = λu. Thus, u is an eigenvector of A, and is a

unit vector that is orthogonal to u1. Call it u2, and call the corresponding eigenvalue λ2.

Now that we have constructed the orthonormal set {u1,u2} consisting on eigenvectors of A, we

are done in case n = 2. We now show how to iterate this procedure to find the rest of the orthonormal

basis for n ≥ 3. Suppose that for k < n, and that we have already found an orthonormal set

{u1, . . . ,uk} consisting of eigenvectors of A with eigenvalues {λ1, . . . , λk} such that λ1 ≥ · · · ≥ λk.

Let g0(x) = ‖x‖2 − 1 as above, and define

gj(x) = 2x · uj for j = 1, . . . , k .

The set of points satisfying the constraint equation gj(x) = 0, j = 0, 1, . . . , k is a closed and

bounded subset of Rn. For k < n, it is also non-empty. Hence f will have a maximizer u on this set.

By Lagrange’s Theorem, there are numbers λ and µ1, . . . , µk such that

∇f(u) = λ∇g(u) +

k∑
j=1

µj∇gj(u)

which has the explicit form

Au = λu +

k∑
j=1

µjuj . (6.5)

Now take the dot product of both sides with u` for 1 ≤ ` ≤ k. By the orthogonality relations, we

obtain u` · Au = µ`. By Theorem 58, u` · Au = (Au` · u) = λ`u` · u = 0. Therefore (6.5) reduces

to Au = λu, so that u is an eigenvector of A. Define uk+1 = u and λk+1 = λ, and note that

λk+1, being the maximum value of f subject to one additional constraint, is no larger than λk. By

construction, {u!, . . . ,uk+1} is an orthonormal set in Rn consisting of eigenvectors of A, and with

the corresponding sequence of eigenvalues in non-increasing order.

Clearly we may repeat the procedure to produce the orthonormal set {u1, . . . ,un}. We cannot

continue the procedure beyond this point, since the only vector x satisfying uj ·x = 0 for j = 1, . . . , n

is the zero vector, but it does not satisfy g0(x) = 0. Hence, the set of vectors satisfying the n + 1

constraints is empty.
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A diagonal matrix is a square (n × n) matrix Λ such that Λi,j = 0 is i 6= j. Λj,j is called the

jth diagonal entry of Λ. Diagonal matrices are very simple to work with; for example, if is a trivial

matter to solve Λx = b when Λ is diagonal.

The Spectral Theorem allows us to factor any n× n symmetric matrix as A = UΛUT where U

is an n× n orthogonal matrix.

To see this, let {u1, · · ·un} be a orthonormal basis of Rn consisting of eigenvectors of A, and let

Auj = µjuj , j = 1, . . . , n. Then for any x ∈ Rn, x =

n∑
j=1

(x · uj)uj . Hence

Ax =

n∑
j=1

(x · uj)Auj =

n∑
j=1

(x · uj)µjuj = [u1, . . . ,un](µ1x · u1, . . . ,x · µnun) =

U(µ1x · u1, . . . ,x · µnun) . (6.6)

Now note that UT =


u1

...

un

 and so (x · u1, . . . ,x · un) = UTx. Then defining Λ to be the n × n

diagonal matrix whose jth diagonal entry is µj ,

(µ1x · u1, . . . ,x · µnun) = Λ(x · u1, . . . ,x · un) = ΛUTx .

Combining this with (6.6), since x is any vector in Rn, we obtain A = UΛUT . We have proved

Theorem 73 (Diagonalization of Symmetric Matrices). Let A be an n × n symmetric matrix. Let

{u1, . . . ,un} be an orthonormal basis of Rn such that Aµj = µjuj for j = 1, . . . , n. Let U :=

[u1, . . . ,un] and let Λ be the diagonal matrix whose jth diagonal entry is µj. Then

A = UΛUT and Λ = UTAU . (6.7)

Our first application of this is to 3×3 symmetric matrices A; we shall show if Λ is the 3×3 diagonal

matrix associated to A by Theorem 73, then det(A) = det(Λ). Later on when we study determinants

in general. we shall prove that for any two n×n matrices B and C, det(BC) = det(B) det(C). Using

this identity repeatedly,

det(A) = det(U) det(Λ) det(UT ) = det(Λ) det(UTU) = det(Λ) det(In×n) = det(Λ) .

We have the means to readily prove the 3×3 version now. Let B = [v1,v2,v3] be any 3×3 matrix.

Then det(B) = v1 × v2 · v3. Theorem 11, expressed in matrix language, says that if {u1,u2,u3} is

a right handed orthonormal basis, and U := [u1,u2,u3], then Uv1 × Uv2 = U(v1 × v2), and then

(Uv1 × Uv2) · Uv3 = U(v1 × v2) · Uv3 = (v1 × v2) · UTUv3 = (v1 × v2) · v3 .

That is, det[Uv1, Uv2, Uv3] = det[v1,v2,v3], which is the same as det(UB) = det(B). By the same

reasoning, if {u1,u2,u3} is a left handed orthonormal basis, det(UB) = det(B). Recall also form

Exercise 4.20 that for all 3× 3 matrices C, det(C) = det(CT ); that is the triple product of the rows

of C is the same as the triple product of the columns of C.
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Now let A be a 3×3 symmetric matrix, and let A = UΛUT as in Theorem 73. Define B := ΛUT .

By what we have noted just above, det(A) = ±det(B) where the plus sign is valid if the column of U

are a right handed orthonormal basis, and the minus sign is valid if the column of U are a left handed

orthonormal basis. But the det(B) = det(BT ) = det(UΛ) = ±det(Λ) with the same rule determining

the sign. Altogether, det(A) = det(Λ), regardless of whether the columns of U are a right or left

handed orthonormal basis since the same sign comes in twice. Evidently, det(Λ) = µ1µ2µ3, and so

det(A) = µ1µ2µ3 . (6.8)

By “embedding” the general 2 × 2 symmetric matrix

[
a c

c b

]
in the 3 × 3 symmetric matrix

a c 0

c b 0

0 0 1

, we may apply our conclusions to 2 × 2 symmetric matrices to conclude that if A is

such a matrix with eigenvalues µ1 and µ2, then

det(A) = µ1µ2 . (6.9)

6.1.4 Computing eigenvectors and eigenvalues

Now that we know orthonormal bases consisting of eigenvectors of symmetric matrices exist, how do

we find them? This is not hard for n = 2 or n = 3, and we shall now explain a general method that

is applicable for all n, but is usually only feasible for small values of n.

Given an n×nmatrix A, the eigenvalue problem for A is to find all eigenvalues and all eigenvectors

of A. In the equation that defines eigenvalues and eigenvectors, Av = µv, only A is given and both

µ and v are unknown, apart from the requirement that v 6= 0. This last statement may not seem

like much, but it unlocks everything: If µ is an eigenvalue of A, then there is a non=zero vector v

satisfying (A − µIn×n)v = 0, and then (A − µIn×n) is not invertible. Conversely, if (A − µIn×n)

is not invertible, Null(A) 6= {0}, and hence there exists a non-zero v such that (A − µIn×n)v = 0,

which is the same as Av = µv. We have proved:

Theorem 74 (Eigenvalues and invertibility). Let A be an n× n matrix. Then µ is an eigenvalue of

A if and only if A− µI is not invertible.

Notice that this theorem is valid whether or not A is symmetric. As we have seen, for n = 2 and

n = 3, A− µI is not invertible if and only if det(A− µI) = 0. (Later we will define the determinant

of an n× n matrix for all n, and then the statement will be true for all n.) Hence, to find all of the

eigenvalues of a 2× 2 or 3× 3 matrix A, compute

p(t) := det(A− tI) ,

which will be a polynomial of degree n = 2 or n = 3 in t, and then solve the equation p(t) = 0. The

solutions; i.e., the roots of this polynomial, are the eigenvalues of A.
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Example 89 (Eigenvalues of a 2× 2 matrix). Let A =

[
2 1

1 2

]
. Then

det (A− tI) = det

([
2− t 1

1 2− t

])
= t2 − 4t+ 3 .

The two roots of the quadratic polynomial are t = 3 and t = 1. Thus the eigenvalues are

µ1 = 3 and µ2 = 1 .

Now that you have the eigenvalues, finding the eigenvectors is really easy, at least for n = 2

or n = 3. Indeed, suppose µ is an eigenvalue of A. Form the matrix A − µI. We must then find

a non-zero vector v such that (A − µI)v = 0. By the dot product formulation of matrix-vector

multiplication, this is equivalent to v being orthogonal to each row of A− µI.

In particular, if n = 2, and the first row of A− µI is (a, b) 6= (0, 0), then v must be a multiple

of (a, b)
⊥

= (− b, a). The same reasoning applies to the second row. If both rows are zero, it means

A = µI, so every non-zero vector is an eigenvector of A.

Moreover, when the two eigenvalues are distinct, Lemma 18 say the second eigenvector must be

orthogonal to the first, so you do not need to solve for the second eigenvector once you have the first

– any non-zero vector orthogonal to the first eigenvector will do.

Example 90 (Eigenvectors of a 2× 2 matrix). Let A =

[
2 1

1 2

]
. We have seen above that the two

eigenvalues are µ1 = 3 and µ2 = 1. Form

A− 3I =

[
−1 1

1 −1

]
.

The first row is ( − 1, 1) so ( − 1, 1)
⊥

= ( − 1,−1) is an eigenvector with eigenvalue 3, as you can

check. Any non-zero multiple of this, so (1, 1) is also an eigenvector with eigenvalue 3.

To get the second eigenvector, we simply use Lemma 18 which says that this must be orthogonal

to the one we have already found. Since the first eigenvector is orthogonal to the first row of A− 3I,

the first row of A − 3I will be an eigenvector with the second eigenvalue. We do not even have to

write down A− I in this case. Thus, as you can check, (− 1, 1) is an eigenvector with eigenvalue 1.

Normalizing these, we get our orthonormal basis:

{u1,u2} =

{
1√
2
(1, 1) ,

1√
2
(− 1, 1)

}
.

The situation for n = 3 is is not much more complicated. If v is orthogonal to each row of

A−µI, and any two of these rows are not multiples of one another, v must be a multiple of the cross

product of these two rows. On the other hand, if all of the rows are multiples of the same vector r,

we know how to get an orthonormal basis {u1,u2,u3} such that u1 is a multiple of r. Then u2 and

u3 are eigenvectors with eigenvalue µ.

The challenge in n = 3 is in finding the eigenvalues, since this involves solving for the roots of a

cubic polynomial, and the formulas for this are a bit cumbersome. However, if one root can be found

“by inspection” the other two can be found by solving a quadratic equation.
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6.2 The best quadratic approximation

6.2.1 Higher order directional derivatives and repeated partial differenti-

ation

Let f : Rn → R. Given x0 and v ∈ Rn, we then define, as usual, the “slice” function g : R → R
by g(t) = f(x0 + tv). The higher order derivatives of g at t = 0, if they exists, are the higher order

directional derivatives of f at x0 in the direction v.

By the chain rule

g′(t) = v · ∇f(x0 + tv) . (6.10)

Taking higher derivatives will tell us how the graph of z = f(x) “curves away” from its tangent

plane at a given point x0. Does it “curve up”, or “curve down”, or does it “curve up in some directions

and down in others”? In many applications of multivariable calculus, it is important to be able to

answer these questions. There are two issues before us: We need to develop an efficient means of

computing higher order directional derivatives, and then, once we know how to compute them, we

need to understand what they are telling us about the geometry of the graph of z = f(x). In the

rest of this subsection, we focus on the issue of how to compute.

To take a second derivative, it helps to write the dot product in (6.11) as an explicit sum:

g′(t) =

n∑
i=1

vi
∂

∂xi
f(x0 + tv) . (6.11)

Then since the vi do not depend on t, and since the derivative of a sum is the sum of the derivatives,

we can apply the chain rule once more to compute

g′′(t) =

n∑
i=1

vi
d

dt

(
∂

∂xi
f(x0 + tv)

)

=

n∑
i=1

vi

(
v · ∇ ∂

∂xi
f

)
(x0 + tv)

=
n∑

i,j=1

vivj
∂

∂xj

∂

∂xi
f(x0 + tv) . (6.12)

To be clear about the notation we are using,
∂

∂xj

∂

∂xi
f denotes the function you get by first

taking the xi partial derivative of f , and then taking the xj partial derivative of that. The following

more compact notation is often used to denote the same thing:
∂2

∂xj∂xi
f(x1, . . . , xn), and in case

j = i, it is common to write
∂2

∂x2
i

f(x1, . . . , xn) We shall use these notations interchangeably, which

is the usual practice.

Example 91. Let f(x1, x2) = x3
1 + x3

2 − 3x1x2. Then
∂

∂x1
f(x1, x2) = 3x2

1 − 3x2 and so

∂2

∂x2
1

f(x1, x2) = 6x1 and
∂2

∂x2∂x1
f(x1, x2) = −3 .
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Likewise,
∂

∂x2
f(x1, x2) = 3x2

2 − 3x1 and so

∂2

∂x2
2

f(x1, x2) = 6x2 and
∂2

∂x1∂x2
f(x1, x2) = −3 .

Notice that computing second partial derivatives is only a matter of computing one variable

derivatives with respect to various pairs of variables.

The formula
d2

dt2
f(x0 + tv)

∣∣∣∣
t=0

=

n∑
i,j=1

vivj
∂2

∂xj∂xi
f(x0) (6.13)

can be written in matrix notation, and this turns out to much more useful than one might first guess.

Definition 68 (Hessian matrix). Let f be a function defined on an open set U ⊂ Rn with values in

R such that all of the second order partial derivatives of f exist and are continuous in U . Then at

any x ∈ U , the Hessian matrix of f at x is the n× n matrix [Hessf (x)] whose i, jth entry is

[Hessf (x)]i,j :=
∂2

∂xj∂xi
f(x) .

With this definition, ([Hessf (x)]v)i =

n∑
j=1

[Hessf (x)]i,jvj =

n∑
j=1

vj
∂2

∂xj∂xi
f(x), and so

v · [Hessf (x)]v =

n∑
i,j=1

vivj
∂2

∂xj∂xi
f(x0) .

Therefore, we can rewrite our formula (6.13) as

d2

dt2
f(x0 + tv)

∣∣∣∣
t=0

= v · [Hessf (x0)]v . (6.14)

Example 92. Let f(x1, x2) = x3
1 + x3

2 − 3x1x2 as in Example 91. Let us compute the second order

directional derivative
d2

dt2
f(x0 + tv)

∣∣∣∣
t=0

for x0 := (− 1,−1) and v = (u, v).

By our computations in Example 91, [Hessf (x)] =

[
6x1 −3

−3 6x2

]
. Therefore,

[Hessf (−1,−1)] = −3

[
2 1

1 2

]
.

Now we compute

v · [Hessf (−1,−1)]v = −3(u, v) ·

[
2 1

1 2

]
(u, v)

= −3(u, v) · (2u+ v, u+ 2v)

= −6(u2 + uv + v2) .

In the previous example, the Hessian turned out to be a symmetric matrix. We next prove

Clairault’s Theorem which says that this was no coincidence.



230 CHAPTER 6. CURVATURE AND QUADRATIC APPROXIMATION

6.2.2 Clairault’s Theorem

At each x where the second order partial derivatives of f all exist and are continuous, the the Hessian

of f is a symmetric matrix:

Theorem 75 (Clairault’s Theorem). f(x, y) be a function of the two variables x and y such that all

partial derivatives of f order 2 are continuous in a neighborhood of (x0, y0). Then

∂

∂x

∂

∂y
f(x0, y0) =

∂

∂y

∂

∂x
f(x0, y0) . (6.15)

Proof. The basic idea of the proof is to take some small h > 0, and then compute a formula

f(x0 + h, y0 + h)− f(x0, y0)

in terms of the mixed second order partial derivatives of f two different ways: First, we keep track

of how f(x, y) changes along the path going straight from (x0, y0) to (x0 + h, y0), and then straight

from (x0 + h, y0) to (x0 + h, y0 + h). Second, we keep track of how f(x, y) changes along the path

going straight from (x0, y0) to (x0, y0 + h), and then straight from (x0, y0 + y) to (x0 + h, y0 + h).

Let’s begin: By the Fundamental Theorem of Calculus,

f(x0 + h, y0)− f(x0, y0) =

∫ h

0

∂

∂x
f(x0 + t, y0)dt

and

f(x0 + h, y0 + h)− f(x0 + h, y0) =

∫ h

0

∂

∂y
f(x0 + h, y0 + t)dt .

Together we have

f(x0 + h, y0 + h)− f(x0, y0) = ∫ h

0

∂

∂x
f(x0 + t, y0)dt+

∫ h

0

∂

∂y
f(x0 + h, y0 + t)dt . (6.16)

Going along the other path we have

f(x0, y0 + h)− f(x0, y0) =

∫ h

0

∂

∂y
f(x0, y0 + t)dt

and

f(x0 + h, y0 + h)− f(x0, y0 + h) =

∫ h

0

∂

∂x
f(x0 + t, y0 + h)dt .

Together we have

f(x0 + h, y0 + h)− f(x0, y0) = ∫ h

0

∂

∂x
f(x0 + t, y0 + h)dt+

∫ h

0

∂

∂y
f(x0 + h, y0 + t)dt . (6.17)

The since (6.16) and (6.17) give two different formulas for the same thing, the differences between

the right hand sides must be zero. After a bit of algebra, we conclude that∫ h

0

(
∂

∂y
f(x0 + h, y0 + t)− ∂

∂y
f(x0, y0 + t)

)
dt =∫ h

0

(
∂

∂x
fx0 + t, y0 + h)− ∂

∂x
f(x0 + t, y0)

)
dt .
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By the Mean Value Theorem, for some 0 ≤ t1 ≤ h∫ h

0

(
∂

∂y
f(x0 + h, y0 + t)− ∂

∂y
f(x0, y0 + t)

)
dt =

h

(
∂

∂y
f(x0 + h, y0 + t1)− ∂

∂y
f(x0, y0 + t1)

)
.

Now on the right hand side only x changes, and by the Mean Value Theorem once more, this time

applied to the variation in x, for some 0 ≤ s1 ≤ h,

h

(
∂

∂y
f(x0 + h, y0 + t1)− ∂

∂y
f(x0, y0 + t1)

)
= h2 ∂

∂x

∂

∂y
f(x0 + s1, y0 + t1) .

In summary, for some 0 ≤ s1, t1 ≤ h,

∂

∂x

∂

∂y
f(x0 + s1, y0 + t1) =

1

h2

∫ h

0

(
∂

∂y
f(x0 + h, y0 + t)− ∂

∂y
f(x0, y0 + t)

)
dt . (6.18)

In exactly the same way we deduce that for some 0 ≤ s2, t2 ≤ h

∂

∂y

∂

∂x
f(x0 + s2, y0 + t2) =

1

h2

∫ h

0

(
∂

∂x
f(x0 + t, y0 + h)− ∂

∂x
f(x0 + t, y0)

)
dt . (6.19)

Combining (6.18), (6.18) and (6.19), we see that for some 0 ≤ s1, t1 ≤ h and some 0 ≤ s2, t2 ≤ h,

∂

∂x

∂

∂y
f(x0 + s1, y0 + t1) =

∂

∂y

∂

∂x
f(x0 + s2, y0 + t2) .

Now take the limit h → 0, along which s1, s2t1, t2 all tend to zero. By the continuity of the second

order partial derivatives, we conclude that (6.15) is true.

Theorem 76 (Symmetry of the Hessian). f be a function defined on an open set U ⊂ Rn with values

in R. Suppose that all partial derivatives of f order 2 are defined and continuous in U . Then for all

x ∈ U , [Hessf (x)] is a symmetric n× n matrix.

Proof. When we compute
∂2

∂xi∂xj
f(x) and

∂2

∂xj∂xi
f(x) we are only concerned with the two variables

xi and xj , so this is an immediate consequence of Clairault’s Theorem.

6.2.3 A multivariable second order Taylor expansion

Let f a a real valued function defined on a open, convex set U ⊂ Rn, and suppose that all of the

second order partial derivatives of f exist in U and are continuous there. Let x0 ∈ U , and v ∈ Rn

be such that x0 + v ∈ U . Then since U is convex, x0 + tv ∈ U for all t ∈ (0, 1).

Then by the Chain Rule and (6.14) if we define g(t) := f(x0 + tv), then

g(0) = f(x0), g′(0) = ∇f(x0) · v and g′′(t) = v · [Hessf (x0 + tv)]v . (6.20)

Recall that by Taylor’s Theorem with Remainder,

g(t) = g(0) + g′(0)t+
1

2
t2g′′(0) +

∫ t

0

(t− s)(g′′(s)− g′′(0))ds . (6.21)
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(This is proved by using the Fundamental Theorem of Calculus to write g(t) = g(0) +
∫ t

0
g′(s)ds, and

using the identity 1 = d
ds (s− t) together with integration by parts to bring in the second derivative

of g, as in any text on single variable calculus.) Using (6.20) in (6.21),

f(x0 + tv) = f(x0) + t∇f(x0) · v +
t2

2
v · [Hessf (x0 + tv)]v (6.22)

+

∫ t

0

(t− s)v ·A(t)v (6.23)

where A(t) := [Hessf (x0 + tv)] − [Hessf (x0)]. since f is twice continuously differentiable, all of the

entries of A(t) are continuous and equal to 0 at t = 0. Hence limt→0 ‖A(t)‖F = 0. It follows that

for any ε > 0, there is a δ > 0 so that for |t| < δ, ‖A(t)‖F < ε, and then by the Cauchy-Schwarz

inequality, v ·A(t)v ≤ ε‖v‖2 for |t| < δ. For such t,∣∣∣∣∫ t

0

(t− s)v ·A(t)v

∣∣∣∣ ≤ ε‖v‖2 ∫ t

0

|t− s|ds =
t2

2
ε‖v‖2

Altogether, we have proved:

Lemma 20. Let f be a real valued function define an open convex set U ⊂ Rn, where all of its

second order partial derivatives exists and are continuous. Let x0 ∈ U , and let v ∈ R by such that

x0 + v inU , and then, since U is convex, x0 + tv ∈ U for all t ∈ (0, 1). Then for all ε > 0, there is

a δ ∈ (0, 1) such that for all t ∈ (0, δ),∣∣∣∣f(x0 + tv)− f(x0)− t∇f(x0) · v − t2

2
v · [Hessf (x0)]v

∣∣∣∣ < εt2‖v‖2 . (6.24)

We now rewrite this as follows. Let f , U and x0 be given as in Lemma 20. Let x ∈ U , and

define t := ‖x − x0‖ and v :=
x− x0

‖x− x0‖
so that tv = x − x0 x = x + tv. Then, with δ and ε as in

Lemma 20,∣∣∣∣f(x)− f(x0)−∇f(x0) · (x− x0)− 1

2
(x− x0) · [Hessf (x0)](x− x0)

∣∣∣∣ < ε‖x− x0‖2 . (6.25)

Definition 69 (Twice differentiable function on Rn). Let U be an open subset of Rn and x0 ∈ U .

A real valued function f on U is differentiable at x0 in case for all ε > 0, there is a vector v ∈ Rn

and a symmetric n× n matrix A and a δ > 0 such that

‖x− x0‖ < δ ⇒
∣∣∣∣f(x)− f(x0)− v · (x− x0)− 1

2
(x− x0) ·A(x− x0)

∣∣∣∣ < ε‖x− x0‖2 . (6.26)

An equivalent way to express (6.26), which “hides” the ε and δ in the definition of the limit, is

lim
x→x0

∣∣f(x)− f(x0)− v · (x− x0)− 1
2 (x− x0) ·A(x− x0)

∣∣
‖x− x0‖2

= 0 . (6.27)

Note that function satisfying (6.27) is automatically differentiable at x0 since

|f(x)− f(x0)− v · (x− x0)| ≤
∣∣∣∣f(x)− f(x0)− v · (x− x0)− 1

2
(x− x0) ·A(x− x0)

∣∣∣∣
+

∣∣∣∣12(x− x0) ·A(x− x0)

∣∣∣∣ ,
and if we divide through by ‖x − x0‖, both terms on the right tend to 0 as x → x0. Hence a twice

differentiable function is differentiable, and in turn, continuous.
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Theorem 77. Let f be twice differentiable at x0. Then there is exactly one vector v and one

symmetric matrix A for which (6.27) is valid.

Proof. Suppose that (6.27) is also valid with w in place of v and B in place of A. Define

h(x) := f(x0) + v · (x− x0) +
1

2
(x− x0) ·A(x− x0)

g(x) := f(x0) + w · (x− x0) +
1

2
(x− x0) ·B(x− x0) .

Then by the triangle inequality

|h(x)− g(x)|
‖x− x0‖2

≤ |f(x)− h(x)|
‖x− x0‖2

+
|f(x)− g(x)|
‖x− x0‖2

,

and therefore lim
x→x0

|h(x)− g(x)|
‖x− x0‖2

= 0, which is the same as

lim
x→x0

∣∣∣∣(v −w) · x− x0

‖x− x0‖2
+

1

2

x− x0

‖x− x0‖
· (A−B)

x− x0

‖x− x0‖2

∣∣∣∣ = 0 . (6.28)

First, suppose that v 6= w, and define x = x0 + t(v −w). Then (6.28) says that

lim
t→0

∣∣∣∣1t +
1

2

v −w

‖v −w‖
· (A−B)

w −w

‖w −w‖2

∣∣∣∣ = 0 .

which is impossible. Hence w = v. Given this, and choosing any non-zero y ∈ Rn, and then taking

x = x0 + ty, (6.28) says that

lim
t→0

∣∣∣∣ y

‖y‖
· (A−B)

y

‖y‖2

∣∣∣∣ = 0 ,

and hence y · Ay = y · By for all y ∈ Rn. Choosing y = ej , j = 1, dots, n, we have Aj,j = Bj,j for

each j. Next, choosing y = ei + ej , we see that

Ai,i +Ai,j +Aj,i +Aj,j = Bi,i +Bi,j +Bj,i +Bj,j .

By what we just proved, and the fact that A and B are symmetric, this means that A = B.

Therefore, if f satisfies (6.27), we may regard v as the first derivative of f as x0, and A as the

second derivative of f as x0.

Theorem 78. Let f be a real valued function on a open set U ⊂ Rn such that all of the second order

partial derivatives of f exist on U and are continuous at x0. Then f is twice differentiable and the

unique vector v and the unique symmetric matrix A such that (6.27) is valid, or equivalently, (6.26)

is valid for each ε > 0, are given by

v = ∇f(x0) and A = [Hessf (x0)] .

Proof. The fact that (6.27) is valid with this choice of v and A follows from Lemma (6.27), with

the conclusion written in the form (6.25), one we observe that since U is open and contains x0, it

also contains Br(x0) for some r > 0, and Br(x0) is convex. The uniqueness of v and A follows from

Theorem 77.
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Definition 70 (Quadratic function). A quadratic function f on Rn is a polynomial in (x1, . . . , xn)

each term of which is of degree at most two. A purely quadratic function f on Rn is a polynomial in

(x1, . . . , xn) each term of which is of degree exactly two, the kind we have studied in the first section

of this chapter.

According to the definition, the general quadratic function has the form

q(x) = a+

n∑
j=1

ajxj +
1

2

n∑
i,j=1

Ai,jxixj

for some coefficients a, aj , Ai,j , 1 ≤ i, j ≤ n. We can express this in vector notation as

q(x) = a+ a · x + x ·Ax

for some a ∈ R, a ∈ Rn and A a symmetric n× n matrix.

Notice that for any a, a and A as above, and any x0, the function h(x) given by

h(x) = a+ a · (x− x0) + (x− x0) ·A(x− x0)

is also a quadratic function: By expanding the terms and regrouping, we also have

h(x) = [a− ba · x0 + x0 ·Ax0] + [a− 2Ax0] · x + x ·Ax ,

which has the form of a quadratic function. This form is especially useful when studying the behavior

of functions at x near to x0.

Definition 71 (Best quadratic approximation). Let f be a function defined on an open set U ⊂
Rn with values in R such that every second order partial derivatives of f exists and is continuous

everywhere in U . For any x0 ∈ U , define the function h(x) by

h(x) = f(x0) + (x− x0) · ∇f(x0) +
1

2
(x− x0) · [Hessf (x0)](x− x0) . (6.29)

Then h(x) is the best quadratic approximation to f at x0.

The quadratic function h(x) define by (6.29) is the “best” quadratic approximation in the sense

that, according to Theorem 77, it is the only quadratic function such that

lim
x→x0

|f(x)− h(x)|
‖x− x0‖2

= 0 . (6.30)

6.2.4 Principal curvatures at a critical point

Let be twice continuously differentiable on an open set U ⊂ Rn, and suppose that x0 is a critical

point of f . For any non-zero v ∈ Rn, define the function g(t) = f(x0 + tv). By the Chain Rule,

g′(0) = 0. Recall from single variable calculus that if g′′(0) > 0, then t = 0 is a local minimizer of g,

so that the graph of y = g(t) “curves upward” as it passes through (0, g(0)). Likewise, if g′′(0) < 0,

then t = 0 is a local maximizer of g, so that the graph of y = g(t) “curves downward” as it passes

through (0, g(0)).
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As we vary the vector v, we will get different values for g′′(0), which specifies the curvature of

the graph of the “one dimensional slice” of the graph of f(x0 + tv) at t = 0. To compare different

directions on an equal footing, we restrict our attention to the case in which v is a unit vector u. By

(6.14)

d2

dt2
f(x0 + tu)

∣∣∣∣
t=0

= u · [Hessf (x0)]u . (6.31)

We now ask: What choice of u maximizes
d2

dt2
f(x0 + tu)

∣∣∣∣
t=0

, and what choice of u minimizes

d2

dt2
f(x0 + tu)

∣∣∣∣
t=0

?

We have seen in the proof of the Spectral Theorem that the maximum value of u · [Hessf (x0)]u

as u ranges of the set of all unit vectors is the largest eigenvalue of [Hessf (x0)], which we shall denote

by µmax. In the same way, the minimum value of u · [Hessf (x0)]u as u ranges of the set of all unit

vectors is the least eigenvalue of [Hessf (x0)], which we shall denote by µmin. Then by eqrefmainfo2B,

for all unit vectors u,

µmin ≤
d2

dt2
f(x0 + tu)

∣∣∣∣
t=0

≤ µmax , (6.32)

and there is equality on the left if and only if [Hessf (x0)] = µminu, and there is equality on the right

if and only if [Hessf (x0)] = µmaxu.

If µmin = µmax, then all of the eigenvalues of A are the same number, say c. But the A = cIn×n.

To see this, let {u1, . . . ,un} be an orthonormal basis of Rn consisting of eigenvectors of A. Then for

any x ∈ Rn,

Ax = A

 n∑
j=1

(x · uj)uj

 =

n∑
j=1

(x · uj)Auj = c

n∑
j=1

(x · uj)uj = cx = cIn×nx .

Otherwise, if µmin < µmax then every eigenvector of [Hessf (x0)] with eigenvalue µmin is orthog-

onal to every eigenvector with eigenvalue µmin. Unit vectors u such that either [Hessf (x0)] = µminu

or [Hessf (x0)] = µmaxu are called directions of principal curvature at the critical point x0.

Example 93 (Directions of principal curvature at a critical point). Let f(x, y) = x3 + y3− 3xy. We

have seen in Example 91 that x0 := (−1,−1) is a critical point, and that [Hessf (x0)] = −3

[
2 1

1 2

]
.

We have seen in Example 89 that the two eigenvalues of

[
2 1

1 2

]
are 3 and 1, so the two eigenvalues

of [Hessf (x0)] are −9 and −3. Hence µmin = −9, and µmax = −3. The two unit vectors u for which

[Hessf (x0)] = µminu are u = ±2−1/2(1, 1), and the two unit vectors u for which [Hessf (x0)] = µmaxu

are u = ±2−1/2(1,−1). By (6.32), for all init vectors u,

−9 ≤ d2

dt2
f(x0 + tu)

∣∣∣∣
t=0

≤ −3 .

Hence the graph z = f(x, y) “curves downward” in every direction at x0. As we discuss next, this

indicates that x0 is a local maximizer of f .
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When µmax > 0 and µmin < 0 at a critical point x0, the surface z = f(x, y) near x0 curves

upward at in some directions, and downward in others. Here is a graph for another function that

illustrates this:

The same sort of reasoning shows that the curved surface given by z = f(x, y) “curves downward”

from the tangent plane at x0 in case both µ+ and µ− are strictly negative. The plot above suggests

the name introduces in the following definition:

Definition 72 (Saddle point). Let be twice continuously differentiable on an open set U ⊂ Rn, and

suppose that x0 is a critical point of f . If µmax > 0 and µmin < 0 at x0, then x0 is a saddle point.

6.2.5 Contour plots near critical points

What we have learned so far enables us to draw a contour plot of a twice continuously differentiable

function f(x, y) near any of its critical points x0, at least when none of the eigenvalues of [Hessf (x0)]

is zero.

Example 94 (Drawing a contour plot). Let f(x, y) = 2yx2 + 4x2 + xy + 8y2 + 8x− y. Then

∇f(x, y) = (4xy + 8x+ y + 8, 2x2 + x− 1 + 16y) .

At a critical point (x, y), we must have

4xy + 8x+ y + 8 = 0 and 2x2 + x− 1 + 16y = 0 .

From the first equation we see that x = − y + 8

4y + 8
. Substituting this into the second, we see, after

some algebra, that y(476 + 503y + 128y2) = 0. This has three roots, one of course being y = 0. The

corresponding x value is −1. Hence one of the three critical points is x0 := (− 1, 0). Let us compute

the principal curvatures at x0, and sketch a contour plot for f near x0.

We compute:

∂2

∂x2
f(x, y) = 8 + 4y

∂2

∂x∂y
f(x, y) = 1 + 4x and

∂2

∂y2
f(x, y) = 16 .

Evaluating at x0 = (− 1, 0), we find [Hessf (x0)] =

[
8 −3

−3 16

]
.
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The quadratic equation we must solve to find the eigenvalues is (8− t)(16− t) = 9, which reduces

to t2 − 24t = −119. Completing the square, (t− 12)2 = 25, and so the two eigenvalues are

µ1 = 17 and µ2 = 7 .

We then get u1 by normalizing (3, 8 − 17) = 3(1,−3) which yields u1 =
1√
10

(1,−3). Once we

have u1, we obtain u2 from u2 = (u1)⊥: u2 =
1√
10

(3, 1).

In the corresponding coordinate system, the best quadratic approximation to f at x0 is

f((− 1, 0) + uu1 + vu2) ≈ −4 +
1

2
(17u2 + 7v2) .

Let us make a contour plot of the right hand side in the u, v plane. Setting

17u2 + 7v2 = c ,

we get the equation of an ellipse whose major axis is the v-axis, and whose minor axis is the u-axis:

Here is a plot in the u, v plane for 5 values of c:

Now let us shift and rotate this plot so it fits into the original x, y plane. The point x0 is the

center of the u, v coordinate system, and the positive u axis runs along the u1 direction and the

positive v-axis runs along the u2 direction.

So shifting and rotating the ellipses accordingly, we get our plot:

Here is a contour plot of the actual function f(x, y) over the range −2 ≤ x ≤ 0, −1 ≤ y ≤ 1.
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As you can see, the contour plot corresponds quite closely to the contour plot for the quadratic

approximation over this whole region, which is not even so small. If we look at a larger region, we

see that the approximation breaks down farther away from (− 1, 0):

Indeed, you see there is another critical point near (−4,−3/2), and that the contour lines near this

critical point are hyperbolas. What is impressive however, is the size of the region around the critical

point where there contour plots of f and its quadratic approximation are virtually indistinguishable.

Example 95 (Drawing a contour plot). Let f(x, y) = 3x2y − 6x− y3. Then

∇f(x, y) = (6xy − 6, 3x2 − 3y2) .

We have a critical point if and only if xy = 1 and x2 = y2. The latter equation says x = ±y. But if

x = −y, the xy = 1 is impossible, so x = y, and then we must have x = −1 or x = 1. Hence the two

critical points are (− 1,−1) and (1, 1).

Let us first take x0 = (1, 1). We compute:

∂2

∂x2
f(x, y) = 6y

∂2

∂x∂y
f(x, y) = 6x and

∂2

∂y2
f(x, y) = 6y .

Evaluating at x0 := (1, 1), we find [Hessf (x0)] =

[
6 6

6 −6

]
.

The quadratic equation we must solve to find the eigenvalues is (6 − t)(−6 − t) = 36. which

reduces to t2 = 72. The two roots are

µ1 = 6
√

2 and µ1 = −6
√

2 .
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We then get u1 by normalizing (6, 6− 6
√

2) = 6(1, 1−
√

2) and then u2 = u⊥1 :

u1 =
1

4− 2
√

2
(1, 1−

√
2) and u2 =

1

4− 2
√

2
(
√

2− 1, 1) .

Since f(x0) = −2, the best quadratic approximation near x0 in the u, v coordinates is

f((1, 1) + uu1 + vu2) = −2 + 3
√

2u2 − 3
√

2v2 .

The equation obtained by setting the right hand side is equal to a constant is equivalent to the

equation ũ2 − ṽ2 = c. for some other constant c, which is the equation of an hyperbola. Here is a

plot in the u, v plane for 6 values of c:

Now let us shift and rotate this plot so it fits into the original x, y plane. The center of the u, v

coordinate system is at x0, the positive u-axis runs along the u1 direction, and the positive v-axis

runs along the u2 direction. Shifting and rotating the hyperbolas accordingly, we obtain:

To the extent that the quadratic approximation is valid, this should be a good match to the contour

plot of the original function f(x, y) near to the critical point ( − 1,−1). For comparison, here is a

computer generated contour plot of the actual function f(x, y) over the range −2 ≤ x, y ≤ 0.
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As you can see, the actual contour plot corresponds quite closely to the contour plot for the

quadratic approximation over this whole region, which is not even so small.

6.2.6 Types of critical points for real valued functions on Rn

The “second derivative test” in single variable calculus says that if f in a twice continuously differen-

tiable function on an interval (a, b), and for some x0 ∈ (a, b), f ′(x0) = 0, then x0 is a local maximum

of f in case f ′′(x0) < 0, and is a local minimum of f in case f ′′(x0) > 0. In multivariable calculus,

it is the Hessian matrix that plays the role of f ′′, but what is the relevant sense of positivity or

negativity of an n×n matrix? As we shall see, it concerns the signs of the eigenvalues of the matrix.

Definition 73 (Positive definite matrices). Let A be an n×n symmetric matrix. Then A is positive

definite in case for every non-zero vector x in Rn,

x ·Ax > 0 .

We say A is negative definite if −A is positive definite. We say that A is positive semi-definite in case

x ·Ax ≥ 0 for all x ∈ Rn, and that A is negative semi-definite in case −a is positive semi-definite.

Theorem 79 (Eigenvalues and matrix positivity). A symmetric n× n matrix A is positive definite

if an only if all of its eigenvalues are strictly positive, and in this case, with c := minj=1,...,n{µj}

x ·Ax ≥ c‖x‖2 . (6.33)

Proof. Let {u1, . . . ,un} be an orthonormal basis of Rn consisting of eigenvectors ofA. Let {µ1, . . . , µn}
be the corresponding eigenvalues. Since µj = uj · Auj , when A is positive definite, then each eigen-

value of A is strictly positive.

On the other hand, define µmin := minj=1,...,n{µj}, and suppose that µmin > 0. We can express

any x ∈ Rn as x =

n∑
j=1

(x · uj)uj , and then, x ·Ax =

n∑
j=1

µj(x · uj)2 ≥ µmin

n∑
j=1

(x · uj) = µmin‖x‖2.

Thus, A is positive definite, and (6.33) is valid.

Now consider a real valued function f that is twice continuously differentiable on an open set

U . Suppose that x0 ∈ U , and ∇f(x0) = 0, so that x0 is a critical point. Let A := [Hessf (x0)], and

suppose that A is positive definite. Then by Theorem 79, if µmin is defined to be the least eigenvalue

of A, µmin > 0, and for all x ∈ Rn, (6.33) is valid.
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By Theorem 78, choosing ε = µmin/4, there is a δ > 0 so that

‖x− x0‖ < δ ⇒
∣∣∣∣f(x)− f(x0)− 1

2
(x− x0) ·A(x− x0)

∣∣∣∣ < µmin

4
‖x− x0‖2 .

In particular,

‖x− x0‖ < δ ⇒ f(x) ≥ f(x0) +
1

2
(x− x0) ·A(x− x0)− µmin

4
‖x− x0‖2

≥ f(x0) +
µmin

4
‖x− x0‖2 ,

where we have uses the fact that (x−x0) ·A(x−x0) ≥ µmin‖x−x0‖2 for all x. That is, at all points

x such that ‖x − x0‖ < δ, f(x) ≥ f(x0) with equality only in case x = x0. This brings us to the

following definition:

Definition 74 (Local maximizers and minimizers). Let f : Rn → R be continuously differentiable.

Then x0 ∈ Rn is a strict local maximizer of f in case there is some r > 0 so that

0 < ‖x− x0‖ < r ⇒ f(x0) > f(x) .

We say that x0 is a strict local minimizer of − in case there is some r > 0 so that

0 < ‖x− x0‖ < r ⇒ f(x0) < f(x) .

Now notice that x0 is a strict local maximizer of f if and only if x0 is a strict local minimizer

of −f . Hence the following theorem is an immediate consequence of the discussion that precedes

Definition 74

Theorem 80 (Criteria for local maxima and minima). Let f : Rn → R. Suppose that x0 is a critical

point of f , and that for some R > 0, all of the second order partial derivatives of f exists and are

continuous at each z with ‖z− x0‖ ≤ R. Then:

(1) If [Hessf (x0)] is negative definite , x0 is a strict local maximizer of f .

(2) If [Hessf (x0)] positive definite, x0 is a strict local minimizer of f .

6.2.7 Sylvester’s Criterion

Suppose x0 is a critical point of a twice continuously differentiable function x0. If we want to apply

Theorem 80 to determine whether or not x0 might be a strict local minimizer or maximizer, one way

to proceed would be to compute all of the eigenvlaues of [Hessf (x0)]. With 3 or more variables, it

is often difficult to do this. fortunately, there is another way: One can determine whether all of the

eigenvalues are strictly positive simply by by computing certain determinants. We now explain how

this works for n = 2 and n = 3, in which case we have already defined th e determinant.

Recall from (6.9) that if A is a 2× 2 symmetric matrix and {u1,u2} is an orthonormal basis of

R2 such that Auj = µjuj , j = 1, 2, then det(A) = µ1µ2. Therefore, det(A) > 0 if and only if either

both eigenvalues of A are strictly positive, or both both eigenvalues of A are strictly negative, and

det(A) < 0 if and only if one eigenvalue of A is strictly positive, and the other is strictly negative.

Hence if det(A) > 0, A is either positive definite or negative definite. Since A1,1 = e1 · Ae1, A will
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then be positive definite in case A1,1 > 0 and negative definite in case A1,1 < 0. (You could also use

A2,2 for the same purpose.) We summarize:

(1) Both eigenvalues are strictly positive if and only if det(A) > 0 and A1,1 > 0.

(2) Both eigenvalues are strictly negative if and only if det(A) > 0 and A1,1 < 0.

(3) If det(A) < 0 , one eigenvalue is strictly positive, and the other is strictly negative.

This is the 2×2 version of Sylvester’s Criterion. The 3×3 case is only slightly more complicated.

Let

A =


a u v

u b w

v w c

 and B :=

[
a u

u b

]
.

Notice that B is the 2× 2 block in the upper left corner of A.

The 3× 3 version of Sylvester’s Criterion states that

(1) All three eigenvalues are strictly positive if and only if det(A) > 0, det(B) > 0 and A1,1 > 0.

(2) All three eigenvalues are strictly negative if and only if det(A) < 0, det(B) > 0 and A1,1 < 0.

(3) Suppose none of det(A) 6= 0 is zero, but neither of the conditions in (1) and (2) is satisfied. Then

at least one eigenvalue is strictly positive, and at least one eigenvalue is strictly negative.

To see this, let {u1,u2,u3} be an orthonormal basis of R3 such that Auj = µjuj , j = 1, 2, 3.

Then by (6.8), det(A) = µ1µ2µ3. If det(A) > 0, then there are two possibilities: Either each

eigenvalue is strictly positive, or else two are strictly negative, and one is strictly positive. We now

show that when two eigenvalues of A are strictly negative, then B cannot be positive definite.

Suppose that µ1 and µ2 are strictly negative and µ3 is strictly positive. Consider the plane

parameterized by x(s, t) = su1 + tu2. Since every pair of planes that pass through the origin in R3

intersect at least in a line, There is a unit vector in this parameterized plane that also lies in the x, y

plane. That is, for some s and t with s2 + t2 = 1, and some x and y with x2 + y2 = 1,

su1 + tu2 = (x, y, 0) .

We then compute

(su1 + tu2) ·A(su1 + tu2) = µ1s
2 + µ2t

2 < 0 ,

and

(x, y, 0) ·A(x, y, 0) = (x, y) ·B(x, y) . (6.34)

We conclude that there is a unit vector (x, y) such that (x, y) ·B(x, y) < 0, and hence B is not

positive definite, nor even positive-semidefinite. However, by the 2×2 version of Sylvester’s Criterion,

if det(B) > 0 and B1,1 > 0, B is positive definite. Since A1,1 = B1,1, the condition that det(B) > 0

and A1,1 < 0 is incompatible with A having two negative eigenvalues so all of the eigenvalues of A

must be strictly positive when det(A) > 0, det(B) > 0 and A1,1 > 0.

This proves that det(A) > 0, det(B) > 0 and A1,1 > 0 is a necessary and sufficient condition

for A to be positive definite. Then det(−A) > 0, det(−B) > 0 and −A1,1 > 0 is a necessary and

sufficient condition for −A to be positive definite, or what is the same thing, det(A) < 0, det(B) > 0

and A1,1 < 0 is a necessary and sufficient condition for A to be negative definite.
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If det(A) 6= 0, then µ1µ2µ3 6= 0, and hence none of the eigenvlaues is zero. If they were all

positive, condition (1) would be satisfied. If they were all negative, condition (2) would be satisfied.

Hence both signs must be present.

There is an n×n version of Sylvester’s Criterion, whose form you can probably guess. However,

since have not introduced higher dimensional determinant in this course, we stop here.

6.3 Curvature of surfaces in R3

6.3.1 Parameterized surfaces in R3

Definition 75 (Parameterized surface). A parameterized surface S in R3 is a continuously differ-

entiable function

X(u, v) = (x(u, v), y(u, v), z(u, v))

from an open set U in R2 to R3 such that the columns of [DX(u, v)] are linearly independent for each

(u, v) ∈ U . We also require that for distinct (u1, v1) and (u2, v2) in U , X(u1, v1) 6= X(u2, v2) so

that the function sending (u, v) to X(u, v) is an invertible transformation from U to S. The inverse

function, which sends a point p ∈ S to its coordinate vector (u(p), v(p)) ∈ U , is called the coordinate

function of the parameterization.

Differentiable surfaces in R3 are the two dimensional analogs of differentiable curves x(t) in R3.

The requirement that the columns of the Jacobian matrix be linearly independent ensures that the

surface S is really two dimensional, and not a one dimensional object, like a curve, in disguise. For

example, let x(t) be any continuously differentiable function from the interval (0, 1) to R3. Define

X(u, v) := x(uv)

on U = (0, 1)× (0, 1) ⊂ R2. The image of this function is not a surface, but a curve. Moreover, one

computes in this case that

[DX(u, v)] = [vx′(uv), ux′(uv)] ,

so that the two columns of [DX(u, v)] are multiples of one another.

Since we shall be doing a number of computations with the 3 × 2 Jacobian matrix [DX(u, v)],

let us pause to become familiar with it and introduce some useful notation. Since X(u, v) =

(x(u, v), y(u, v), z(u, v)), we have that

[DX(u, v)] =


∇x(u, v)

∇y(u, v)

∇z(u, v)

 =


∂x(u, v)/∂u ∂x(u, v)/∂v

∂y(u, v)/∂u ∂y(u, v)/∂v

∂z(u, v)/∂u ∂z(u, v)/∂v

 .

The two columns of [DX(u, v)] are the two vectors The vectors
∂X

∂u
(u, v) and

∂X

∂v
(u, v), which come

up frequently in what follows, and it will be convenient to have a more compact notation for them.

We define

Xu(u, v) =
∂X

∂u
(u, v) and Xv(u, v) =

∂X

∂v
(u, v) . (6.35)
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Then we have the column representation for the Jacobian matrix [DX(u, v)]:

[DX(u, v)] = [Xu(u, v),Xv(u, v)] . (6.36)

One example of a parameterized surface is provided by the graph of a continuously differentiable

function f on an open set U ⊂ R2. Then we take u = x, v = y and z = f(x, y) = f(u, v), and we

have X(u, v) = (u, v, f(u, v)). Then

[DX(u, v)] =


1 0

0 1
∂f(u, v)

∂u

∂f(u, v)

∂v

 .

In this case the columns are clearly linearly independent no matter what f is.

Not all parameterized surfaces are graphs: As we have seen early on in Chapter One, (see also

Example 97 below), the unit sphere in R3 can be parameterized, except for the poles, by

X(u, v) = ( sinu cos v, sinu sin v, cosu)

for −π < u < π and 0 < v < π. The Jacobian matrix is given by

[DX(u, v)] =


cosu cos v − sinu cos v

cosu sin v sinu sin v

− sinu 0

 .

Since sin v > 0 for 0 < v < π, the two columns of [DX(u, v)] are never multiples of one another.

Thus the parameterization of the unit sphere that we met in Chapter One is, as we would expect, a

parameterized surface.

Now let S be parameterized surface given by the function X(u, v) defined on an open set U ⊂ R2

with values in R3, and let (u0, v0) ∈ U . Let p denote the point X(u0, v0).

Let y(t) = (u(t), v(t)) be a continuously differentiable curve in U defined for t ∈ (−a, a), some

a > 0, and such that y(0) = (u0, v0). Then the composite function x(t) = X(u(t), v(t)) is a curve in

R3 such that x(0) = p, and such that x(t) ∈ S for all t ∈ (−a, a). The tangent vector to this curve

is tangent to S at (u0, v0) in a natural sense. By the chain rule, we find, using (6.36),

x′(0) = [DX(u0, v0)](u′(0), v′(0)) = u′(0)Xu(u0, v0) + v′(0)Xv(u0, v0) .

Every linear combination of the columns of [DX(u0, v0)] is a tangent vector: To see this, fix a, b ∈ R,

and consider the curve x(t) = X(u0 + at, v0 + bt). Then x′(0) = aXu(u0, v0) + bXv(u0, v0), showing

that the vector on the right is tangent to S at p.

Next consider the vector

Xu(u0, v0)×Xv(u0, v0) .

The two vectors in the cross product are linearly independent, the cross product is not zero. By the

orthogonality property of the cross product, it is orthogonal to any linear combination of Xu(u0, v0)

and Xv(u0, v0). Hence it is orthogonal to every vector that this tangent to S at p. Normalizing the

cross product, which we can do since it is not zero, we obtain a unit vector known as the unit normal

to the surface S.
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Definition 76 (Unit normal and tangent plane). Let S be a parameterized surface. The unit normal

vector N̂(u, v) is given by

N̂(u, v) =
1

‖n(u, v)‖
n(u, v) , (6.37)

where

n(u, v) = Xu ×Xv(u, v) . (6.38)

(We put the hat on this unit vector to distinguish it from the unit normal vector to the curve, which

we shall denote by N(t) as usual.) The tangent plane to S at a point X(u0, v0) in S is the plane

consisting of all x ∈ R3 that satisfy

N̂(u0, v0) · (x−X(u0, v0)) = 0 .

The tangent space to S at X(u0, v0) is the span of the vectors {Xu(u0, v0),Xv(u0, v0)}.

Notice that if we changed the order of u and v, the sign of N̂(u0, v0) would change. The side of

the surface towards which N̂(u0, v0) points is often called the “positive” side of the surface. Surfaces

that can be parameterized in the simple manner described here always have two sides Later we shall

see that there are sided surfaces, such as a Mobius band, cannot be parameterized in this manner.

(We shall discuss such surfaces in Chapter 9). The choice of one side or the other other as “the

positive side” is known as a choice of “orientation” of the surface.

Also note the distinction between the tangent plane and the tangent space. The tangent plane

to S at a point p ∈ S is a plane passing through p that need not contain 0. The tangent space S at

p is however a subspace of R3, which like all subspaces of a vector space, contains 0. As a subset of

R3, the tangent space is the plane through 0 that is parallel to the tangent plane.

Here is a picture showing a surface S showing its tangent plane p at a point. Also in the diagram

you see a number of coordinate curves on the surface, the tangent vectors to the coordinate curves

crossing at p, and the unit normal to p. The perspective is such that the tangent plane appears

horizontal, and hence the unit normal vector is vertical.



246 CHAPTER 6. CURVATURE AND QUADRATIC APPROXIMATION

Then for fixed u0 and v0, the functions sending u to X(u, v0) and v to X(u0, v) are coordinate

curves on the surface. A number of these are shown in the figure above, for various values of u0 and

v0 to produce a “coordinate grid” on the surface. The vectors Xu and Xv are tangent vectors to the

coordinate curves.

Example 96 (Tangent planes for graphs). Let f(x, y) be a continuously differentiable function on

R2. Consider the parameterized surface S given by X(u, v) = (u, v, f(u, v)). As we have seen above,

[DX(u, v)] =


1 0

0 1
∂f(u, v)

∂u

∂f(u, v)

∂v

 .

Therefore,

n(u, v) =

(
−∂f(u, v)

∂u
, −∂f(u, v)

∂v
, 1

)
.

Defining X0 = X(u0, v0), we have that n(u0, v0) · (x−X0) = 0 can be written as(
∂f(u, v)

∂u
,
∂f(u, v)

∂v
, −1

)
· (x−X0) = 0 ,

which is the equation of the tangent plane to the graph of z = f(x, y) at (x, y) = (u0, v0).

Hence the new notion of “tangent plane” agrees with the old one for surfaces that are graphs, as

it should.

Example 97 (Two parameterizations of the unit sphere). There are many ways to parameterize

S2, the unit sphere in R3. The first is the “latitude and longitude” parameterization: Given p inS2,

define cosu = p · e3 so that 0 ≤ u ≤ π. Then u is essentially the “latitude” except it is measured

from the North Pole, and not the Equator. Let p⊥ = p− (p · e3)e3, so that ‖p⊥‖ = sinu, and define

v by

p⊥ = ‖p⊥‖( cos v, sin v, 0) = ( sinu cos v , sinu sin v, 0) .

Reassembling the components of the general point p, we have our first parameterization:

X(u, v) = ( sinu cos v , sinu sin v, cosu) . (6.39)

Here, we take 0 < u < π and 0 < v < 2π. This parameterization does not cover the whole sphere; it

leaves out the half-circle running from the North Pole to the South Pole along the coordinate curve

with v = 0 (or, equivalently, v = 2π). However, we require the parameterization to be defined on an

open set. We see something even more significant when we compute the coordinate tangent vectors

Xu and Xv:

Xu = ( cosu cos v , cosu sin v,− sinu) and Xv = (− sinu sin v , sinu cos v, 0) .

Note that X(0, v) = X(π, v) = 0 for all v, so that at u = 0 and at u = π, {Xu(u, v),Xv(u.v)} are

not linearly independent, as we require.

Next we compute n = Xu ×Xv and find n(u, v) = sinu( sinu cos v , sinu sin v, cosu). Normaliz-

ing, ‖n(u, v)‖ = sinu and so

N̂(u, v) = ( sinu cos v , sinu sin v, cosu) ,
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which you will notice says that N̂(u, v) = X(u, v), which is geometrically obvious for the unit sphere.

Consider u0 = v0 = π/4. Then X(π/4, π/4) = N̂(π/4, π/4) = (1/2, 1/2, 1/
√

2). Hence the

equation for the tangent plane at p = X(π/4, π/4) is (1/2, 1/2, 1/
√

2)·(1/2−x, 1/2−y, 1/
√

2−z) = 0

which simplifies to

x+ y +
√

2z = 2 .

There is another nice way to parameterize the sphere using the stereographic projection. Let p

bean point in S2 other than the South Pole −e3. Then there is a uniquely determined line through

−e3 and p that intersects the x, y plane in a uniquely determined point x(p) ∈ R2. The line is

parameterized by x(t) = −e3 + t(p + e3) and it intersects the x, y plane exactly when e3 · x(t) = 0.

Solving for t we find 0 = −1 + t(p · e3 + 1), so that t = 1/(p · e3 + 1). Substituting this t into x(t) we

find

x(p) =
1

1 + p3
(p1, p2)

where p = (p1, p2, p3). The functions u(p) = p1/(1+p3) and v(p) = p2/(1+p3) are the stereographic

coordinate functions on S2. That is, we write x(p) = (u(p), v(p)).

To get the corresponding parameterization, we invert to express p and a function of u and v.

Note that

u2 + v2 = u2(p) + v2(p) =
p2

1 + p2
2

(1 + p3)2
=

1− p2
3

(1 + p3)2
=

1− p3

1 + p3
.

Solving for p3, we find (u2 + v2)(1 + p3) = (1− p3) so that

p3 =
1− u2 − v2

1 + u2 + v2
.

Then p1 = u(1+p3) = 2u/(1+u2 +v2) and likewise, p1 = v(1+p3) = 2v/(1+u2 +v2). The expresses

the point p as a function of u and v, and we have our second parameterization:

X̃(u, v) =
1

1 + u2 + v2
(2u, 2v, 1− u2 − v2) . (6.40)

You should check that the right hand side is, in fact, a unit vector.

This parameterization covers the wholes of S2 except for the South Pole. Interchanging the roles

of the North and South Poles, one get another parameterization that covers everything except the

North Pole. Using the two together, one has the whole sphere covered.

We now compute the coordinate tangent vectors for this parameterization:

X̃u(u, v) =
−2

(1 + u2 + v2)2
(u2 − v2 − 1, 2uv, 2u)

X̃v(u, v) =
−2

(1 + u2 + v2)2
(2uv, u2 − v2 + 1, 2v) .

Taking the cross product, we find

n(u, v) =
4

(1 + u2 + v2)3
(2u, 2v, 1− u2 − v2) .

Once more, we see that the unit normal vector at X̃(u, v) is X̃(u, v) itself. We can of course compute

the tangent plane at p = (1/2, 1/2, 1/
√

2), and of course we get the same equations for it.
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6.3.2 The arclength of curves on a parameterized surface

Consider the unit sphere S2 with the “latitude and longitude” parameterization, (6.39). Let p =

(1/2, 1/2, 1/
√

2) ∈ S2, and q = (0, 1, 0) ∈ S2. The coordinate of p are u(p) = v(p) = π/4, while the

coordinates of q are u(q) = v(q) = π/2.

Consider the curve u(t) in the coordinate plane given by

u(t) = (u(t), v(t)) = (1 + t)(π/4, π/4) .

Think of this curve as specifying the latitude and longitude at time t, as a point moves across the

surface of the sphere from p to q between times t = 0 and t = 1.

Corresponding to this curve in the coordinate plane is the curve x(t) = X(u(t)) on the sphere.

We can compute the arclength of this geometric, or physical, curve in R3 (which happens to “live”

on S2 ⊂ R3) in terms of the coordinate curve in R2. Here us how:

We first compute the velocity vector x′(t). By the chain rule,

x′(t) = [DX(u(t)]u′(t) = Xu(u(t))u′(t) + Xv(u(t))v′(t) .

Therefore, by Theorem 58, which says in particular that for all m × n matrices A and all u ∈ Rn,

Au ·Au = u ·ATAu. Applying this with n = 2 and m = 3, we have

‖x′(t)‖2 = [DX(u(t)]u′(t) · [DX(u(t)]u′(t)

= u′(t) ·
(
[DX(u(t)]T [DX(u(t)]

)
u′(t) . (6.41)

Definition 77 (First Fundamental Matrix). Let X(u, v) be a continuously differentiable parameter-

ization of a surface S in R3. Then the First Fundamental Matrix of the parameterized surface at the

point p = X(u0, v0) is the 2× 2 matrix

[I]p := [DX(u0, v0)]T [DX(u0, v0)] (6.42)

The notation is traditional, and will be used here, despite the risk that [I](u,v) might suggest the

identity matrix. By definition, if (u(t), v(t)) is a continuously differentiable curve in the u, v plane

passing through (u0, v0) at t = 0, and if x(t) = X(u(t), v(t)), then the first fundamental matrix relates

speed in physical 3 dimensional space, ‖x′(0)‖ to the velocity u′(0) := (u′(0), v′(0)) in parameter

space through

‖x′(0)‖2 = u′(0) · [I]pu′(0) . (6.43)

Integrating the speed, we can compute arc-length of curves on the surface in R3 doing computations

with curves in the two-dimensional parameter space.

Since [DX(u, v)] = [Xu(u, v),Xv(u, v)],

[I]p = [Xu(u0, v0),Xv(u0, v0)]T ·Xu(u0, v0),Xv(u0, v0)] =

[
Xu ·Xu(u0, v0) Xv ·Xu(u0, v0)

Xu ·Xv(u0, v0) Xv ·Xv(u0, v0)

]
.

To write [I]p more conveniently, define the three functions E, F and G by

E(u, v) = ‖Xu(u, v)‖2 , F (u, v) = Xu(u, v) ·Xv(u, v) and G(u, v) = ‖Xv(u, v)‖2 . (6.44)
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Once the functions E, F and G are known, one can compute the speed of the three dimensional

curve x′(t) entirely in terms of the two dimensional coordinate curve u(t), and then the arc length

of curves on the surface in R3 in terms of their 2-variable parametric description.

Example 98 (Computing arclength using coordinates). Consider the parameterization of S2 in

terms of latitude and longitude (6.39) parameterization. To compute the first fundamental matrix for

this parameterization, we compute the dot specified products to find

E(u, v) = 1 F (u, v) = 0 and G(u, v) = sin2(u, v) .

Hence

[I](u,v) =

[
1 0

0 sin2 u

]
.

Now consider the coordinate curve u(t) = (u(t), v(t)) = (1 + t)(π/4, π/4). and the corresponding

curve x(t) = X(u(t)) on S2. We will now calculate the arclength of this curve. We have from (??)

that and the fact that u(t) = (π/4, π/4) for all t,

‖x′(t)‖2 = (π/4, π/4) ·

[
1 0

0 sin2((1 + t)π/4)

]
(π/4, π/4)

=
π2

16
(1 + sin2((1 + t)π/4)) .

Taking the square root and integrating, we find that the arclength of the path on the sphere is

π

4

∫ 1

0

√
1 + sin2((1 + t)π/4)dt .

This integral can be expressed in terms of a special function known as an elliptic integral of the second

kind. The numerical value is 1.058095501 . . . . We have seen in Chapter 2 that the shortest path on the

sphere connecting p and q the shorter of the two great circle segments joining them, and that this path

has length arccos(p · q). applying this with p = u(0) = (1/2, 1/2, 1/
√

2) and q = u(1) = (0, 1, 0),

we find that the length of the shortest path is arccos(1/2) = π/3 = 1.047197551.... Hence linear

interpolation of the coordinates of p and q, which is what the path u(t) is, does not provide that

shortest path on the sphere from p to q.

Example 99 (First Fundamental Matrix for a graph). Let f(x, y) be a continuously differentiable

function on R2. Consider the parameterized surface S given by

X(u, v) = (u, v, f(u, v)) .

Then Xu(u, v) =
(

1, 0, ∂f(u,v)
∂u

)
and Xv(u, v) =

(
0, 1, ∂f(u,v)

∂v

)
, and therefore,

E(u, v) = 1+

(
∂f(u, v)

∂u

)2

, F (u, v) =

(
∂f(u, v)

∂u

)(
∂f(u, v)

∂u

)
and G(u, v) = 1+

(
∂f(u, v)

∂u

)2

.

For example, for f(x, y) = x2 + y2, the First Fundamental Matrix is

[
1 + 4u2 4uv

4uv 1 + 4v2

]
.
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Note also that if (u0, v0) is a critical point of f , so that ∇f(u0, v0) = 0, then from (6.55), we

have that [
E(u0, v0) F (u0, v0)

F (u0, v0) G(u0, v0)

]
=

[
1 0

0 1

]
. (6.45)

There are some other useful formulas involving the First Fundamental Matrix [I]p. Note that

[I]p may be written in terms of the Jacobian matrix [DX(u, v)] as

[I](u,v) = [DX(u, v)]T [DX(u, v)] .

Then

(a, b) · [I](u,v)(a, b) = ‖[DX(u, v)](a, b)‖2 = ‖aXu(u, v) + bXv(u, v)‖2 .

Since Xu and Xv are linearly independent, aXu(u, v) + bXv(u, v) 6= 0 unless both a and b are zero.

Therefore [I](u,v)(a, b) = f0 if and only if (a, b) = 0. By the Fundamental Theorem of Linear Algebra,

[I](u,v) is invertible.

We know that every tangent vector T at p = X(u0, v0) can be written as a linear combination

of Xu(u0, v0) and Xv(u0, v0). That is,

T = aXu(u0, v0) + bXu(u0, v0) = [DX(u0, v0)](a, b) .

Multiplying both sides by [DX(u0, v0)]T , we obtain [DX(u0, v0)]TT = [I]p(a, b). Therefore,

(a, b) = [I]−1
p ([DX(u0, v0)]TT) whenever T = aXu(u0, v0) + bXu(u0, v0) . (6.46)

Finally, if T1 = aXu(u0, v0) + bXu(u0, v0) and T2 = cXu(u0, v0) + dXu(u0, v0) are two tangent

vectors at p, we have

T1 ·T2 = (a, b) · [I]p(c, d) (6.47)

since

T1 ·T2 = ([DX(u0, v0)](a, b)) · ([DX(u0, v0)](c, d)) = (a, b) · [DX(u0, v0)]T [DX(u0, v0)](c, d) .

6.3.3 Curvature and the second fundamental matrix

Curvature has to do with how a parameterized surface S “curves away” from its tangent plant at a

point p = X(u0, v0). To quantify this, recall that if N is a unit vector in R3, the plane through p

with normal vector N has the equation (x− p) ·N = 0, and moreover, |(x− p) ·N| is the distance

from x to the plane. It will be more informative to lave of the absolute value: Then the quantity

(x − p) ·N is the signed distance between x and the plane: It is positive if x lies on the “positive”

side of the plane, and negative if x lies on the “negative” side of the plane. In either case, its absolute

value is the distance between x and the plane.

Now define a function f from U to R by

f(u, v) = (X(u, v)−X(u0, v0)) · N̂(u0, v0) . (6.48)



6.3. CURVATURE OF SURFACES IN R3 251

Then f(u, v) is the signed distance between X(u, v) and the tangent plane at p = X(u0, v0). Notice

that f(u0, v0) = 0, Next, differentiating in u and v, we find that

∇f(u0, v0) = (Xu · N̂(u0, v0) , Xv · N̂(u0, v0)) = (0, 0)

since Xu(u0, v0) and Xv(u0, v0) are ortogonal to N̂(u0, v0). Therefore, in the best quadratic approxi-

mation to f at (u0, v0), the only term that can possibly be non-zero is the term involving the Hessian.

We now compute the Hessian of f at (u0, v0). For this purpose we introduce the following simple

notation:

Xuu(u, v) =
∂2

∂u2
X(u, v) , Xuv(u, v) =

∂2

∂u∂v
X(u, v) and Xvv(u, v) =

∂2

∂v2
X(u, v) . (6.49)

Hessf (u0, v0) =

[
N̂ ·Xuu(u0, v0) N̂ ·Xuv(u0, v0)

N̂ ·Xvu(u0, v0) N̂ ·Xvv(u0, v0)

]
. (6.50)

To write this matrix more conveniently, we define the functions L, M and N on U by

L(u, v) = N̂ ·Xuu(u, v) , M(u, v) = N̂ ·Xuv(u, v) and N(u, v) = N̂ ·Xvv(u, v) . (6.51)

Definition 78 (Second Fundamental Matrix). Let X(u, v) be a twice continuously differentiable

parameterization of a surface S in R3. Then the Second Fundamental Matrix, [II]p. of the parame-

terized surface as a function of u and v, [II](u,v) is

[II](u,v) =

[
L(u, v) M(u, v)

M(u, v) N(u, v)

]
(6.52)

where L, M and N are given by (6.51).

As you can see now, the I in [I]p the II in [II]p denote the Roman numeral 1 and 2. Using this

notation, we can write the second order Taylor expansion of the signed distance function f(u, v) at

p = X(u0, v0) as

f(u, v) ≈ 1

2
(u− u0, v − v0) · [II]p(u− u0, v − v0) . (6.53)

Whenever both eigenvalues of the Hessian of f at (u0, v0) are strictly positive, f is strictly positive

for (u, v) sufficiently close to, but not equal to, (u0, v0). Hence, locally at p = X(u0, v0), the surface

S lies strictly on the positive side of the tangent plane to S at p. Likewise, whenever both eigenvalues

of the Hessian of f at (u0, v0) are strictly negative, the surface S lies strictly on the negative side of

the tangent plane to S at p. Finally, if one eigenvalues is positive and one is negative, part of the

surface lies on each side of the tangent plane. Hence the most basic question about the curvature of

S at a point p – namely whether locally the surface lies to one side of the other of the tangent plane

at p, and if so, which one – can be answered by computing the eigenvalues of the second fundamental

matrix in any set of coordinates.

Example 100 (Second fundamental matrix for the sphere). Let X(u, v) be the “latitude and longi-

tude” parameterization of the sphere S2 that is given in (6.39). Then we compute

Xuu(u, v) = (− sinu cos v,− sinu, sin v,− cosu)

Xuv(u, v) = (− cosu sin v, cosu, cos v, 0)

Xvv(u, v) = (− sinu cos v, sinu, sin v, 0)
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Since Xuu(u, v) = −X(u, v) = −N̂(u, v), we find that[
L(u, v) M(u, v)

M(u, v) N(u, v)

]
=

[
−1 0

0 − sin2 u

]
.

Evidently both eigenvalues are negative, so that in a neighborhood of any point p ∈ S2, the sphere

lies entirely on the negative side of the tangent plane, when we orient the sphere so the N̂(p) is the

outward unit normal. Of course this is geometrically obvious: The entire sphere lies on the negative

side of each of its tangent planes.

It is instructive to do the same computation using the stereographic parameterization (6.40).

Differentiating and computing the dot products, this time we find:[
L(u, v) M(u, v)

M(u, v) N(u, v)

]
=

−4

1 + u2 + v2

[
1 0

0 1

]
.

Again, we see that both eigenvalues are negative, but this time they are equal to one another for each

u and v, which was not the case when we used “latitude and longitude”.

Example 101 (Second Fundamental Matrix for a graph). Let f(x, y) be a continuously differentiable

function on R2. Consider the parameterized surface S given by X(u, v) = (u, v, f(u, v)). As we have

seen above,

Xuu(u, v) =

(
0, 0,

∂2f(u, v)

∂u2

)
Xuv(u, v) =

(
0, 0,

∂2f(u, v)

∂v2

)
Xvv(u, v) =

(
0, 0,

∂2f(u, v)

∂u∂v

)
. (6.54)

As we have seen in Example 96,

N̂(u, v) =
1√

1 + ‖∇f(u, v)‖2

(
−∂f(u, v)

∂u
, −∂f(u, v)

∂v
, 1

)
.

Therefore,

[
L(u, v) M(u, v)

M(u, v) N(u, v)

]
=

1√
1 + ‖∇f(u, v)‖2


∂2f(u, v)

∂u2

∂2f(u, v)

∂u∂v

∂2f(u, v)

∂u∂v

∂2f(u, v)

∂v2

 . (6.55)

Note that if (u0, v0) is a critical point of f , so that ∇f(u0, v0) = 0, then from (6.55), we have that[
L(u0, v0) M(u0, v0)

M(u0, v0) N(u0, v0)

]
= [Hessf (u0, v0)] . (6.56)

For example, for f(x, y) = x2 + y2, the Second Fundamental Matrix for X(u, v) = (u, v, f(u, v))

is
2√

1 + 4u2 + 4v2

[
1 0

0 1

]
.
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To quantify curvature, we will use both the First and Second Fundamental Matrices. Consider

any twice continuously differentiable curve u(t) in the surface that passes through (u0, v0) at t = 0,

where p = X(u0, v0). Let x(t) := X(u(t)). Then from (6.48) and (6.53) we have that

lim
t→0

1

t2
(x(t)− x(0)) · N̂(p) = lim

t→0

f(u(t))− f(u(0))

t2
=

1

2
u′(t) · [II]pu′(t) .

Because f(u(t)) and its first derivative in t are both zero at t = 0, this is the same as

d2

dt2
f(u(t))

∣∣∣∣
t=0

= u′(0) · [II]pu′(0) . (6.57)

The tangent vector x′(0) corresponding to u′(0) is given by x′(0) = [DX(p)]u′(0). To define a

geometrically meaningful notion of “directional curvature” of S at p, we consider the second derivative

of the signed distance f(u(t)) along curves u(t) such that [DX(p)]u′(0) is a unit vector. Finally, note

that the quantity in (6.57) depends on the particular curve u(t) only through its derivative at t = 0,

u′(0). All curves have the same derivative at t = 0 are equivalent as far as the computation of the

second derivative in (6.57) is concerned.

We finally define the directional curvature of S at p in the unit tangent direction T at p by

κ(p,T) = −(a, b) · [II]p(a, b) where T = aXu(p) + bXv(p) . (6.58)

Notice the minus sign in the definition; the reason for this will become clear after doing some com-

putations. We now seek to maximize and minimize κp(T) over all unit tangent vectors T at p.

Definition 79 (Principal curvatures and Gaussian curvature). The principal curvatures of S at

p = X(u0, v0) are the quantities

κ1(p) = max {κ(p,T) : T is a tangent vector at p and ‖T‖ = 1} ,

and

κ2(p) = min {κ(p,T) : T is a tangent vector at p and ‖T‖ = 1}

where κ(p,T) is defined in (6.58) The Gaussian curvature K of S at x0 is the product κ1κ2.

The formulas look much simpler if one suppresses the dependence on u0 and v0, and multiplies

out the products. For instance, we obtain:

κ1 = max{ −La2 − 2Mab−Nb2 : E2a2 + 2Fab+Gb2 = 1 } . (6.59)

Notice that κ1 and κ2 will change sign if one changes the orientation; i.e., the sign of N̂. However,

the Gaussian curvature does not: It is independent of the choice of an orientation, and is an intrinsic

property of the surface itself.

To compute the principal curvatures, we must solve a constrained optimization problem: To

obtain κ1 from (6.59), one seeks to maximize

h(a, b) = −La2 − 2Mab−Nb2

subject to the constraint g(a, b) = 1 where g(a, b) = E2a2 + 2Fab + Gb2. Likewise, computing κ2

is a constrained minimization problem. We know how to solve such problems using the method of

Lagrange multipliers.
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Theorem 81 (Curvature of Parameterized surfaces). Let S be a twice continuously differentiable

parameterized surface. Then at any point X(u0, v0) in S, the principal curvatures κ1 and κ2 are the

two roots of the quadratic equation p(t) = 0 where

p(t) = (L− tE)(N − tG)− (M − tF )2 . (6.60)

Moreover, the Gaussian curvature K is given by

K = κ1κ2 =
LN −M2

EG− F 2
. (6.61)

All quantities are evaluated at (u0, v0).

Remark 7. Note that K is the quotient of the determinants of the Second Fundamental Matrix and

the First fundamental Matrix.

Example 102 (Gaussian curvature of a paraboloid). Let f(x, y) = x2 + y2. Consider the parame-

terized surface S given by X(u, v) = (u, v, f(u, v)) = (u, v, u2 + v2). We have seen above that with

p := X(u, v), [I]p =

[
1 + 4u2 4uv

4uv 1 + 4v2

]
and [II]p =

2√
1 + 4u2 + 4v2

[
1 0

0 1

]
. Then by (6.61),

the Gaussian curvature is given by K(u, v) =
(1 + 4u2 + 4v2)2

2
.

Proof of Theorem 81. As we have explained above, computing the principal curvatures is a matter

of maximizing and minimizing h(a, b) = La2 + 2Mab + Nb2 subject to the constraint g(a, b) = 1

where g(a, b) = E2a2 + 2Fab + Gb2. Note that the variables here are a and b. Lagrange’s equation

∇h(a, b) = λ∇g(a, b) works out to

−

[
L M

M L

]
(a, b) = λ

[
E F

F G

]
(a, b) . (6.62)

This means that [
L+ λE M + λF

M + λF L+ λN

]
(a, b) = (0, 0) . (6.63)

Since E2a2 +2Fab+Gb2 = 1, (a, b) is not the zero vector, and so the matrix

[
L+ λE M + λF

M + λF L+ λN

]
is not invertible, and hence its determinant is zero. Therefore,

(L+ λE)(N + λG)− (M + λF )2 = 0 ,

and hence the Lagrange multiplier λ must be one of the two roots of the quadratic equation

det([II]p + t[I]p) = (L+ tE)(N + tG)− (M + tF )2 = 0 .

We now show that these roots are the principal curvatures.

Let (a1, b1) be a maximizer for our constrained optimization problem. Let λ1 be the root of

(L + tE)(N + tG) = (M + tF )2 that is the Lagrange multiplier for which (6.62) is valid at the

maximizer. Taking the dot product of both sides of

−

[
L M

M L

]
(a1, b1) = λ1

[
E F

F G

]
(a1, b1)
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with (a1, b1), and remembering the constraint g(a1, b1) = 1, we find

−La2
1 − 2Ma1b1 −Nb21 = λ1 .

Since (a1, b1) is the maximizer, and κ1 is the maximum value, we conclude that κ1 = λ1. In the

exact same way, we conclude that κ2 = λ2.

At this point, we know that the two principal curvatures are the two roots of the quadratic

polynomial

p(t) = det([II]p + t[I]p)

= (L+ tE)(N + tG)− (M + tF )2

= (LN −M2) + (EN + LG− 2MF )t+ (EG− F 2)t2 . (6.64)

Moreover, every quadratic polynomial with roots κ1 and κ2 can be written in the form

p(t) = C(t− κ1)(t− κ2) = Cκ1κ2 + C(κ1 + κ2) + Ct2 . (6.65)

Comparing the two coefficients of t2, we see that C = EG− F 2. Comparing the coefficient of t = 0

we then deduce the formula (6.61).

Example 103 (principal curvatures for a graph at a critical point). Let f(x, y) be a continuously

differentiable function on R2. Consider the parameterized surface S given by

X(u, v) = (u, v, f(u, v)) .

As we have seen in (6.55) and (6.56), when (u0, v0) is a critical point of f , the First Funda-

mental Matrix at (u0, v0) is the identity matrix, and the Second Fundamental Matrix at (u0, v0)

is [Hessf (u0, v0)]. In this case, the polynomial p(t) defined in (6.64) is simply the characteristic

polynomial of −[Hessf (u0, v0)], and hence the principal curvatures are exactly the eigenvalues of

−[Hessf (u0, v0)]. In particular, if the principal curvatures κ1 and κ2 are both strictly positive, (u0, v0)

is a local maximum of f .

The proof of Theorem 81 tells us something important about the first and second fundamental

matrices. Let (a, b) be one of the unit vectors associated with either of the principal curvatures, as

in (6.62) Then, multiplying both sides through by

[
E F

F G

]−1

, we see that

−

[
E F

F G

]−1 [
L M

M N

]
(a, b) = λ(a, b) . (6.66)

In other words, the unit tangent vectors associated with the principal curvatures are eigenvectors

of the matrix [I]−1
p [II]p which is known as the matrix of the shape operator. We will study shape

operator in the next section in connection with the Gauss map. For now, notice that the principal

curvatures turn out to be the eigenvalues of the shape operator, and an alternate way to compute

them is to compute the eigenvalues of [I]−1
p [II]p.
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Example 104 (Gaussian curvature of the sphere). Let X(u, v) be the “latitude and longitude” pa-

rameterization of the sphere S2 that is given in (6.39). Let p = X(u, v). In Examples 98 and 100,

we have computed that

[I]p =

[
1 0

0 sin2 u

]
and [II]p =

[
−1 0

0 − sin2 u

]
.

Then

K =
det([II]p)

det([I]p)
=

sin2 u

sin2 u
= 1 .

6.3.4 The Gauss map

Given a parameterized surface S, the Gauss map is the function from S to the unit sphere, S2, that

sends a point p ∈ S to the unit normal vector N̂(p) at p. That is, if p has coordinates (u, v), so

that p = X(u, v), then the image of p under the Gauss map is N̂(u, v).

If S is a plane, then N̂(p) is constant, and of course there is no curvature. In this case, the

image of all of S under the Gauss map is a single point. However, if we consider the figure below,

we see that the image of the pictured patch of surface under the Gauss map covers a patch around

the “North Pole” of the unit sphere S2. By studying how N̂(u, v) changes as u and v vary, we can

quantify the curvature of a parameterized surface, and this gives another way to think about the

geometric meaning of the principal curvatures introduced in the previous section.

Let S be a surface parameterized by X(u, v) = (x(u, v), y(u, v), z(u, v)) for (u, v) in some open

set U ⊂ R2. Suppose that the functions x(u, v), y(u, v), z(u, v) are twice continuously differentiable.

Let (u0, v0) ∈ U , and let p = X(u0, v0) ∈ S.

We now give a formula for the Second Fundamental Matrix of S in terms of the Jacobian matrix

of the Gauss map. The 3 × 2 matrix
[
∂
∂uN̂(u0, v0), ∂∂v N̂(u0, v0)

]
is just the Jacobian matrix of the

function N̂(u, v) at (u0, v0), namely [DN̂(u0, v0)].

Lemma 21. Let S be a parameterized surface given by a twice continuously differentiable function

X(u, v) for (u, v) ∈ U ⊂ R2. Let p = X(u0, v0), (u0, v0) ∈ U . Then

[II]p = −[DX(u0, v0)]T [DN̂(u0, v0)] .

Proof. Note that

[DX(u0, v0)]T [DN̂(u0, v0)] =

[
Xu · ∂∂uN̂ Xu · ∂∂v N̂

Xv · ∂∂uN̂ Xv · ∂∂v N̂

]
(6.67)
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where all derivatives on the right are evaluated at (u0, v0).

Next, since Xu(u, v) · N̂(u, v) = 0 for all u and v, differentiating with respect to u yields

0 =
∂

∂u
Xu(u, v) · N̂(u, v) + Xu(u, v) · ∂

∂u
N̂(u, v) .

Using the notation introduced in (6.49), ·Xu(u, v) · ∂
∂u

N̂(u, v) = −N̂(u, v) ·Xuu(u, v). In the same

way, we derive

Xu(u, v) · ∂
∂v

N̂(u, v) = −N̂(u, v) ·Xvu(u, v)

Xv(u, v) · ∂
∂u

N̂(u, v) = −N̂(u, v) ·Xvu(u, v)

Xv(u, v) · ∂
∂v

N̂(u, v) = −N̂(u, v) ·Xvv(u, v)

Hence by the definition (6.51) and (6.52) of [II], and with all derivatives evaluated at (u0, v0),[
Xu · ∂∂uN̂ Xu · ∂∂v N̂

Xv · ∂∂uN̂ Xv · ∂∂v N̂

]
= −

[
N̂ ·Xuu N̂ ·Xvu

N̂ ·Xvu N̂ ·Xvv

]
= −[II]p .

Now consider a curve x(t) = X(u(t)). At each time t, we have the unit normal vector N̂(x(t))

and the tangent vector x′(t) = [DX(u(t)]u′(t). Since N̂(x(t)) is a unit vector,

0 =
d

dt
1 =

d

dt

(
N̂(x(t)) · N̂(x(t))

)
= 2

(
d

dt
N̂(x(t))

)
· N̂(x(t)) .

Since for each t,

(
d

dt
N̂(x(t))

)
is orthogonal to N̂(x(t)), it lies in the tangent plane to the surface at

x(t).

Since the tangent plane is spanned by Xu(u0, v0) and Xv(u0, v0), there are numbers c and d such

that
d

dt
N̂(x(t))

∣∣∣∣
t=0

= cXu(u0, v0) + dXv(u0, v0) = [DX(u0, v0)](c, d) .

On the other hand, by the chain rule, for x(t) = (u(t), v(t)) with u′(0) = a and v′(0) = b,

d

dt
N̂(x(t))

∣∣∣∣
t=0

= a
∂

∂u
N̂(u0, v0) + b

∂

∂v
N̂(u0, v0) = [DN̂(u0, v0)](a, b) .

We conclude that [DX(u0, v0)](c, d) = [DN̂(u0, v0)](a, b). Multiplying on the left by [DX(u0, v0)]T

and recalling that the First Fundamental Matrix is given by [I]p = [DX(u0, v0)]T [DX(u0, v0)], we

have [DX(u0, v0)]T [DX(u0, v0)](c, d) = [DX(u0, v0)]T [DN̂(u0, v0)](a, b), which is the same as

[I]p(c, d) = −[II]p(a, b) . (6.68)

We have proved:
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Theorem 82. Let S be a parameterized surface given by a twice continuously differentiable function

X(u, v) for (u, v) ∈ U ⊂ R2. Let x(t) be any curve in S passing through x(u0, v0) at t = 0 with

x′(0) = aXu(u0, v0) + bXv(u0, v0) .

Then
d

dt
N̂(x(t)) = cXu(u0, v0) + dXv(u0, v0) ,

where (c, d) = −[I]−1
p [II]p(a, b).

Definition 80 (The shape operator). The shape operator S is the linear transformation on the

tangent space to S at a point p = X(u0, v0) that sends the tangent vector T to the tangent vector

− d

dt
N̂(x(t))

∣∣∣∣
t=0

where x(t) is any continuously differentiable curve in S with x′(0) = T.

By Theorem 82, if T = aXu(u0, v0) + bXv(u0, v0), then S(T) = cXu(u0, v0) +dXv(u0, v0) where

(c, d) = [I]−1
p [II]p(a, b).

For any two tangent vectors T1 = a1Xu + b1Xv and T2 = a2Xu + b2Xv, consider the quantity

T1 · S(T2) .

Then S(T2) = cXu + dXv where (c, d) = −[I]−1
p [II]p(a2, b2). Then by (6.47),

T1 · S(T2) = (a1, b1) · [I]p(c, d) = −(a1, b1) · [I]p[I]−1
p [II]p(c, d)(a2, b2) = −(a1, b1) · [II]p(a2, b2) .

Since the Second Fundamental Matrix is symmetric, this means that the shape operator is

symmetric in the sense that for all tangent vectors T1 and T2,

T1 · S(T2) = S(T1) ·T2 .

We have seen that the matrix −[I]−1
p [II]p has eigenvalues κ1 and κ2, the principal curvatures. Let

(a1, b1) and (a2, b2) be the corresponding eigenvectors normalized by (aj , bj) · [I]p(aj , bj) = 1 for

j = 1, 2. Let Tj = ajXu(u0, v0) + bjXv(u0, v0). Then by Theorem 82 and the definition of the shape

operator

S(T1) = κ1T1 and S(T2) = κ1T2 .

When κ1 6= κ2, we have

κ1T1 ·T2 = S(T1) ·T2 = T1 · S(T2) = κ2T1 ·T2 ,

and consequently T1 ·T2 = 0. When κ1 = κ2, the shape operator is simply a multiple of the identity.

In any case, we see that there is always an orthonormal basis of the tangent space consisting of

eigenvectors of the shape operator.

6.4 Exercises

6.1: Let f(x, y) = x2y + xy2 − xy. Evaluate the Hessian matrix of f at x0 := (1, 1) and v := (1, 2),

and compute the second directional derivative

d2

dt2
f(x0 + tv0)

∣∣∣∣
t=0

.
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6.2: Let f(x, y) = x4 + y4 − 4xy. Evaluate the Hessian matrix of f at x0 := (0, 1) and v := (1,−1),

and compute the second directional derivative

d2

dt2
f(x0 + tv0)

∣∣∣∣
t=0

.

6.3: Let f(x, y, z) = x2yz + xy2 − xz. Evaluate the Hessian matrix of f at x0 := (1, 1, 1) and

v := (1, 0, 1), and compute the second directional derivative

d2

dt2
f(x0 + tv0)

∣∣∣∣
t=0

.

6.4: Let f(x, y, z) = xyz − xy + xz. Evaluate the Hessian matrix of f at x0 := (1, 0, 1) and

v := (1, 2, 1), and compute the second directional derivative

d2

dt2
f(x0 + tv0)

∣∣∣∣
t=0

.

6.5: Let A =

[
1 2

2 4

]
. Find the eigenvalues of A and an orthonormal basis of R2 consisting of

eigenvectors of A

6.6: Let f : R2 → R be defined by

f(x, y) =

xy
x2 − y2

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

(a) Show that

∂

∂x
f(x, y) =


y(x4 + 4x2y2 − y4)

(x2 + y2)2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) ,

and

∂

∂y
f(x, y) =


x(x4 − 4x2y2 − y4)

(x2 + y2)2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

and that both of these partial derivatives are continuous everywhere on R2.

(b) Show that for (x, y) 6= (0, 0),

∂

∂x

∂

∂y
f(x, y) =

∂

∂y

∂

∂x
f(x, y) =

x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Show that the function on the right hand side does not have a limiting value at at (0, 0); i.e.,

lim
(x,y)→(0,0)

x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

does not exist.
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(c) Show that
∂

∂x

∂

∂y
f(0, 0) and

∂

∂y

∂

∂x
f(0, 0) both exist, and compute the values. How does this

result fit with Clairaut’s Theorem?

6.7: Let A =

[
4 2

2 4

]
. Find the eigenvalues of A and an orthonormal basis of R2 consisting of

eigenvectors of A

6.8: Let A =

[
1 2

2 5

]
. Find the eigenvalues of A and an orthonormal basis of R2 consisting of

eigenvectors of A

6.9: Let A =

[
−1 2

2 4

]
. Find the eigenvalues of A and an orthonormal basis of R2 consisting of

eigenvectors of A

6.10: Let f(x, y) = x2y + xy2 − xy.

(a) Find all of the critical points of f . Evaluate the Hessian matrix of f at each of these critical

points, and determine where each is a local maximum, a local minimum, a saddle, or undecidable

from the Hessian.

(b) There is one critical point in the interior of the upper right quadrant. Sketch a contour plot of

f in the vicinity of this critical point. Show the computations that lead to the plot.

6.11: Let f(x, y) = 3xy3 + 2x+
1

4
x4 +

9

2
y2.

(a) Find all of the critical points of f . Evaluate the Hessian matrix of f at each of these critical

points, and determine where each is a local maximum, a local minimum, a saddle, or undecidable

from the Hessian.

(b) Choose one of the critical points and sketch a contour plot of f in the vicinity of this critical

point. Show the computations that lead to the plots.

6.12: Let f(x, y) = 3x3 + 5xy + 5x2 − 5y2.

(a) Find all of the critical points of f . Evaluate the Hessian matrix of f at each of these critical

points, and determine where each is a local maximum, a local minimum, a saddle, or undecidable

from the Hessian.

(b) Sketch a contour plot of f in the vicinity of each of the critical points. Show the computations

that lead to the plots.

6.13: Let f(x, y) = x2 + y2 − 2yx2.

(a) Find all of the critical points of f . Evaluate the Hessian matrix of f at each of these critical

points, and determine where each is a local maximum, a local minimum, a saddle, or undecidable

from the Hessian.

(b) Sketch a contour plot of f in the vicinity of each of the critical points. Show the computations

that lead to the plots.

6.14: Let f : R2 → R be given by f(x, y) = 4xy − x4 − y4.

(a) Let x(t) b given by x(t) = (t+ t2, t2 + t3). Compute
d

dt
f(x(t))

∣∣∣∣
t=1

.
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(b) Find all of the critical points of f , and find the value of f at each of the critical points.

(c) Compute the Hessian of f at each critical point and determine whether each critical point is a

local minimum, a local maximum, a saddle point, or if it cannot be classified through a computation

of the Hessian.

(d) Does f have a maximum value? Explain why or why not. If it does, find all points at which the

value of f is maximal; i.e, find all maximizers.

(e) Does f have a minimum value? Explain why or why not. If it does, find all points at which the

value of f is minimal; i.e, find all minimizers.

(f) Sketch a contour plot of f near each critical point.

6.15: Let f(x, y) = x4 + y4 − 2x2y. There is exactly one critical point (x0, y0) with x0 > 0 and

y0 > 0.

(a) Compute the Hessian of f at (x0, y0), and determine whether it is a local minimum, a local

maximum, a saddle point, or if it cannot be classified through a computation of the Hessian.

(b) Let u = (u, v) be a unit vector, and consider the directional second derivative

d2

dt2
f(x0 + tu, y0 + tv)

∣∣∣∣
t=0

.

Which choice of the unit vector (u, v) makes this as large as possible? What is the largest possible

value? Also, which choice of the unit vector (u, v) makes this as small as possible, and what is the

smallest possible value?

(c) Sketch a contour plot of f near (x0, y0).

6.16: Let f(x, y) = x4 + y4 − 4xy.

(a) Find all of the critical points of f , and for each of them, determine whether it is a local minimum,

a local maximum, a saddle point, or if it cannot be classified through a computation of the Hessian.

(b) There is one critical point of f in the interior of the upper right quadrant. Let x0 = (x0, y0)

denote this critical point. Let u = (u, v) be a unit vector, and consider the directional second

derivative
d2

dt2
f(x0 + tu, y0 + tv)

∣∣∣∣
t=0

.

Which choices of the unit vector (u, v) makes this as large as possible? What is the largest possible

value? Also, which choices of the unit vector (u, v) makes this as small as possible, and what is the

smallest possible value?

(c) Sketch a contour plot of f near (x0, y0).

6.17: Let f(x, y) = 4x2 + y2 + 4xy − (x− 1)4 − (y − 1)4 − 4x− 4y.

(a) The point (0, 0) is a critical point of f . Compute the Hessian of f at this point, and determine

whether it is a local minimum, a local maximum, a saddle point, or if it cannot be classified through

a computation of the Hessian.



262 CHAPTER 6. CURVATURE AND QUADRATIC APPROXIMATION

(b) Let u = (u, v) be a unit vector, and consider the directional second derivative

d2

dt2
f(tu, tv)

∣∣∣∣
t=0

.

Which choice of the unit vector (u, v) makes this as large as possible? What is the largest possible

value? Also, which choice of the unit vector (u, v) makes this as small as possible, and what is the

smallest possible value?

(c) Sketch a contour plot of f near (0, 0).

6.18 Consider the function f(x, y, z) given by

f(x, y, z) = x3yz2 + 4xy − 3yz .

Determine whether all of the eigenvalues of the Hessian at x0 = (1, 1, 1) are positive or if they are

all negative, or neither.

6.19 Consider the function f(x, y, z) given by

f(x, y, z) = xyz2 + xy2z + x2yz .

Determine whether all of the eigenvalues of the Hessian at x0 = (1, 1, 1) are positive or if they are

all negative, or neither.

6.20 Compute κ1, κ2 and K for all points on the sphere of radius R in R3.

6.21 Compute κ1, κ2 and K at all points on the cone z =
√
x2 + y2 at which z > 0. (The surface is

not differentiable at the apex of the cone.)

6.22 Compute κ1, κ2 and K at all points on the surface given by z = xy.



Chapter 7

INTEGRATION IN SEVERAL

VARIABLES

7.1 Integration and summation

7.1.1 A look back at integration in one variable

This chapter is focused on the problem of integrating functions of several variables. There are many

ways to think about what it means to integrate a function of one variable, and not all of them

are useful starting points for the transition to several variables. For example, integration is often

thought of as the procedure that “undoes differentiation”. This is not unreasonable: in practice,

one computes integrals by finding antiderivatives. But suppose we have a function f(x, y) of two

variables. What could it possibly mean to find an “antiderivative” of f(x, y)? We have come to

understand the gradient as the derivative in two variables, but that is a vector quantity, and so it

would make no sense to seek an “antigradient” of f(x, y).

Therefore, we begin with a problem in one variable. Our aim is to explain what integrals are from

a point of view that facilitates the transition to several variables. Consider the following problem:

• How much work is required to raise a 100 foot flagpole that weighs one pound per foot from horizontal

to vertical?

c© 2011 by the author.
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Recall that work is product of force and the distance traveled in moving against the direction of

that force. (Force is a vector quantity, so it has a direction). In the case at hand, the force is gravity.

The direction is “straight down”, so we are only concerned with vertical displacement.

If we lift a one pound weight one foot, we do one foot–pound of work. If we lift a one pound weight

ten feet, we do ten foot–pounds of work. This is all simple multiplication. The flagpole problem,

however, requires calculus because different parts of the flagpole get raised different amounts. Near

the base, there is not much raising going on at all, while the parts of the flagpole near the top are

raised nearly 100 feet. We cannot simply use the formula

work = weight × height raised (7.1)

because there is no one value for “height lifted” that is valid for the whole flagpole.

The way to carry out the computation using calculus is to first “slice” the flagpole into small bits

– in your mind only; do not ruin the flagpole! Pick a small “slice size” h > 0, and slice the flagpole

perpendicular to its axis into small blocks that are h feet long. Now “raise” the flagpole by stacking

the blocks in the right order. We are going to add up the amount of work we do lifting each block

into place to get the total work done lifting the flagpole into place.

The jth block from the base will have to be raised to a height of j × h feet. Not everything in

the block gets raised by exactly this amount, but if h is small compared with j × h, thw difference

will be small percentage-wise.

“Percentage-wise” is the key word: The block itself is small, so an approximation of the amount

of work it takes to lift it into place that is off by a factor of 2 would make a small error. But adding

up all of these errors for each of the blocks – which will be many in number – we could be off by a

factor of 2 for the flagpole as a whole. But if we are only off by a small percentage in each block,

when we add up all of the errors, we will only be off by a small percentage for the flagpole as a whole.

And if we can arrange that the percentage error goes to zero as the size of the small blocks goes to

zero, we can get an exact answer by taking the limit in which the block size goes to zero. This is the

fundamental idea on which the integral calculus is based.
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Returning to our example, up to a small percentage-wise error, we can use the formula (7.1).

Since the flagpole weighs 1 pound per foot, the weight of the block is h pounds.

Hence the work done in raising the jth block is

(h pounds) × (jh feet) = (jh2 footpounds) .

Now the key point is that work is an extensive, or in other words, additive, quantity. Hence, letting

N be the total number of blocks, which is 100/h, we have that the total work is

N∑
j=1

jh2 .

Letting xj denote jh, and letting ∆x denote h, this becomes

N∑
j=1

xj∆x ,

and you recognize this as a Riemann sum for the integral∫ 100

0

xdx =
x2

2

∣∣∣∣100

0

= 5, 000 .

This is what we get for the sum in the limit as h → 0. Hence, the total work done is 5, 000 foot–

pounds.

Now let us consider what we have done, and identify the essential steps. Integration means

“making whole”. This refers to the “adding up” procedure towards the end of the problem, and we

used an antiderivative – namely x2/2, which is an antiderivative of x – to do the sum in the limit

h→ 0. (This is the passage from the Riemann sum to the integral, with which you are familiar from

single variable calculus).

•However, before you can “make something whole”, you have to first “take it apart”, and higher

dimensional integration problems generally begin as “disintegration problems”. Depending on how
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you choose to “slice your problem into bits” at the beginning, you can be faced with integration

problems of quite different degrees of difficulty.

So although we are studying integration in this part of the course, much of our effort will

be focused on disintegration – we want to do this in a thoughtful, careful way that facilitates the

integration steps at the end. We begin with some simple problems in which the most obvious sort of

disintegration works well.

7.1.2 Integrals of functions on R2

Consider a region D in R2. To be concrete, suppose that D is the closed unit disk in R2. That is, D

consists of all points (x, y) satisfying

x2 + y2 ≤ 1 . (7.2)

Suppose that we have a sheet of metal lying in this region, and it has a mass density of f(x, y)

mass units per area units. (Grams per square centimeter if you like). What is the total weight of the

sheet of metal?

If the mass density function f(x, y) were constant, we could use the formula

mass = mass density × area . (7.3)

If x and y are measured in centimeters, the area of D is π square centimeters, and so if the density

were a uniform 1 gram per square centimeter, the total weight would be π grams.

But suppose that the disk of metal is thinner near the center, and has the mass density

f(x, y) = x2 + y2 .

What would be the total weight in this case? Less, clearly, but how much less?

The way forward is to disintegrate the the disk into small bits in which the mass density is

effectively constant, and then to apply the formula (7.3) to each of these. This gives us the mass of

each of the pieces. Since the mass of the whole is the sum of the mass of the parts, all we need do is

to add up all of these masses, and make the disk whole again. This is the integration phase.

To disintegrate the disk, we chop it up on a rectangular grid. Let ∆x be the spacing between

the vertical grid lines and let ∆y be the spacing between the horizontal grid lines. Most of the disk

is covered by rectangular “tiles” of area ∆x∆y. There are some tiles with more complicated shapes

around the boundary, but these will account for a small percentage of the disk if both ∆x and ∆y

are very small. Hence, let us ignore these for now, and focus on the rectangular tiles. In each of

these, the mass density does not vary much – at least when both ∆x and ∆y are very small – so it

makes sense to talk about the value of the mass density in the little tile. For each such tile, we have

that the mass is

(mass density in the tile) × ∆x∆y .

Hence the total mass is ∑
little tiles

(mass density in the tile) × ∆x∆y . (7.4)
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Now we are ready for the integration phase. We can add up the terms in the sum in any order

we like – addition is commutative, and the sum is finite. There are two very natural ways to proceed:

• We and add up the contributions from the tiles in each column, and then we can add up the sums

for each column, or we can add up the contributions from the tiles in each row, and then we can add

up the sums for each row.

Lets first add up the contributions from the tiles in each column. Suppose that there are M

columns, labeled by j = 1, 2, . . . ,M .

Then we have ∑
little tiles

(mass density in the tile) × ∆x∆y

=

N∑
i=1

 ∑
little tiles in column j

(mass density in the tile) × ∆x∆y


=

N∑
i=1

 ∑
little tiles in column j

(mass density in the tile) × ∆y

∆x (7.5)

If xj is the x coordinate of, say, the middle of the jth column, then the inner sum,∑
little tiles in column j

(mass density in the tile) × ∆y

is the Reimann sum for the integral ∫ b(xj)

a(xj)

f(xj , y)dy ,

where a(xj) is the y coordinate at the bottom of the jth column and b(xj) is the y coordinate at the

top of the jth column. In the case at hand, from the equation x2 + y2 = 1 at the boundary of the

region, we have

a(xj) = −
√

1− x2
j and b(xj) =

√
1− x2

j
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and so, in more concrete terms, our integral is∫ √1−x2
j

−
√

1−x2
j

f(xj , y)dy .

For any fixed value of xj , this is a garden variety definite integral in the single variable y. Doing it,

we get

x2
jy +

y3

3

∣∣∣∣
√

1−x2
j

−
√

1−x2
j

= 2x2
j

√
1− x2

j +
2

3
(1− x2

j )
3/2 .

Going back to (7.5), we see that, upon replacing the inner sum by the integral to which it corresponds

(when viewed as a Riemann sum), we have that the total mass is

N∑
i=1

(
2x2

j

√
1− x2

j +
2

3
(1− x2

j )
3/2

)
∆x .

Since the values of x in the disk range from −1 to 1, this is the Reimann sum for∫ 1

−1

(2x2(1− x2)1/2 +
2

3
(1− x2)3/2)dx .

Using the trigonometric substitution x = sin θ, this is easily evaluated, and the answer is π/2.

In the limit as ∆x and ∆y both tend to zero, the approximations that we made in replacing

sums by integrals, and choosing values in the small tiles, etc, all become increasingly negligible, and

so this is the exact value for the total mass.

This problem makes for a good case study of the process of disintegration and integration. Here

is the general process: Let D be some region given by inequalities of the form

a(x) ≤ y ≤ b(y) c ≤ x ≤ d .

Let f be a continuous function defined on D. We summarize and generalize:

Definition 81 (Two dimensional area integral). Given a continuous function f defined on a set D ⊂
R2 that is closed, bounded and has a non-empty interior whose boundary is a piecewise differentiable

curve, we define the area integral
∫
D
f(x, y)dA to be∫

D

f(x, y)dA = lim
max tile diameter→0

( ∑
little tiles

(value of f in the tile) × (area of tile)

)
, (7.6)

where the limit is taken along a sequence of disintegration of D into tiles in which the maximum tile

diameter in the nth disintegration goes to zero as n goes to infinity. More precisely, we require that

for some sequence {rn} of positive numbers with limn→∞ rn = 0, each tile in the nth disintegration

lies inside some disk of radius rn.

Though we will not prove it here, it may be shown that under the conditions on f and D, the

limit exists and is independent of the way one disintegrates D into finitely many tiles, as long as

each of the tiles satisfies the same conditions we have imposed on D itself. We shall only make the

following remarks about the conditions imposed on D and the disintegration.
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(1) The point of having a piecewise differentiable boundary is that this condition ensures that when

h is very small, an overwhelming percentage of the tiles lie in the interior of D.

(2) The point about the assumption on the diameters of the tiles is this: Suppose for simplicity

that our integrand f is continuously differentiable on R2; (This will be the case in almost all of the

problems we consider here.) Since D is closed and bounded, and since ‖∇f(x)‖ is continuous, there

is an x0 inD so that

M := ‖∇f(x0)‖ ≥ ‖∇f(x)‖ for all x ∈ D .

Then, if x and y are any two points in the same tile of diameter r, ‖x− y‖ ≤ r, and so, by the

Fundamental Theorem of Calculus, The Chain Rule, and the Cauchy-Schwarz inequality

|f(x)− f(y)| =
∣∣∣∣∫ 1

0

∇f(x + t(y − x)) · (y − x)dt

∣∣∣∣ ≤ ∫ 1

0

‖∇f(x + t(y − x))‖‖y − x‖dt ≤Mr .

Thus, for any ε > 0, there is an r > 0 so that if all tiles in a disintegration have a diameter no greater

than r, then the diffenrence between the values of f at any two points in any tile is no greater than

ε. This is what allows us to regard f as constant on the tiles; in the limit this is exactly correct.

7.1.3 Computing area integrals

We now have a definition of area integrals. The definition does not restrict us to rectangular tiles, but

as our first oder of business, let us systematize our approach to using such tiles. Such an approach

is often efficient when the region D is bounded above by a curve y = b(x) and below by a curve

y = a(x), and lies between the vertical lines x = c and x = d. The following diagram shows D, and

the tiles in the column above x.

Suppose that, as in this diagram, every vertical line “slices” D in a single line segment (or misses

it altogether). That is, the vertical line through x intersects D in an interval [a(x), b(x)] of y values,

or else is empty. If D were more complicated, the intersection could consist of several intervals, or
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worse. But for now, let us consider this nice case. Then, using a rectangular disintegration, as above,

and summing over columns first, we are led to the following formula for
∫
D
f(x, y)dxdy:∫

D

f(x, y)dxdy =

∫ d

c

(∫ b(x)

a(x)

f(x, y)dy

)
dx . (7.7)

In the inner integral, x is just a parameter, not a variable, so that this integral is a garden variety

integral in the single variable y. Once it is done, y is eliminated, and what remains is a a garden

variety integral in the single variable x. Do that, and you are done.

Example 105 (Computation of an area integral). Let D be the region bounded above by the parabola

y = 1−x2, and below by the parabola y = x2−1. Let f(x, y) = x2+2xy. Let us compute
∫
D
f(x, y)dA.

The very first thing to do in such a problem is to make a sketch of D. Translating the verbal

information above into a system of inequalities, we have

x2 − 1 ≤ y ≤ 1− x2 .

Here is a plot of the bounding parabolas, which are y = x2 − 1 and y = 1− x2:

The region D is the region between the two parabolas. Notice that every vertical line intersects

D in a single segment or else the empty set, and so we can use (7.7) and the disintegration of D into

little rectangular blocks. We only need to determine c and d, and a(x) and b(x).

Since the two parabolas meet at x = ±1, so c = −1 is the smallest x value in D, and d = 1 is

the largest x value in D. The upper part of the boundary is y = 1 − x2, so we take a(x) = 1 − y2.

The lower part of the boundary is y = x2 − 1, so we take b(x) = x2 − 1.

Hence, (7.7) becomes∫
D

f(x, y)dxdy =

∫ 1

−1

(∫ 1−x2

x2−1

(x2 + 2xy)dy

)
dx . (7.8)

In the inner integral, x is a parameter, and y is the variable of integration. So we treat x as a

constant and have ∫ 1−x2

x2−1

(x2 + 2xy)dy = (x2y + xy2)

∣∣∣∣1−x2

x2−1

= 2x2(1− x2) .
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Now (7.8) reduces to ∫
D

f(x, y)dA =

∫ 1

−1

2x2(1− x2)dx =
8

15
.

We get another integration formula by summing over rows first instead of columns. Doing the

sum in (7.6) by summing over rows first amounts to interchanging the roles of x and y so that we

have the alternate formula ∫
D

f(x, y)dxdy =

∫ d

c

(∫ b(y)

a(y)

f(x, y)dx

)
dy , (7.9)

provided each horizontal line intersects D in a single line segment (or not at all). This time, c is

the smallest y value in D, and d is the largest y value in D, and for values of y in between, the

intersection of D with the horizontal line through y is the line segment corresponding to the interval

[a(y), b(y)] of x values.

In the inner integral, y is just a parameter, not a variable, so that this integral is a garden variety

integral in the single variable x. Once it is done, x is eliminated, and what remains is a a garden

variety integral in the single variable y. Do that, and you are done.

Example 106 (Alternate computation of an area integral). Let D be the region bounded above by

the parabola y = x2 − 1, and below by the parabola y = x2 − 1. Let f(x, y) = x2 + 2xy. Let’s

compute
∫
D
f(x, y)dxdy, but this time by integrating first in x. We can do this using (7.9) since

every horizontal line intersects D in a single segment. We only need to determine c and d, and a(y)

and b(y).

For values of y with 0 ≤ y ≤ 1, the interval is given by the equation for the upper parabola, and

for values of y with −1 ≤ y ≤ 0, the interval is given by the equation for the lower parabola. Hence

we break the region into two pieces, the upper region Du and the lower region D`. It is clear from the

definition that ∫
D

f(x, y)dA =

∫
Du

f(x, y)dA+

∫
D`

f(x, y)dA ,

so we just need to compute these separately.

In D`, the endpoints of the segment obtained by slicing the region horizontally at height y are

given by the equation y = x2 − 1. Solving for x, we find x = ±
√

1 + y. Hence in D` we have

−
√

1 + y ≤ x ≤
√

1 + y .

Therefore, we take a(y) = −
√

1 + y and b(y) =
√

1 + y, and clearly c = −1 and d = 0. Then (7.9)

gives us ∫
Du

f(x, y)dA =

∫ 0

−1

(∫ √1+y

−
√

1+y

(x2 + 2xy)dx

)
dy .

Doing the inner integral, treating y as constant,∫ √1+y

−
√

1+y

(x2 + 2xy)dx =

(
x3

3
+ x2y

) ∣∣∣∣
√

1+y

−
√

1+y

=
2

3
(1 + y)3/2 .

Hence ∫
Du

f(x, y)dA =

∫ 0

−1

2

3
(1 + y)3/2dy =

4

15
.
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For the upper region, the endpoints of the segment obtained by slicing the region horizontally at

height y are given by the equation y = 1− x2. solving for x, we find x = ±
√

1− y. Hence in Du we

have

−
√

1− y ≤ x ≤
√

1− y .

Hence we take a(y) = −
√

1− y and b(y) =
√

1− y, and clearly c = 0 and d = 1. Then (7.9) gives us

∫
Du

f(x, y)dA =

∫ 1

0

(∫ √1−y

−
√

1−y
(x2 + 2xy)dx

)
dy .

Doing the inner integral, treating y as constant,

∫ √1−y

−
√

1−y
(x2 + 2xy)dx =

(
x3

3
+ x2y

) ∣∣∣∣
√

1−y

−
√

1−y
=

2

3
(1− y)3/2 .

Hence ∫
Du

f(x, y)dA =

∫ 1

0

2

3
(1− y)3/2dy =

4

15
.

Finally, we have ∫
D

f(x, y)dA =
4

15
+

4

15
=

8

15
,

which is what we found before.

We get the same value both ways – of course – but notice that the first way was easier.

• How much calculation one has to in order to evaluate an integral depends very much on how one

goes about the the disintegration and integration processes.

Both disintegration and integration involve choices – how do we slice? Do we add up columns

first, or rows? So far we have only discussed slicing the region D into rectangles, but there are

many other choices to consider. And as we have seen, the order in which we choose to integrate the

variables will affect the amount of work we must do.

7.1.4 Polar coordinates

How would you cut a cake? That would probably depend on the shape of the cake. If the cake were

rectangular, cutting it into square or rectangular slices would seem sensible. But if it were round,

you would probably cut it into wedges. Making cuts along the radii, it is easy to divide a round cake

into, say, a dozen equal pieces. This is not so easy if you only make cuts parallel to the lines in a

rectangular grid.

When we are disintegrating a region D in R2, it can be quite advantageous, for some of the same

reasons, to slice using a grid of radii and concentric circles:
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The basic formula that defines the integral is∫
D

f(x, y)dxdy = lim
tile diameter→0

( ∑
little tiles

(value of f in the tile) × (area of tile)

)
. (7.10)

We can use this with tiles of any shape that we find convenient, provided the maximum tile diameter

goes to zero in the limit. Of course, the sine qua non of convenience is that we have a simple formula

for the area of the tiles. This is one of the things that is so attractive about rectangular tiles: The

area of a rectangular tile of width ∆x and height ∆y is simply ∆x∆y.

Now consider a “keystone” shaped tile that comes from a wedge of angle ∆θ, and lies between

the radii r and r + ∆r. What is its area?

The keystone shaped tile can be thought of as the part of the circular wedge with opening angle

∆θ and radius r+∆r, that lies outside the circular wedge of the same angle and radius r. Subtracting

the smaller wedge area from the larger, we are left with the area of the tile.

A circular wedge of opening angle θ and radius R is the fraction
θ

2π
of a disk of radius R. (That

is how we measure angles – by the fraction of the circumference they subtend). The area of the disk

is πR2, and hence the area of the wedge is

θ

2π
πR2 =

θR2

2
.

The area of our keystone is therefore the difference of the area of two wedges:

∆θ(r + ∆r)2

2
− ∆θr2

2
= r∆r∆θ +

∆θ(∆r)2

2
.

When both ∆r and ∆θ are very small, the second term on the right is negligible compared to the

first, and hence:

area of keystone tile ≈ r∆r∆θ .

As ∆r and ∆θ diminish, the error in this approximation diminishes in the sense that it becomes a

negligibly small percentage-wise compared to the main term, r∆r∆θ.
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Thus, the formula for the area element in polar coordinates is

dA = rdrdθ .

This is the area of an infinitesimal keystone tile.

The grid that we are using to cut the plane into keystone shaped tiles is based on the polar

coordinate system, and we will need to be able to convert between polar coordinates – r and θ –

and Cartesian coordinates – x and y – to use this slicing strategy. As you see, the keystone tiles are

naturally indexed by r and θ. Therefore, it is natural to express the integrand f(x, y) in these terms.

This is easy: If we measure θ counterclockwise from the positive x axis, and if r is the distance

from the origin, then

x = r cos θ and y = r sin θ . (7.11)

In particular,

x2 + y2 = r2 . (7.12)

By definition, r is always positive. It has a geometric meaning – distance from the origin – and

distances cannot be negative. (You may have worked with polar coordinates before using a different

convention in which a negative value of r meant that the point would lie at distance |r| from the

origin in the opposite direction, namely, the one corresponding to θ+ π. There are some advantages

to this convention. However, there are disadvantages as well, and these are more important here. In

the examples that follow, we shall use the positivity of r several times.)

Think of (7.11) as a dictionary for translating Cartesian coordinates into polar coordinates. You

might think we would be more interested in formulas for r and θ in terms of x and y. We do have a

formula for r in terms of x and y, namely (7.12), and we could solve (7.11) for θ, but actually, what

we really need is just (7.11) itself:

•To translate a function f from Cartesian into polar terms, define a new function g(r, θ) by

g(r, θ) = f(r cos θ, r sin θ) .
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The meaning of this is that if x is any point in R2, then we can evaluate f at x by substituting

the polar coordinates of x into g.

Example 107 (Translating a function into polar terms). Let f(x, y) = x2y Then

g(r, θ) = (r cos θ)2r sin θ = r3 cos2 θ sin θ .

Let us apply our considerations to the problem of evaluating
∫
D
f(x, y)dA. If we cut D into

keystone shaped tiles using polar coordinates, and then want to compute∑
little tiles

(value of f in the tile) × (area of tile) ,

we must chose an order in which to add up the contributions from each tile. The one that is most

often convenient is to add up all of the contributions from each wedge, and then to add up the

subtotals for each wedge.

The following diagram shows a region D, with the wedge cut through D by the radii at θj and

θj+1, where some small ∆θ has been fixed, and θj = j∆θ. For example, suppose we choose some

large integer N , and let ∆θ = 2π/N , so that we divide R2 into N wedges with opening angle ∆θ, so

that θj = jθ/N .

This wedge has been further broken up into keystone tiles by cutting along circular arc of radius

ri where some small value of ∆r has been chosen and ri = i∆r.

We now organize our summation as follows: For each j, we hold j fixed, and sum up the

contributions from each of the tiles in the jth wedge. That is, we sum over i first, holding j fixed.

Then we add up these subtotals into the grand total by summing on j:
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∑
little tiles

(value of f in the tile) × (area of tile) =

N∑
j=1

 ∑
little tiles in wedge j

g(ri, θj)ri∆r∆θ


=

N∑
j=1

 ∑
little tiles in wedge j

g(ri, θj)ri∆r

∆θ ,

where ri = i∆r is the ith value of r used in our grid.

Notice that the inner sum, ∑
little tiles in wedge j

g(ri, θj)ri∆r

is just the Riemann sum for an integral. If a(θj) is the smallest value of r in D that lies in the jth

wedge, and if b(θj) is the largest value of r in D that lies in the jth wedge, then this is a Riemann

sum for ∫ b(θj)

a(θj)

g(r, θj)rdr . (7.13)

Here is a diagram showing a(θ) and b(θ).

The diagram also shows the smallest and largest values of θ for which the ray in direction θ

intersects the region D. These are denoted c and d. Clearly a(θ) and b(θ) are only defined for

c ≤ θ ≤ d.

The value of the integral (7.13) depends on θj of course. For c ≤ θj ≤ d, call it G(θj). There are

no keystones to worry about for other values of θj , so our sum reduce to∑
little tiles

(value of f in the tile) × (area of tile) = ∑
j such that c≤θj≤d

G(θj)∆θ , (7.14)
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and this is a Riemann sum for

∫ d

c

G(θ)dθ. Altogether, we have the formula

∫
D

f(x, y)dA =

∫ d

c

(∫ b(θ)

a(θ)

g(r, θ)rdr

)
dθ .

Example 108 (An integral in polar coordinates). Let f(x, y) = x2, and let D be the region bounded

by the circle

(x− 1)2 + y2 = 1 . (7.15)

Compute
∫
D
f(x, y)dA.

The region is a circle, and though it is not centered, we might expect it to have a nice description

in polar coordinates. Let us see. Simplifying, the equation reduces to

x2 + y2 = 2x .

Using (7.11), this translates into r2 = 2r cos θ. Since r is strictly positive except at the origin, (7.15)

reduces to

r = 2 cos θ (7.16)

This equation is very simple, and will enable us to find simple expressions for a(θ) and b(θ), and also

c and d. To do this, draw a diagram, and label the boundary of D with the equation that specifies it:

Notice that the formula (7.16) would give a negative value for r in the second and third quadrants,

but has a positive value in the first and fourth quadrants. This tells us that the region D “lives” in

the first and fourth quadrants, and c = −π/2 and d = π/2. You see this also in the picture, but

drawing a picture is not always so easy. Hence it is important to see how the values of c and d can

be read off of (7.16).

As for a(θ) and b(θ), draw in a ray at angle θ, as in the diagram. It enters D at r = 0, and

leave through the boundary with the equation r = 2 cos(θ). Hence a(θ) = 0, and b(θ) = 2 cos(θ). That

takes care of the limits. The rest is easy.



278 CHAPTER 7. INTEGRATION IN SEVERAL VARIABLES

Translating the integrand using (7.11),

g(rθ) = (r cos θ)2 = r2 cos2 θ .

Therefore,

∫
D

f(x, y)dA =

∫ π/2

−π/2

(∫ 2 cos(θ)

0

r2 cos2 θrdr

)
dθ

=

∫ π/2

−π/2

(∫ 2 cos θ

0

r3dr

)
cos2 θdθ

=

∫ π/2

−π/2

(
24 cos4 θ

4

)
cos2 θdθ

= 4

∫ π/2

−π/2
cos6 θdθ .

The problem is now reduced to a single variable integral with explicit limits, and for our purposes,

the problem is solved. We will regard all such integrals as “trivial” for the purposes of this course.

It is a non-trivial matter to make the reduction to such a single variable integral, and once you have

done this, computer programs can do the rest, and give you the numerical value, which in this cases

is
5π

4
. But computer programs cannot make the reduction to the single variable problem.

Example 109 (Area enclosed by the Bernoulli lemiscate). The Bernoulli lemiscate is the “infinity

symbol” curve given by

(x2 + y2)2 = 2(x2 − y2) . (7.17)

Let us compute the enclosed area, which is ∫
D

1dA .

That is, to get an area, the integrand should just be 1. (Reflect on the definition to make sure this is

clear).

Since the integrand features x2 +y2, which will reduce to r2 in polar coordinates, we will translate

(7.17) into polar terms, hoping for something nice. As it stands, (7.17) is pretty awful. It is a

quartic equation, and solving to find either x as a function of y, or y as a function of x, is a daunting

proposition: It can be done, but is big mess. We do not like messes, big or small. Let us try something

else: perhaps polar coordinates avoid a mess; let us try.

Using (7.11), (7.17) becomes r4 = 2r2(cos2θ − sin2 θ). Then using the double angle formulas,

and dividing through by r2, (7.17) reduces to

r2 = 2 cos(2θ) . (7.18)

This is progress: The variables are separated, and you can also see from (7.18) that the right

hand side is negative unless

−π/4 ≤ θ ≤ π/4 or 3π/4 ≤ θ ≤ 5π/4 .
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Hence the curve described by (7.18), or equivalently (7.17), “lives” in these two angular sectors. Here

is a rough sketch:

You could produce such a sketch by evaluating r =
√

2 cos(2θ) for a few values of θ in the range

−π/4 ≤ θ ≤ π/4, drawing those points in, and connecting the dots. You do not have to know in

advance that our equation describes the infinity symbol.

Notice that the equation (7.17) only involves x2 and y2, so if (x, y) satisfies the equation, so do

the mirror image points

(− x, y) (x,−y) (− x,−y) .

That is, we can see from the equation that the region is symmetric under reflection about the x–axis

and about the y–axis. This is not so evident form the rough sketch, but that is O.K.; the equations

make it clear.

Because of the symmetry, the area in the first quadrant is exactly one fourth of the total. Hence

we can take c = 0 and d = π/4, and remember to multiply by 4 when we have finished integrating.

From the diagram, you see that a(θ) = 0 and b(θ) =
√

2 cos(2θ), so the integral we need to do is

∫ π/4

1

(∫ √2 cos(2θ)

0

1rdr

)
dθ .

The inner integral is trivial, and we are left with

∫ π/4

1

cos(2θ)dθ = 1/2. Multiplying by 4, the area

is 2.

7.2 Jacobians and changing variables of integration in R2

7.2.1 Letting the boundary of D determine the disintegration strategy

Consider the problem of computing
∫
D
f(x, y)dA where f(x, y) = y, and whereD is the open rectangle

bounded by the 4 lines

y + 2x = 1 y + 2x = 3 2y − x = −2 2y − x = 2 . (7.19)
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Here is a picture of the region:

To find the limits of integration, we next work out the coordinates of the vertices by solving the

systems of equations for each pair of crossing lines:

If we integrated in x first we would need to break D in the three separate subregions for

−3

5
≤ y ≤ −1

5
− 1

5
≤ y ≤ 1 1 ≤ y ≤ 7

5

since in each of these regions we need a different formula for a(y) or b(y) – horizontal segments at

height y begin and end on the same bounding line in only when y stays in one of these ranges.

If we integrated in y first, we could do better: We would only need to break D into the two

separate subregions for

0 ≤ x ≤ 4

5

4

5
≤ x ≤ 8

5

since in each of these regions we need a different formula for a(x) or b(x) – vertical segments at x

begin and end on the same bounding line only when x stays in one of these ranges.

So, if these were our only choices, certainly we would integrate in y first. However, there is

something better we can do. Instead of disintegrating D using a grid composed of lines parallel to

the axes, let’s disintegrate D using a grid of lines paralell to the bounding lines.

To do this, define new variables

u = y + 2x v = 2y − x .

In terms of these variables, the equation for the our lines bounding D reduce to

u = 1 u = 3 v = −2 v = 2 . (7.20)
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In the u, v plane, the lines bound an open rectangle with sides parallel to the axes, and we can easily

divide it up along a rectangular grid. Let us call the rectangle D̂.

It will be useful to think of these new coordinates as defining a coordinate transformation: Define

u(x, y) = (u(x, y), v(x, y))

where

u(x, y) = y + 2x v(x, y) = 2y − x . (7.21)

This coordinate transformation is linear: Let J denote the 2× 2 matrix

J :=

[
2 1

−1 2

]
.

Then

u(x, y) = J(x, y) .

Since det(J) = 5, the matrix J is invertible, and hence this coordinate transformation has the inverse

transformation

x(u, v) = J−1(u, v) =
1

5

[
2 −1

1 2

]
(u, v) =

1

5
(2u− v, u+ 2v) . (7.22)

That is, x(u, v) = (x(u, v) , y(u, v)) where

x(u, v) =
2u− v

5
y(u, v) =

u+ 2v

5
. (7.23)

• We will now use this coordinate transformation to “transplant” a simple and convenient disinte-

gration of D̂ onto D, which is possible because the cooridnate transformation has been set up as a

one-to-one map from D onto D̂.

Recall that D̂ is simply a rectangle with sides parallel to the coordinate axes, so that we may

conveniently disintegrate it using a coordinate grid:

The jth vertical line in this grid is the line

u = 1 + j∆u (7.24)
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where ∆u is the horizontal spacing in the grid, and the ith horizontal line in the grid is

v = −2 + i∆v (7.25)

where ∆v is the vertical spacing in the grid. (We are ordering the lines left to right and bottom to

top respectively).

Using (7.2.1) to express (7.24) and (7.25) in terms of x and y instead of u and v we get

y + 2x = 1 + j∆u (7.26)

and

2y − x = −2 + i∆v (7.27)

This gives us two sets of parallel, evenly spaced lines in the x, y plane that divide D up into

similar parallelogram shaped tiles.

This grid is our “induced” disintegration of D – it is induced by the simple rectangular disinte-

gration of D̂, and the coordonate transformation relating D and D̂.

Using the tiles of this induced disintegration, we will compute∫
D

f(x, y)dA = lim
tile diameter→0

( ∑
little tiles

(value of f in the tile) × (area of tile)

)
. (7.28)

Each of these tiles in D corresponds to a tile in the u, v plane, and so we can enumerate the tiles in

our induced disintegration of D using an enumeration of the corresponding tiles in our disintegration

of the rectangle 1 ≤ u ≤ 3, −2 ≤ v ≤ 2 is the u, v plane. To compute the integral using these

coordinates, we need to answer two questions:

• Given a tile with uj ≤ u ≤ uj + ∆u and vi ≤ v ≤ vi + ∆v, what is the value of f(x, y) at some

point (x, y) in the corresponding tile in the x, y plane?

• Given a tile with uj ≤ u ≤ uj + ∆u and vi ≤ v ≤ vi + ∆v, what is the area of the corresponding

tile in the x, y plane?

It is easy to answer the first question, using the inverse coordinate transformation x(u, v) =

(x(u, v) , y(u, v)) given in (7.23). Since (uj , vi) is in the j, ith tile in the disintegration of D̂, x(uj , vi) =
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(x(uj , vi) , y(uj , vi)) is in the j, ith tile in the induced disintegration of D. Therefore,

f(x(uj , vi), y(uj , vi))

is a representative value for f in the j, ith tile of the induced disintegration of D. (And since f is

nearly constant on this small tile it is a good a repreentative as any other.)

We turn to the second question, concerning the area of the tiles. The tiles in the x, y plane are

the images of tiles in the u, v plane under the linear transformation in (7.22). The j, ith tile is the

parallelogram in the x, y plane with vectices

x(uj , vi)

x(uj + ∆u, vi) = x(uj , vi) + ∆uJ−1e1

x(uj , vi + ∆v) = x(uj , vi) + ∆vJ−1e2

x(uj + ∆u, vi + ∆v) = x(uj , vi) + ∆uJ−1e1 + ∆vJ−1e2 . (7.29)

We know that for any vectors x0, a and b in R2, the area of the parallelogram with vertices st

x0, x0 + a, x0 + b and x0 + a + b is given by det ([a,b]). Therefore, the area of the tile with the

vertices given in (7.29) is

∆u∆v det
([
J−1e1, J

−1e2

])
= ∆u∆v det(J−1) =

∆u∆v

5
.

Notice that this area is the same for all tiles, independent if j and i.

With our two questions answered, going back to (7.28), we now have∫
D

f(x, y)dA = lim
∆u,∆v→0

∑
i,j

(g(uj , vi) ×
(

1

5
∆u∆v

)
= lim

∆u,∆v→0

∑
i

∑
j

1

5
(g(uj , vi)∆u

 ∆v

 . (7.30)

You recognize the Riemann sums for∫ 2

−2

(∫ 3

1

1

5
g(u, v)du

)
dv .

In the case at hand, g(u, v) = (2v + u)/5, and so∫
D

f(x, y)dA =
1

25

∫ 2

−2

(∫ 3

1

(2v + u)du

)
dv

=
1

25

∫ 2

−2

(
2vu+

u2

2

∣∣∣∣u=3

u=1

)
dv

=
1

25

∫ 2

−2

(4v + 4) dv =
16

25
.

What is the lesson to be drawn from this example? It is that:

• By using a disintegration scheme that “respects” the equations defining the boundaries of D, we

were able to avoid breaking up D into subregions that would have to be handled separately, and we

got very simple limits of integration – constants in this case.
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We have encountered a very useful formula in the last example: The formula for the “magnifi-

cation factor” of a linear transformation.

Theorem 83 (The determinant as a magnification factor). Let A be any 2× 2 matrix. Consider the

corresponding linear transformation from R2 to R2 as a linear transformation from the u, v plane to

the x, y plane. Let D̂ be any closed, bounded set in R2 whose boundary is a piecewise differentiable

curve, and let D be its image under the linear transformation. That is, let D be the set of points in

the x, y plane of the form A(u, v) with (u, v) ∈ D̂. Then D is also a closed and bounded set in R2

whose boundary is a piecewise differentiable curve, and

area(D) = |det(A)|area(D̂) .

In short, the linear transformation corresponding to A magnifies the area of sets nice enough to

have a well-defined area by a factor of |det(A)|. (Note that it may be the case that |det(A)| < 1, in

which case the “magnification” amounts to “shrinking”).

The proof of Theorem 83 is essentially a recapitulation of a calculation we have made in the last

example.

Proof of Theorem 83: Let us disintegrate the region D̂ into little square tiles with sides parallel

to the u, v coordinate axes, and with side length h. Then the tile with the lower left hand corner at

u has vertices

u , buhe1 , u + he2 and u + he1 + he2 .

The are of this triangle is of course h2, and the points in the tile are exactly the points of the form

u + se1 + te2 0 ≤ s, t ≤ h .

The image of this tile under the linear transformation given by A is the set of points of the form

Au + sAe1 + tAe2 0 ≤ s, t ≤ h ,

since A(u+se1 +te2) = Au+sAe1 +tAe2. Let us write A = [v1,v2] so that Ae1 = v1 and Ae2 = v2.

Then the transformed tile is the parallelogram with vertices

Au , Au + hv1 , Au + hv2 and Au + hv1 + hv2 .

The are of this parallelogram is

|det([hv1, hv2)]| = |h2 det([v1,v2])| = h2|det(A)| .

Thus for each square tile in our disintegration of D̂, the corresponding tile in the induced disin-
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tegration of D has an are that is exactly |det(A)| times as large. Thus

area(D) =

∫
D

1dA

= lim
tile diameter→0

( ∑
little tiles

(area of tile in D)

)

= lim
tile diameter→0

( ∑
little tiles

|det(A)|(area of tile in D̂)

)

= |det(A)|

(
lim

tile diameter→0

( ∑
little tiles

|det(A)|(area of tile in D̂)

))

= |det(A)|
∫
D̂

1dA = |det(A)|area(D̂) .

7.2.2 The change of variables formula for integrals in R2

The strategy developed in the last subsection can be applied even when the boundary of D is not

given by straight lines. There is very little adaptation required if we remember the main idea of the

Differential Calculus: Up close enough, all nice functions are linear for all practical purposes. Let us

consider an example.

Example 110 (The boundary determines the coordinates). Consider the open set D in the upper

right quadrant bounded by

xy = 1 xy = 3 2x = y x = 2y .

Let us compute the area of D.

The first step is to sketch a plot of the bounding cures:

Two of the bounding curves are arcs of hyperbolas, and the other two are lines. However, notice

that if we introduce

u = xy and v = y/x , (7.31)
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we can write the equations for the boundary as

u = 1 u = 3 v = 2 v = 1/2 .

Again, these four lines bound a coordinate rectangle rectangle in the u, v plane.

To proceed,we use use (7.31) to define a nonlinear coordinate transformation u(x, y) by

u(x, y) = (u(x, y), v(x, y)) = (xy, y/x) , (7.32)

which is defined on {(x, y) : x 6= 0} ⊂ R2, which includes the set D.

Think of (7.32) as defining a transformation from the x, y plane to the u, v plane. Let D̂ denote

the open set in the u, v plane given by

1 < u < 3 and 1/2 < v < 2 (7.33)

Then u(x, y) transforms D onto D̂ in a one-to-one manner. As in the last subsection, we shall

need the inverse transformation x(u, v). The inverse transformation transfers the rectangular grid

disintegration of D̂ into a convenient disintegration of D.

To obtain the inverse transformation x(u, v), all we have to do is to solve (7.31) for x and y as

functions of u and v. From (7.23), we see that uv = y2. Since D is in the upper right quadrant,

y > 0, and so y =
√
uv. Next, x2 = u/v, and since x > 0, x =

√
u/v. This gives us

x =
√
u/v and y =

√
uv (7.34)

Thus we obtain

x(u, v) = (
√
u/v,

√
uv) .

Now consider a small tile with uj ≤ u ≤ uj + ∆u and vi ≤ v ≤ vi + ∆v in the u, v plane. The

image of this tile under the transformation x(u, v) is a slightly distorted parallelogram in the x, y

plane with vertices at

x(uj , vi) x(uj + ∆u, vi) x(uj , vi + ∆v) x(uj + ∆u, vi + ∆v) .

The distortion will be slight to the extent that ∆u and ∆v are small – everything nice looks linear up

close enough.

To compute the area of this parallelogram, we first apply the approximation

x(u) ≈ x(u0) + [Dx(u0)](u− u0)

with the basepoint u0 = (uj , vi), which is the lower left vertex of the tile in the u, v plane. We have:

x(uj , vi) = x(u0)

x(uj + ∆u, vi) ≈ x(u0) + [Dx(u0)](∆u, 0)

x(uj , vi + ∆v) ≈ x(u0) + [Dx(u0)](0,∆v)

x(uj + ∆u, vi∆v) ≈ x(u0) + [Dx(u0)](∆u,∆v)
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In this approximation, the parallelogram is the image of the rectangle with vertices

(0, 0) (∆u, 0) (0,∆v) (∆u,∆v)

under the linear transformation induced by [Dx(u0)], and then translated by x(u0).

Translation has no affect on area, and by Theorem 83, the linear transformation multiplies the

area of the original rectangle, namely ∆u∆v, by the factor |det[Dx(u0)]|. Therefore, using the

notation introduced above:

• The image under x of the tile with uj ≤ u ≤ uj + ∆u and vi ≤ v ≤ vi + ∆v is a tile in the x, y

plane whose area is

|det[Dx(u0)]|∆u∆v

up to an error that is negligibly small percentage-wise as ∆u and ∆v both go to zero.

Everything is pretty much as it was in our last example, except that now |det[Dx(u)]| is not a

constant. Computing, we find

[Dx(u)] =
1

2

[
u−1/2v−1/2 u−1/2v−3/2

u−1/2v1/2 u1/2v−1/2

]

Therefore,

|det[Dx(u)]| = 1

2uv
.

This gives us a formula for the area of the image of a small tile at u, v, namely

1

2uv
∆u∆v .

This is often referred to as the formula for the area element.

In an area computation, our integrand is 1, which requires no translation. However, we can go

ahead and say what we would do if the integrand were some function f(x, y). We would define g(u, v)

by g(u) = f(x(u)). The definition is such that if (x, y) corresponds to (u, v) under the transformation

x, then f(x, y) = g(u, v).

Going back to the basic formula (7.28), we have

area of D =

∫
D

1dA = lim
tile diameter→0

( ∑
little tiles

1 × (area of tile)

)
. (7.35)

Using the tiles induced by the transformation f through the regular rectangular grid on the rectangle

(7.33), we get the Reimann sums for ∫ 2

1/2

(∫ 3

1

1

2uv
du

)
dv .

The two integrals are now easily worked out with the result that the area is ln(6).

What we have just worked out is a substitution, or change of variables formula for integrals in

two variables.
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The general picture is this: Suppose that x is an invertible transformation from some open subset

D̂ of R2 to another open subset D of R2. Think of x as transforming (at least part of) the u, v plane

to the x, y plane so that

(x, y) = x (u, v) .

Since the transformation x is invertible, it sets up a one–to–one correspondence between points

in D̂ and points D so that any disintegration of D̂ induces a disintegration of D.

Consider the image of a rectangular tile of width ∆u and height ∆v sitting in D̂ with its lower

left corner at (u, v). As we have explained above, the area of the corresponding tile in the induced

disintegration of D is well approximated by

|det[Dx(u, v]|∆u∆v .

Now let f be a continuous function on D. Then, for the tiles in the induced disintegration of D,

we have

(value of f in the tile)× (area of the tile) ≈ f(x(u, v))|det[Dx(u, v]|∆u∆v ,

where (u, v) is some point in the chosen tile in the disintegration of D̂. Therefore,∫
D

f(x, y)dA =

∫
D̂

f(x(u, v)) |det(Dx(u, v)|dA . (7.36)

On the left, dA is the area element in the x, y plane, and on the right dA is the area element in

the u, v plane. To avoid confusion, it is sometimes helpful to use another common notation, and to

write d2x to denote the area element in the x, y plane, and d2u to denote the area element in the

u, v plane.

We can use this notation to write∫
D

f(x)d2x =

∫
D̂

f(x(u)) |det(Dx(u)|d2u . (7.37)

This may be compared to the formula for substitution, or change of variables, in one dimension.

Suppose x(u) is a differentiable function on R. Then if f is any continuous function of one variable,

we have ∫ b

a

f(x)dx =

∫ d

c

f(x(u))x′(u)du (7.38)

a = x(c) and b = x(d).

Notice that the determinant of the Jacobian of x(u) is the higher dimensional replacement for

for the derivative x′(u) in the one dimensional formula. However, in the one dimensional formula,

there is no absolute value sign. Why is this?

Suppose that c < d as usual, and suppose that x(u) is invertible. Even though x(u) is invertible,

it might be decreasing, so that a = x(c) > x(d) = b. In this case x′ is negative, but we can cancel

this minus sign with the minus sign that comes from swapping the limits on the left. In other words,

if we define

ã = min{x(c) , x(d)} and b̃ = max{x(c) , x(d)}
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so that ã < b̃ and [ã, b̃] defined an interval, we could rewrite (7.38) as∫
[ã,b̃]

f(x)dx =

∫
[c,d]

f(x(u))|x′(u)|du (7.39)

and now we get a formula that looks even more like (7.48).

In writing the simpler formula (7.38), we are taking advantage of the fact that the real numbers

are ordered. There is no natural ordering of the points in a region of R2, and so there is no natural

analog of “switching the limits of integration”.

It is important to stress that the formula (7.38) is valid even if x is not a one–to–one function, but

not so (7.39), and not so its higher dimensional analog (7.48). For example, if as u sweeps through

[c, d], the interval x(u) sweeps though the interval [ã, b̃] three times, then you would need a factor of

3 on the left in (7.39) for it to be valid. Similar rules counting the number of times the image of D̂

covers D under x would allow us to consider transformations that are not invertible. Here, we will

only work with invertible transformations; this suffices for the solution of many practical problems.

Now that we have the change of variables formula (7.48), we can put it to work directly, without

explicitly going through considerations of “little tiles”. That is not to say that the “little tiles” way

of thinking is expendable in any way. Among other things, it is essential for setting up integrals that

arise in word problems – the only way they arise in real life.

Let us close this subsection with some examples of (7.48) in action. We will focus on how one

finds x(u) and hence D̂.

Actually, in practice, one is led first to a formula for u(x), giving u and v as functions of x and

y. Usually, staring at the definition of D, we come up with some definitions of u(x, y) and v(x, y) in

terms of which one can give a simple characterization of the set D. The first order of business then

is to solve this system of equations to find x and y as functions of u and v, or, in other words, to find

x(u).

Example 111 (Using the change of variables formula in R2). Let D be the open set in the upper

right quadrant between the curves

x =
1

y2
and x =

4

y2

and between the curves

y = x2 and y = 4x2 .

Lets compute
∫
D
x2d2x. If we define

u = xy2 and v = y/x2 , (7.40)

the transformation u(x, y) = (u(x, y), v(x, y)) transforms the the region D into the region D̃ described

by

1 ≤ u ≤ 4 and 1 ≤ v ≤ 4 . (7.41)

To find the inverse transformation x(u, v), we solve (7.40) for x and y in terms of u and v. We

eliminate x by forming u2v = y5, so y = u2/5v1/5. Next, we eliminate y by forming uv−2 = x5, so

that x = u1/5v−2/5. This gives us

x (u, v) = (u1/5v−2/5, u2/5v1/5) .
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With this definition of x, D̂ is the rectangle (7.41).

Next, we compute

Dx =
1

5

[
u−4/3v−2/5 −2u1/5v−7/5

2u−3/5v1/5 u2/5v−4/5

]
.

Therefore, det(Dx(u)) =
1

5
u−2/5v−6/5. Next, with f(x, y) = x2, f(x(u, v)) = u2/5v−4/5. Hence,

from (7.48), we have∫
D

f(x)d2x =

∫
D̃

(u2/5v−4/5)
1

5
u−2/5v−6/5d2u =

1

5

∫
D̃

v−2d2u

and since D̃ is just the rectangle (7.41), this becomes

1

5

∫ 4

1

(∫ 4

1

v−2du

)
dv =

3

5

∫ 4

1

v−2du =
9

20
.

7.2.3 An alternative computational method

In many integration problems, we are led first to define the functions u(x, y) and v(x, y) which the

gives us the ccoridnate transformation u(x, y) = (u(x, y), v(x, y)). The next step in the procedure

described above is to invert this transformation to find x(u, v) = (x(u, v), y(u, v)), and then to

compute det[Dx(u, v)].

It is not always possible to compute useful formulas for the inverse transformaton, even when

the Inverse Function Theorem guarantees us that it exists. However, it is not always necessary to do

so.

What we can compute directly from a continuously differentiable transformation u(x, y) =

(u(x, y), v(x, y)) is det[Du(x, y)]. Wherever this is non-zero, the Inverse Function Theorem guar-

antees us that the invierse x(u, v) exists and is differentiable, and moreover,

[Dx(u, v)] = [Du(x(u, v)]−1 .

As we shall see in the next chapter, whenver an n×n matrix A is invertible, det(A−1) = (det(A))−1.

This is easily checked for 2× 2 matrices using the explicit formula for the inverse. Hence

det[Dx(u, v)] = (det[Du(x(u, v)])−1 ,

and for any f(x, y),

f(x(u, v)) det[Dx(u, v)] = f(x(u, v))(det[Du(x(u, v)])−1 . (7.42)

That is, we do not really need to find formulas expressing x and y in terns of u and v, we only need

to express the function f(x, y)(x(u, v))(det[Du(x, y)])−1 in terms of u and v. Of course, if we have

formulas that express x and y in terns of u and v, we can write any function of x and y in terms of

u and v. But we only need to write one special function in terms of u and v and this can be eaiser,

as we see in the next examples.

Example 112. As in Example 111, let us define

u(x, y) = (u(x, y), v(x, y)) = (xy2, y/x2) .
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We compute the Jacobian matrix of this transformation:

[Du(x, y)] =

[
y2 2xy

−2y/x3 1/x2

]
.

Then det[Du(x, y)] = 5y2/x2, and so with f(x, y) = x2 as in Example 111, we have

f(x, y)(det[Du(x, y)])−1 =
1

5
x4y−2 .

We recognize the right hand side as x4y−2 as v−2, and so∫
D̃

f(x(u, v))(det[Du(x(u, v))])−1d2u =
1

5

∫
D̃

v−2d2u =
9

20

as before.

Example 113. Let D be the region in the upper right quadrant such that

1 ≤ x2y + y2x ≤ 2 and − 1 ≤ y − x ≤ 1 .

here is a digram showing the bounding curves:

We will now compute

∫
D

(4xy + x2 + y2)d2x. To do so, we introduce the coordinate transforma-

tion suggested by the form of the boundary:

u(x, y) = (u(x, y), v(x, y)) = (x2y + y2x , y − x) .

It is not at all easy to invert this. But we do not need to. We compute

[Du(x, y)] =

[
2xy + y2 2xy + x2

−1 1

]
.

Therfore (det[Du(x, y)])−1 =
1

4xy + x2 + y2
which is exaclty the inverse of our integrand, so that

f(x, y)(det[Du(x, y)])−1 = 1 .

This is trivial to express in therms of u and v: constants are constants. Hence the integral becomes∫
D̃

1d2u =

(∫ 1

−1

dv

)(∫ 2

1

du

)
= 2 .
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7.3 Integration in R3

7.3.1 Reduction to iterated integrals in lower dimension

What we have studied so far concerning integrals of functions on R2 readily extends to integrals of

functions on R3.

The basic formula defining the integral of a continuous real valued function over a region D ⊂ R3

is ∫
D

f(x, y, z)d3x = lim
box diameter→0

( ∑
little boxes

(value of f in the box) × (volume of box)

)
(7.43)

where the sum is over the little “boxes” in a “disintegration” of D into a disjoint union of sets, here

called “boxes” whose volume we know how to measure, or at least accurately estimate. As before,

we require that the maximum diameter of the boxes tends to zero in the limit. This is the obvious

generalization of (7.10).

Then, as in two dimensions, if f is any continuous real valued function on R3, and D is any

regular bounded subset of R3, the limit in (7.43) exists no matter what kind of decomposition we use

and no matter where in the box we evaluate f (as long as we can compute the volume of the boxes,

and as long as the maximum diameter of the boxes goes to zero).

The simplest example of such a disintegration is to use the coordinate planes to “slice” the region

into cubes of side length h > 0. This gives us a particularly easy formula for the volume of the boxes

- each one has volume h3.

For integers j, k, ` and h > 0, define

xj := jh yk := kh and z` = `h .

Then the planes

x = xj , y = yk , z := z`,−∞ ≤ j, k, ` <∞

slice up R3 into a regular grid of cubes of side length h. Of course, they also slice up any subset

D ⊂ R3 into sets we shall call boxes, each of which is contained in one of the cubes. If the set D has

a “nice” boundary and h is small, so that “most” of D is at least a distance
√
nh from the boundary,

most of the boxes will be entire cubes. (Note that
√
nh is the diameter of a cube of side length h.)

When we do the sum over all of the little boxes in (7.43), we can do the sum in any order we

like. Here is one good order of summation: For each `, let Dz` be the intersertion of D with the slab

{ (x, y, z) : z` ≤ z < z`+1 } .

We then have

∑
little boxes in D

(value of f in the box) × (volume of box) =

∑
`

 ∑
little boxes in Dz`

(value of f in the box) × (volume of box)

 . (7.44)
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Let the “tile” associated to each box be the bottom of the box; i.e., the intersection of the box

with the plane z = z`. Thus there is one tile to each box. Let us evaluate f somewhere in the tile

– since we are free to evaluate it anywhere in the box. Then since the area of the tile is h2 and the

volume of the box is h3, ∑
little boxes in Dz`

(value of f in the box) × (volume of box)

 =

h

 ∑
little tiles in Dz`

(value of f in the tile) × (area of tile)

 (7.45)

It is now easy to recognize

lim
h→0

 ∑
little tiles in Dz`

(value of f in the tile) × (area of tile)


as an area integral in R2. Specifically, for each ẑ ∈ R, define

D̂ẑ = { (x, y) : (x, y, z) ∈ D } .

Note that D̂ẑ is the “slice” of D by the plane z = ẑ, projected onto the x, y plane. Then we have

lim
h→0

 ∑
little tiles in Dz`

(value of f in the tile) × (area of tile)

 =

∫
D̂z`

f(x, y, z`)dxdy . (7.46)

Now combining (7.44), (7.45) and (7.46), we obtain (formally interchanging limits and sums

without justification, but in a way that can be justified), we obtain

lim
h→0

( ∑
little boxes in D

(value of f in the box) × (volume of box)

)
=

lim
h→0

(∑
`

(∫
D̂z`

f(x, y, z`)dxdy

)
h

)
.

Now let a be the greatest lower bound on the set of all z such that D̂z is non-empty, and let b

be the least upper bound on the set of all z such that D̂z is non-empty. Then the right hand side is

the limit of Riemann sums for the integral∫ b

a

(∫
D̂z

f(x, y, z)dxdy

)
dz .

Thus we finally have: ∫
D

f(x, y, z)d3x =

∫ b

a

(∫
D̂z

f(x, y, z)dxdy

)
dz (7.47)
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with a, b and D̂z defined as above.

• This formula reduces the integration of functions over the three dimension set D to an integration

over its two dimensional slices, followed by a one dimensional integral to put everything together.

Since we learned in the previous section how to do the integrals over the two dimensional slices,

and since we know how to do one dimensional integrals, we know how to compute integrals of functions

over three dimension sets D. The derivation of this formula can be completely justified under the

assumptions that f is continuous, and D is bounded has a “reasonably smooth” boundary.

We shall return later to a more careful justification of this formula. In the rest of this section,

we focus on explaining how it is used.

First, it is not necessary to integrate in z last: We can do the sums in any order we like, so

we can integrate in any order we like. And in general, we are likely to like some orders better than

others: How easy or complicated the limits of integration are will depend strongly on the chosen

order of integration.

7.3.2 The change of variables formula for integrals in R3

The same reasoning that led to the change of variables formula in R2 yields a change of variables

formula in R3: Let x be a differentiable and invertible transformation from D̂ ⊂ R3 onto D ⊂ R3.

Then, for any continuous function f on D,∫
D

f(x)d3x =

∫
D̂

f(x(u)) |det(Dx(u)|d3u . (7.48)

The first examples to consider are the mappings x associated to standard coordinate systems on

R3. For example, consider

x(r, θ, ϕ) = (x(r, θ, ϕ) , y(r, θ, ϕ) , z(r, θ, ϕ) )

= (r sinϕ cos θ , r sinϕ sin θ , r cosϕ) , (7.49)

where

0 ≤ r

0 ≤ θ < 2π

0 ≤ ϕ ≤ π .

This is the spherical coordinate system for R3.

An easy computation shows that ‖x(r, θ, ϕ)‖ = r2, so as r is held fixed, and θ and ϕ vary,

x(r, θ, ϕ) ranges over the sphere of radius r in R3.

We now compute

[Dx(r, θ, ϕ)] =



∂x

∂r

∂x

∂θ

∂x

∂ϕ

∂y

∂r

∂y

∂θ

∂y

∂ϕ

∂z

∂r

∂z

∂θ

∂z

∂ϕ


=



sinϕ cos θ −r sinϕ sin θ r cosϕ cos θ

sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

cosϕ 0 −r sinϕ


.
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Taking the determinant of the right hand side, we find

det([Dx(r, θ, ϕ)]) = −r2 sinϕ[(sin2 ϕ+ cos2 ϕ)(sin2 θ + cos2 θ)]

= −r2 sinϕ . (7.50)

Since sinϕ is non-negaitive for 0 ≤ ϕ ≤ π, |det([Dx(r, θ, ϕ)])|dϕdθ = sinϕdϕdθ, and hence the

volume element dV for spherical coordinates is given by

dV = sinϕdϕdθ . (7.51)

Example 114 (The average height in the upper hemisphere). Let V be the upper hemisphere of

radius R. That is, V consists of the points (x, y, z) satisfying

x2 + y2 + z2 ≤ R2

z ≥ 0

The average height in V is ∫
V zdV∫
V 1dV

.

The denominator is the total volume of V. Thus, from (7.43), this ratio is

lim
box diameter→0

( ∑
little boxes

(value of z in the box) ×
(

volume of box

volume of V

))
.

That is, the ratio of the integrals is the weighted average of the heights of all the little boxes in a

disintegration of V into infinitesimal boxes, where the weighting is by the fractional volume of the

box.

We already know that volume of the sphere of radius R is
4

3
πR3, so we only need to compute the

integral in the numerator (though it would be a good exercise to go back and compute the integral in

the denominator afterwards, using the same method).

Translating the description of V into spherical coordinates using (7.49) we find r2 ≤ R2. since

both r and R are non-negative, this means r ≤ R. Likewise, z ≥ 0 becomes r cosϕ ≥ 0, which, since

r > 0 except at the origin, means ϕ ≤ π/2. Then going back to (7.51) we have, for this problem,

0 ≤ r ≤ R

0 ≤ θ < 2π

0 ≤ ϕ ≤ π/2 .

As r, θ and ϕ range over the sets described by (7.52), x(r, θ, ϕ) ranges over V, the upper hemi-

sphere of radius R.

To compute

∫
V
zdV we first translate z into spherical terms. By (7.49), z = r cosϕ, and then

from (7.51) and (7.52)∫
V
zdV =

∫ 2π

0

(∫ π/2

0

(∫ R

0

r3 cosϕ sinϕdr

)
dϕ

)
dθ

=

(∫ 2π

0

1dθ

)(∫ π/2

0

cosϕ sinϕdϕ

)(∫ R

0

r3dr

)
.

= (2π)(1/2)(R4/4) =
π

4
R4 . (7.52)
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Thus, the average height, weighted by volume, in the upper hemisphere of radius R is(
2

3
πR3

)−1
π

4
R4 =

3

8
R .

This makes sense: There is more volume in the lower part of V than the upper part, so lower values

of z will get a higher weight than higher values of z. Therefore, we certainly expect an answer that

is less the R/2. If anything, the surprise is that the actual value is as close as it is to R/2.

The next example to consider is the change of variables associated to cylindrical coordinates:

Let consider

x(r, θ, z) = (x(r, θ, z) , y(r, θ, z) , z(r, θ, z )

= (r cos θ , r sin θ , z) , (7.53)

where

0 ≤ r

0 ≤ θ < 2π

−∞ < z < ∞ .

An easy computation shows that ‖x(r, θ, ϕ)‖ = r2 + z2, so as r is held fixed, and θ and z vary,

x(r, θ, z) ranges over the cylinder of radius r in centered on the z-axis in R3.

We now compute

[Dx(r, θ, z)] =



∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z


=



cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1


.

Taking the determinant of the right hand side, we find

det([Dx(r, θ, z)]) = r(sin2 θ + cos2 θ)] = r .

Hence the volume element dV for cylindrical coordinates is given by

dV = rdrdθdz . (7.54)

Example 115 (Total mass of an object). Consider an object that has a mass density of %(x, y, z) =

x2 + y2 grams per cubic centimeter at (x, y, z), and that occupies the region V given by

(y − 1)2 + x2 ≤ 1

z2 ≤ x2 + y2

Let us compute the total mass of the object. This is given by the integral

∫
V
%(x)dV .



7.4. INTEGRATION ON PARAMETERIZED SURFACES 297

We will compute this in cylindrical coordinates. Let us first translate the description of V into

cylindrical terms. We find (y−1)2 +x2−1 = x2 +y2−2y = r2−2r sin θ, so from (y−1)2 +x2−1 ≤ 0,

we obtain r2−2r sin θ ≤ 0. Away from the z-axis (which has zero volume), r > 0, and so we conclude

that 0 ≤ r ≤ 2 sin θ. Since r ≥ 0, sin θ ≥ 0, and so 0 ≤ θ ≤ π.

Next, z2 ≤ x2 + y2 becomes |z| ≤ r, and so, altogether, we have

0 ≤ r ≤ 2 sin θ

0 ≤ θ ≤ π

−r ≤ z ≤ r .

Next, translating %(x) into cylindrical terms, we find %(x) = r2. Thus,∫
V
%(x)dV =

∫ 2π

0

(∫ 2 sin θ

0

(∫ r

−r
r2dz

)
dr

)
dθ

=

∫ 2π

0

(∫ 2 sin θ

0

2r3dr

)
dθ

=

∫ 2π

0

8 sin4 θdθ =
3

2
π .

7.4 Integration on parameterized surfaces

7.4.1 Parameterized surfaces

Recall that a parameterized surface in R3 is a continuously differentiable function X(u, v) defined on

an subset U of R2 with values in R3 such that [DX(u, v)] has linearly independent columns at each

(u, v) ∈ U . For example consider

U = { (u, v) : 0 < u < π , 0 < v < 2π } , (7.55)

and

X(u, v) = ( sinu cos v, sinu sin v, cosu) . (7.56)

Computing ‖X(u, v)‖ we find ‖X(u, v)‖ =
√

sin2 u(cos2 v + sin2 v) + cos2 u = 1. Thus, for each

(u, v) ∈ U , X(u, v) lies in the unit sphere, and X(u, v) is a parameterization of the unit sphere in

R3, take away the semicircle running between the North and South Poles along ( sinu, 0, cosu) for

0 ≤ u ≤ π. We exclude this semicircle to keep U open, and to keep X(u, v) one-to-one. The price we

pay is that this is not a parameterization of the entire unit sphere. However, what we have left out

accounts for none of the surface area of the unit sphere. For the purposes of this section, the fact

that we have parameterized a part of the sphere that accounts for all of its surface area, and have

done so in a one-to-one and continuously differentiable way, will be what matters.

Other examples of parameterized surfaces are given by the graphs of real valued functions f

defined on R2. Given such a function, define

X(u, v) = (u, v, f(u, v)) .
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A surface in R3 can also be given in implicit form. For example, the equation

x2 + y2 + z2 = 1 (7.57)

has the unit sphere in R3 as its solution set. Finding a parameterization of the sphere means to

find an explicit description of the solution set of this equation. The parameterization given above is

one way to do this, and is not only a parameterization, but a continuously differentiable one with a

Jacobian of rank 2 for each choice of the parameters.

Finding such parameterizations for implicitly defined surfaces is a key step in the solution of

many problems involving such surfaces. In the next example, we find such a parameterization.

Example 116 (Parameterizing a surface). Consider the equation

(x2 + y2 + z2)2 = 2(z2 − x2 − y2) .

To parameterize the corresponding surface, we must solve this equation. To do this, we rewrite the

equation in terms of spherical coordinates:

x = r sinu cos v , y = r sinu sin v , z = r cosu ,

where (u, v) ∈ U where U is given by (7.55). In these variables, the equation becomes

r4 = r2(cos2 u− sin2 u) = r2 cos(2u) .

The parameter v has dropped out of the equation, which facilitates its solution.

Since r = 0 corresponds to the point (0, 0, 0), which is one solution, let us assume r 6= 0, and

find all other solutions. Dividing by r2 and taking a square root, we find:

r =
√

cos(2u) .

For values of u such that cos(2u) < 0, we have no solution. In fact for r > 0, we must have

cos(2u) > 0. The values of u corresponding to solutions of our equation, other than (0, 0, 0), are

0 < u < π/4 and 3π/4 < u < π.

Now, we are ready to do the parameterization: First write out the general point in R3 using our

chosen system of coordinates.

X(r, u, v) = ( r sinu cos v , r sinu sin v , r cosu ) .

Now use the equation r =
√

cos(2u) to eliminate the variable r. The other two variables become the

parameters. We obtain:

X(u, v) =
√

cos(2u)( sinu cos v , sinu sin v , cosu ) .

This gives us our parameterization. Here is a plot of the surface:
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This is an exapmle of a surface of revolution; it is the result of rotating the Bernouli Lemiscate

in the x, z plane about the z-axis.

Whenever we need to parameterize a surface, the procedure will always be the same: We find

some system of coordinates in which we can use the equation defining the surface to express one of

the variables in terms of the other two. (In the previous example, we used the equation to express r in

terms of u and v, though the dependence on v turned out to be trivial.) We then use this expression

to eliminate this variable from the expression for a general point in R3 in the chosen coordinate

system. The two remaining variables become the two parameters.

7.4.2 The surface area of a parameterized surface

Let X(u, v) be a differentiable parameterized surface defined on an open set U ⊂ R3. The mappling

(u, v) 7→ X(u, v) transfers the coordinate grid in the u, v plane onto the parameterized surface, pro-

ducing a coordinate grid there. For instance, if X(u, v) :=
√

cos(2u)( sinu cos v , sinu sin v , cosu ),

here is a plot of X(u, v) showing the coordinante grid for (u, v) ∈ [1/4, 13]× [1/4, 1/2]

The grid you see on this piece of the surface consists of lines of constant u and constant v. They

carve the surface up into little “tiles”. Each of these has vertices of the form

X(u0, v0) X(u0 + h, v0) X(u0, v0 + h) and X(u0 + h, v0 + h) ,

for some small value of h > 0.
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To the extent that the tangent plane approximation is valid, the tile is the parallelogram in R3

with a corner at X(u0) and sides hXu(u0) and hXv(u0) issuing from this corner. The area of the

paralleleogram is given by the magnitude of the cross product of the vectors giving the sides:

surface area of parallelogram = h2‖Xu(u0)×Xv(u0)‖

Now if we add up the surface areas of the parallelograms, we get a good approximation of the

area of this piece of the parameterized surface. Taking the limit h→ 0, the approximation becomes

exact, and so the area of this piece of the parameterized surface is given by

lim
h→0

( ∑
littletiles

h2 × (the value of ‖Xu ×Xv‖ in the tile)

)
.

This of course is nothing other than the limit of Riemann sums for the integral∫ 1/2

1/4

(∫ 1/3

1/4

‖Xu ×Xv‖du

)
dv .

Integrating over any open U set on which X(u) is defined and differentiable, we obtain in the

same way that the surface area of the part of the surface with parameters in U is given by

surface area =

∫
U

‖Xu ×Xv‖d2u . (7.58)

Just as we did with arc length, we define the surface area element dS by

dS = ‖Xu ×Xv‖d2u .

We may then express the integral formula for the surface area of a parameterized surface S as

surface area =

∫
S

1dS. (7.59)

Notice the difference between (7.58) and (7.59): In (7.58), we consider the domain of integration

to be U , the set of parameter values. Indeed, when it comes to actual computation, this is what we

will be working with. In (7.59), we consider the domain of integration to be the surface S itself, and

we do not refer to any particular set of coordinates. This puts the emphasis on what the integral

actually represents: The sum of all of the contributions of the various area elements to the total area.

We will use either sort of notation, depending on what is best suited to the matter at hand.

Example 117 (Computing surface area). Let S be the part of the paraboloid z = 1 − x2 − y2 that

lies above the plane x+ z = 1. Let us compute the surface ares of S.

The key to doing this is coming up with a good parameterization. To find the intersection of the

plane and paraboloid, we equate their z values and find

1− x2 − y2 = 1− x

which is the same as x2 + y2 = x or (x − 1/2)2 + y2 = 1/4. This is the circle bounding the disk in

the x, y plane centered on (1/2, 0) with radius 1/2. This is what we would see in a top view diagram.

Our surface S is the part of the paraboloid that lies above this disk. Let us use cylindrical coordinates:

(x, y, z) = (r cos θ, r sin θ, z) .
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The equation for the paraboloid is x = 1− r2, and so we have our parameterization

X(r, θ) = (r cos θ, r sin θ, 1− r2) .

The equation x2 + y2 = x translates to r2 = r cos θ, so the limits on our parameters are

0 ≤ r ≤ cos θ and − π/2 ≤ θ ≤ π/2 .

We next compute Xt ×Xθ = (2r2 cos θ, 2r2 sin θ, r), and hence the surface area elelemt dS is given

by

dS = r
√

4r2 + 1drdθ .

Hence the surface area is given by

∫
S

1dS =

∫ π/2

−π/2

(∫ cos θ

0

r
√

4r2 + 1dr

)
dθ. The inner integral is

easily done by substitution:∫ cos θ

0

r
√

4r2 + 1dr =
1

8

2

3
u3/2

∣∣∣∣4 cos2 θ+1

1

=
1

12
((4 cos2 θ + 1)3/2 − 1) .

We finally have ∫
S
f(x, y, z)dS =

1

12

∫ π/2

−π/2
((4 cos2 θ + 1)3/2 − 1)dθ .

This may be evluaated in terms of special functions (incomplete elliptic integrals of the first kind),

and perhaps more meaningfully, one finds the numerical value

1.21458608... .

Example 118 (Surface area again). Let V be the region in R3 that lies inside the sphere x2+y2+z2 =

4, and above the graph of z = 1/
√
x2 + y2. Compute the total surface area of its boundary S. (There

are two pieces to the boundary.)

First of all, we must parameterize each of the two pieces of the boundary S. The boundary

equations are simple in cylindrical coordinates. We write

X(r, θ) = (r cos θ, r sin θ, z) . (7.60)

We then use z =
√

4− r2 to eliminate z in (7.61), obtaining

X1(r, θ) = (r cos θ, r sin θ,
√

4− r2) . (7.61)

as the parameterization of the upper part of the boundary; let us call this S1.

We next use z = 1/r to eliminate z in (7.61), obtaining

X2(r, θ) = (r cos θ, r sin θ, 1/r) . (7.62)

as the parameterization of the upper part of the boundary; let us call this S2.

We now determine the range of the parameters r and θ in our parameterization.

From r2 + z2 = 4 and z = 1/r, we deduce

(r2)2 − 4(r2) = −1 .
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This quadratic equation for r2 has the roots r2 = 2±
√

3. Hence the two bounding surfaces intersect

at

r =

√
2−
√

3 and r =

√
2 +
√

3 .

Hence U is the set of vectors (r, θ) with√
2−
√

3 ≤ r ≤
√

2 +
√

3

0 ≤ θ ≤ 2π .

Next, we work out the area element dS1 for the upper surface S1. We compute

Xr ×Xθ(r, θ) =

(
r2 cos θ√

4− r2
,
r2 sin θ√

4− r2
, r

)
.

We then compute ∥∥∥∥( r2 cos θ√
4− r2

,
r2 sin θ√

4− r2
, r

)∥∥∥∥2

=
r4

4− r2
+
r2(4− r2)

4− r2
=

4r2

4− r2
.

Thus,

dS1 =
2r√

4− r2
drdθ .

We then have

surface area of S1 =

∫ 2π

0

∫ √2+
√

3

√
2−
√

3

2r√
4− r2

dr

 dθ =

∫ 2π

0

2
√

2dθ = 4
√

2π .

For the other part of the boundary, we work out the area element dS2 for the upper surface S2.

We compute

Xr ×Xθ(r, θ) =

(
cos θ

r
,

sin θ

r
, r

)
.

We then compute ∥∥∥∥(cos θ

r
,

sin θ

r
, r

)∥∥∥∥2

=
1

r2
+ r2 .

Thus,

dS2 =
√
r−2 + r2drdθ .

We then have

surface area of S2 =

∫ 2π

0

∫ √2+
√

3

√
2−
√

3

√
r−2 + r2dr

dθ

= 2π

[
√

2 +
1

2
arctanh

(
1

2

√
2√

3− 1

)
− 1

2
arctanh

(
1

2

√
2√

3 + 1

)]
.

Combining the two computations, we get the total area.

Here is are plots of S1, S2:
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Here is a plot of S1 ∪ S2:

We may also integrate functions defined on parameterized surface S. For example, let S be the

centered sphere of radius R > 0. Suppose it has a mass density of % grams per centimeter squares.

If it is rotating about the z-axis with angular velocity ω, the total kinetic energy is∫
S

%

2
(x2 + y2)ω2dS ,

and by definition, the moment of inertia of the spherical shell is the quantity I such that the total

kinetic energy is given by
1

2
Iω2 .

Since the total mass of the shell is M = 4πR2%, we have

I = %

∫
S

(x2 + y2)dS = M
1

4πR2

∫
S

(x2 + y2)dS . (7.63)

In the next example, we compute the integral on the right.

Example 119 (The moment of inertia of a spherical shell). Let S be the centered sphere of radius

R > 0. Let f(x, y, z) = (x2 + y2)/2. Let us compute∫
S
fdS .
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First, we need to parameterize the surface. We could use spherical coordinates, but we can express

the integrand more simply in cylindrical coordinates, and the parameterization is almost as simple in

cylindrical coordinates.

The equation for the sphere in cylindrical coordinates is r2 + z2 = R2. Therefore, we eliminate

z = ±
√
R2 − r2, and obtain

x(r, θ) = (r cos θ, r sin θ,±
√
R2 − r2) .

There are two pieces of the surface, say S+ and S− corresponding to the two choices for the sign. By

symmetry, we can integrate over S+, and double our answer.

The domain U of integration is

0 < r < R and 0 < θ < 2π .

We then work out Xr ×Xθ(r, θ) =

(
r2 cos θ√
R2 − r2

,
r2 sin θ√
R2 − r2

, r

)
and so

dS =
Rr√
R2 − r2

drdθ .

Since f(r cos, r sin, z) = r2, we have∫
S+
fdS =

∫ 2π

0

(∫ 1

0

r2 Rr√
R2 − r2

dr

)
dθ = 2π

(
2R4

3

)
=

4πR4

3
.

Remembering to double our answer, we have

∫
S
fdS =

8πR4

3
. The total mass M of the spherical

shell is its area times the density %.

Thus, going back to the remarks made right before the example, and (7.63) in particuar, the

computation shows that the moment of inertial I of a spherical shell of radius R and mass M is given

by

I =
2

3
MR2 .

7.5 Exercises

7.1 Let f(x, y) = x3y, and let D be the region that lies to the right of the parabola x = y2, and

below the line 2y = −x.

(a) Write down
∫
D
f(x, y)dA in terms of integrated integrals, integrating in x first, then y.

(b) Write down
∫
D
f(x, y)dA as an integrated integral integrating in y first, then x.

(c) Evaluate one of the integrals.

7.2 Let f(x, y) = x2y2, and let D be the region that lies inside both of the circles (x− 1)2 + y2 = 4

and (x+ 1)2 + y2 = 4.

(a) Write down
∫
D
f(x, y)dxdy as an integrated integral, integrating in x first, then y.

(b) Write down
∫
D
f(x, y)dxdy as an integrated integral, integrating in y first, then x.

(c) Evaluate one of the integrals.
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7.3 Let f(x, y) = x2y2, and let D be the region that lies below the parabola y = 4 − (x − 2)2 and

above the x axis.

(a) Write down
∫
D
f(x, y)dxdy as an integrated integral, integrating in x first, then y.

(b) Write down
∫
D
f(x, y)dxdy as an integrated integral, integrating in y first, then x.

(c) Evaluate one of the integrals.

7.4 Let f(x, y) = xy, and let D be the region bounded by the lines y = x, y = 3x, and y = 5x− 6.

(a) Write down
∫
D
f(x, y)dxdy in terms of integrated integrals, integrating in x first, then y.

(b) Write down
∫
D
f(x, y)dxdy in terms of integrated integrals, integrating in y first, then x.

(c) Evaluate one of the integrals.

7.5 Let f(x, y) = x2 +y2, and let D be the region bounded by the lines y = −x, y = x and y = 5−2x.

(a) Write down
∫
D
f(x, y)dxdy in terms of integrated integrals, integrating in x first, then y.

(b) Write down
∫
D
f(x, y)dxdy in terms of integrated integrals, integrating in y first, then x.

(c) Evaluate one of the integrals.

7.6 Let f(x, y) = y, and let D be the region bounded by x + y = 2, x + y = 4, xy = 1 and xy = 2.

Compute
∫
D
f(x, y)dxdy.

7.7 Let D be the region bounded by x4 + y4 = 1. Compute its area. (Use symmetry to conclude

that the area is 4 times the area of the piece in the upper right quadrant, and set up an integral to

compute that). Leave your answer in the form of an explicit integral over one variable. If you do this

in the way that is intended, you will be left with what is known as an elliptic integral. These are well

studied and Maple, for example, is programmed to deal with them.

7.8 Let f(x, y) = xy, and let D be the region in the positive quadrant of R2 bounded by xy = 1,

xy = 2, y/x = 1 and y/x = 2. Compute
∫
D
f(x, y)dA.

7.9 Let f(x, y) = y, and let D be the region inside both of the circles

(x− 1)2 + (y − 1)2 = 2 and (x+ 1)2 + (y − 1)2 = 2 .

Compute
∫
D
fx, y)dA.

7.10 Consider the region enclosed by the curve

x2 + y2 = (x2 + y2 − x)2 .

Show that in polar coordinates, this curve is given by

r = 1 + cos θ .

Sketch the curve, and compute the area it encloses.

7.11 Consider the closed curve given in polar terms by r = sin3 θ. Sketch this curve, and compute

the area enclosed.
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7.12 Consider the closed curve given in polar terms by r = 1 + sin(2θ). Sketch this curve, and

compute the area enclosed.

7.13 Let D be the region in R2 that is bounded by the lines

y − x = 0 y − x = 3 x+ 2y = 2 and x+ 2y = 4 .

Compute ∫
D

x− y
x2 + 4xy + 4y2

dA .

7.14: Let D ⊂ R2 be the region bounded by xy = 1, xy = 2, x2y = 3 and x2y = 4. Compute∫
D
xydA.

7.15: Let D be the set in R2 that is given by

1 ≤ y

x2
≤ 2 and 1 ≤ x

y2
≤ 2 .

Let f(x, y) =
1

x2y2
. Compute

∫
D
f(x, y)dA.

7.16: Let D be the set in R2 that is given by

0 ≤ x2 − y2 ≤ 4 and 1 ≤ xy ≤ 2 .

Let f(x, y) = x2 + y2. Compute
∫
D
f(x, y)dA.

7.17 Let V be the region in R3 that is bounded above by the sphere x2 + y2 + z2 = 4, and below by

the cone 4z = 4−
√
x2 + y2. Let f(x, y, z) = 1/(x2 + y2 + z2)2. Compute

∫
V f(x, y, z)dV .

7.18: Let V be the region in R3 that is the intersection of the three cylinders of unit radius along

the three coordinate axes. That is, D is the set of points (x, y, z) satisfying

y2 + z2 ≤ 1 x2 + z2 ≤ 1 and x2 + y2 ≤ 1 .

Compute the volume of V.

7.19: Let V be the region in R3 that is above the sphere x2 + y2 + z2 = 6 and below the paraboloid

z = 4− x2 − y2. Compute the volume of this region.

7.20: Let V be the region in R3 that is bounded by the surfaces√
x2 + y2 = z2√
x2 + y2 = 8− z2

Compute the volume of V and the total surface area of its boundary. (There are two pieces to the

boundary.

(a) Draw a plot of the intersection of the bounding surfaces with the x, z plane.

(b) Compute the volume of V.

(c) Compute the total surface area of the boundary of V.
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7.21: Let V be the region in R3 consisting of points (x, y, z) satisfying

0 ≤ z ≤ y2 sinx

for 0 ≤ x ≤ π, and 0 ≤ y ≤ 1. Find the average height in V.

7.22: Let V be the region in R3 bounded by y+ z = 2, 2x = y x = 0 and z = 0. Let f(x, y, z) = xez.

Compute
∫
V f(x)dV .

7.23: Let V be the region in the positive octant of R3 bounded by the elliptic cylinder 9x2 +4y2 = 36

and the sphere x2 + y2 + z2 = 16. Let f(x, y, z) = z. Compute
∫
V f(x)dV .

7.24: Let V be the region in R3 contained in the cylinder x2 + y2 = 9, and lying below the plane

y = z, and above the plane z = 0. Compute the volume of V.

7.25: Let V be the region in R3 lying between the paraboloids z = x2 + y2 and z = 8 − x2 − y2.

Compute the volume of V.

7.26: Let S be the triangle in R3 with vertices (0, 4, 1), (1, 0, 2) and (0, 0, 3).

(a) Find a parameterization of the surface S. (Hint: Find an equation for the plane containing §.

(b) Let f(x, y, z) = xyz. Compute
∫
S fdS.

7.27: Let S be the surface in R3 given by z = xy with x2 + y2 ≤ 1.

(a) Find a parameterization of the surface S.

(b) Let f(x, y, z) = z2. Compute
∫
S fdS.

7.28: Let S be the torus in R3 obtained by rotating the circle of radius a on the x, z plane centered

at (b, 0, 0), where b > a, about the z-axis.

(a) Find a parameterization of the surface S.

(b) Compute the surface area of the torus.

7.29: Let x(r, θ) := (r cos θ, r sin θ, g(r)) for 0 ≤ θ ≤ 2π and, for given positive numbers a and b,

a ≤ r ≤ b. Show that the area of the corresponding parameterized surface S is

2π

∫ b

a

√
1 + (g′(r))2rdr .
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Chapter 8

DETERMINANTS

8.1 Permuations

8.1.1 The permutation group

The concept of a transformation group is fundamentally important to modern mathematics, and to

geometry in particular. We now introduce a basic example: the Permutation Group, which plays an

central role in the computation of area, volume and their higher dimensional generalizations.

Definition 82 (Permutation). A permutation of {1, 2, . . . , n} is a function σ from this set onto

itself.

Recall that “onto” means that for every j in {1, 2, . . . , n}, there is an i with σ(i) = j. Permuta-

tions are also automatically one-to-one and invertible. To see this note that if σ(i) = σ(j) for some

i 6= j, then σ can take on at most n− 1 values, since two inputs have beent spent covering one value.

Hence, were σ not one-to-one, it would not be onto either. Hence σ is invertible. The inverse σ−1 is

itself invertible (its inverse is σ), and so it too is a permuation. (It is just the original function “in

reverse”).

We can specify a permutation σ of {1, 2, . . . , n} by listing the assignments it makes:

1 2 3 · · · n

↓ ↓ ↓ · · · ↓
σ(1) σ(2) σ(3) · · · σ(n)

For example, if n = 3, and σ(1) = 2, σ(2) = 3 and σ(3) = 1, σ =

1 2 3

↓ ↓ ↓
2 3 1

. The arrows do not

really tell us much; we can remember that the top row is inputs, and the bottom row is outputs, and

shorten the notation to

σ =
1 2 3

2 3 1
.

c© 2015 by the author.
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The generalization of this way of writing permutations to higher values of n is plain, and we use it

freely.

There are exactly n! permutations of {1, 2, . . . , n}: Consider any permutation σ of {1, 2, . . . , n}.
There are n choices for the value of σ(1). Make this choice, and then, σ(1) being taken, there are

n − 1 choices remaining for value of σ(2). Next, there are n − 2 choices for σ(3), the value to be

assigned to 3. Continuing in this way, there are n(n − 1)(n − 2) · · · 1 = n! choices to make when

specifying a permuations σ..

Example 120 (Permutations of {1, 2, 3}). There are six permutations of {1, 2, 3}:

σa =
1 2 3

1 2 3
σb =

1 2 3

2 1 3
σc =

1 2 3

1 3 2

σd =
1 2 3

2 3 1
σe =

1 2 3

3 1 2
σf =

1 2 3

3 2 1
(8.1)

Since permutations of {1, 2, . . . , n} are functions from this set into itself, we can compose them:

If σ1 and σ2 are two permutations of {1, 2, . . . , n}, then σ2 ◦ σ1 is defined by

σ2 ◦ σ1(i) = σ2(σ1(i)) , for each i = 1, . . . , n . (8.2)

Example 121 (Composing permutations). Let us compute σd ◦ σb where σd and σb are the permu-

tations given in (8.1). From (8.1) we see that

σd ◦ σb(1) = σd(σb(1)) = σd(2) = 3

σd ◦ σb(2) = σd(σb(2)) = σd(1) = 2

σd ◦ σb(3) = σd(σb(3)) = σd(3) = 1

Thus, σd ◦ σb =
1 2 3

3 2 1
= σf .

The composition product of two permutations is always another permutation, since the compo-

sition of invertible functions is invertible (and hence onto).

The permutation σa at the upper left of the list in (8.1) is called the identity permutation since

it sends each element of {1, 2, 3} to itself. This has an obvious generalization to other values of n.

Definition 83 (Pemutation group). Let Sn denote the set of all n! permutations of {1, . . . , n},
equipped with the composition product σ1 ◦ σ2. This is the permutation group on {1, . . . , n}.

The term “group” has a precise technical meaning in mathematics; It is a generalization of

the more concrete notion of a “transformation group” which is what the permutations group is: A

transformation group on a set X is a set G of invertible functions from X to X such that whenever
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g ∈ G, then g−1 ∈ G, and such that whenever g1, g2 ∈ G, then g1◦g2 ∈ G. Note that, as a consequence

of the definition, G constains the identity transformation i(x) = x for all x ∈ X. Since Sn contains

all invertible transformations form {1, . . . , n} into itself, it is the largest transformation group on

{1, . . . , n}.

8.1.2 The character of a permutation

Some permutations “mix things up” more than others – for example, the identity permuations does

not mix things up at all. There is a useful way to measure the dgree of mixing of a permuation in

terms of how many pair it “puts out of order”.

In this subsection, we define a function χ on Sn with values in {−1, 1}, called the character,

that is essential to the theory of determinants. The definition of χ depends on another function

which measures the “degree of mixing” of a permutation σ, or in other words, “how far σ is from the

identity permutation”.

Let P be the set P := {(i, j) : 1 ≤ i, j ≤ n} of all distinct ordered pairs chosen from {1, . . . , n},
which is a set of n(n− 1) elements. Define the disjoints sets

Pup = {(i, j) : 1 ≤ i < j ≤ n} and Pdown = {(i, j) : 1 ≤ j < i ≤ n} .

Pup is the set of all “increasing” pairs and Pdown is the set of all “decreasing” pairs. Note that both

of these sets consist of n(n− 1)/2 ordered pairs, and P = Pup ∪ Pdown.

For any σ ∈ Sn, the function fσ from P into itself defined by

fσ(i, j) = (σ(i), σ(j))

is invertible. In fact, it is a permutation of the elements of P .

Since fσ is one-to-one and onto, each pair that fσ moves out of Pup into Pdown must be replaced

by a pair that fσ moves out of Pdown into Pup so that the number of pairs that fσ moves out of Pup

into Pdown coincides with the number of pairs it moves out of Pdown into Pup: It is simply the number

of pairs that fσ “swaps” between Pdown and Pup.

Definition 84 (Definition (Degree of mixing). The degree of mixing of a permutation σ of {1, 2, . . . , n}
is the number of pairs of integers (i, j) in {1, 2, . . . , n} with

i < j and σ(i) > σ(j) . (8.3)

This number is denoted D(σ). In terms of the notation introduced in the preceding paragraph, D(σ)

is the number of pairs that fσ swaps between Pdown and Pup. The more “reversed” pairs, the more

mixing there is.

Example 122 (Computing the degree of mixing). Let us compute D(σ) for each of the six permu-

tations of {1, 2, 3}. There are exactly three pairs (i, j) with i < j, namely (1, 2), (1, 3) and (2, 3). To

compute the degree of mixing of σ, we look at

(σ(1), σ(2)) (σ(1), σ(3)) (σ(2), σ(3)) ,
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and count the number of these pairs that are “out of order”. You can easily check that

D(σa) = 0 D(σb) = 1 D(σc) = 1 D(σd) = 2 D(σe) = 2 D(σf ) = 3 .

Thus, with this definition of the degree of mixing, the order reversing permutation
1 2 3

3 2 1
has the

highest degree of mixing among all permutations of {1, 2, 3}.

Lemma 22 (Degree of mixing and inverses). For each σ ∈ Sn,

D(σ−1) = D(σ) .

Proof. Let fσ be the invertible function on pairs induced by σ, as explained above. Then evidently

(fσ)−1 = fσ−1 . However many pairs fσ swaps between Pup and Pdown, fσ−1 swaps the same same

number back again in undoing the effects of fσ.

The definition of D(σ) is useful because of the way it interacts with the composition product:

Consider

Lemma 23 (Degree of mixing and composition). For any σ1, σ2 ∈ Sn,

D(σ2 ◦ σ1) = D(σ2) +D(σ1)− 2c (8.4)

where c is a non-negative integer.

Proof. Suppose that when σ2 is applied, c pairs that had been put out of order by σ1 are “reordered”

when we apply σ2. Then,

it (1) Of the D(σ1) pairs reversed by σ1, exactly D(σ1)− c are still reversed after applying σ2.

(2) Of the D(σ2) pair reversals created by σ2, c are “used up” undoing reversals created by σ1, and

so exactly D(σ2)− c new reversals are created.

Adding things up, D(σ2 ◦ σ1) = (D(σ1)− c) + (D(σ2)− c) = D(σ1) +D(σ2)− 2c.

We now come to our first application of Lemma 23. Note that that whatever c is in (8.4), 2c is

always an even integer, and so (−1)2c = 1, and

(−1)D(σ2◦σ1) = (−1)D(σ1)(−1)D(σ1) . (8.5)

Definition 85 (Character of a Permutation). The character χ(σ) of a permutation σ is defined by

χ(σ) = (−1)D(σ) . (8.6)

where D(σ) is given by (1.7). A permutation σ is called an even permutation if χ(σ) = 1, and an

odd permutation if χ(σ) = −1.

The key property of the character function is that χ(σ2◦σ1) = χ(σ2)χ(σ1). That is, the character

of a product equals the product of the characters. This follows directly from (8.5). In Example 122

σa, σd and σe are even permutations whereas σb, σc and σf are odd permutations.

To determine χ(σ) for a given permutation σ, it is not necessary to compute compute D(σ) first,

and then apply the definition (8.6). There are some general rules for particular kinds of permutations.
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Definition 86 (Pair Permutations). For each i < j in {1, 2, . . . , n} the pair permutation σi,j is

defined by

σi,j(i) = j , σi,j(j) = i and σi,j(k) = k for k 6= i, j . (8.7)

It is called an adjacent pair permutation in case j = i + 1 for i < n, or if (i, j) = (n, 1); i.e., if j

follows i in the cyclic order on {1, . . . , n}.

Example 123. For n = 4, σ2,4 =
1 2 3 4

1 4 3 2
.

Notice that each pair permutation is its own inverse – applying it twice swaps the reversed pair

back into place. Next notice that for each adjacent pair permutation σi,i+1, D(σi,i+1) = 1, and hence

χ(σi,i+1) = −1.

Lemma 24. For any i < j, σi,j can be written as the product of 2k − 1 adjacent pair permutations

where k = j − i. In particular, for each pair permutation σi,j, χ(σi,j) = −1.

Proof. Write j = i+ k. Then one can “move” i to the right of j using k adjacent pair permutations.

One can then move j back to the ith spot with k − 1 pair permutations. Only k − 1 are required,

because the last pair permutation used to move i into the jth place already put j one place to the

left of i.

Finally, since the character of σi,j is the product of the characters of 2k − 1 adjacent pair

permutations, χ(σi,j) = (−1)2k−1 = −1.

We summarize the discussion in the following theorem:

Theorem 84 (Properties of the character). For any two permutations σ1 and σ2 of {1, 2, . . . , n},

χ(σ2 ◦ σ1) = χ(σ2)χ(σ1) . (8.8)

Moreover, for any pair permutation σi,j,

χ(σi,j) = −1 . (8.9)

The theorem gives us a convenient way to compute χ(σ): Bring the sequence (1, 2, . . . , n) into

the order (σ(1), σ(2), . . . , σ(n)) by swapping pairs; that is, by pair permutations. Then χ(σ) is the

product of the characters of these pairs permutations, so it is (−1)`, where ` is the number of pair

permutations you used.

Example 124 (Computing χ(σ) counting pair permutations). Consider σ =
1 2 3 4

4 1 3 2
. We can

transform (1, 2, 3, 4) to (4, 1, 3, 2) using pair permutations as follows:

(1, 2, 3, 4)→ (4, 2, 3, 1)→ (4, 1, 3, 2)
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or as well by

(1, 2, 3, 4)→ (1, 2, 4, 3)→ (1, 4, 2, 3)→ (4, 1, 2, 3)→ (4, 1, 3, 2)

In the first case we used 2 pair permutations, and in the second case we used 4. Either way, we see

χ(σ) = (−1)2 = (−1)4 = 1, so σ is even.

You might wonder why we did not define χ(σ) to be (−1)` where ` is the number of “pair

swaps” required to produce σ. The analysis we have done shows that it is impossible to write any

permutation σ as a product of both an even and an odd number of pair permutations. However,

this is not obvious. If it were not true, the parity of a permutation σ – even or odd – would not be

well-defined, and we could not use it to define a function on the permutation group.

At this point we have covered as much of the theory of the permutation group as we shall use

in explaining the theory of determinants. However, the permutation group is such a fundamental

example of a transformation group, and the notion of a transformation group is so essential to modern

analysis and geometry, that it is worthwhile to go somewhat further with the theory of permutations,

and to study Sn as a metric space. We do this in the next subsection.

8.1.3 The permutation group as a metric space

Definition 87 (Distance in Sn). Let % be the function on Sn × Sn given by

%(σ1, σ2) = D(σ−1
1 ◦ σ2) .

This function is called the length function or distance function on Sn.

It is not hard to see that the length function we have just defined is a metric on Sn. That is, it

satisfies the three requirements of a metric:

(1) For all σ1, σ2 ∈ Sn, %(σ1, σ2) ≥ 0, and %(σ1, σ2) = 0 ⇐⇒ σ1 = σ2.

(2) For all σ1, σ2 ∈ Sn, %(σ1, σ2) = %(σ2, σ1).

(3) For all σ1, σ2, σ3 ∈ Sn, %(σ1, σ3) ≤ %(σ1, σ2) + %(σ2, σ3).

To see that this is the case, note for (1) that % is defined to be a non-negative integer, and

D(σ−1
1 ◦ σ2) = 0 if and only if there are “no crossings” in σ−1

1 ◦ σ2, which is the case if and only if

σ−1
1 ◦ σ2 is the identity, which is the case if and only if σ1 = σ2. For (2), Note that

(σ−1
1 ◦ σ2)−1 = σ−1

2 ◦ σ1

and since, by Lemma 22, D is unaffected by taking inverses,

%(σ1, σ2) = D(σ−1
1 ◦ σ2) = D((σ−1

1 ◦ σ2)−1) = D(σ−1
2 ◦ σ1) = %(σ2, σ1) .

Finally, for (3) we use (8.4) and the fact that, due the to associative nature of composition,

σ−1
1 ◦ σ3 = (σ−1

1 ◦ σ2) ◦ (σ−1
2 ◦ σ3) .

Thus, by (8.4), since 2c ≥ 0 for all non-negative integers c,

%(σ1, σ3) = D(σ−1
1 ◦σ3) = D((σ−1

1 ◦σ2)◦(σ−1
2 ◦σ3)) ≤ D(σ−1

1 ◦σ2)+D(σ−1
2 ◦σ3) = %(σ1, σ2)+%(σ2, σ3) .
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We now explain how one can think of %(σ1, σ2) as the length of the shortest path in Sn from σ1

to σ2. Given any σ ∈ Sn, consider the set of permutations

{σ ◦ τ : τ is an adjacent pair parmuation}

We call this set the set of the nearest neighbors of σ in Sn. Now think of “moving” from σ to σ ◦ τ ,

where τ is an adjacent pair transposition, as a “step” from σ to one of its nearest neighbors. By a

path in Sn from σ1 to σ2, we mean a sequence of such steps starting at σ1 and ending at σ2.

Definition 88 (Paths in Sn). For any σ1 and σ2 in Sn, a path from σ1 to σ2 is a sequence {τ1, . . . , τ`}
of adjacent pair permutations such that

σ2 = σ1 ◦ τ1 · · · ◦ τ` .

For example, if {τ1, τ2, τ3} is a path from σ1 to σ2, then the sequences of steps

σ1 −→ σ1 ◦ τ1 −→ σ1 ◦ τ1 ◦ τ2 −→ σ1 ◦ τ1 ◦ τ2 ◦ τ3 = σ2

is a sequence of “one step moves between nearest neighbors” that starts at σ1 and ends at σ2.

Theorem 85 (The metric in Sn as a minimal path length). For each σ1, σ2 ∈ Sn, there is a path

from σ1 to σ2, and

%(σ1, σ2) = min{ ` : there exists a path {τ1, . . . , τ`} from σ1 to σ2} .

Theorem 85 says that for each σ1, σ2 ∈ Sn, there is a way to get from σ1 to σ2 by making a finite

number of steps from one nearest neighbor to another, and that %(σ1, σ2) is the least number of such

steps in which this can be done. The following lemma is the key to the proof.

Lemma 25 (Reduction lemma). For all σ ∈ Sn except the indentity, there is some k with 1 ≤ k ≤
n− 1 such that σ(k) > σ(k + 1). For any such k, let τ be the adjacent pair permutation τ = σk,k+1.

Then

D(σ ◦ τ) = D(σ)− 1 .

Proof. Suppose for each i = 1, . . . , n− 1, σ(i+ 1) > σ(i). Then

σ(1) < σ(2) < · · · < σ(n) .

The only order preserving permutation is the identity, and since σ is not the identity, there is some

k ∈ {1, . . . , n− 1} such that σ(k) > σ(k+ 1). Let τ denote any adjacent pair permutation σk,k+1 for

some such value of k.

Define the following sets of ordered pair (i, j):

A := { (i, j) : i < k , j > k + 1}

B := { (i, j) : j = k or k + 1 , j > k + 1}

C := { (i, j) : i < k , j = k or k + 1} .
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The sets A,B,C are disjoint from each other and from {(k, k + 1)}, and A ∪B ∪ C ∪ {(k, k + 1)} is

the set of all ordered pairs (i, j) with i < j.

Note that for (i, j) ∈ A, (σ(i), σ(j)) = (σ ◦ τ(i), σ ◦ τ(j)). Hence the image of A under fσ is the

same as the image of A under fσ◦τ , and so σ and σ ◦ τ reverse the same number of pairs in A.

Note that for (i, j) ∈ B,

(σ(i), σ(k)) = (σ ◦ τ(i), σ ◦ τ(k + 1)) and (σ(i), σ(k + 1)) = (σ ◦ τ(i), σ ◦ τ(k)) .

Hence the image of B under fσ is the same as the image of B under fσ◦τ , and so σ and σ ◦ τ reverse

the same number of pairs in B.

Note that for (i, j) ∈ C,

(σ(k), σ(j)) = (σ ◦ τ(k + 1), σ ◦ τ(j)) and (σ(k + 1), σ(j)) = (σ ◦ τ(k), σ ◦ τ(j)) .

Hence the image of C under fσ is the same as the image of C under fσ◦τ , and so σ and σ ◦ τ reverse

the same number of pairs in C.

Finally, by the choice of k, σ reverses (k, k + 1), but then by the definition of τ , σ ◦ τ does not.

Hence σ ◦ τ reverses exactly one fewer pair than does σ.

Proof of Theorem 85. First, suppose that {τi, . . . , τ`} is a path of length ` from σ1 to σ2, Then

σ2 = σ1 ◦ τ1 ◦ · ◦ τ`. Therefore, σ−1
1 σ2 = τ1 ◦ · · · ◦ τ` and so D(σ−1

1 σ2) = D(τ1 ◦ · · · ◦ τ`). Then by

Lemma 23

D(τ1 ◦ · · · ◦ τ`) ≤ D(τ1) +D(τ2 ◦ · · · ◦ τ`)

= 1 +D(τ2 ◦ · · · ◦ τ`)

since D(τ) = 1 for any adjacent pair permutation. Proceeding inductively, we find

D(τ1 ◦ · · · ◦ τ`) ≤ ` .

Hence, any path from σ1 to σ2 takes at least D(σ−1
1 σ2) steps.

On the other hand, by Lemma 25, as long as σ1 6= σ2, or what is the same, D(σ−1
2 ◦ σ1) 6= 0,

there exists an adjacent pair permutation τ1 such that

D(σ−1
2 ◦ σ1 ◦ τ1) = D(σ−1

2 ◦ σ1)− 1 .

Next as long as D(σ−1
2 ◦ σ1 ◦ τ1) 6= 0, there exists an adjacent pair permutation τ2 such that

D(σ−1
2 ◦ σ1 ◦ τ1 ◦ τ2) = D(σ−1

2 ◦ σ1 ◦ τ1)− 1

= D(σ−1
2 ◦ σ1)− 2 .

Continuing this way, we find a sequence {τ1, . . . , τD(σ−1
2 ◦σ1)} adjacent pair permutations such that

D(σ−1
2 ◦ σ1 ◦ τ1 ◦ · · · ◦ τD(σ−1

2 ◦σ1)) = 0 .

But this means that σ−1
2 ◦ σ1 ◦ τ1 ◦ · · · ◦ τD(σ−1

1 ◦σ2) is the identity, and therefore,

σ2 = σ1 ◦ τ1 ◦ · · · ◦ τD(σ−1
2 ◦σ1) .
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Hence, there exists a path from σ1 to σ2 of length D(σ−1
2 ◦ σ1). Note that (σ−1

2 ◦ σ1)−1 = σ−1
1 ◦ σ2,

and then by Lemma 22, D(σ−1
2 ◦ σ1) = D(σ−1

1 ◦ σ2). Therefore, there exists a path from σ1 to σ2

consisting of D(σ−1
1 ◦ σ2) steps. By what we have proved above, this is the least number of steps

taken in any path from σ1 to σ2.

8.2 Algebraic properties of the determinant

8.2.1 The determinant formula

We are going to break down the formula for the determinant into “building blocks”. The building

blocks will be two simple functions that we will combine to form the determinant function. The first

one is the character function on the permutations. Here is the second one:

Definition 89 (The function A 7→ σ(A)). For any n × n matrix A, and any permutation σ on

{1, . . . , n}, define the number σ(A) by

σ(A) := Aσ(1),1Aσ(2),2 · · ·Aσ(n),n =

n∏
j=1

Aσ(j),j . (8.10)

Definition 90 (The determinant function). The determinant function det(A) on the set of n × n
matrices is defined by

det(A) =
∑
σ∈Sn

χ(σ)σ(A) . (8.11)

Let us first check that this definition gives us what we expect for n = 2 and n = 3.

Example 125 (2 × 2 determinants). Consider the general 2 × 2 matrix A =

[
a b

c d

]
. There are

only two permutations of {1, 2} to consider, namely

σ1 =
1 2

1 2
and σ2 =

1 2

2 1
.

Clearly χ(σ1) = 1 and χ(σ2) = −1. Hence det(A) = A1,1A2,2 − A2,1A1,2 = ad − bc, which is the

usual formula.

Example 126 (3×3 determinants). Consider a general 3×3 matrix A. We have already worked out

a list of the six permutations of {1, 2, 3} in (8.1) of the previous section, and computed the characters

of each of them. In the 3× 3 case then, the definition (8.11) leads to

det(A) = A1,1A2,2A3,3 +A2,1A3,2A1,3 +A3,1A1,2A2,3

− A2,1A1,2A3,3 −A1,1A3,2A2,3 −A3,1A2,2A1,3 .

This too is reassuring – the formula (8.11) leads us to the usual formula for 3× 3 determinants.

Since there are n! permuations, direct application of (8.11) requires a large computational effort

for large n. However, there is one important case in which one one single permulation contributes to

the sum, and then (8.11) is easy to use:
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Theorem 86. Let A be an unper-triangular n× n matrix. That is Ai,j = 0 whenver i > j. Then

det(A) =

n∏
j=1

Aj,j . (8.12)

In particular, the determinant of the n× n identity matrix, In×n is 1:

det(In×n) = 1 . (8.13)

Proof. Note that the product σ(A) = Aσ(1),1 . . . Aσ(n),n has a zero factor in case σ(j) > j for any j.

But the only permuation σ for which σ(j) ≤ j for all j is the identity permuation. Hence only this

single term contributes to the sum in (8.11), and this proves (8.12). Then (8.13) follows, as a special

case, from (8.12).

Before stating the next theorem, it will be useful to shift our way of thinking about determinants:

Since an n×n matrix is an ordered list of n vectors in Rn, we can think of the determinant function

as a function of of an ordered list of n vectors in Rn. Slightly abusing notation, we may write

det(v1, . . . ,vn) = det([v1, . . . ,vn])

where, as usual, [v1, . . . ,vn] is the n×n matrix whose jth column is vj . There is another way to do

this using the rows, but we will see below that

det




v1

...

vn


 = det([v1, . . . ,vn]) , (8.14)

so that for this purpose, it does not matter if you treat the vectors as collumns or rows.

The derminant function, thought of as a function on ordered lists of n vectors in Rn, has an

important property: It is linear in each of the entries. That is,

det(sx + ty,v2,vn) = sdet(x,v2, . . . ,vn) + tdet(x,v2, . . . ,vn) , (8.15)

with an anlaogous formula for any other j in case vj = sx + ty. (See 8.18) below).

Theorem 87 (Properties of the determinant). Let det be the numerically valued function on the

n× n matrices defined by (8.11). Then:

(1) The determinant is invarinat under transposition; i.e., det(AT ) = det(A).

(2) det(A) changes sign when any two rows of A are interchanged, and when any two collumns are

interchanged. If any two rows of A are equal, or if any two collumns of A are equal, det(A) = 0.

(3) det(A) is linear in each row of A, and also in each column of A. For each k 6= `, if one add any

multiple of row (or column) k to row (or column) ` of A, the dterminant is unchanged.

(4) For any two n× n matrices A and B, det(AB) = det(A) det(B).
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Proof. We first prove (1). Let τ be any permutation on {1, . . . , n}. For any n numbers a1, . . . , an,∏n
j=1 aj =

∏n
j=1 aτ(j). The only difference between the left and the right is that we are doing the

multiplication in a different order, but for multiplication of numbers, the order does not matter.

Therefore, for any two permutations σ, τ on {1, . . . , n}, and any n× n matrix A,

σ(A) =

n∏
j=1

Aσ(j),j =

n∏
j=1

Aσ(τ(j)),τ(j) .

Now taking τ = σ−1, we have σ(A) =

n∏
j=1

Aj,τ(j) =

n∏
j=1

ATτ(j),j = τ(AT ). Since the character of the

identity permutation is 1, for τ = σ−1, χ(σ ◦ τ) = 1 and so χ(τ) = χ(σ). Therefore,

det(A) =
∑
σ

χ(σ)σ(A) =
∑
τ

χ(τ)τ(AT ) = det(AT ) .

This proves (1).

To prove (2), suppose that B is obtained from A by interchanging the kth and `th rows of A.

Then we have to show that det(B) = −det(A).

To see this, note that Bi,j = Aσk,`(i),j , and hence, for any permutation σ, σ(B) = (σ ◦ σk,`)(A).

Since σk,` is a pair permutation, χ(σ ◦ σk,`) = −χ(σ). Therefore,

det(B) =
∑
σ

χ(σ)σ(B) = −
∑
σ

χ(σ ◦ σk,`)(σ ◦ σk,`)(A) . (8.16)

Let τ denote the permutation τ := σ ◦ σk,`. Since σk,` is its own inverse, σ = τ ◦ σk,`. That is,

the map σ 7→ τ := σ ◦ σk,` is a one-to-one map of the set of permutations on {1, . . . , n}. Hence∑
σ

χ(σ ◦ σk,`)(σ ◦ σk,`)(A) =
∑
τ

χ(τ)τ(A) = det(A) . (8.17)

(In the sum on the middle, we are summing over τ instead of σ, but τ is just a “dummy” variable;

we are summing over all permutations of on {1, . . . , n}. Hence
∑
τ

χ(τ)τ(A) = det(A)). Combining

(8.16) and (8.17) we have det(B) = −det(A), that the sign of the permuation changes if two rows

are interchanged. By (1), the same is true when any two columns are swapped since the rows of

AT are the collumns of A. By what we have just proved, if any two columns or rows are equal, the

determinat must change sign if they are swapped. Since swapping identical rows or columns does

nothing, the detemrinant is unchanged. The only number that is minus itself is 0, and so in this case

we must have det(A) = 0, and this proves (2).

To prove (3), we have to show that if

ri = αv + w
¯

then

det





r1

r2

...

αv + w
¯...

rn




= α det





r1

r2

...

v
...

rn




+ β det





r1

r2

...

w
...

rn




. (8.18)
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This is true since each product σ(A) = Aσ(1),1Aσ(2),2 · · ·Aσ(n),n contains exactly one factor coming

from the ith row, and hence is a linear function of the entries of the ith row. By definition, det(A)

is a linear combination of the σ(A). A linear combination of linear functions is linear, and so the

determinant is a linear function of the entries of the ith row.

To prove the final part of (3) for rows, consider (8.18) in the case in which the additive term on

the left is in the ith place, α = 1, v = ri and w = r` for some ` neqi. Then second the matrix on

the right has two rows equal to r`, and hence its determinant is zero, by (2). The first matrix on the

right is the original matrix A, and we have set α4 = 1, so this proves the assertion for rows. The

validity for collumns now follows from (1). This proves (3).

We now prove (4). Let C = AB. Then

σ(C) =

n∏
j=1

n∑
k=1

Aσ(j),kBk,j

=

n∑
k1=1

· · ·
n∑

kn=1

(Aσ(1),k1Bk1,1) · · · (Aσ(n),knBkn,n)

=

n∑
k1=1

· · ·
n∑

kn=1

(Aσ(1),k1 · · ·Aσ(n),kn)(Bk1,1 · · ·Bkn,n)

Therefore,

det(C) =
∑
σ

σ(C)χ(σ) =

n∑
k1=1

· · ·
n∑

kn=1

(∑
σ

Aσ(1),k1 · · ·Aσ(n),knχ(σ)

)
(Bk1,1 · · ·Bkn,n) .

Now notice that
∑
σ

Aσ(1),k1 · · ·Aσ(n),knχ(σ) is the determinant of the n×n matrix whose jth column

is column kj of A. By (2), this determinant is zero if kj = k` for any j 6= `. Hence, of the nn derms

in the sum over k1, . . . , kn, the only terms that can contribute to the sum are the n! terms in which

kj 6= k` whenver j 6= `. This is the cases exactly when for some permuation τ , kj = τ(j) for

j = 1, . . . , n, and evidently different prmutations give different terms. Hence we may replace the sum

over k1, . . . , kn by a sum over permutation τ :

det(C) =
∑
τ

(∑
σ

Aσ(1),τ(1) · · ·Aσ(n),τ(n)χ(σ)

)
(Bτ(1),1 · · ·Bτ(n),n)

=
∑
τ

(∑
σ

Aσ(1),τ(1) · · ·Aσ(n),τ(n)χ(σ)

)
τ(B) (8.19)

Now define σ̂ = σ ◦ τ−1, and note that χ(σ̂) = χ(σ)χ(τ)−1, so that

χ(σ) = χ(σ̂)χ(τ) . (8.20)

Also note that Aσ(1),τ(1) · · ·Aσ(n),τ(n) = Aσ̂(τ(1)),τ(1) · · ·Aσ̂(τ(n)),τ(n) = Aσ̂(1),1 · · ·Aσ̂(n),n. because,

one more, the order does not matter in a product of numbers, so the product is the same for all τ .

In short,

Aσ(1),τ(1) · · ·Aσ(n),τ(n) = σ̂(A) . (8.21)

Finally notice that for each fixed τ , as σ ranges over the full set of permuations, so does σ̂. Thus, using

(8.20) and (8.21) in (8.19), we obtain det(C) =
∑
σ̂

σ̂(A)χ(σ̂)
∑
τ

τ(B)χ(τ) = det(A) det(B).
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Theorem 88. An n × n matrix A is invertible if and only det(A) 6= 0, in which case det(A−1) =

(det(A))
−1

.

Proof. Suppose A is invertible. Then AA−1 = In×n, and hence by (4) of Theorem 87, and (8.13)

1 = det(In×n) = det(AA−1) = det(A) det(A−1) .

This shows that neither of det(A) not det(A−1) equals zero, and that these two numbers are inverse

to each other.

It remains to show that when A is not invertible, then det(A) = 0. Recall that A is not invertible

if and only if the columns of A are linearly independent. Hence if A is not invertible, either the first

collumn is zero, or else for some j with 2 ≤ j ≤ n, there are number t1, . . . , tj−1 such that

vj =

j−1∑
`=1

t`v` .

Then by subtracting t`v` form column j for each ` = 1, . . . , j − 1, we produce a zero column, but we

have not changed the value of the determinant by (3) of Theorem 87. Clearly, the determinant of a

matrix with a zero column is zero.

We can combine the results of the last two theorems to obtain an effective method for computing

determinants. We substract multiples of one row from another, swapping rows if need be, to produce

an upper triangular matrix. The determinant of this is the product of its diagonal entries. This is the

same as the original determinant if we did not swap rows at all, or made an even number of swaps,

and it is minus the original determinant if we made an odd number of row swaps.

Example 127 (Computing determinants using row operations). Consider the matrix

A =


1 2 4

1 3 9

1 4 16

 .

Then subtracting multiples of one row from another, we transform

A→


1 2 4

0 1 5

0 2 12

→


1 2 4

0 1 5

0 0 2


Bu (3), the determinant of the upper triangular matrix on the right is 2. But since our row operations

did not change the value of the determinant, this is also the value of det(A). Hence det(A) = 2. You

can readily check that this is what the usual formula gives as well.

We have seen that if a matrix V orthogonal, thant V T is also ortohonal, and is the inverse of

V . Morover if V and W are both orthogonal then the both take orthonormal sets to orthonormal

sets. Hence {WV e1, . . . ,WV en} is orthonormal, and it is the set of columns of WV . Hence WV is

ortogonormal. That is, the product of any two orthoogonal matrices is again an orthogonal matrix.

This means that the set of n× n orthogonal matrices, regarded as a set of transformations of Rn is

a transformation group.
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Definition 91 (The orthogonal group on Rn). The set of all n× n orthogonal matrices is called the

orthogonal group on Rn, and is denoted by O(n).

Theorem 89 (Determinants of orthogonal matrices). Let V ∈ O(n). Then

det(V ) = ±1 .

The set of matrices V ∈ O(n) such that det(V ) = 1, regarded as a set of transformations of Rn,

forms a transformation group on Rn.

Proof. For all V ∈ O(n), I = V TV . This

1 = det(I) = det(V TV ) = det(V T ) det(V ) = (det(V ))2 ,

where we have used Theorem 87. The only solutions of the equation x2 = 1 are ±1, and so det(V ) =

±1.

Now suppose det(V ) = 1. Then by Theorem 87,

det(V −1) = det(V T ) = det(V ) = 1 .

Hence the inverse of V has the same property. Next, let V,W ∈ O(n) be such that det(V ) =

det(W ) = 1. Then by Theorem 87,

det(WV ) = det(W ) det(W ) = 1 .

Hence the subset of O(n) consisting of matrices with unit determinant is closed under taking inverses

and products. It is therefore a transformation group, and, as such, a subgroup of O(n).

Definition 92 (The special orthogonal group on Rn). The subset of O(n) consisting of orthogonal

matrices V with det(V ) = 1 is called the special orthogonal group on Rn, and is denoted by SO(n).

Example 128 (Two dimensional orthogonal matrices). Let U = [u1,u2] ∈ O(2). Then u1 is a unit

vector. Hence

u1 = (cos θ, sin θ)

for some θ. Since u2 must be a unit vector orthogonal to u1, there are only two choices for u2:

u2 = (− sin θ, cos θ) or else u2 = (sin θ,− cos θ) .

Thus either we have

U =

[
cos θ − sin θ

sin θ cos θ

]
or else U =

[
cos θ sin θ

sin θ − cos θ

]
. (8.22)

Note that

det

([
cos θ − sin θ

sin θ cos θ

])
= 1 and det

([
cos θ sin θ

sin θ − cos θ

])
= −1 .
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Thus, the matrices in SO(2) are precisely the matrices on the left in (8.22), and we recognize

these as the two dimensional rotation matrices.

The matrices on the right in (8.22) reflection matrices. Indeed, let u = (cos(θ/2), sin(/2)θ).

Then the Householder reflection in R2 given by u has the matrix[
1 0

0 1

]
− 2

[
cos2(θ/2) cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) sin2(θ/2)

]
=

[
cos θ sin θ

sin θ − cos θ

]
,

by the double-angle formulas. Thus the matrices in O(n) that are not in SO(n) are precisely the

reflection matrices.

Example 129 (Three dimensional orthogonal matrices). Let U = [u1,u2,u3] ∈ O(3), so that, by

definition, {u1,u2,u3} is an orthonormal basis of R3.

We have seen in Chapter One that there is a linear transformation f from R3 to R3 that is the

composition of at most 3 Householder reflections such that (ej) = uj for j = 1, 2, 3. This means

that the matrix representing f is the matrix U , and hence U is the product of at most three matrices

representing Householder reflections. We have seen that whenever hu is a Householder reflection,

and Hu := [hu(e1),hu(e2),hu(e3)] is the 3× 3 matrix representing hu,

det(Hu) = det([hu(e1),hu(e2),hu(e3)]) = hu(e1) · hu(e2)× hu(e3)] = −1 .

Now suppose U is not the identity matrix. Then U is the product of either 1, 2 or 3 Householder

reflection matrices. Since the determinant of each of these is −1, by Theorem ??, det(U) = 1 if and

only if U is the product of exactly 2 Householder reflection matrices.

As we have seen in Chapter Two, the product of any two Householder reflections is a rotation:

Each Householder reflection leaves a plane through the origin - the plane of reflection - unchanged.

The two planes of reflection meet in a line through the origin which is left unchanged by the composi-

tion of the two reflections. This line is the axis of rotation. Thus, SO(3) consists of the 3×3 rotation

matrices. Every matrix U ∈ O(3) that is not in SO(3) is the product of some matrix in SO(3) and

a Householder reflection matrix.

8.3 The volume of sets in Rn and the determinant

The standard unit cube in Rn is the set Cunit deined by

Cunit :=


n∑
j=1

tjej : 0 ≤ tj ≤ 1 ,  = 1, . . . , n

 (8.23)

Notice that for n = 2, Cunit is the st of vectors of the form (s, t), 0 ≤ s, t ≤ t, which is the unit

square in the plane with its edges parallel to the cooridnate axes and its lover left hand corner at the

origin. It will be convenient to refer to Cunit as a “cube” regardless of the dimension.

Let {v1, . . . ,vn} be a set of n vectors in Rn. The parallelepiped P spanned by {v1, . . . ,vn} is

the set

P :=


n∑
j=1

tjvj : 0 ≤ tj ≤ 1 ,  = 1, . . . , n

 (8.24)



324 CHAPTER 8. DETERMINANTS

Let A be the matrix A := [v1, . . . ,vn]. As we have seen, {v1, . . . ,vn} is linearly indpedneted

if and only if A is invertible. For any set E ⊂ Rn, the image of E under the linear transformation

induced by A is the set A(E) given by

A(E) := {Ax : x ∈ E }. (8.25)

Notice that x ∈ Cunit if and only if x =
∑n
j=1 tjej where 0 ≤ tj ≤ 1 for each j. Then Ax =∑n

j=1 tjAej =
∑n
j=1 tjvj so that A(Cunit) is precisely the parallelepiped defined in (8.24).

In this section, we shall first give a careful definition of volume in n-dimensional Euclidean space,

and shall introcue the notion of a positively oriented basis in Rn, which will generalize the notion

of a right-handed basis in R3. We shall then prove that |det(A)| is precisely the volume of the

parallelpiped defined in (8.24), and that when A is invertible, so that det(A) 6= 0, det(A) is positive

if and only if the basis {v1, . . . ,vn} is positively oriented. The main tool form Linear algebra that

we shall use to do this is the Singular Value Decomposition, which is introduced later in this section.

We begin with the notion of volume in n-dimensional Euclidean space.

8.3.1 Volume in n-dimensional Euclidean space

A cube with side length h > 0 in Rn is a set C of the following form: There is an {u1, . . . ,un} be an

orthonormal basis of Rn, and an x0 ∈ Rn such that x ∈ C if and only if

x = x0 +

n∑
j=1

tjuj where − h/2 ≤ tj ≤ h/2 for all j = 1, . . . , n .

Draw sketches for n = 2 and n = 3 to be sure you understand the general case. The point x0 is

the center of the cube. There are 2n faces of the cube; for each j, one face consists of points with

tj = h/2, and the other with tj = −h/2. The edges are the points where n− 1 faces meet. On and

edge, for some j = 1, . . . , n tj fakes values in the interval [−h/2, h/2], while for all k 6= j, tk has a

fixed value that is either h/2 or −h/2. Thus each edge is a line segment of length h parallel to some

uj . We define the volume of a cube of side length h in Rn to be hn. (Of course when n = 2, this is

what we would usually call “area” and for n = 1 it is what we would usually call “length”, but the

current terminology is convenient, and we will use it.)

Now let V be an orthogonal n× n matrix. Note the for all 1 ≤ j, k ≤ n,

V uj · V uk = uj · V TV uk = uj · uk

since V is orthogonal. Therefore, {V u1, . . . , V un} is orthonormal whenever {u1, . . . ,un} is orthonor-

mal, and V (C), the imagoe of C under V , consists of the points y of the form

V x0 +

n∑
j=1

tjV uj where − h/2 ≤ tj ≤ h/2 for all j = 1, . . . , n .

Hence V (C) is again a cube of side length h, and all such cubes have the same volume, namely hn.

Thus, the transformation of Rn induced by an orthogonal matrix V has no effect on the volume of a

cube.
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Now consider any E ⊂ Rn. A cube packing of E is any finite collection P := {C1, . . . , Cm} of

cubes in Rn that intersect at most in blundary points, and such that for some fixed orthonormal

basis {u1, . . . ,un}, each cube has edges that are parallel to one of the vectors in this basis, finally

such that ⋃
C∈P

C ⊂ E .

We allow P to be empty. Indeed if E is a subset of a propert subspace of Rn, then P cannot contain

any cube of any side length h > 0.

A cube-covering of E is any finite collection C := {C1, . . . , Cm} of cubes in Rn such that for some

fixed orthonormal basis {u1, . . . ,un}, each cube has edges that are parallel to one of the vectors in

this basis, and such that

E ⊂
⋃
C∈C

C .

Definition 93 (Volume in Rn). Let E ⊂ Rn. Then the volume of E, vol(E) is defined if and only if

inf

{∑
C∈C

vol(C) , C a cube covering of E

}
= sup

{∑
C∈C

vol(C) ,P a cube packing of E

}
,

and in this case we define vol(E) to be this common value.

The first thing to observe, is that if C is a cube of side length h, it has a well-defined volume in

the sense of Definition 93. In fact, if one fixes the orthonormal basis {u1, . . . ,un}, then however the

edges of C are oriented, for each ε > 0, there is a cube packing of C using cubes with edges paralle to

the vectors in {u1, . . . ,un} such that the total vlaume of the cubes in this packing is at least hn − ε.
Likewise, there is a cube covering of C by such cubes, including all of the cubes used in the cube

packing, such that the total volume of the cubes is no more than hn − ε.
Since ε is arbitrary, it follows that C has a well defined volum in the sense of Definition 93, and

that volume is hn.

Now let E be a set that has a well-deined and finite volume vol(E). For any ε > 0, let P =

{C1, . . . , Cm} be a cube packing of E with toal volume at least vol(E)− ε/2. Pick any orthonormal

basis {u1, . . . ,un} of Rn, and for each j = 1, . . . ,m, let Pj be a cube-packing of Cj using using cubes

whose edges align with {u1, . . . ,un}, and such that the total volume of Pj is at least vol(Cj)− ε
2m .

Then
⋃m
j=1 Pj is a cube packing of E with total volume at least vol(E)− ε. That is, whenver E has a

finite well-defined volume, that volume is equal to the supremum of the total cube packing volumes

for cube packing P using cubes that align with any given orthonormal basis {u1, . . . ,un} of Rn. We

now prove two important lemmas.

Lemma 26. Let E ⊂ Rn have a well-defined and finite volume. Let V be any ortogonal n × n

matrix, and let V (E) be the image of E under V . Then V (E) has a well deifned volume, and

vol(V (E)) = vol(E).

Proof. If P = {C1, . . . , Cm} is a cube packing of E then {V (C1(, . . . , V (Cm)} is evidnelty a cube-

packing of V (E) with the same total volume. Likewise, if P̃ = {C̃1, . . . , C̃m̃} is a cube-packing of

V (E), then {V T (C̃1), . . . , V T (C̃m̃)} is a cube-packing of E with the same total volume. Similar

reasoning applies to cube coverings.
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Lemma 27. Let E1 ⊂ E2 ⊂ Rn both have a well-defined and finite volume. Then vol(E1) ≤ vol(E2).

Proof. An cube packing of E1 is a cube packing of E2, and any cube covering of E2 is a vube covering

of E1. Taking the supremum over a larger set gives a value at least as large, and tkaing the imfimum

over a larger set gives a value at least as low.

Our next lemma concerns scaling transformations: Let Λ be a diagonal n×n matrix with positve

diagonal entries λj , j = 1, . . . , n. That is, Λi, j = λj for i = j, and Λi, j = 0 for i 6= j. In this case

we write

Λ = diag(λ1, . . . , λn) .

Lemma 28. Let E ⊂ Rn have a well-defined and finite volume. Let Λ = diag(λ1, . . . , λn) with λj > 0

for j = 1, . . . , n. Let Λ(E) be the image of E under Λ. Then V (E) has a well deifned volume, and

vol(Λ(E)) =
∏n
j=1 λjvol(E).

Proof. First suppose that each λj is ratinional. Then, taking a commmon denominator, we may

assume that each λj is of the form pj/q where q and p1, . . . , pn are positive integers. Iif C is any cube

of side length h with edges that align with {e1, . . . , en}, Then Λ(C) is exactly the union of
∏n
j=1 pj

cubes of volume (h/q)n that overlap at most on their boundaries. Hence

vol(Λ(C)) =

n∏
j=1

pj(h/q)
n =

n∏
j=1

λjh
n =

n∏
j=1

λjvol(C) . (8.26)

Now let P = {C1, . . . , Cm} be any cube packing of E that aligns with {e1, . . . , en}. Slightly

shrinking each cube, making an aritrarily small decrease in the total volume, we may assume that

none of then intersect at all. Then Λ(E) = ∪mj=1Λ(Cj). For each Λ(Cj), we have a cube packing that

is also a cube covering by cubes that align with {e1, . . . , en}. Combining all of these, we obtain a

cube packing of Λ(E) that has total volume
∏n
j=1 λj times the total volume of P. Similar reasoning

applies to cube coverings.

Now we remove the restriction that each λj is rational. For each j, let λ̌j and λ̂j be rational and

such that λ̌j ≤ λj ≤ λ̂j Define Λ̌ and Λ̂ in the natural way. Then any cube C centered at the origin

Λ̌(C) ≤ Λ(C) ≤ Λ̂(C) .

By Lemma 27 and what we have proved so far,

n∏
j=1

λ̌jvol(C) ≤ vol(Λ(C)) ≤
n∏
j=1

λ̂jvol(C) .

Since volume is evidently translation invariant, the fact that C is centered at the origin is no restric-

tion, and since λ̂j − λ̌j can be made arbitrarily small, we conclude that (8.26) is valid even when the

λj are not necessarily rational. The proof of the general case now proceeds from (8.26) as before.

The next lemma is an immediate consequence of the Singular Value Decomposition Theorem

that we prove later in thei section, after giving the geoemetric application.

Lemma 29. Let A be an n × n invertible matrix. Then there are two n × n ortogonal matrices U

and V , and a diagonal matrix Λ = diag(λ1, . . . , λn) with each λj > 0 such that A = UΛV T .
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Theorem 90. Let A be an n×n invertible matrix. Let E ⊂ Rn have a well-defined and finite volume

vol(E). Then the image of E under A has a well-defined and finite volume vol(A(E)) and

vol(A(E)) = |det(A)|vol(E) . (8.27)

Proof. Evidently A(E) = U(Λ(V T (E)). Hence, using Lemma 26, then Lemma 28 and then Lemma 26

again,

vol(A(E)) = vol(Λ(V T (E)) =

n∏
j=1

λjvol(V T (E)) =

n∏
j=1

λjvol(E) .

On the other hand, by the product property of determinats and Theorem 89,

det(A) = det(U) det(Λ) det(V T ) = ±det(Λ) = ±
n∏
j=1

λj .

Hence, the absolute value of det(A) is the volume magniication factor of the linear transformation

induced by A. (This can of course be less than one, in which case the transformation in actually

“shrinking” volume.)

Definition 94. Let {v1, . . . ,vn} be an ordered basis for Rn; ythat is, a ordered set of n linearly

indepdent vectors in Rn. (The ordering is given by the indices.) The {v1, . . . ,vn} is positively

oriented in case det([v1, . . . ,vn]) > 0, and is positively oriented in case det([v1, . . . ,vn]) < 0.

Because of the formula expressing the derminant in 3 dimensions in terms of the cross product,

this definition is such that for n = 3, a basis is positively orientied if and only if it is right-handed,

and is negatively orientied if and only if it is left-handed.

A question to which we are going to give short schrift is the question of which bounded subsets

of Rn have a well defined volume. It is not hard to see that if a set E contains an open set and has

a piecewise smooth boundary composed of finitely many differentiable surfaces, then E does have a

well defined volume, and it is this sort of set with which we shall work in what follows. The reason is

the one can cover the boundary with a cubes have a total volume that is an arbitrarily small fraction

of the total volume of some cube packing, and then combinigng the packing with the covering of

the boundary, one gets a cube covering whose total volume is larger than that of the packing by an

arbitrarily small percentage.

8.3.2 The singular value decomposition

Theorem 91 (The Singular Value Decomposition Theorem). Let A be an m×n matrix. Then there

exist matrices U , V and Σ such that

A = UΣV T

and (1) U ∈ O(m), (3) V ∈ O(n), and (3) Σ is an m× n diagonal matrix such that Σj,j = σj where

σj ≥ σj+1 ≥ 0 for all j = 1, . . . ,min{m,n} − 1, and Σj,j = 0 if i 6= j.

In any such factorization of A, the matrix Σ is always the same. In particular, the numbers

{σ1, . . . , σmin{m,n}} are uniquely determined by A. We call these numbers the singular values of A.
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For example, if m = 3 and n = 4, the matrix σ has the form

Σ =


σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

 .

If m = 4 and n = 3, the matrix σ has the form

Σ =


σ1 0 0

0 σ2 0

0 0 σ3

0 0 0

 .

In both cases, σ1 ≥ σ2 ≥ σ3 ≥ 0. We call such matrices diagonal monotine.

We have already seen one important application of the Singular Value Decomposition in identi-

fying the geometric meaning of the determinant. It has many others, some of which are developed

in the exercises.

Proof of Theorem 91. Let A be any m× n matrix. Form the (m+ n)× (m+ n) matrix

B :=

[
0 A

AT 0

]
.

More explicitly, the 0 entry in the upper left denotes the m×m zero matrix, and the 0 entry in the

lower right denotes the n× n zero matrix.

We can write any vecotr bx ∈ Rm+n in the form

x = (z,w) where z ∈ Rm and w ∈ Rn .

That is, the entries of z constitute the first m entries of x, while the entries of w constitute the last

n entries of x. Then, by the definition of matrix multiplication,

Bx =

[
0 A

AT 0

]
(z,w) = (Aw, AT z) . (8.28)

The matrix B is a symmetric matrix, and therefore, by the Spectral Theorem, there exists and

orthonormal basis of Rm+n consisting of eigenvectors of B. We now produce such a basis with a

special structure reflecting the special structure of B.

Suppose that x is an iegenvector of B so that Bx = λx. Suppose λ 6= 0. Writing x = (z,w), we

see from (8.28) that Bx = λx is equivalent to

z = λAw and w = λAT z . (8.29)

It then follows that the vector (z,−w) is an eigenvector of B with eigenvlaue −λ. Moreover, since

eigenvectors corresponding to distinct eigenvalues of symmetric matrices are orthogonal, (z,−w) ·
(z,w) = 0, which means that ‖z‖2 = ‖w‖2.

By the Spectral Theorem, there is an orthonormal basis of Rm+n consisting of eigenvectors of

B, Relableling the vectors, we may suppose that exactly the first r of these have strictly positive
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eigenvalues λ1 ≥ · · · ≥ λr, and all of the others have zero or negative eigenvlaues. Denote these first r

eigenvectors as {x1, . . . ,xr}. By what we have seen just above, for each j we have xj = (zj ,wj) where

‖zj‖ = ‖wj‖. Without loss of generality, we may take ‖zj‖ = ‖wj‖ = 1. For 1 ≤ j < k ≤ r, we have

0 = xj ·xk = zj ·zk+wj ·wk, But since (zj ,wj) and (zk,−wk) are necessarily othgogoal (one having a

positive eigenvlaue and the other a negative eigenvlaue), we also have 0 = zj ·zk+wj ·wk. Therefore,

both zj · zk = 0 and wj ·wk = 0. That is, {z1, . . . , zr} and {w1, . . . ,wr} are orthonormal. Extend

these to orthonormal bases {z1, . . . , zm} and {w1, . . . ,wn} of Rm and Rn respectively. Vectors of

the form (zj , 0) or (0,wj) for j > r are orthogonal to all of the eigenvectors of B with non-zero

eigenvalues, and hence they are in the null space of B.

Now consider any y ∈ Rn. We expand

y =

n∑
j=1

(y ·wj)wj .

consequently

(0,y) =
1

2

n∑
j=1

(y ·wj)((zj ,wj) + (−zj ,wj)) .

Therefore,

B(0,y) =
1

2

n∑
j=1

(y ·wj)(B(zj ,wj) +B(−zj ,wj))

=
1

2

r∑
j=1

(y ·wj)λj((zj ,wj)−B(−zj ,wj))

=

r∑
j=1

(y ·wj)λjzj .

However, B(0,y) = Ay, and so we have Ay =
∑r
j=1(y · wj)λjzj . To write this as a matrix

factorization, let U = [w1, . . . ,wm], V = [z1, . . . , zn], and let Σ be the m × n with Σj,j = λj

for 1 ≤ j ≤ r, and with all other entries zero. Then Ay =
∑r
j=1(y · wj)λjzj is equivalent to

A = UΣV T .

8.4 Exercises

8.1 Consider the following permutations

σ1 =
1 2 3 4 5 6

3 1 4 5 6 2
σ2 =

1 2 3 4 5 6

4 3 6 5 2 1
σ3 =

1 2 3 4 5 6

4 5 6 1 2 3

(a) Compute D(σj) and χ(σj) for j = 1, 2, 3.

(b) For each j = 1, 2, 3, find a way to write σj as a product of pair permutations.

(c) Compute the value of χ(σ1 ◦ (σ2 ◦ σ3)−1).

8.2 Consider the following permutations

σ1 =
1 2 3 4 5 6

2 4 6 1 3 5
σ2 =

1 2 3 4 5 6

5 1 6 4 2 3
σ3 =

1 2 3 4 5 6

4 1 5 2 6 3
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(a) Compute D(σj) and χ(σj) for j = 1, 2, 3.

(b) For each j = 1, 2, 3, find a way to write σj as a product of pair permutations.

(c) Compute the value of χ(σ1 ◦ (σ2 ◦ σ3)−1).

8.3 Let σ1, σ2 and σ3 be the permutations defined in Exercise 1. Compute the distances %(σ1, σ2),

%(σ2, σ3) and %(σ3, σ1). Also, find geodesics from σ1 to σ2, from σ2 to σ3, and from σ3 to σ1.

8.4 Let σ1, σ2 and σ3 be the permutations defined in Exercise 2. Compute the distances %(σ1, σ2),

%(σ2, σ3) and %(σ3, σ1). Also, find geodesics from σ1 to σ2, from σ2 to σ3, and from σ3 to σ1.

8.5 The order reversing permuation σ∗ in Sn is the permutation defined by

σ∗ :=
1 2 . . . n− 1 n

n n− 1 . . . 2 1
.

In other words,

σ∗(k) = n− k + 1 for all k = 1, . . . , n .

(a) Show that D(σ∗) = n(n− 1)/2, and that for all σ ∈ Sn, D(σ) < n(n− 1)/2 unless σ = σ∗.

(b) Prove that

max{ %(σ1, σ2) : σ1, σ2 ∈ Sn } = n(n− 1)/2 .

In other words, and two permutations in Sn are connected by a path of at most n(n−1)/2 steps, and

there exist pairs of permutations such that the shortest path connecting them has this many steps.

This is often expressed by saying that the diameter of Sn is n(n− 1)/2.

8.6 Show that the set An consisting of all even permutations in Sn is a transformation group on

{1, . . . , n}. An is called the alternating group of order n. Show that there are exactly n!/2 permuta-

tions in An, and show that the set of all odd permutations is not a transformation group.

8.7 For each σ ∈ Sn, define the n× n matrix Pσ by

Pσ := [eσ(1), eσ(2), ..., eσ(n)] ; (8.30)

that is, the jth column of Pσ is eσ(j). The n! matrices Pσ with σ ∈ Sn are called the permutation

matrices. Prove that for all σ ∈ Sn, det(Pσ) = χ(σ).



Chapter 9

FLUX AND CIRCULATION,

DIVERGENCE AND CURL

9.1 Flows and flux

9.1.1 Vector fields and flows

Definition 95 (Vector field). Let U be an open subset of Rn. A function F defined on U with values

in Rn is called a vector field on Rn.

For example, let U = R2, and define

F(x, y) = (− y, x) . (9.1)

A vector field can be plotted by choosing certain points (x, y), and then drawing an arrow with

its tail at the point (x, y), such that its magnitude and direction indicate the magnitude and direction

of F(x, y). To avoid a cluttered plot, this should not be done for too many points. If it is done for

a regular grid that is not too dense, the result usually portrays a clear picture of the vector field F.

Here is such a plot for the vector field F defined in (9.1):

c© 2015 by the author.
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One can see that each of the arrows is tangent to the centered circle passing though its tail.

Thinking of the arrows as velocity vectors, one can see that the graph is a portrait of circular motion.

The length of the arrow at x represents the magnitude ‖F(x)‖ of the vector F(x). In this case

‖F(x)‖ = ‖x‖, which is represented by the length of each arrow being proportional to the distance

between its tail and the origin.

If we think of the vectors F(x) as representing the velocity of a particle as it passes through x,

we may regard the plot of this vector field as a kind of portrait of circular motion, where the speed

on each circle is proportional to the radius of the circle, so that the angular speed is the same for all

of the circles. That is, the motion being described is that given by rotating points in the plane at a

constant angular speed.

Definition 96 (Flow curves of a vector field). Let U be an open subset of Rn, and let F be a continuos

vector field defined on U . Let x(t) be a continuously differentiable curve in Rn defined for t ∈ (a, b).

Suppose that x(t) ∈ U for all t ∈ (a, b) and the

x′(t) = F(x(t)) for all t ∈ (a, b) . (9.2)

Then x(t) is a flow curve of the vector field F. (Flow curves are often also called integral curves.)

For the vector field F given by (9.1) there is a unique flow curve x(t), defined for all t, passing

though each x0 at t = 0. To see this, let x0 = (x0, y0) be given, and suppose that x(t) is a continuously

differentiable curve in R2 that satisfies

x′(t) = (x′(t), y′(t)) = F(x(t)) = (− y(t), x(t)) and (x(0), y(0)) = (x0, y0) .

Then differentiating once more, (x′′(t), y′′(t)) = ( − x(t),−y(t)) so that x′′(t) = −x(t) and y′′(t) =

−y(t). We can satisfy x′′(t) = −x(t) by taking x(t) = α cos(t) + β sin(t) for any numbers α and β.

Differentiating, and using the equation x′(t) = −y(t), we then see that y(t) = α sin(t)−β cos(t). Now

setting t = 0 and using the conditions x(0) = x0 and y(0) = y0, we see that α = x0 and β = −y0.

Thus, we have the solution

x(t) = (x0 cos t− y0 sin t , x0 sin t+ y0 sin t) .

We can write this in matrix notation as

x(t) =

[
cos t − sin t

sin t cos t

]
(x0, y0) . (9.3)

The matrix in (9.3) is the matrix representing counterclockwise rotation through the angle t in the

plane. If one takes any point (x0, y0), and then for each t produces x(t) be applying the rotation

matrix

[
cos t − sin t

sin t cos t

]
to it, the result is a flow curve of the vector field F that is given in (9.1).

Are there any other flow curves for the vector field F(x, y) = (− y, x) besides the ones specified

in (9.3)? No, and this is crucially important in what follows: Through each point x0 in the plane,

there is exactly one flow curve x(t) satisfying x(0) = x0.
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9.1.2 Lipschitz vector fields on Rn

Definition 97 (Lipschitz vector fields). Let F be a vector field defined on Rn. Then F is a Lipschitz

vector field on Rn in case there is a finite constant L such that for all x,y ∈ Rn,

‖F(y)− F(x)‖ ≤ L‖y − x‖ . (9.4)

Example 130 (Linear vector fields). A vector field F on Rn is linear in case there is an n×n matrix

A such that F(x) = Ax. For example, the vector field F(x, y) = (− y, x) is linear with

A =

[
0 −1

1 0

]
.

Every linear vector field F(x) = Ax is Lipschitz. This is because F(y) − F(x) = Ay − Ax =

A(y − x), and hence

‖F(y)− F(x)‖ = ‖A(y − x)‖ ≤ ‖A‖F‖y − x‖ .

In particular, (9.4) is valid with L = ‖A‖F.

The inequality ‖Az‖ ≤ ‖A‖F‖z‖ that we are using here, which is essentially the Cauchy-Schwarz

inequality, is always true, and always gives a valid constant L, but it may not give the best one possible.

In fact for A =

[
0 −1

1 0

]
, ‖A‖F =

√
2, but it is easy to see that ‖Ay−Ax‖ = ‖A(y−x)‖ = ‖y−x‖

since A is an orthogonal matrix.

We now come to the first of two important theorems about Lipschitz vector fields:

Theorem 92 (Uniqueness of flow curves). Let F be a vector field that satisfies (9.4). Let x(t) and

y(t) be flow curves for F defined for −a < t < a for somea > 0 . Let x0 denote x(0), and let y0

denote y(0). Then for all −a < t < a,

e−|t|L‖y0 − x0‖ ≤ ‖y(t)− x(t)‖ ≤ e|t|L‖y0 − x0‖ . (9.5)

Both inequalities in (9.5) tell us something important about flow curves: From the inequality on

the right, we see that if x0 = y0, then x(t) = y(t) for all −a < t < a, so that the two flow curves are

the same. In other words, when F satisfies (9.4), there is at most one flow curve through each point

x0 ∈ Rn. But that is not all: fix any ε > 0, and define δ(ε) = e|t|Lε . Then

‖y(0)− x(0)‖ ≤ δ(ε) ⇒ ‖y(t)− x(t)‖ ≤ ε . (9.6)

In other words, if the initial points x0 and y0 are sufficiently close, then the flow curves through

them will be close at time t. The inequality on the left in (9.5) tells us that the flow curves never

cross: If x(0) 6= y(0), then it is impossible to have x(t) = y(t) for any t.

Proof of Theorem 92. Define f(t) = ‖y(t)− x(t)‖2, Differentiating, we compute

f ′(t) = 2(y(t)− x(t)) · (y′(t)− x′(t)) = 2(y(t)− x(t)) · (F(y(t)− F(x(t)) .

Then by the Cauchy-Schwarz inequality and then the Lipschitz condition on F,

|(y(t)− x(t)) · (F(y(t)− F(x(t))| ≤ ‖y(t)− x(t)‖‖F(y(t)− F(x(t)‖ ≤ L‖y(t)− x(t)‖2 .
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That is,

−2Lf(t) ≤ f ′(t) ≤ 2Lf(t) . (9.7)

The inequality on the right in (9.7) can be written as f ′(t) − 2Lf(t) ≤ 0. Multiplying through by

e−2tL, we have (f ′(t)− 2Lf(t))e−2tL ≤ 0. Since the left hand side is the derivative of f(t)e−2tL, we

see that f(t)e−2tL is a non-increasing function of t. In particular, for all t > 0, f(t)e−2tL ≤ f(0) and

for all t < 0, f(t)e−2tL ≥ f(0).

The inequality on the left in (9.7) can be written as f ′(t) + 2Lf(t) ≥ 0. Multiplying through by

e2tL, we have (f ′(t) + 2Lf(t))e2tL ≥ 0. Since the left hand side is the derivative of f(t)e2tL, we see

that f(t)e2tL is a non-decreasing function of t. In particular, for all t > 0, f(t)e2tL ≥ f(0) and for

all t < 0, f(t)e2tL ≥ f(0).

Altogether, we have proved e−2|t|Lf(0) ≤ f(t) ≤ e−2|t|Lf(0). Taking square roots, we obtain

(9.6)

Without the Lipschitz condition, uniqueness may fail to be true; see Example 131 below. In fact,

the Lipschitz condition is quite close to being necessary, as well as sufficennt.

The second important theorem on Lipschitz vector fields says that flow curves exist and are

defined for all t:

Theorem 93 (Piccard’s Theorem). Let F be a Lipschitz vector field on Rn, and let x0 ∈ Rn.

There there is a continuously differentiable curve x(t) defined for all t such that x(0) = x0 and

x′(t) = F(x(t)) for all t.

We shall not prove this Theorem 93 here; we postpone until we systematically study differential

equations. For our present purposes, we only need to know that flow curves exist, and are unique.

In some cases, such as the case F(x, y) = (− y, x) we can explicitly solve for the flow curves.

Piccard’s Theorem is intuitively quite plausible since the equation x′(t) = F(x(t) is essentially

a set of of instructions for constructing a curve x(t) passing through x0 at time t = 0. To see

this, pick a small time step h > 0. Since any flow curve satisfies x′(0) = F(x0), it is the case that

x(h) ≈ x0 + F(x0)h. Define x1 = x0 + F(x0)h. Now we inductively define a sequence of points {xn}
as follows: Given xn, we use the vector field to specify the next step:

xn+1 = xn + F(xn)h .

For n ≥ 0 define tn = nh. Now define a continuous curve by “connecting the dots”: For tn ≤ t ≤ tn+1

define

x(h)(t) =
tn+1 − t

h
xn +

t− tn
h

xn+1 .

It can be shown that x(t) = limh→0 x(h)(t) exists and is the flow curve we seek. (The same construc-

tion can be adapted for t < 0 as well). This is the Euler scheme for solving such equations. Using the

Euler scheme with a small time step h, or a refinement of the Euler scheme, it is easy to numerically

plot flow curves.

The following example in which F is not Lipschitz will be useful for understanding the role of

the Lipschitz condition.
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Example 131. Consider the vector field F(x, y) = (x2, y2). Then ‖F(x, 0) − F(0, 0)‖ = x2 =

|x|‖((x, 0) − (0, 0)‖, and since |x| can be arbitrarily large we see that ‖F(y) − F(x)‖ can be an

arbitrarily large multiple of ‖y − x‖. Hence, F is not a Lipschitz vector field.

It is easy to solve the equation x′(t) = F(x(t)). This is the uncoupled system

x′(t) = x2(t)

y′(t) = y2(t) .

It suffices to consider the equation for x(t). First, if x(0) = 0, the constant function x(t) = 0 for

all t solves x′(t) = x2(t) with x(0) = 0. Hence we have an integral curve in this case. Now suppose

x(0) 6= 0. Then by continuity, for t sufficiently small, x(t) 6= 0. and we can rewrite x′(t) = x2(t) as

x′(t)

x2(t)
= 1

The advantage of this is that the left hand side is the derivative of −1/x(t). Hence (1/x(t))′ = −1.

Suppose x(t) is any solution such that x(s) 6= 0 for any s between 0 and t . Integrating (1/x(s))′ = −1

from s = 0 to s = t we find
1

x(0)
− 1

x(t)
= t .

Solving for x(t) we find

x(t) =
x(0)

1− x(0)t
.

Because x(0) 6= 0, this is never equal to zero, but the denominator goes to zero as t approaches

1/x(0). Hence the solution “blows up” in a finite time. By Piccard’s Theorem, this never happens

for Lipschitz vector fields.

We now come to the flow transformations associated to a a Lipschitz vector field F on Rn. For

t ∈ R and x0 in Rn, let x(t) be the unique flow curve of F such that x(0) = x. Then for each t,

define a function Φt on Rn with values in Rn by

Φt(x) = x(t) .

The time t can be either positive or negative. If t > 0, Φt(x) is the point that x gets carried to at

time t by the flow. If t < 0, Φt(x) is the point that gets carried to x by the flow at time t. The time t

is written as an exponent to suggest an analogy with the exponential function; this will be explained

below.

Example 132 (Flow transformations generated by F(x, y) = (− y, x)). We have already seen that

for F(x, y) = (− y, x), the unique solution of x′(t) = (x(t)) with x(0) = (x0, y0) is

x(t) =

[
cos t − sin t

sin t cos t

]
(x0, y0) .

It follows that for each t ∈ R, Φt is the linear transformation whose matrix is

[
cos t − sin t

sin t cos t

]
.
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We now considder two more examples in which we can give an explicit formula for Φt(x).

Example 133 (Flow transformations generated by a constant vector field). Let A ∈ Rn, and then

let F(x) = A for all x so that F is a constant vector field. The flow curve x(t) passing through x0

at t = 0 satisfies x′(t) = A and x(0) = x0. Therefore, x(t) = x0 + tA. It follows that the flow

transformation generated by F is given by Φt(x) = x + tA.

Example 134 (Flow transformations generated by F(x) = x). Let F(x) = x for all x. The flow

curve x(t) passing through x0 at t = 0 satisfies x′(t) = x(t) and x(0) = x0. Therefore, x(t) = etx0.

It follows that the flow transformation generated by F is given by Φt(x) = etx.

9.1.3 Flux across an oriented curve in R2.

Definition 98 (Smooth simple planar curve). A smooth planar curve C is a subset of R2 such that

for each x0 ∈ C, there is an in interval (a, b) and a continuously differentiable parameterized curve

x(t) defined for t ∈ (a, b) and a t0 ∈ (a, b) such that:

(i) x(t0) = x0, so that the parameterized curve passes through x0.

(ii) x(t) ∈ C for all t ∈ (a, b), so that every point on the parameterized curve lies in C.

(iii) x(s) 6= x(t) for any a < s < t < b, so that the parameterized curve is one to one onto the portion

of C that it covers.

(iv) There is an r > 0 such that every x ∈ C with ‖x−x0‖ < r is of the form x(t) for some t ∈ (a, b).

(This requirement rules out self-intersections, among other things, see the discussion below.)

An orientation of C is a continuous specification of one preferred unit tangent T(x) direction

at each point x of C. In this case, we refer to T(x) as the unit unit tangent vector of the oriented

curve C at x, and we define N(x) = −T(x)⊥ which we refer to as the unit normal vector of the

oriented curve C at x0. We say that a parameterization x(t) of C (or part of C) is consistent with

the orientation of C in case

T(x(t)) =
1

‖x′(t)‖
x′(t)

for all parameter values t. (Recall that we have defined (x, y)
⊥

= ( − y, x), so that (x, y)
⊥

is

the counterclockwise rotation of (x, y) through π/2. Then −(x, y)
⊥

is given by the corresponding

clockwise rotation.) With the convention that N = −T⊥ so that T = N⊥, the orientation can

be equivalently specified by giving the preferred unit normal at each point, which is required to be

continuous so that T = −N⊥ is continuous.

The fact that there are exactly two unit tangent vectors defined at each point on C is true because

near each point we have a continuously differentiable parameterization, and because the definition

rules out self-intersection of curves. For example, a the “figure eight” curve pictured below is not a

smooth simple curve.
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This curve has a nice parameterization: Let x(t) = ( sin(2t), sin(t)). If we restrict t to the

interval (0, π), we get a one to one parameterization of the upper loop. If we restrict t to the interval

(π, 2π), we get a one to one parameterization of the lower loop. The only point not yet covered is

(0, 0) = x(0) = x(π). We can cover this in a one to one manner by restricting t to the interval

(π/2 , 3π/2) or to (3π/2 , 5π/2). Then through each point x0 ∈ C, we have a parameterization of

part of C that satisfies (i), (ii) and (iii). However, (iv) is not satisfied since two “branches” of C cross

at x0 = (0, 0), and no one to one parameterization can cover all of the points of C in Br((0, 0)) for

any r > 0.

Moreover, note that while x(0) = x(π) = (0, 0), x′(0) = (2, 1) and x′(π) − (2,−1): The curve

passes through (0, 0) in two linearly independent directions, and there is no uniquely defined tangent

line at (0, 0) ∈ C.

Condition (iv) is also what guarantees that the curve is really one dimensional. Without this

condition, R2 itself would satisfy the definition: Through each point (x0, y0) there passes the x(t) =

(x0 + t, y0), say, but it does not cover all Br((x0, y0)) for any r > 0.

Example 135. The unit circle is smooth simple planar curve: Consider x1(t) = ( cos t, sin t) for

0 < t < 2π, and x2(t) = ( sin t cos t). Then every point in C except (1, 0) is of the form x(t) for

exactly one t ∈ (0, 2π), and every point in C except (0, 1) is of the form x(t) for exactly one t ∈ (0, 2π).

Together, every point is covered by the two parameterizations. and clearly each one covers all points

on C that are sufficiently close to any point either covers.

The unit circle is a closed curve; it divides the plane into an “inside” and an outside” part.

In this case we may orient the curve so the the unit normal vector N points outward or inward.

The conventional choice for closed curves is to choose the outward normal. Then since N = −T⊥,

T = N⊥, and so this orientation corresponds to counterclockwise motion.

Notice that the motion along x1(t) is counterclockwise, so this parameterization is consistent

with the outward-normal orientation. However, the motion along x2(t) is clockwise, so this param-

eterization is not consistent with the outward-normal orientation. We can fix this by reversing the

parameterization: Define x3(t) = x2(2π − t) for 0 < t < 2π. This parameterization is consistent

with the orientation. Such a reversal may always be employed to bring parametrization in line with

an specified orientation.

Now we come to the concept of the flux across a a simple oriented curve C generated by a vector
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field F. (We will always suppose that C is smooth and F is continuously differentiable and Lipschitz,

at least on an open set U containing C, even when we do not explicitly mention this.)

Let us suppose for the moment that C is covered by a single parameterization x(t), t ∈ (a, b),

and that the parameterization is consistent with the orientation of C.

Now consider a parameterized “patch” of R2 given by “pushing C along” the flow generated by

F for a short time interval. That is, define

X(u, v) = Φu(x(v))

where Φ is the flow transformation generated by F.

Example 136 (Pushing an oriented curve along a flow). Let C be the vertical line segment pa-

rameterized by x(t) = (1, 4t − 2) for t ∈ (0, 1). Give C the orientation that is consistent with this

parameterization. Since T = (0, 1) at each point of C, N = (1, 0) at each point of C.

Let F(x, y) = ( − y, x) as in (9.1). In Example 132, we have compute the flow transformation

generated by F and found the

Φu(x) =

[
cosu − sinu

sinu cosu

]
x .

Replacing x by x(v), we have

X(u, v) =

[
cosu − sinu

sinu cosu

]
(1, 4v − 2) = ( cosu− (4v − 2) sinu , sinu+ (4v − 2) cosu) .

The next two plots show the initial curve C against the background of the vector field F that will

“push” it along, and the the rotated segment that results from running the flow generated by F for

a time interval of u = 1/2, so that the transformed curve is parameterized by x(v) = x(1/2, v),

v ∈ (0, 1).

As the flow transforms the initial curve into the final curve, it “sweeps out” a patch of the plane.

For t > 0, let Dt denote the patch swept out for u in(0, t). Here is a plot showing the boundary of

the patch D1/2 against background of the vector field F, and also the images of the initial curve C for

u = n/20, n = 1, 2, . . . , 10:
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The region D1/2 consists of three parts: Define

D−1/2 = {(x(u, v), y(u, v)) : u ∈ (0, 1/2) and v ∈ (1/2, 1)

D+
1/2 = {(x(u, v), y(u, v)) : u ∈ (0, 1/2) and v ∈ (0, 1/2)

D0
1/2 = {(x(u, v), y(u, v)) : u ∈ (0, 1/2) and v = 1/2

Then D1/2 = D+
1/2 ∪ D

0
1/2 ∪ D

−
1/2. The component D0

1/2 is an arc of the unit circle. If

The two regions D+
1/2 and D−1/2 are not disjoint: The intersection is the open set bounded by the

the unit circle (the relevant part being the arc D0
1/2), and the tangent lines to the unit circle at (1, 0)

and ( cos(1/2), sin(1/2)).

The meaning of D−1/2 is that it is the region “swept out” by points on the upper half of C, which

are initially moving toward the “negative side” of C, since N = (1, 0) all along C, the these points

are initially moving toward the left. Likewise, the meaning of D+
1/2 is that it is the region “swept

out” by points on the lower half of C, which are initially moving toward the “positive side” of C.

The word initially is crucial here. Fix a small ε > 0, and consider the flow curve parameterized by

x(u, 1/2− ε/4) through the point (1,−ε) on the lower half of C. From the computations above,

x(u, 1/2− ε/4) = ( cosu+ ε sinu , sinu− ε cosu) .

Differentiating in u, the initial velocity is (ε, 1), and the dot product with N is strictly positive. This

confirms by calculation what is clear from the plots: Initially, the motion is toward the positive side

of C. However, for u = 1/2 the position is x(1/2, 1/2 − ε/4) = ( cos(1/2) + ε sin(1/2) , sin(1/2) −
ε cos(1/2)), and since cos(1/2) < 1, for sufficiently small ε, this point lies to the left of C.

Flux is a measure of the rate at which the flow generated by a vector field F sweeps area across

an oriented curve C, keeping track of the net amount of area that is swept to the positive side.

Before introducing general definitions, we do an actual computation of the quantities involved.

Example 137. Continuing with the notation introduced in Example 136, we now compute the areas

of D+
1/2 and D−1/2.

This is very easy to do using the change of variables formula since D+
1/2 is the image of the

rectangle [0, 1/2]× [0, 1/2] is the u, v plane under the transformation sending (u, v) to X(u, v). From

our formula for Φu(x) and the definition of X(u, v), we have the formula

X(u, v) = ( cosu− (4v − 2) sinu , sinu+ (4v − 2) cosu) ,



340 CHAPTER 9. FLUX AND CIRCULATION, DIVERGENCE AND CURL

we compute

[DX(u, v)] =

[
− sinu− (4v − 2) cosu cosu− (4v − 2) sinu

−4 sinu 4 cosu

]
,

and then

det ([Dx(u, v)]) = (2− 4v)(cos2 u− sin2 u) = (2− 4v) cos(2u)

Note that for u ∈ (0, 1/2), cos(u) > 0. Hence the determinant is positive if and only if v < 1/2, and

negative if and only if v > 1/2. Hence the determinant is positive on D+
1/2, and negative on D−1/2.

On both regions, the Jacobian
∂(x, y)

∂(u, v)
is given by

∂(x, y)

∂(u, v)
= 4|1/2− v| cos(2u) and we find

area
(
D−1/2

)
= area

(
D+

1/2

)
= 4

(∫ 1/2

0

(1/2− v)dv

)(∫ 1/2

0

cos(2u)du

)
=

1

4
sin 1 .

In this case, the net area, defined to be the difference of the positive area and the negative area,

is exactly zero. Note also that since D−1/2 and D+
1/2 are not disjoint, the total area of D−1/2 ∪ D

+
1/2 is

not the sum of the two area we just computed, but this minus the area of the overlap. By elementary

geometric reasoning, the area of the overlap is tan(1/4) − 1/4, and hence the total area, as opposed

to the net area, is sin 1 + 1/4 − tan(1/4). The net area is somewhat simpler to work with; we need

no concern ourselves with overlap since it is canceled out anyhow.

Now that we have familiarized ourselves with the concept of the net area pushed across an

oriented curve C by the flow generated by a vector field F, we turn to flux, which is defined to be the

rate at which this is taking place.

Suppose that C is covered by a single parameterization z(t), t ∈ (a, b), and such that F(z(t)) ·
N(z(t)) is either strictly positive or else strictly negative for all t ∈ (a, b). (We are saving the variable

x for a change of variables in the plane that is coming up, and so we denote position along the curve

C by z.).

In general, we can break C into disjoint segments on which the conditions are satisfied, and we

can then consider the segments one at a time so that there is no genuine loss of generality in making

this assumption.

Definition 99 (Flux across an oriented curve C). Let C be an oriented smooth simple curve with unit

normal N. Let F be a continuously differentiable Lipschitz vector field on R2. Suppose that either

(i) N ·F > 0 everywhere along C, or (ii) N ·F < 0 everywhere along C. For v ∈ R, let Φv be the flow

transformation generated by F at time v. For t > 0 define the set Dt in the plane by

Dt = {Φv(z) : v ∈ (0, t) , z ∈ C } . (9.8)

This is the set of points that is “swept out” in the time interval (0, t) as the flow pushes points across

C. We define the flux across C generated by F, flux(C,F) to be the quantity

flux(C,F) = ± d

dt
area(Dt)

∣∣∣∣
t=0

, (9.9)
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where the sign in front of the derivative is the sign of F ·N along C. Ii C is a simple oriented curve

that is a disjoint union of component Cj, j = 1, . . . , N , satisfying the conditions above, we define

flux(C,F) =

N∑
j=1

flux(Cj ,F) . (9.10)

Fortunately, it is not necessary to compute area(Dt) to compute flux(C,F):

Theorem 94. Let C be a smooth simple oriented curve, and let F be a continuously differentiable

vector field on R2. Then the flux across C generated by F is given by

flux(C,F) =

∫
C

F ·Nds , (9.11)

which is the integral of the function F ·N along the curve with respect to arc length.

Proof. We the area of Dt as an integral over a simple rectangle by making a change of variables.

Introduce the coordinate transformation x(u, v) = Φv(z(u)). Then Dt is the image of (0, t)×(a, b)

under this transformation. Therefore, by the change of variables formula,

area(Dt) =

∫
(0,t)×(a,b)

|det[Dx(u, v)]|d2u . (9.12)

The Jacobian matrix of this transformation is [Dx(u, v)] =

[
∂x(u, v)

∂u
,
∂x(u, v)

∂v

]
For fixed u, x(u, v)

traces out a flow curve of F as v varies, and so
∂x(u, v)

∂v
= F(x(u, v)). This tells us the second column

of [Dx(u, v)].

Next, since Φ0 is the identity transformation x(u, 0) = z(u) and so
∂

∂u
x(u, 0) = z′(u). Therefore,

we can evaluate the Jacobian determinant at v = 0:

det[Dx(u, 0)] = det ([z′(u) , F(x(u))]) = −(z′(u))⊥ · F(x(u)) .

Since the orientation is consistent with the parameterization, −(z′(u))⊥ = ‖z′(u)‖N(z(u)), and so

det[Dx(u, 0)] = ‖z′(u)‖F(z(u)) ·N(z(u)) .

This has the same sign as F ·N along C. Moreover, by continuity if F ·N is strictly positive, then also

det[Dx(u, v)] > 0 for all sufficiently small v, and if F·N is strictly negative, then also det[Dx(u, v)] < 0

for all sufficiently small v

Therefore, (9.13) becomes

±area(Dt) = ±
∫

(0,t)×(a,b)

(
∂x(u, v)

∂u

)⊥
· F(x(u))d2u = ±

∫ t

0

(∫ b

a

(
∂x(u, v)

∂u

)⊥
· F(x(u))du

)
dv

(9.13)

where the sign on the left is the sign of F ·N along C.
Now by the Fundamental Theorem of Calculus,

± d

dt
area(Dt)

∣∣∣∣
t=0

= −
∫ b

a

(
∂x(u, 0)

∂u

)⊥
· F(x(u))du

= −
∫ b

a

(z′(u))⊥ · F(x(u))du

=

∫ b

a

F(x(u)) ·N(x(u))‖z′(u)‖du =

∫
C

F ·Nds
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where in the last line we have use the formula ds = ‖z′(u)‖du for the arc length element along

z(u).

It is often easy to compute flux integrals once one has parameterized the oriented curve C. While

arc length integrals tends to be complicated even for simple curves, Nds if often simpler that ds

itself. To see why, let x(t) = (x(t), y(t)) be a parameterization of C (or a segment of a large curve

that we are considering). Then the unit tangent and unit normal vectors are T(t) =
1

‖x′(t)‖
x′(t) and

N(t) = − 1

‖x′(t)‖
x′(t)⊥ if the parameterization is consistent with the orientation, while T(t) = − 1

‖x′(t)‖
x′(t)

and N(t) =
1

‖x′(t)‖
x′(t)⊥ otherwise. The arc length element is ds = ‖x′(t)‖dt, and so

Nds = ±x′(t)dt , (9.14)

where the minus sign is correct if the parameterization is consistent with the orientation, and the

plus sign otherwise.

That is, whenever C is parameterized by x(t) with t ∈ (a, b), and the parameterization is consis-

tent with the orientation, ∫
C

F ·Nds = −
∫ b

a

F(x(t)) · (x′(t))⊥dt . (9.15)

Example 138. Let F(x, y) = ( − y, x). Let C be the line segment running from (1,−2) to (1, 2),

oriented so that the positive side is to the left. Then x(t) = (1, 2t−4), t ∈ (0, 1) is a parameterization

of C that is consistent with the orientation.

We compute F(x(t)) = (4 − 2t, 1) and (x′(t))⊥ = ( − 2, 0). Hence F(x(t) · (x′(t))⊥ = 4t − 8

Finally, by (9.15), ∫
C

F ·Nds =

∫ 1

0

(8− 4t)dt = 0 ,

which is consistent with what we found earlier.

We now consider an example with a more complicated vector field F:

Example 139. Let F(x, y) = (xy, x2 − y2). Let C be the unit circle centered at (1, 1), oriented so

that the unit normal is outward. The standard parameterization of C is x(t) = (1 + cos t, 1 + sin t),

t ∈ (0, 2π). This parameterization is consistent with the orientation.

We compute

F(x(t)) = (1 + cos t+ sin t+ cos t sin t , cos2 t− sin2 t+ 2(cos t− sin t))

and (x′(t))⊥ = ( cos t, sin t). Hence

F(x(t) · (x′(t))⊥ = cos t(1 + cos t+ sin t+ cos t sin t) + sin t(cos2 t− sin2 t+ 2(cos t− sin t)) .

Finally, by (9.15),
∫
C F ·Nds is the integral of this over (0, 2π). There are many terms, but most

integrate to zero by symmetry. What remains is∫
C

F ·Nds =

∫ 2π

0

[cos2 t− 2 sin2 t]dt = −π .

In this example, more area is being swept into the disc than is being swept out.
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9.1.4 Flux across oriented surfaces in R3

The definition of a smooth, simple surface in R2 is very much like the definition of a simple closed

curve in R2:

Definition 100 (Smooth simple surface in R3). A smooth surface in R3 S is a subset of R3 such

that for each x0 ∈ S, there is an open rectangle (a, b)× (c, d) ⊂ R2 and a continuously differentiable

parameterized surface X(u, v) defined for (u, v) ∈ (a, b) × (c, d) and a (u0, v0) ∈ (a, b) × (c, d) such

that:

(i) X(u0, v0) = x0, so that the parameterized surface passes through x0.

(ii) X(u, v) ∈ C for all (u, v) ∈ (a, b)× (c, d), so that every point on the parameterized surface lies in

S.

(iii) X(u1, v1) 6= X(u2, v2) for any distinct points (u1, v1) and (u2, v2) in (a, b) × (c, d) so that the

parameterized curve is one to one onto the portion of S that it covers.

(iv) There is an r > 0 such that every x ∈ S with ‖x − x0‖ < r is of the form X(u, v) for some

(u, v) ∈ (a, b)× (c, d).

A smooth simple surface S is orientable in casr it is possible to continuously assign a unit normal

vector N to each point of S. In this case, the specification of N is the orientation od S, and S becomes

an oriented surface. We say that a parameterization X(u, v) of S (or part of S) is consistent with

the orientation of S in case N(X(u, v)) is a positive multiple of Xu ×Xv(X(u, v)) for all parameter

values u, v.

Not evey smooth simple surface is orientable. The classic example is the Möbius band:

Example 140 (Möbius band). Consider the function

X(u, v) = ( cosu(2 + v sin(u/2)) , sinu(2 + v sin(u/2)) , v cos(u/2) ) , u ∈ [0, 2π] , v ∈ (−1, 1)

(9.16)

The image of this function in R3 is a Möbius band S. It is a “one sided surface”, and its boundary

is a single edge. The bounding the curve C given by fixing v = 1 in the parameterization, and letting

u vary over [0, 2π] The next plots show two views of the surface S and its bounding curve C.

Moving along the surface, one can get to what is locally the “other side” without crossing through

the surface. Globally, the surface S has only one side, and hence it connot be oriented – we cannot
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designate one side as positive and one side as negative. This is very different from the unit sphere,

which has an “inside” and an “outside”.

One might wonder why we cannot simply use Xu ×Xv(u, v) to define N(u, v). The problem is

that (9.16) is not a parameterization of S. Note that for v = 0,

X(u, 0) = ( cosu, sinu, 0) u ∈ [0, 2π] ,

and the same point (1, 0, 0) in S is two different sets of parametervalues: (u, v) = (0, 0) and (u, v) =

(2π, 0). A parameterization is required to be one-to-one. What is worse is that calculating one finds

Xu ×Xv(u, 0) = 2( cos(u/2) cosu, cos(u/2) sinu, sin(u/2)) .

so that evidently

Xu ×Xv(u, 0) = −Xu ×Xv(u+ 2π, 0) .

Since X(0, 0) = X(2π, 0) = (1, 0, 0), the function Xu ×Xv(u, 0) assigns both normal directions to

(1, 0, 0) ∈ S.

If we restrict u to make the function X(u, v) one-to-one, we get a proper parameterization of

part of the Möbious band. The next two figures show the parts covered by restricting X(u, v) to

(0, 2π/8)× (−1, 1) and (π, 23π/8)× (−1, 1) respectively, and alo the whole bounding curve C to more

clearly display what is left out:

Each of these parts is a two sided orientable suface. However there is no way to choose the

orientations so that they are compatible on their overlap.

Given a smooth simple surface S, and a Lipschitz vector field F on R3, we can use the flow

generated Φt by F to “sweep out” a region in R3. The flux is the net rate rate at which volume is

being swept out, taking into account whether it is being swept to the positive of negative side of S:

Definition 101 (Flux across an oriented surface S). Let S be an oriented smooth simple surface

with unit normal N. Let F be a continuously differentiable Lipschitz vector field on R3. Suppose that

either (i) N ·F > 0 everywhere along S, or (ii) N ·F < 0 everywhere along S. For w ∈ R, let Φw be

the flow transformation generated by F at time w. For t > 0 define the set Vt in the plane by

Vt = {Φv(x) : w ∈ (0, t) , x ∈ S } , (9.17)
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and let vol(Vt) denote the volume of Vt, the set of points that is “swept out” in the time interval (0, t)

as the flow pushes S around in R3. We define the flux across S generated by F, flux(S,F) to be the

quantity

flux(S,F) = ± d

dt
vol(Vt)

∣∣∣∣
t=0

, (9.18)

where the sign in front of the derivative is the sign of F ·N along S. Ii S is a simple oriented curve

that is a disjoint union of component Cj, j = 1, . . . , N , satisfying the conditions above, we define

flux(C,F) =

N∑
j=1

flux(Sj ,F) . (9.19)

The notion of flux depends on the orientations of the surface S. It makes not sense at all to talk

about flux across a Möbius band because it makes no sense to talk about a positive and negative side

of a Möbius band. Hover, when S is the boundary of a region in R3; e.g., the unit sphere which is the

boundary of the unit ball, then S is always orientable: One can choose N to be th outward noemal.

Fortunately, in analogy with what we saw in R2, it is not necessary to compute vol(Vt) to compute

flux(S,F):

Theorem 95. Let S be a smooth simple oriented curve, and let F be a continuously differentiable

vector field on R3. Then the flux across S generated by F is given by

flux(S,F) =

∫
S

F ·NdS , (9.20)

which is the integral of the function F ·N along S with respect to surface area.

Proof. Suppose first that S is covered by a single parameterization X(u, v), (u, v) ∈ U ⊂ R2. Later

we can apply our conclusions to each component of a more general surface that is is disjoint union

of such pieces using (9.19).

Let u = (u, v, w), and define the transformation x(u)

x(u, v, w) = Φw(X(u, v)) .

Then Vt is the image of (0, t) × U ⊂ R3 under this transformation, and we may use the change of

variables formula

vol(Vt) =

∫
(0,t)×U

|det[Dx(u, v, w)]|d3u

to compute the volume of Vt.
Let U+ be the subset of U consisting of (u, v) such that F(X(u, v)) · N(X(u, v)) > 0. For

(u0, v0) ∈ U+, the flow curve x(w) = Φw(X(u0, v0)) is initially moving to the positive side of S. Let

V+
t be the volume swept out by this part of the surface. .

Let U− be the subset of U consisting of (u, v) such that F(X(u, v)) · N(X(u, v)) < 0. For

(u0, v0) ∈ U−, the flow curve x(w) = Φw(X(u0, v0)) is initially moving to the negative side of S. Let

V−t be the volume swept out by this part of the surface.

There is no need to introduce U0, the part of U on which F(X(u, v)) ·N(X(u, v)) = 0 since this

part of the surface will not make a contribution either way. We define the flux across S generated
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by F by

flux(S,F) =
d

dt
vol(V+

t )

∣∣∣∣
t=0

− d

dt
vol(V−t )

∣∣∣∣
t=0

.

To calculate this using the change of variables formula, we consider the Jacobian matrix

[Dx(u, v, w)] =

[
∂x(u, v, w)

∂u
,
∂x(u, v, w)

∂v
,
∂x(u, v, w)

∂w

]
.

Since for fixed u and v, x(u, v, w) traces out a flow curve of F as w varies,

∂x(u, v, w)

∂w
= F(x(u, v, w)) .

This tells us the third column of the matrix. Next, since Φ0 is the identity transformation

x(u, v, 0) = X(u, v) and so

∂

∂u
x(u, v, 0) = Xu(u, v) and

∂

∂v
x(u, v, 0) = Xv(u, v) .

Therefore, we can evaluate the Jacobian determinant at w = 0:

det[Dx(u, v, 0)] = det ([Xu(u, v) , Xv(u, v) , F(X(u, v))]) = Xu ×Xv · F(X)(u, v) .

Therefore, since Xu ×Xv(u, v) is a positive multiple of N(X(u, v)), we see that det[Dx(u, v, 0)] > 0

for (u, v) ∈ U+ and det[Dx(u, v, 0)] < 0 for (u, v) ∈ U−. By continuity, the same is true for all

sufficiently small values of w. Therefore,

d

dt
vol(V+

t )

∣∣∣∣
t=0

=
d

dt

(∫
(0,t)×U+

det[Dx(u, v, w)]d3u

)∣∣∣∣
t=0

and

− d

dt
vol(V−t )

∣∣∣∣
t=0

=
d

dt

(∫
(0,t)×U−

det[Dx(u, v, w)]d3u

)∣∣∣∣
t=0

where we have dropped the absolute values signs on the determinant, but taken the negative sign of

the determinant into account in the second formula with the initial minus sign.

Now it is possible to combine terms to obtain

flux(S,F) =
d

dt

(∫
(0,t)×U

det[Dx(u, v, w)]d3u

)∣∣∣∣
t=0

. (9.21)

Just as in two dimensions, the sign of the Jacobian determinant automatically takes into account

the orientation so that we get the correct net flux simply by dropping the absolute value sign in the

change of variables formula. Finally,∫
(0,t)×U

det[Dx(u, v, w)]d3u =

∫ t

0

(∫
U

det[Dx(u, v, w)]dudv

)
dw ,

and so

d

dt

(∫
(0,t)×U

det[Dx(u, v, w)]d3u

)∣∣∣∣
t=0

=

∫
U

det[Dx(u, v, 0)]dudv

=

∫
U

Xu ×Xv · F(X)(u, v)dudv

=

∫
U

N(X) · F(X)‖Xu ×Xv‖dudv

=

∫
S

N · FdS .
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Combining this with (9.21) we have flux(S,F) =

∫
S

N · FdS.

9.1.5 Computing flux integrals

Flux integrals are often easier to compute than surface area integrals since the combination NdS is

in some ways simpler that dS itself. To see why, let X(u, v) be a parameterization of an oriented

surface S. Then

N(u, v) = ± 1

‖Xu ×Xv(u, v)‖
Xu ×Xv(u, v) and dS = ‖Xu ×Xv(u, v)‖dudv ,

so that

NdS = ±Xu ×Xv(u, v)dudv (9.22)

where the plus sign is valid if the parameterization is consistent with the orientation of S, and the

minus sign otherwise. The good thing that happens is that two factors of ‖Xu ×Xv(u, v)‖ cancel

out when forming NdS.

Example 141. Let F be the vector field F(x, y, z) = (2xyz − y2, x2z − 2xy, x2y). Let S be the part

of the paraboloid z = 1 − x2 − y2 that lies above the x, y plane, oriented so that its unit normal N

points upward. To compute that flux integral
∫
S F ·NdS directly, the first step is to parameterize S.

Using cylindrical coordinates, and using z = 1− r2 to eliminate z, we obtain

X(r, θ) = (r cos θ, r sin θ, 1− r2) with r ∈ (0, 1) θ ∈ (0, 2π) .

Differentiating,

Xr(r, θ) = ( cos θ, sin θ,−2r) and Xθ(r, θ) = (− r sin θ, r cos θ, 0) .

Then

Xr ×Xθ(r, θ) = (2r2 cos θ, 2r2 sin θ, r) .

Since the third component is r > 0, this points upward, and so the parameterization is consistent with

the orientation. Hence

NdS = (2r2 cos θ, 2r2 sin θ, r)drdθ .

We now evaluate F on the surface:

F(X(r, θ)) = (2r2(1− r2) cos θ sin θ − r2 sin2 θ , r2(1− r2) cos2 θ − 2r2 cos θ sin θ , r3 cos2 θ sin θ) .

Hence the flux element is

F(X(r, θ)) ·N(X(r, θ))drdθ = [2r2(1− r2) cos θ sin θ − r2 sin2 θ][2r2 cos θ]drdθ

+ [r2(1− r2) cos2 θ − 2r2 cos θ sin θ][2r2 sin θ]drdθ

+ [r3 cos2 θ sin θ][r]drdθ .

We now integrate. However, since∫ 2π

0

cos2 θ sin θdθ = 0 and

∫ 2π

0

sin2 θ cos θdθ = 0 ,

the integral of each term is zero, and finally we find flux(F,S) = 0.
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9.2 The Divergence Theorem

9.2.1 The Divergence Theorem in the plane

The flux through a simple closed curve C in the plane that is generated by a vector field F can be

computed by integrating a flux density over the region D enclosed by C. The flux density is the

divergence of F that we now define, once and for all, in Rn for general n.

Definition 102 (Divergence of a vector field). Let F be a continuously differentiable vector field on

Rn The divergence of F is the real valued function divF defined by

divF(x) =

n∑
j=1

∂

∂xj
ej · F(x) (9.23)

It is tradition in Vector Calculus to use P and Q for the components of two dimensional vector

fields, and P , Q and R for the components of three dimensional vector field, so that we would write

a two dimensional vector field as F(x, y) = (P (x, y), Q(x, y)) and then

divF(x, y) =
∂P (x, y)

∂x
+
∂Q(x, y)

∂y
.

We would write a three dimensional vector field as F(x, y, x) = (P (x, y, z), Q(x, y, z), R(x, y, z)) and

then

divF(x, y, z) =
∂P (x, y.z)

∂x
+
∂Q(x, y, z)

∂y
+
∂R(x, y, z)

∂z
.

The Divergence Theorem in the plane says that the divergence is a flux density in that the total

flux out of a region D, flowing across its boundary C, is given by integrating the divergence if F over

D:

Theorem 96 (The Divergence Theorem in R2). Let C be a simple closed curve in the plane, and

let D be the domain enclosed by C. Let N be the outward normal along C. Let F be a continuously

differentiable Lipschitz vector field on R2. Then∫
C

F ·Nds =

∫
D

divF(x)d2x . (9.24)

Example 142. Let F(x, y) = (xy, x2 − y2). Let C be the unit circle centered at (1, 1), oriented so

that the unit normal is outward. We compute divF(x, y) = −y. Therefore, if D is the unit disc

centered at (1, 1), the domain bounded by C,∫
C

F ·Nds = −
∫
D
yd2x .

By symmetry, the average value of y in D is 1. Hence∫
D yd2x∫
D 1d2x

= 1 .

Thus, −
∫
D
yd2x = −

∫
D

1d2x = π, and again we obtain

∫
C

F ·Nds = −π but the integrals are much

simpler.
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The Divergence Theorem is often useful for computing the flux across open curves as well as the

closed curves to which it applies directly. The next example explains how.

Example 143. Let C1 be the part of the parabola y = 4− x2 lying above the x-axis, and oriented so

that N points upwards. Let F(x, y) = (x3y − y2 + x, x2y − 3x+ 5y).

The endpoints of C1 are (− 2, 0) and (2, 0). Let C2 be the straight line segment from (− 2, 0) to

(2, 0). Finally, let C be the simple closed curve that runs from (− 2, 0) to (2, 0) along C2, and then

from (2, 0) to (− 2, 0) along C1.

The curve C enclosed the domain D given by 0 ≤ y ≤ 4−2, which is under the parabola y = 4−x2

and above the x-axis. The outward unit normal on the boundary of D is the unit normal along C with

the specified direction of travel.

We can compute the arc length integral of F ·N by first integrating over C1, and then continuing

to integrate over C2: ∫
C

F ·Nds =

∫
C1

F ·Nds+

∫
C2

F ·Nds .

Then by the Divergence Theorem,∫
C1

F ·Nds =

∫
D

divFd2x−
∫
C2

F ·Nds .

It is easy to evaluate both of the integrals on the right: First, divF(x, y) = 3x2y+ 6 + x2. The region

D is given by

0 ≤ y ≤ 4− x2 and − 2 < x < 2 .

Hence, ∫
D

divFd2x =

∫ 2

−2

(∫ 4−x2

0

[3x2y + 6 + x2]dy

)
dx

=

∫ 2

−2

[
48− 14x2 +

1

2
x4

]
dx =

1856

15
.

Even more simply, we parameterize C2 by x(t) = (− 2 + 4t, 0), t ∈ (0, 1). Since y = 0 all along

C2, F(x(t)) is much simpler that F in general:

F(x(t)) = (t− 2, 6− 3t) .

Then −(x′(t))⊥ = (0,−4). Hence∫
C2

F ·Nds = 4

∫ 1

0

(3t− 6)dt = −18 .

The proof of Theorem 96 rests on two lemmas that are of interest in their own right.

Lemma 30. Let C be a simple closed curve in the plane. Let D be the region in the plane enclosed by

C. Let F be a continuously differentiable Lipschitz vector field on R2, and let Φ be the flow generated

by F. For t ∈ R, let Dt be image of D under the flow transformation Φt:

Dt =
{

Φt(u) : u ∈ D
}
. (9.25)

d

dt
area(Dt)

∣∣∣∣
t=0

=

∫
C

F ·Nds . (9.26)
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Before going into the proof, it will be good to consider what Lemma 30 says. If F · N > 0

everywhere along C, the vector field is “pushing” outward everywhere along C, and area is getting

“swept out” of D to cover a strictly large domain Dt. Evidently, in this case area(Dt) is an increasing

function of t, and the rate of increase of area(Dt), as we have defined Dt, corresponds to positive

outward flux.

Proof of Lemma 30. Notice that

Dt = (Dt ∩ D) ∪ (Dt ∩ Dc) and D = (D ∩Dt) ∪ (D ∩Dct ) .

Next, x ∈ Dt ∩ Dc means that x /∈ D but it is the image under Φt of a point that was originally in

D. Thus, Dt ∩Dc consists of points that are carried outside D from the inside by the flow in time t.

Likewise, x ∈ D ∩ Dct means that x ∈ D, but x is the image under Φt of a point u that was outside

D. Thus, D ∩Dct consists of points that are carried inside of D from the outside by the flow in time

t. Therefore, differentiating both sides of (9.27) in t, Of course, Dt ∩ D is the part of D that is left

in D by Φt. Evidently the three regions Dt ∩ D, Dt ∩ Dc and Dct ∩ D are mutually disjoint. Thus,

area(Dt) = area(Dt∩D) + area(Dt∩Dc) and area(Dt)−area(D) = area(Dt∩Dc)−area(D∩Dct ) .

Therefore,

area(Dt)− area(D) = area(Dt ∩ Dc)− area(D ∩Dct ) . (9.27)

Differentiating both sides of (9.27) in t,

d

dt
area(Dt)

∣∣∣∣
t=0

=
d

dt
area(Dt ∩ Dc)

∣∣∣∣
t=0

− d

dt
area(D ∩Dct )

∣∣∣∣
t=0

.

The right hand side is the net flux out of D under the flow, which is given by the integral

∫
C

F ·Nds

where N is the outward unit normal, and this proves (9.26).

We now compute a formula for the left hand side of (9.27) be applying the change of variables

formula for integrals in R2.

The point is that the transformation Φt maps D onto Dt be definition, so we can use it to

parameterize Dt by D, which is exactly what is done in (9.25). That is, define xt(u) = Φt(u). Then

u ∈ D if and only if x ∈ Dt, Therefore, for each t, we define the transformation xt(u, v) = Φ−t(u, v))

By the change of variables formula,

area(Dt) =

∫
Dt

1d2x =

∫
D
|det[Dxt(u)]|d2u . (9.28)

Lemma 31. Let F be a continuously differentiable Lipschitz vector field on R2, and for t ∈ R, let Φt be

the corresponding flow transformation. Define a transformation xt(u, v) on R2 by xt(u, v) = Φt(u, v),

and let [Dxt(u, v)] be the Jacobian matrix of this transformation. Then for all sufficiently small t,

det([Dxt(u, v)]) > 0, so that

d

dt
|det([Dxt(u, v)])|

∣∣∣∣
t=0

=
d

dt
det([Dxt(u, v)])

∣∣∣∣
t=0

,
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so that the absolute value on the determinant in (9.28) is redundant when we differentiate at t = 0,

and moreover,
d

dt
det([Dxt(u, v)])

∣∣∣∣
t=0

= divF(u, v) . (9.29)

Granted the validity of Lemma 31, it is now easy to prove the Divergence Theorem:

Proof of Theorem 96. Differentiating both sides of (9.28) in t at t = 0, and taking the derivative

under the integral sign on the right (which can be justified, though we shall not do it here), and then

applying (9.29),

d

dt
area(Dt)

∣∣∣∣
t=0

=

∫
D

d

dt
det([Dxt(u, v)])

∣∣∣∣
t=0

d2u =

∫
D

divF(u, v)d2u .

Applying Lemma 30, we obtain (9.38).

Proof of Lemma 31. The Jacobian matrix of the transformation xt(u, v) is

[Dxt(u)] =

[
∂xt(u, v)

∂u
,
∂xt(u, v)

∂v

]
.

Since x0(u, v) = (u, v), the Jacobian matrix at t = 0 is the identity matrix:

[Dx0(u)] =

[
1 0

0 1

]
. (9.30)

Therefore, det([Dx0(u)]) = 1, and then by continuity, det([Dxt(u)]) > 0 for all sufficiently small t,

proving the first part of the lemma. Now recall that

det

[
a b

c d

]
= ad− bc = (a, c)

⊥ · (b, d) .

Hence, for t 6= 0, the Jacobian determinant is

det[Dxt(u)] = det

[
∂xt(u, v)

∂u
,
∂xt(u, v)

∂v

]
=

(
∂xt(u, v)

∂u

)⊥
· ∂xt(u, v)

∂v
.

Differentiating the dot product, we get two terms. These are easy to evaluate at t = 0 if we use the

fact that
∂x0(u, v)

∂u
= e1 and

∂x0(u, v)

∂v
= e2 ,

which follows from (9.30). We find

d

dt

((
∂xt(u, v)

∂u

)⊥
· ∂xt(u, v)

∂v

)
=

(
∂2xt(u, v)

∂t∂u

)⊥
· e2 + e⊥1 ·

∂2xt(u, v)

∂t∂v

=
∂2xt(u, v)

∂u∂t
· e1 +

∂2xt(u, v)

∂v∂t
· e2 ,

where we have used Clairault’s Theorem to interchange the oder of the temporal and spatial deriva-

tives. Now since for fixed u and v, xt(u, v) traces out a flow curve of F as t varies,

∂

∂t
xt(u, v) = F(xt(u, v)) .
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Evaluating this at t = 0, and recalling once more that xt(u, v) = (u, v),

d

dt

((
∂xt(u, v)

∂u

)⊥
· ∂xt(u, v)

∂v

)∣∣∣∣
t=0

=
∂

∂u
(F(u, v) · e1)

∂

∂v
(F(u, v) · e2)

= divF(u, v) .

9.2.2 The Divergence Theorem in R3

A direct analog of the Divergence Theorem is true in every dimension, and the proof is very much

like the proof in the planar case. We discuss this next in R3.

While the boundary of a domain D in R2 that has no “holes” in it is a simple closed curve, the

boundary of a domain D in R3 that has no holes in it is a simple closed surface S. Think of the unit

ball in R3; its boundary is the unit sphere in R3.

It is now easy to prove the three dimensional version of the Divergence Theorem. Let S be a

simple closed surface that encloses a region V ⊂ R3.

We define a time-dependent region Vt in analogy with (9.25):

Vt =
{

Φt(u) : u ∈ D
}
. (9.31)

Notice that this definition of Vt is different from the one in (9.17). There, the third component w of

(u, v, w) represented time which varied over an interval (0, t). Here the time t is fixed, and (u, v, w)

denotes a point in V. Also notice that we use a negative time t in the flow in (9.31).

The same reasoning that led from (9.25) to (9.27) leads to

area(Vt)− area(V) = area(Vt ∩ Vc)− area(V ∩ Vct ) . (9.32)

and then the same reason that lead from (9.27) to (9.26) leads from (9.32) to

d

dt
vol(Vt)

∣∣∣∣
t=0

=

∫
S

F ·NdS . (9.33)

We now compute the volume on the left hand side using the change of variables formula: For

any fixed t, define the transformation xt(u) that send u = (u, v, w) to the point Φt(u, v, w). Let us

write

xt(u, v, w) = (x(t, u, v, w), y(t, u, v, w), z(t, u, v, w)) .

The Jacobian matrix of this transformation is

[Dxt(u, v, w)] =

[
∂xt

∂u
,
∂xt

∂v
,
∂xt

∂w

]
. (9.34)

Since Φ0(u) = u, x0(u, v, w) = (u, v, w), and so the Jacobian matrix is simply the identity matrix at

t = 0:

[Dx0(u, v, w)] =


1 0 0

0 1 0

0 0 1

 . (9.35)
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Therefore det[[Dx0(u, v, w)] = 1, and by continuity, det[[Dxt(u, v, w)] > 0 for all sufficiently small t.

This means that we have

vol(Vt) =

∫
V

det[Dxt(u, v, w)]d3u ,

where no absolute value sign on the determinant is needed. Therefore, taking the derivative under

the integral sign,
d

dt
vol(Vt)

∣∣∣∣
t=0

=

∫
V

d

dt
det[Dxt(u, v, w)]

∣∣∣∣
t=0

d3u . (9.36)

By (9.34),

det[Dxt(u, v, w)] =
∂xt

∂u
× ∂xt

∂v
· ∂xt

∂w
.

Differentiating in t, we get three terms. These can be written simply evaluating at t = 0 since by

(9.35)
∂x0

∂u
= e1 ,

∂x0

∂v
= e2 and

∂x0

∂w
= e3 .

Therefore,

d

dt
det[Dxt(u, v, w)]

∣∣∣∣
t=0

=

(
∂x0

∂t∂u
× e2 · e3

)
+

(
e1 ×

∂x0

∂t∂v
· e3

)
+

(
e1 × e2 ·

∂x0

∂t∂w

)
=

(
e2 × e3 ·

∂x0

∂u∂t

)
+

(
e3 × e1 ·

∂x0

∂v∂t

)
+

(
e1 × e2 ·

∂x0

∂w∂t

)
=

(
e1 ·

∂x0

∂u∂t

)
+

(
e2 ·

∂x0

∂v∂t

)
+

(
e3 ·

∂x0

∂w∂t

)
,

where we have used symmetries of the triple product and also have used Clairault’s Theorem to

change the order of the spatial and time derivatives. Now since xt(u, v, w) = Φt(u, v, w), holding

u, v, w fixed and differentiating in t we have

∂xt(u, v, w)

∂t
= F(xt(u, v, w)) .

Therefore, evaluating at t = 0, and recalling that x0(u) = u,

d

dt
det[Dxt(u, v, w)]

∣∣∣∣
t=0

= divF(u, v, w) .

Then, (9.36) becomes
d

dt
vol(Vt)

∣∣∣∣
t=0

=

∫
V

divF(u, v, w)d3u . (9.37)

Combining this with (9.33) we have proved:

Theorem 97 (The Divergence Theorem in R3). Let S be a simple closed surface in R3, and let V
be the domain in R3 enclosed by S. Let N be the outward normal on S. Let F be a continuously

differentiable Lipschitz vector field on R3. Then∫
S

F ·NdS =

∫
V

divF(x)d3x . (9.38)

This approach to computing flux via divergence extends easily to higher dimensions. This is

taken up in the exercises.
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Example 144. Let V be the region in R3 that lies inside the sphere x2 + y2 + z2 = 4, and above the

graph of z = 1/
√
x2 + y2. Let S be its boundary, equipped with the outward normal N.

Let F(x, y, z) = (x, x, z). Compute
∫
§F ·NdS where N is the outward unit normal vector. We

compute div(F) = 2, and hence by the Divergence Theorem,∫
§
F ·NdS = 2

∫
V

dV .

Using cylindrical coordinates, the limits of integration are

0 ≤ θ ≤ 2π 1/r ≤ z ≤
√

4− r2 and

√
2−
√

3 ≤ r ≤
√

2 +
√

3 .

Thus, ∫
V

dV = 2π

∫ √2+
√

3

√
2−
√

3

(∫ √4−r2

1/r

dz

)
rdr

= 2π

∫ √2+
√

3

√
2−
√

3

(
r
√

4− r2 − 1
)

dr

= 2π
23/2

3
.

The final answer is ∫
§
F ·NdS = π

27/2

3
.

There are two pieces to the boundary, and this is much, much sinpler that paramterizing both of them

and doing the direct caclulation.

In analogy with what we have seen in the plane, the Divergence Theorem in R3 is not only useful

for computing the flux across closed surfaces S, but also open surfaces

Example 145 (Trading one surface in on another). There is a better way to compute the flux integral

in Example 141. Let S1 be surface introduced there, the part of the paraboloid z = 1− x2 − y2 above

the x, y plane with the upward unit normal N. Let S2 be the unit disk in the x, y plane with the

downward unit normal. Then let S = S1 ∪ S2. Note that S is the boundary of the region

V = {(x, y, z) : 0 ≤ z ≤ 1− x2 − y2 } ,

oriented with the outward unit normal. Therefore, be the Divergence Theorem,

flux(F,S1) + flux(F,S2) = flux(F,S) =

∫
V

divFd3x .

Hence if we compute flux(F,S2) and

∫
V

divFd3x we will have determined flux(F,S1).

On S2, things are easy: N = (0, 0,−1) everywhere on S2, and dS = d2x, the usual planar area

element. Also since z = 0 everywhere on S2, we have a relatively simple expression for F on S2:

F(x, y, 0) = (y2,−2xy, x2y) .

Hence on S2, F · NdS = −x2yd2x. Doing the integral in polar coordinates, we immediately find∫
S2

F ·NdS = 0.
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Next, we compute divF(x, y, z) = 2yz− 2x. Notice how much simpler this is than F itself. Also,

since V is invariant under the transformation sending (x, y, ) to (− x,−y, z) (which is a rotation by

π) and since 2yz − 2x changes sign under this transformation, it is immediate that

∫
V

divFd3x = 0,

though it is also not hard to do the integral using cylindrical coordinates.

9.3 Line integrals, force fields and work

Let F be a continuous vector field on Rn. In this section, we think of F as representing a force field;

that is F gives the force that acts on a point particle located at x. For instance, if some electric

charges are distributed in R3, they will produce an electric field E(x), and then any point particle

at x with an electrical charge q will be acted upon by a force F(x) = qE(x). Let x(t), a ≤ t ≤ b, be

a continuously differentiable parameterized curve in Rn. Suppose we move the point particle along

the path x(t). We ask: How much work is done on the point particle as it moves along the curve

from x0 := x(a) to x1 := x(b)? Let h > 0 be a small time step. As the particle moves from x(t) to

x(t+h), the work ∆W (t) done is approximately given by the dot product of the displacement of the

particle and the force acting time t:

∆W (t) ≈ F(x(t)) · (x(t+ h)− x(t)) .

This is not exact since the force F is not constant, but if the segment is very short, the variation in

the force is a small percentage of the force itself. In this same small step limit, there is one more

useful approximation to make:

F(x(t)) · (x(t+ h)− x(t)) = F(x(t)) · (x(t+ h)− x(t))

h
h ≈ F(x(t)) · x′(t)h .

Thus, if we divide the path into many such small segments, and then add up all of the contributions

from all of the segments, and take the limit limit as the length of the segments tends to zero, we

obtain an integral giving the exact value of the work that gets done: This is∫ b

a

F(x(t)) · x′(t)dt . (9.39)

Such integrals are frequently called line integrals.

Example 146 (Computing a line integral). Let F(x, y, z) = (z, x, y). Let x(t) = ( cos t sin t, t) for

t ∈ (0, 2π), so that x(t) traces out a helix. To compute the corresponding line integral, we work out

F(x(t)) · x′(t) = −t sin t+ cos2 t+ sin t .

If F is a force field, and x(t) is the path of a point particle, the work done on the particle as it moves

along the path is ∫ 2π

0

[−t sin t+ cos2 t+ sin t]dt = 3π .

For computational purposes, it is best to represent the line integral in terms of some explicit

parameterization of the curve. But the work done on the particle as it moves along the curve C,
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with a specified direction of travel, has a well defined meaning that is independent of any particular

parameterization.

Therefore, let C be an smooth oriented closed curve. for present purposes we do not require the

curve C to be simple. That is, we do not require that it be free of self-intersections. Suppose that

x(t) is a continuously differentiable parameterization of C. Then the preferred unit tangent vector

specifying the orientation is

T(t) = ± 1

‖x′(t)‖
x′(t)

where the plus sign is valid if the parameterization is consistent with the orientation, and the minus

sign otherwise. The element of arc length along the curve, ds, is given by ds = ‖x′(t)‖dt. Therefore,

F(x(t)) ·T(x(t))ds = ±F(x(t)) · x′(t)dt , (9.40)

with the plus sign for a consistent parameterization, and a minus sign otherwise. This gives us the

geometric form of the line integral: ∫
C

F ·Tds .

Here, if this is to be interpreted as a computing of work done by a force field on a particle as it

moves along C, we regard C as oriented by the direction of motion so that T points in this direction.

However, one can then use any parameterization of C to compute the work, provided one uses (9.40)

to take the sign into account.

Example 147 (Computing another line integral). The main difference between this example and the

previous example, is the that time we will only be given the curve C, and the direction of motion along

it, but not the position at each time t. But still we can calculate the work done by the force field F

on the particle.

As before, let F(x, y, z) = (z, x, y). Let C be the curve that runs along the parabola y = 1− x2 in

the x, y pane from (1, 0, 0) to (−1, 0, 0). We parameterize the path by x(t) = (t, 1−t2, 0), t ∈ (−1, t).

This traces out C, but does so backwards, starting at (− 1, 0, 0) and ending at (1, 0, 0). Hence, this

is certainly not the actual trajectory of the particle parameterized by time. Nonetheless, we can use

it to compute the work done on the particle by the force field F as it moves along it actual trajectory.

Taking into account the minus sign required in (9.40) due to the “backwards” parameterization,∫
C

F ·Tds = −
∫ 1

−1

(0, t, 1− t2) · (1,−2t, 0)dt = −
∫ 1

−1

2t2dt = −4

3
.

9.3.1 Conservative vector fields

There is a particularly nice kind of line integral: One in which the vector field F(x) is the gradient

of some function ϕ(x). By the chain rule of Chapter 3,

d

dt
ϕ(x(t)) = ∇ϕ(x(t)) · x′(t) .

Therefore, if C is the path running along x(t) for, say, a ≤ t ≤ b, the fundamental Theorem of

Calculus gives us

ϕ(x(b))− ϕ(x(a)) =

∫ b

a

∇ϕ(x(t)) · x′(t)dt =

∫
C
∇ϕ ·Tds .
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Notice that the left hand side depends only on the initial and final points along the curve C.Therefore∫
C
∇ϕ ·Tds

only depends on the curve C through its starting point and end point: Let C be any smooth, oriented

curve starting at p and ending at q. Then∫
C
∇ϕ ·Tds = ϕ(q)− ϕ(p) . (9.41)

Definition 103 (Conservative vector field). A vector field F on an open, path-wise connected set

U ⊂ R3 is conservative in case for any pair of points p, vq ∈ R3, and for any two smooth oriented

curves C1, C2 starting at p and ending at q and staying within U ,∫
C1

F ·Tds =

∫
C2

F ·Tds . (9.42)

By (9.41), every gradient vector is conservative. We show next that every conservative vector

field is a gradient vector field.

Theorem 98. Let U be an open path-wise connected subset of R3. Then a continuous vector field

F defined on U is conservative if and only if there is a continuously differentiable function ϕ defined

on U such that F(x) = ∇ϕ(x) for all x ∈ U .

Proof. We have already seen that all gradient vector fields are conservative. Now let F be conser-

vative. Pick any base point x0 ∈ U . We the define a function ϕ(x) on U as follows: Let Cx0,x be

an smooth curve in U that starts at x0 and ends at x. Such a curve exists since U is path-wise

connected. Then we put:

ϕ(x) =

∫
Cx0,x

F ·Tds . (9.43)

The function ϕ is well-defined because the value of the integral does not depend on the choice of

Cx0,x.

Let F(x) = (P (x), Q(x), R(x)). We now prove that

∇ϕ(x) = (P (x), Q(x), R(x)) (9.44)

for each x ∈ U . Fix an x ∈ U . Since U is open, x + he1 ∈ U for all sufficiently small h. Pick any

smooth oriented curve Cx0,x starting at x0 and ending at x. Define Cx0,x+te1 to be the continuation

of Cx0,x to goes from x to x + he1 on the straight line segment connection these point which is

parameterize by x(t) = x0 + thej , t ∈ (0, 1). Then

ϕ(x + he1)− ϕ(x) =

∫
Cx0,x+he1

F ·Tds−
∫
Cx0,x

F ·Tds =

∫ 1

0

F(x(t)) · x′(t)dt ,

since the integral on the right is the final part of the line integral along Cx0,x+he1 that is not on Cx0,x.

We now compute x′(t) = hej , and so F(x(t)) · x′(t) = hP (x0 + the1), and thus

ϕ(x + he1)− ϕ(x)

h
=

∫ 1

0

P (x0 + the1)dt .
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Taking the limit h→ 0 on both sides, we obtain
∂ϕ(x, y, z)

∂x
= P (x, y, z). This proves the equality of

the first components on both sides of (9.44). The proof of equality for the other components is very

much the same.

Definition 104 (Potential function). Let F be a conservative vector field defined on an open path-

wise connected set U . A continuously differentiable function ϕ on U such that F(x) = ∇ϕ(x) for all

x ∈ U is called a potential function for F. By the previous theorem, very conservative vector field

has at least one potential function. Let ϕ1 and ϕ2 be two potential functions for F. Then

∇(ϕ1 −∇ϕ2)(x) = ∇ϕ1(x)−∇ϕ2(x) = F(x) = F(x) = 0 .

Therefore, ϕ1−ϕ2 is constant. Hence the potential function of F is unique up to an additive constant

It is clear that if C is a closed curve; i.e, a curve starting and ending that the same p in R3, then

for every conservative vector field F,

∫
C

F ·Tds = 0 if ϕ is a potential function for F,∫
C

F ·Tds = ϕ(p)− ϕ(p) = 0 .

Conversely, suppose that

∫
C

F ·Tds = 0 for every close curve. Consider any pair of points p,q

and any two curve C1 and C2 from p to q. Define a closed curve C by following C1 from p to q, and

the following C2 backwards from q to p. Then

0 =

∫
C

F ·Tds =

∫
C1

F ·Tds−
∫
C2

F ·Tds ,

and thus F is conservative.

Going forward, it will be useful to use a standard notation that emphasizes when a line integral

is taken over a closed curve C: We write ∮
C

F ·Tds

for such a line integral, and call it circulation integral.

One way to show that a vector field F is conservative is to find a potential function for it. Another

way would be to show that

∮
C

F ·Tds = 0 for all closed curve C. This may sound impractical upon

first consideration, but there is a simple way to do it, and this brings us to the notion of the curl of

a vector field F, as we explain next.

9.3.2 Curl, circulation and Stokes’ Theorem

Let F(x) = (P (x), Q(x), R(x)) be a vector field on R3. Then F is a continuously differentiable

function from R3 to R3, and its derivative is given by the Jacobian matrix

∂P

∂x

∂P

∂y

∂P

∂z

∂Q

∂x

∂Q

∂y

∂Q

∂z

∂R

∂x

∂R

∂y

∂R

∂z


. (9.45)
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The divergence of F is the trace of this matrix; i.e., the sum of its diagonal entries. The

antisymmetric part of this matrix holds the key to efficient calculation of circulation integrals, as we

now explain.

Let M be any n × n matrix. Then its transpose MT is also an n × n matrix, and we can form

linear combinations of M and MT . Note that

M =
1

2

(
M −MT

)
+

1

2

(
M +MT

)
.

The matrixAM :=
1

2

(
M −MT

)
is called the antisymmetric part of M , and the matrix SM :=

1

2

(
M +MT

)
symmetric part of M . Note that

ATM =
1

2

(
M −MT

)T
=

1

2

(
MT −MTT

)
=

1

2

(
MT −M

)
= −AM ,

so that AM is an antisymmetric matrix. A similar calculation shows that SM is symmetric.

Every antisymmetric 3× 3 matrix A has the form

A =


0 −c b

c 0 −a
−b a 0

 ,

for sone number a, b and c, and with this pattern of signs, if we define the vector a = (a, b, c),

applying the matrix A to any vector x ∈ R3 gives the same result as computing the cross product

a × x. That is, the matrix A is the matrix representative of the linear transformation sending x to

a× x. In this spirit, we can call a the vector representative of the antisymmetric matrix A.

In this terminology, the curl of a matrix is the vector F representative of the antisymmetric part

of the Jacobian of F, multiplied by 2. To write this out, we first note form (9.45) that twice the

antisymmetric part of [DF] is

2A[DF] =



0
∂P

∂y
− ∂Q

∂x

∂P

∂z
− ∂R

∂x

∂Q

∂x
− ∂P

∂y
0

∂Q

∂z
− ∂R

∂y

∂R

∂x
− ∂P

∂z

∂R

∂y
− ∂Q

∂z
0


. (9.46)

All of the information contained in this matrix is contained in its vector representative:(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
. (9.47)

Definition 105 (Curl of a vector field on R3). Let F(x) = (P (x), Q(x), R(x)) be a continuously

differentiable vector field on R3. The curl of of F, curlF is the vector field given by (9.47). That is,

it is twice the vector representative of the Jacobian matrix [DF] of F.

The next theorem explains the geometric meaning of the curl.
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Theorem 99. Let x0 be any vector in R3, and let v and w be any two linearly independent vectors

in R3. Pick a number h > 0, and define C(h) to be the oriented triangle that starts at x0, and goes

along the straight line segment form this point to x0 + hv, and then along the straight line segment

from x0 + hv to x0 + hw, and finally along the straight from there back to x0. Let D(h) be the

domain planar domain enclosed by the triangle in the plane through its three vertices. Then for any

continuously differentialbe vector field F,

lim
h→0

1

area(D(h))

∫
C(h)

F ·Tds = curlF(x0) · v ×w

‖v ×w‖
. (9.48)

Proof. The first step is to evaluate the denominator, which is easily done using the cross product:

area(D(h) =
h2

2
‖v ×w‖ . (9.49)

We turn to the numerator, which is more complicated. The next step is to parameterize C(h).

Define x(t) as follows:

x(t) =


x0 + thv 0 ≤ t ≤ 1

x0 + hv + (t− 1)h(w − v) 1 ≤ t ≤ 2

x0 + (3− t)hw 2 ≤ t ≤ 3 .∮
C(h)

F ·Tds =

∫ 3

0

F(x(t)) · x′(t)dt .

We now make a first order Taylor approximation to F:

F(x) = F(x0) + [DF(x0)](x− x0) + r(x)‖x− x0‖ (9.50)

where the remainder term r(x)‖x − x0‖ satisfies limx→x0
= 0. To simplify notation, define M =

[DF(x0)] and z(t) = x(t)− x0. Then since z′(t) = x′(t),∮
C(h)

F ·Tds =

∫ 3

0

F(x0) · z′(t)dt+

∫ 3

0

·z′(t) ·Mz(t)dt+

∫ 3

0

‖z(t)‖r(x0 + z(t)) · z′(t)dt .

Since F(x0) is independent of t,∫ 3

0

F(x0) · z′(t)dt = F(x0) ·
(∫ 3

0

z′(t)dt

)
= F(x0) · 0 ,

and so the constant term makes no contirbution.

The remainder term makes no contribution in the limit since for all t both ‖z(t)‖ and ‖z′(t)‖ are

bounded by max{‖v‖, ‖w‖}h and so by The Cauchy-Schwarz inequality,∣∣∣∣∫ 3

0

‖z(t)‖r(x0 + z(t)) · z′(t)dt
∣∣∣∣ ≤ h2(max{‖v‖, ‖w‖})2

∫ 3

0

‖r(x0 + z(t))‖dt .

Therefore, using (9.49),

1

area(D(h)

∣∣∣∣∫ 3

0

‖z(t)‖r(x0 + z(t)) · z′(t)dt
∣∣∣∣ ≤ 2(max{‖v‖, ‖w‖})2

‖v ×w‖

∫ 3

0

‖r(x0 + z(t))‖dt ,
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and since z(t) converges to x0 as h converges to zero, lim
h→0

∫ 3

0

‖r(x0 + z(t))‖dt = 0.

We are left with evaluating

∫ 3

0

·z′(t) ·Mz(t)dt. Notice that

d

dt
(z(t) ·Mz(t)) = z′(t) ·Mz(t) + z(t) ·Mz′(t) = 2z′(t) · SMz(t) ,

where SM is the symmetric part of M , so that∫ 3

0

z′(t) · SMz(t) = 2

∫ 3

0

d

dt
(z(t) ·Mz(t))dt = 2(z(3) ·Mz(3)− z(0) ·Mz(0)) = 0 .

Therefore, the symmetric part of M makes no contribution to our integral, and∮
C(h)

F ·Tds =

∫ 3

0

z′(t) ·AMz(t)dt+ negligible remainder . (9.51)

Now let a be the vector representative of the antisymmetric matrix AM . Then the integrand on the

right in (9.51) is

z′(t) · a× z(t) = a× z(t) · z′(t) = a · z(t)× z′(t) .

Notice that for t ∈ (0, 1) and t ∈ (2, 3), z(t) and z′(t) are both proportional to one another, and so

z(t)× z′(t) = 0 except when t ∈ (1, 2). For t ∈ (1, 2),

z(t)× z′(t) = h2(v + (t− 1)(w − v))× (w − v) = h2v ×w .∫ 3

0

z′(t) ·AMz(t)dt = a ·
∫ 2

1

h2v ×wdt = h2a · v ×w . (9.52)

Using (9.49) once more we have

lim
h→0

1

area(D(h))

∫
C(h)

F ·Tds =
2a · v ×w

‖v ×w‖
,

which is the same as (9.48).

Now suppose that F is a conservative vector field on R3. Then if C runs around any triangle,∮
C F · Tds = 0. The by considering triangles though a point x0 with a given normal N, which can

be any unit vector, the previous theorem says that curlF(x0) ·N = 0. Since this is true for all unit

vectors N, and all x0, curlF = 0.

This can be seen another way: F is conservative if and only if F−∇ϕ for some potential function

ϕ. Suppose that ϕ is twi continuously differentiable, so that curl∇ϕ is well-defined and continuous.

Using the formula (9.47), we compute

curl∇ϕ =

(
∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y
,
∂2ϕ

∂z∂x
− ∂2ϕ

∂x∂z
,
∂2ϕ

∂x∂y
− ∂2ϕ

∂y∂x

)
.

Each entry on the right is zero by Clairault’s Theorem. Hence, a continuously differentiable conser-

vative vector field F satisfies curlF = 0. The converse is also true. The proof of this, and much else,

rests on the next theorem.
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Theorem 100. Let S be an smooth oriented surface in R3 bounded by a smooth simple curve C which

is necessarily closed. Give the C the orientation induced by that of S: We choose the unit tangent

vector T to C so that at each point of C, T×N points outward, away from S.

Let F be a twice continuously differentiable vector field defined on a neighborhood of S. Then∫
S

curlFdS =

∮
C

F ·Tds .

Proof. Subdivide the surfaces S into many small approximately triangular tiles: This is a “triangu-

lation” of S. The triangles with an edge on the boundary inherit an orientation from C. Each edge

in the triangulation that is not on the boundary C is internal and is part of the boundary to two

neighboring triangles. Here is a picture of a triangulation:

If we give each triangle tile the orientation it inherits from S, each of the internal edges is crossed

twice, and in opposite directions. Therefore,∮
C

F ·Tds =
∑
tiles

∮
boundary of tile

F ·Tds ,

since all of the integrations along internal edges cancel out in pairs, leaving only the edges along C.
By the previous theorem, for any small tile with a vector at x0, and with N denoting the normal

to S at x0, ∮
boundary of tile

F ·Tds ≈ (curlF(x0) ·N) (area of the tile) ,

an the error in this approximation goes to zero percentage-wise as the tile diameter goes to zero.

However, ∑
tiles

(curlF(x0) ·N) (area of the tile)

is a Riemann sum for

∫
S

curlF ·NdS. Therefore, taking the diameter of the tiles to zero, we obtain

the stated equality.

Example 148 (Verifying Stokes’ Theorem in an example). Let C be the unit circle in in the plane

x + y + z = 1 that is centered at (0, 0, 1). Let S be the disk in this plane that is bounded by C. At

each point of S there are two unit normal vectors, ±3−1/2(1, 1, 1). Orient S by choosing N to point

upward; i.e,

N =
1√
3
(1, 1, 1) .



9.3. LINE INTEGRALS, FORCE FIELDS AND WORK 363

We give C the induced orientation. Let F(x, y, z) = (xy, 1, xy).

We will compute both

∮
C

F ·Tds and

∫
S

curlF ·NdS. Starting with the line integral, the first

step is to parameterize C. First we seek any parameterization. Later, we will adjust it if necessary to

make it consistent with the orientation.

Let {u1,u2,u3} be an right handed orthonormal basis of R3 with u3 = N. Define

x(t) = (0, 0, 1) + cos tu1 + sin tu2 , t ∈ (0, 2π) .

Then x′(t) = − sin tu1 + cos tu2, which is a unit vector. The unit tangent at x(t) is therefore

±(− sin tu1 + cos tu2) Since the normal vector in N = u3, the condition specifying the orientation is

that

±(− sin tu1 + cos tu2)× u3 = ±(cos tu1 sin tu2)

points outward from S. (In doing the calculation, we have used the fact that {u1,u2,u3} is a right-

handed orthonormal basis.) Choosing the plus sign, this vector points to the outside of the disk. Hence,

our parameterization is consistent with the orientation. (Had we chosen a left handed orthonormal

basis, this would not be the case, but then we could correct it by replacing x(t) with x(2π − t), which

traces out the same curve backwards, thus reversing the direction motion.)

For explicit computation, we now choose such a basis. Notice that 2−1/2(1,−1, 0) is a unit vector

that is orthogonal to u3. Hence we get the basis we seek by choosing u1 = 2−1/2(1,−1, 0) and then

u2 = u3 × u3 = 6−1/2(1, 1,−2) .

Therefore

x(t) = (2−1/2 cos t+ 6−1/2 sin t , −2−1/2 cos t+ 6−1/2 sin t , 1− (2/3)1/2 sin t) .

Evaluating,

F(x(t)) =
1

6
( sin2 t− 3 cos2 t, 6, sin2 t− 3 cos2 ) .

Next,

x′(t) = (− 2−1/2 sin t+ 6−1/2 cos t , 2−1/2 sin t+ 6−1/2 cos t , (2/3)1/2 cos t) .

Since our parameterization is consistent with the orientation,

F ·Tds = F(x(t)) · x′(t)dt = (sin2 t− 3 cos2 t)(−2−1/2 sin t+ 6−1/2 cos t)dt

+ (2−1/2 sin t+ 6−1/2 cos t)dt

+ (sin2 t− 3 cos2 t)(2/3)1/2 cos tdt .

Then since

∫ 2π

0

sinm t cosn tdt = 0 for any non-negative integers m and n with m + n odd, we see

that ∮
C

F ·Tds =

∫ 2π

0

F(x(t)) · x′(t)dt = 0 .

Next we compute

∫
S

curlF ·NdS. We first compute

curlF = (x,−y,−x) .
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Since N = 3−1/2(1, 1, 1) everywhere on S, F ·N = −y everywhere on S. Therefore,∫
S

curlF ·NdS = −
∫
S
ydS .

Since the surface S is symmetric under the transformation sending y to −y,

∫
S
ydS = 0. Therefore,

∫
S

curlF ·NdS = 0 .

Example 149. Let C be the curve that runs from (1, 0, 0) to (0, 1, 0), and from there to (0, 0, 1),

and from there back to (1, 0, 0). Let F = (xy, 1, xy). Compute the total circulation∮
C

F ·Tds .

When asked to compute a circulation integral, or even a line integral, unless the answer is obvious

on grounds of symmetry, say, the first step is to compute the curl of the vector field. From the previous

example we have

curl(F) = (x,−y,−z) .

This is quite simple, so it will be good to use Stokes’ Theorem. This is especially direct since C bounds

a triangular surface S in the plane passing through the vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1)

The triangle S lies in the plane given by x+ y + z = 1, and for this plane the unit normal is

N = ± 1√
3

(1, 1, 1) .

Therefore, curl(F) ·N = −y, and so ∮
C

F ·Tds = −y
∫
S

dS .

To compute this integral, we parameterize S. The projection of S onto the x, y plane is the

triangle with vertices ((1, 0), (0, 1) and (0, 0). This is the domain

{(x, y) : 0 ≤ x ≤ 1− y and 0 ≤ y ≤ 1 } .

The equation for the plane containing the triangle is z = 1− x− y, and using this to eliminate z, we

obtain

X(x, y) = (x, y, 1− x− y) , 0 ≤ x ≤ 1− y and 0 ≤ y ≤ 1 .

Then Xx(x, y) = (1, 0,−1), Xy = (0, 1,−1), and Xx ×Xy(x, y) = (1, 1, 1). Hence dS =
√

3dxdy

and

−
∫
S
ydS =

∫ 1

0

(∫ 1−y

0

ydx

)
dy =

∫ 1

0

(y − y2)dy =
1

6
.

Stokes’ Theorem can also be use to efficiently evaluate line integrals along complicated curves C
that are not closed by finding a simple curve C′ such that C followed by C′ is closed.
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Example 150. Let C be the contour that runs from (0, 0, 0) to (1, 0, 0), and from there to (1, 0, 1),

and from there to (0, 0, 1). Let F = (x, x, z). We compute the line integral∫
C

F ·Tds .

To do this efficiently, let C′ be the segment from (0, 0, 1) to (0, 0, 0). Let C+C′ denote C followed

by C′. This is a closed curve, enclosing a square in the x, z plane. The unit normal to this surface is

±(0,−1, 0), which is orthogonal to curl(F) = (0, 0, 1).

Hence ∫
C

F ·Tds+

∫
C′

F ·Tds =

∫
C+C′

F ·Tds = 0 ,

and so ∫
C

F ·Tds = −
∫
C′

F ·Tds .

We parameterize C′ by x(t) = (0, 0, 1− t) for 0 ≤ t ≤ 1. Then∫
C′

F ·Tds =

∫ 1

0

(1− t)(−1)dt = −1

2
and hence

∫
C

F ·Tds =
1

2
.

Example 151. Let C be the curve that is the intersection of the sphere x2 + y2 + z2 = 4 and

the plane x + y + z = 1, oriented so that ir runs counterclockwise when viewed from above. Let

F(x, y, z) = (xy, 1, xz). Let us compute

∮
C

F ·Tds.

We first compute that curlF = (0,−z,−x). This is fairly simple. Also note that C is the boundar

of S, where S is the part of the plane x+y+z = 1 inside the spehre x2 +y2 +z2 = 4, and if we choose

the upward unit normal on S, the orientations of S and C are consistent, and by Stokes’ Theorem,∮
C

F ·Tds =

∫
S

curlF ·NdS .

Since N = 3−1/2(1, 1, 1) everywhere on S, curlF ·N = −3−1/2(x + z) everywhere on S, and since

x+ z = 1− y everywhere on S and we are left with computing

− 1√
3

∫
S

(1− y)dS .

The surface S is a disk in the plane x + y + z = 1. The center of the disk is at 1
3(1, 1, 1). To

find radius of the disk, note that on the intersection of this plane and the sphere x2 + y2 + z2 = 4,

we have

x2 + y2 + z2 − 2

3
(x+ y + z) = 4− 2

3
=

10

3
.

Completing squares, (
x− 1

3

)2

+

(
y − 1

3

)2

+

(
z − 1

3

)2

=
11

3
.

Hence S is the disk in the plane x + y + z = 1 with radius
√

11/3 and center (1/3, 1/3, 1/3). Our

integrand 1− y can be witten as 2/3− (y − 1/3). and by symmetry∫
S

(y − 1/3)dS = 0 .
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Therefore,

− 1√
3

∫
S

(1− y)dS = − 2

3
√

3

∫
S

1dS .

This last integral is the area of S, which by lementary geometry is 11π/3. Finally we have∮
C

F ·Tds = − 22π

9
√

3
.

The direct parameterization leads to calculations that are more cumbersome.

9.3.3 Curl and conservative vector fields

Let C be any simple closed curve in R3. Let U be an open set in R3 containing C. Suppose that there

exists a smooth simple surface S such that C is the boundary of S.

If F is any vector field with curlF = 0, and we give S an orientation that is consistent with that

of C, we have

0 =

∫
S

curlF ·NdS =

∫
C

F ·Tds .

Definition 106 (Simply connected domain). An open set U ⊂ R3 is simply connected in case

whenever C is any smooth simply closed curve in U , there is a smooth oriented surface S in U such

that C is the boundary of S.

The set R3 itself is simply connected. This is not an entirely simple matter. Consider a smooth

simple closed curve C in R3, and suppose that C is the image of x(t) for t ∈ [0, b] so that x(0) = x(b).

Let p = x(0), and let q = x(b/2). Then x(t), t ∈ (0, b), and x(b − t), t ∈ (0, b/2) are two curves

running from p to q along the two “halves” of C. We construct a surface by connecting x(t) and

x(b− t) with a striaght line segment for each t, connecting up the two halves of C. This striaght line

segment is parmeterized by (1− v)x(t) + vx(b− t). Replacing t by u, we have

X(u, v) = (1− v)x(u) + cx(b− u) , (u, v) ∈ (0, b)× (0, 1) .

This gives us what we seek proivided that

Xu ×Xv(u, v) 6= 0

at any (u, v) ∈ (0, b)× (0, 1). If this is the case, we can define

N(u, v) =
1

‖Xu ×Xv(u, v)‖
Xu ×Xv(u, v) ,

which is continuous since x(t) is continuously differentiable, and so this gives us an oriented surface

whose boundary is clearly C. The subtlely is that Xu×Xv(u, v) = 0 may be true for some parameter

values. But one can try something other than a striaght line segment, or a different division of C into

two halves. Some small twist of the procedure will work.

It is interesting to apply this procedure when C is the boundary of the Möbous band. since the

Möbius band is not orientable, we might hope that it will yield be another surface S whose boundary

is also C, but which is orientable. This is the case.
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Example 152 (Orientable surface woth the same boundary as the Möbius band). Recall that the

bounday of the Möbius band is the curve x(t) parameterized by

x(u) = ( cosu(2 + sin(u/2)) , sinu(2 + sin(u/2)) , cos(u/2) ) , u ∈ [0, 4π] . (9.53)

We get the surface we seek by forming the straight line segment between x(u) and x(4π − u) for

u ∈ [0, 2π], as described above. Hence we define

X(u, v) = (1− v)x(u) + vx(4π − u) , ((u, v) ∈ [0, 2π]× [0, 1] .

The image of this function in R3 is the surface we seek. Clearly, the boundary consists of the points of

the form X(u, 0) and X(u, 1) for u ∈ [0, 2π], which are the two parts of C correpsonding to u ∈ [0, 2π]

and u ∈ [2π, 4π] in (9.53). Here is a plot showing the surface and its bounding curve from two

pesepctives:

Given a simple smooth closed curve C in R3, we can find an oriented surface S that has C as

its boundary, but S may have self intersections. However, we do not require that S be free of self

intersections to apply Stokes’ Theorem; we only require that S can be oriented. Then when we

triagulate S, we can apply Stokes’ theorem all to of the triangles in the triangulation.

The next example concerns a more complicated curve in R3, the trefoil knot. It is still a simple

closed curve however, since it does not intersect itself.

Example 153 (An oriented surface spanning the trefoil knot). The trefoil knot may be parameterized

by

x(t) = ((2 + cos(3t/2)) cos t , (2 + cos(3t/2)) sin t , 3 sin(3t/2)) , t ∈ [0, 4π] .

Our standard parameterization procedure is to join the two curves x(u) and x(4π − u) for u ∈
(0, 2π) be straight line segments running from x(u) and x(4π − u). We define

X(u, v) = (1− v)x(u) + vx(4π − u) , (u, v) ∈ (0, 2π)× (0, 1) .

The next plots show the trefoil knot itself, and the spanning surface that we have just specified.
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The part of the knot in red is the first part corresponding to t ∈ (0, 2π), and the part in blue is

the second part, corresponding to t ∈ (2π.4π). The lines on the surfcave are lines of constant u and

v. They divide the surface into “tiles” that can be further subdivided into triangles.

The surface has self intersctions, and at the self intersections there is no single unit normal

vector N. However, it is evident that the parameterization is continuously differentiable at the points

of intersection, and the self intersections are one dimensional, and do not account for any surface

area at all. Therefore we can ignore these points, and for any continously differentiable vector field

F, we can and still compute

∫
S

curlF ·NdS, and Stokes’ Theorem is still valid. In particluar, if

curlF = 0 everywhere, then ∫
C

F ·Tds =

∫
S

curlF ·NdS = 0 .

For an example of an open set in R3 that is not simply connected, let U be R3 with the z-axis

removed. Let C be the unit circle in the x, y plane, which lies in U . There is no surface S in U having

C as its boundary since any surface having C as its boundary must intersect the z-axis somewhere.

Because U is not simply connected, there exist conitnuously differentiable vector fields F defined

on U such that curlF = 0 everywhere on U , but such that F is not conservative, and not a gradient

vector field.

Example 154 (A vector field F with curlF = 0 that is not conservaitve). Let

F(x, y, z) =
1

x2 + y2
(−y, x, 0)) .

Then

curlF(x, y, z) =

(
0, 0,

∂

∂x

x

x2 + y2
+

∂

∂y

y

x2 + y2

)
=

(
0, 0,

y2 − x2

(x2 + y2)
+

x2 − y2

(x2 + y2)

)
= 0 .

Now, if C is the circle of radius r > 0 in the x, y plane with its usual orientation, we may

parameterize it ocnsistently by x(t) = r( cos t sin t, 0), Then F(x(t)) · x′(t) = ( − sin t, cos t) · ( −
sin t, cos t) = 1, and hence ∮

C
F ·Tds =

∫ 2π

0

F(x(t)) · x′(t)d = 2π ,
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independent of r > 0.

This is not zero, despite the fact that F is conitnuously differentiable everywhere on U and

curlF = 0 everywhere on U . Stokes’ Theorem is not voilated because there is no surface (oriented or

not) in U that has C as its boundary. Any surface with C as its boundary must intersect the line along

which F is singlular. Even though it may do this in a single point, the fact that ‖F‖ is arbitrarily large

in a neighborhood of this single point allows the single points to make a difference. The hypothesis in

Theorem 99 that F is conitnuously differentiable on the triangle is essential.

If an open set U ⊂ R3 is simply connected, and if F is a continuously differentiable vector field

on U such that curlF = 0 everywhere on U , then F is conservative on U . To see this, let C be any

smooth, simple oriented curve in U , and let S be a smooth simple surface whose boundary is C. Give

S the orientation that is consistent with that of C. Then by Stokes’ Theorem∫
C

F ·Tds =

∫
S

curlF ·NdS = 0 .

Therefore, F is conservative.

That is, for vector fields F on a simply connected set U ⊂ R3, we can test whether F is conser-

vative of not by computing curlF: The vector field F on U is conservative if and only if curlF = 0. It

is not hard to see that R3 itself is simply connected. Therefore, if we want to know whether a vector

field F defined on all of R3 is a conservative vector field, and the gradient of some potential function

ϕ, we first compute the curl of F. If this is zero, then F is a gradient vector field, and otherwise it

is not.

Example 155. Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

One of the vector fields F and G is equal to ∇ϕ for some potential function ϕ. Which one is it?

Find such a potential function for the conservative vector field.

To do this, we first compute the curls. We find

curl(F) = 0 and curl(G) = (2− 2z, 2z − 2, 0) .

A vector field on R3 is a gradient if and only if its curl is zero at every point in R3. Hence F is

a gradient. To find the potential function, pick 0 as a base point. For any x ∈ R3, define

x(t) = tx , t ∈ (0, 1) .

Then any potential function ϕ satisfies

ϕ(x) = ϕ(0) +

∫
C0,x

F ·Tds .

Then

F(x(t)) = (ty + t2z2, tx+ t2z2, t2(2zx+ 2zy))
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and x′(t) = (x, y, z). Hence

ϕ(x)− ϕ(0) =

∫ 1

0

[(ty + t2z2)x+ (tx+ t2z2)y + t2(2zx+ 2zy)z]dt

=
1

6
[(3y + 4z2)x+ (3x+ 4z2)y + (2xz + 2xy)z

= xy + z2(x+ y) .

Since an arbitrary constant may be subtracted from ϕ, we may set ϕ(0) = 0, and then we have

ϕ(x, y, z) = xy + z2(x+ y) .

It is now easy to check that ∇ϕ = F.

9.3.4 Vector potentials

Theorem 101. Let F(x) = (P (x), Q(x), R(x)) be a twice continuously differentiable vector field.

Then

div(curl(F(x))) = 0 .

Proof.

div (curlF(x)) = div

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
+

∂

∂x

(
∂R

∂y
− ∂Q

∂z

)
+

∂

∂y

(
∂P

∂z
− ∂R

∂x

)
+

∂

∂z

(
∂Q

∂x
− ∂P

∂y

)
=

(
∂2P

∂y∂z
− ∂2P

∂z∂y

)
+

(
∂2Q

∂z∂x
− ∂2Q

∂x∂z

)
+

(
∂2R

∂x∂y
− ∂2R

∂y∂x

)
= 0 ,

where the final equality is valid on account of Clairault’s Theorem.

Vector fields G that satisfy div(G(x)) = 0 are called divergence free vector fields. Theorem 101

says that every vector field that is a curl is divergence free. There is an important converse: If G

is divergence free on a simply connected domain U ⊂ R3, such as R3 itself, then there is a a twice

continuously differentiable vector field A(x) on U such that G(x) = curlA(x) for all x ∈ U .

The first thing to notice is that if G is divergence free in U and G(x) = curlA(x) for some

twice-continuously differentiable vector field A, then we also have

G(x) = curl(A(x) +∇ϕ(x))

for any twice-continuously differentiable function ϕ on U . Hence if there is one such vector field A,

there are infinitely many others. We might hope, therefore, that it is possible to make a simple choice

for A. This turns out to be the case.

Let G = (P,Q,R). Consider a twice-continuously differentiable vector field A(x) = (F (x), 0, H(x)).

Then

curlA(x) =

(
∂H

∂y
(x),

∂F

∂z
(x)− ∂H

∂x
(x),−∂F

∂y
(x)

)
.



9.3. LINE INTEGRALS, FORCE FIELDS AND WORK 371

Then G(x) = curlA(x) becomes

P (x) =
∂H

∂y
(x) , Q(x) =

∂F

∂z
(x)− ∂H

∂x
(x) and R(x) = −∂F

∂y
(x) .

Using the first and third of the equations and the Fundamental Theorem of Calculus, we conclude

(in the case U = R3) that

H(x, y, z) =

∫ y

0

P (x, t, z)dt+ α(x, z)

F (x, y, z) = −
∫ y

0

R(x, t, z)dt+ β(x, z)

for twice-continuously differentiable functions α(x, z) and β(x, z). We then compute the middle term

in curlA:

∂F

∂z
(x)− ∂H

∂x
(x) = −

∫ y

0

[
∂R

∂z
(x, t, z) +

∂P

∂x
(x, t, z)

]
dt+

∂α

∂z
(x, z)− ∂β

∂x
(x, z) .

However, since divG = 0,

∂R

∂z
(x, t, z) +

∂P

∂x
(x, t, z) = −∂Q

∂y
(x, t, z) ,

and so
∂F

∂z
(x)− ∂H

∂x
(x) = Q(x, y, z)−Q(x, 0, z) +

∂α

∂z
(x, z)− ∂β

∂x
(x, z) . (9.54)

Now choose

α(x, z) =

∫ z

0

Q(x, 0, t)dt and β(x, z) = 0 .

with this choice, (9.54) reduces to

∂F

∂z
(x)− ∂H

∂x
(x) = Q(x, y, z) ,

and thus we have curlA(x) = G(x), as we sought.

Definition 107. Let G be a continuously differentiable vector field on an open set U ⊂ R3. Any

twice-continuously differentiable vector field A(x) on U such that curlA(x) = G(x) for all x ∈ U is

called a vector potential for G on U .

We have proved the following theorem:

Theorem 102. Let G = (P,Q,R) be a continuously differentiable divergence free vector field on R3.

Let A be the vector field on R3 defined by A(x) = (F (x), 0, H(x)) where

F (x, y, z) = −
∫ y

0

R(x, y, z)dt+

∫ z

0

Q(x, 0, t)dt

H(x, y, z) =

∫ y

0

P (x, y, z)dt . (9.55)

Then A is a vector potential for G.
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Example 156 (Computing a vector potential). Let G = (−xy−2y, x, yz). Then divG = −y+y = 0,

so that G = 0. Writing G = (P,Q,R), we have P (x, y, z) = xy − 2y, Q(x, y, z) = x and R(x, yz) =

yz. Then from (9.55) we get

F (x, y, z) = −1

2
y2z + xz and H(x, y, z) = −1

2
xy2 − y2 .

Hence

A(x, y, z) = (xz − y2z/2, 0,−y2 − xy2/2) .

As you can easily check, curlA = G.

9.4 The Laplace operator and Poisson’s Equation

9.4.1 The basic problem of electrostatics

The two basic equations of electrostatics that describe the electric field E that is produced by a static

electric charge density %(x) are

divE(x) = %(x) and curlE(x) = 0 . (9.56)

Let %(x) be a given charge density. It can take on both positive and negative values since both

positive and negative charges exist in nature. Let us assume that the charge is well-localized so that

%(x) = 0 for all x such that ‖x‖ > R for some finite R. Let us also suppose that % is continuously

differentiable. As we shall now explain, the equations (9.58) specify the vector field E: We can even

use what we have learned to derive a formula for E(x) in terms of the given charge density %.

The first thing to notice is that since curlE(x) = 0, E is a conservative vector field, and hence,

supposing that it is continuously differentiable, it has the form E(x) = ∇ϕ(x) for some twice con-

tinuously differentiable function ϕ(x). Now inserting E(x) = ∇ϕ(x) into the first equation in (9.58),

we obtain

div∇ϕ(x) = 0 .

Writing this out more explicitly,

div∇ϕ(x) =
∂2ϕ(x)

∂x2
+
∂2ϕ(x)

∂y2
+
∂2ϕ(x)

∂z2
. (9.57)

Definition 108 (Laplacian). Let ϕ(x) be a twice continuously differentiable function on R3. The

Laplacian of ϕ is the function given by (9.57), and is it denoted by ∆ϕ(x). That is

∆ϕ(x) := div∇ϕ(x) .

The Laplace operator is the transformation from the twice continuously differentiable functions on

R3 to the continuous functions on R3 given by sending ϕ to ∆ϕ. The operator itself is often written

as

∆ =
∂2

∂x2
+
∂2(x)

∂y2
+
∂2(x)

∂z2
,

which is then applied to ϕ to produce ∆ϕ.
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We can now re-write (9.58) in terms of ϕ as

∆ϕ(x) = %(x) and E(x) = ∇ϕ(x) . (9.58)

The equation ∆ϕ(x) = %(x), thought of as an equation for the unknown potential ϕ in terms of

the given electric charge distribution %, is Poisson’s equation.

We will show that for a continuous charge distribution %(x) that is identically zero outside of a

ball of some radius R, there is a unique solution of Poisson’s equation with the property that

lim
‖x‖→∞

ϕ(x) = 0 .

The gradient of this potential function is then the electric field E produced by the static charge

density %.

First, suppose that ϕ(x) and ψ(x) are two solutions of Poisson’s equations for the given charge

density %. That is,

∆ϕ(x) = %(x) and ∆ψ(x) = %(x) . (9.59)

Let φ = ϕ− ψ be their difference. Then, since differentiation is a linear operation,

∆φ(x) = ∆ϕ(x)−∆ψ(x) = %(x)− %(x) = 0 .

Definition 109. A harmonic functions on R3 is any twice-continuously differentiable function φ on

R3 such that ∆φ(x) = 0 for all x.

9.4.2 Harmonic functions

We have just seen that the difference φ := ϕ − ψ of two solutions of Poisson’s equation for the

charge density % is a harmonic function. Harmonic functions have the mean value property, as we

now explain. Let S(x, r) denote the sphere of radius r in R3 with the center at x. likewise, let

B(x, r) denote the ball of radius r in R3 centered at x. Then S(x, r) is the boundary of B(x, r). The

average of a continuous function φ over S(x, r) is given by
1

4πr2

∫
S(x,r)

φ(y)dS(y). The average of a

continuous function φ over B(x, r) is given by
3

4πr3

∫
B(x,r)

φ(y)dV (y).

Theorem 103 (Mean Value Theorem). Let φ be a harmonic function on R3. Then for all x ∈ R3

and all r > 0,

φ(x) =
1

4πr2

∫
S(x,r)

φ(y)dS(y) =
3

4πr3

∫
B(x,r)

φ(y)dV (y) . (9.60)

That is the average, or mean, value of φ over any sphere or ball centered at x is equal to the

value of φ at x.

Proof of Theorem 103. Let φ be harmonic. Fix any x, and then for each r > 0 define

f(r) =
1

4πr2

∫
S(x,r)

φ(y)dS(y) .
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Note that we have the alternate formula f(r) =
1

4πr2

∫
S(0,1)

φ(x + ry)dS(y) which moves the r from

the domain of integration to the integrand. It is now an easy matter to differentiate in r:

f ′(r) =
1

4πr2

∫
S(0,1)

∇φ(x + ry) · ydS(y) .

Note that the outward unit normal N(y) at y ∈ S(0, 1) is simply y itself. Hence

f ′(r) =
1

4πr2

∫
S(0,1)

∇φ(x + ry) ·N(y)dS(y) =
1

4πr2

∫
S(x,r)

∇φ(y) ·N(y)dS(y) .

Then by the Divergence Theorem∫
S(x,r)

∇φ(y) ·N(y)dS(y) =

∫
B(x,r)

div∇φ(y)dV =

∫
B(x,r)

∆φ(y)dV = 0 .

Therefore, f(r) is constant, and since φ is continuous, φ(x) = limr→0 f(r). This proves that f(r) =

φ(x) for all x.

Now integrating in spherical coordinates,∫
B(x,r)

φ(y)dV (y) =

∫ r

0

(∫
S(x,s)

φ(y)dS(y)

)
ds = 4π

∫ r

0

s2f(s)ds =
4π

3
r3φ(x) .

Dividing by the volume of B(x, r) we obtain the second formula.

Corollary 7. Let φ be a harmonic function on R3 such that lim‖x‖→∞ φ(x) = 0. Then ϕ(x) = 0 for

all x.

Proof. By Theorem 103, φ(x) = lim
r→∞

1

4πr2

∫
S(0,1)

φ(x + ry)dS(y) = 0.

Now let ϕ and ψ be such that for some charge density %, ∆ϕ(x) = %(x) and ∆ψ(x) = %(x), and

suppose that

lim
‖x‖→∞

ϕ(x) = 0 and lim
‖x‖→∞

ψ(x) = 0 .

Then defining φ = ϕ − ψ, φ is harmonic and lim‖x‖→∞ φ(x) = 0. Then Corollary 7 says that

ϕ(x) = ψ(x) for all x. That is, there is at most one solution ϕ to Poisson’s equation ∆ϕ = % with

the property that lim‖x‖→∞ ϕ(x) = 0. Of course, we may add a constant to any solution of ∆ϕ = %

to obtain another solution, so without the condition that lim‖x‖→∞ ϕ(x) = 0, there would be no

uniqueness. But with it, there is.

We now turn to the existence of solutions.

Lemma 32. Let G(x) be the function defined by

G(x) :=
1

‖x‖
. (9.61)

Then for all x 6= 0, ∆G(x) = 0 and

∇G(x) := − 1

‖x‖3
x . (9.62)
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Proof. We write G(x) = (x · x)−1/2, and then by the chain rule,

∇G(x) = −1

2
(x · x)−3/22x = − 1

‖x‖3
x .

Then

div(∇G(x)) = div((x · x)−3/2x) = 3(x · x)−5/2x · x− 3(x · x)−3/2 = 0 .

Lemma 33. Let D be a region bounded by the piecewise continuously differentiable surface S. Let f

and g be two twice-continuously differentiable functions on D. Then∫
D

∇f(x) · ∇g(x)dV = −
∫
D

f(x)∆g(x)dV +

∫
S
f(x)∇g(x) ·N(x)dS . (9.63)

Proof. We compute

div(f(x)∇g(x)) = ∇f(x) · ∇g(x) + f(x)∆g(x) .

Now integrate both sides over D, and use the Divergence Theorem to conclude∫
D

div(f(x)∇g(x))dV =

∫
S
f(x)∇g(x) ·N(x)dS .

Since (9.64) is symmetric in f and g, we have, under the same hypotheses on f and g, that

−
∫
D

f(x)∆g(x)dV +

∫
S
f(x)∇g(x)·N(x)dS = −

∫
D

g(x)∆f(x)dV +

∫
S
g(x)∇f(x)·N(x)dS . (9.64)

We now apply this and Lemma 32 as follows. Fix 0 < r < R, x ∈ R3, and let A(x, r, R) denote

the annular region

A(x, r, R) = {y : r < ‖y − x‖ < R } .

Then the boundary of A(x, r, R) consists of two pieces, S(x, r) and S(x, R), but the outward normal

for A(x, r, R) on S(x, r) points towards x; it is the opposite of the usual “outward normal” on S(x, r).

Now let g(y) be given by g(y) := G(x−y) where G is defined in Lemma 32. Then by Lemma 32,

∆g(x) = 0 everywhere in A(x, r, R). Then with this choice of g and with Dx,r,R = A(x, r, R) and

Sx,r,R denoting its boundary, (9.64) becomes∫
Dx,r,R

g(y)∆f(y)dV = −
∫
Sx,r,R

f(y)∇g(y) ·N(y)dS +

∫
Sx,r,R

g(y)∇f(y) ·N(y)dS . (9.65)

We will take the limit r → 0 and R→∞, and shall deduce the following:

Theorem 104. Let f be a twice continuously differentiable function such that lim‖x‖→∞ f(x) = 0

and such that
∫
R3 |∆f(y)|dV <∞. Then

f(x) = − 1

4π

∫
R3

1

‖x− y‖
∆f(y)dV .
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Proof. By Lemma 32, ∇g(y) = −‖y − x‖−3(y − x), and hence

∇g(y) ·N =
1

‖y − x‖3
(y − x) ·N(y) = ± 1

‖y − x‖3
(y − x) · 1

‖y − x‖
(y − x) = ± 1

‖y − x‖2
,

where the − sign is correct for y ∈ S(x, R), and the + sign is correct for y ∈ S(x, r). Therefore,∫
Sx,r,R

f(y)∇g(y) ·N(y)dV =
1

r2

∫
S(x,r)

f(y)dS − 1

R2

∫
S(x,R)

f(y)dS .

Then since f is continuous, its average over S(x, r) tends to f(x) as r tends to 0. That is,

lim
r→0

1

4πr2

∫
S(x,r)

f(y)dS = f(x) .

Likewise, since lim‖x‖→∞ f(x) = 0, the average of f over S(x, R) tends to zero as R tends to infinity.

That is,

lim
R→∞

1

4πR2

∫
S(x,R)

f(y)dS = 0 .

Altogether, we conclude that

lim
r→0,R→∞

(
−
∫
Sx,r,R

f(y)∇g(y) ·N(y)dV

)
= −4πf(x) . (9.66)

Next, since g(y) = 1/r on S(x, r), and g(y) = 1/R on S(x, R), with N now denoting the usual

outward unit normals on S(x, r) and S(x, R) respectively,∫
S
g(y)∇f(y) ·N(y)dS = −1

r

∫
S(x,r)

∇f(y) ·N(y)dS +
1

R

∫
S(x,R)

∇f(y) ·N(y)dS .

By the Divergence Theorem,

∫
S(x,r)

∇f(y) ·N(y)dS =

∫
B(x,r)

∆f(y)dV and since ∆f is continuous,

lim
r→0

3

4πr3

∫
B(x,r)

∆f(y)dV = ∆f(x). Therefore, lim
r→0

1

r

∫
S(x,r)

∇f(y) ·N(y)dS = 0. Similarly, by the

Divergence Theorem,

1

R

∫
S(x,R)

∇f(y) ·N(y)dS =
1

R

∫
B(x,R)

∆f(y)dV .

Then under the assumption that
∫
R3 |∆f(y)|dV <∞, lim

R→∞

∫
B(x,R)

|∆f(y)|dV = 0. Altogether,

lim
r→0,R→∞

(
−
∫
Sx,r,R

g(y)∇f(y) ·N(y)dV

)
= 0 . (9.67)

Theorem 104 gives us a candidate for the solution of Poisson’s equation ∆ϕ(x) = %(x): Define

ϕ(x) := − 1

4π

∫
R3

1

‖x− y‖
%(y)dV . (9.68)

This is an “improper integral” in that the domain of integration is unbounded and, for some x, the

integrand is not continuous and bounded due to the singularity at y = x. However, recall that we

are assuming that % is continuous, and that for some R, %(y) = 0 whenever ‖y‖ > R. Under these

assumptions, the integral defining ϕ converges for all x, and moreover:
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Lemma 34. Suppose that % is continuous, and that for some R, %(y) = 0 whenever ‖y‖ > R. Then

the integral in (9.68) converges for all x ∈ R3, so that ϕ is a well-defined function on R3. Moreover,

ϕ satisfies lim‖x‖→∞ ϕ(x) = 0.

Proof. First suppose ‖x‖ ≥ R + s for s > 0. Then by the triangle inequality, ‖x‖ = ‖x − y + y‖ ≤
‖x− y‖+ ‖y‖, so that

‖x− y‖ ≥ ‖x‖ − ‖y‖ ≥ (R+ s)−R = s .

Hence for ‖x‖ > R+ s,∣∣∣∣∫
R3

1

‖x− y‖
%(y)dV

∣∣∣∣ ≤ 1

s

∫
R3

|%(y)|dV =
1

s

∫
B(0,R)

|%(y)|dV .

Since % is continuous and equals zero outside of B(0, R), there is a constant C so that |%(y)| ≤ C for

all y. Then

∫
B(0,R)

|%(y)|dV ≤ 4π

3
R3C. Hence, for ‖x‖ > R,

∣∣∣∣∫
R3

1

‖x− y‖
%(y)dV

∣∣∣∣ ≤ 1

‖x−R‖
4π

3
R3C .

This proves that for ‖x‖ > R, the integral defining ϕ(x) makes perfect sense and moreover, lim‖x‖→∞ ϕ(x) =

0. In fact, for any p < 1, lim‖x‖→∞ ‖x‖pϕ(x) = 0.

It remains to show that for ‖x‖ ≤ R, the integral defining ϕ is convergent. If ‖x‖ ≤ R and

‖y‖ ≤ R, then by the triangle inequality, ‖x− y‖ ≤ 2R. Since |%(y)| ≤ C for all y, when ‖x‖ ≤ R,

1

‖x− y‖
|%(y)| ≤

C/‖x− y‖ ‖x− y‖ ≤ 2R

0 ‖x− y‖ > 2R .

In particular, we are not actually integrating over all of R3; since the integrand is zero for ‖y−x‖ >
2R, ∫

R3

1

‖x− y‖
|%(y)|dV =

∫
B(x,2R)

1

‖x− y‖
|%(y)|dV ≤ C

∫
B(x,2R)

1

‖x− y‖
dV ,

and it suffices to show that this last integral is actually convergent. This is easy:∫
A(x,r,2R)

1

‖x− y‖
dV (y) = 4π

∫ R

r

1

s
s2ds = C2π(R2 − r2) .

This shows that

lim
r→0

∫
A(x,r,R)

1

‖x− y‖
dV (y) ≤ CπR2 <∞ .

Therefore, the integral in (9.68) makes perfect sense for all x.

From here, it is easy to prove that ϕ is the solution to Poisson’s equation that we seek. Making

the change of variable y = x− z, for which the Jacobian determinant is simply 1,∫
R3

1

‖x− y‖
%(y)dV (y) =

∫
R3

1

‖z‖
%(x− z)dV (z) .

Then differentiating under the integral sign, and undoing the change of variables,

∆ϕ(x) = − 1

4π

∫
R3

1

‖z‖
∆%(x− z)dV (z) = − 1

4π

∫
R3

1

‖x− y‖
∆%(y)dV (y) = %(x) ,

where in the last equality we have used Theorem 104. Altogether we have proved:
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Theorem 105. Let % be a twice continuously differentiable function on R3 such that for some R,

%(y) = 0 if ‖y‖ > R. Then there exists a unique twice continuously differentiable function ϕ on R3

such that

∆ϕ(x) = %(x) for all x ∈ R3

and such that lim‖x‖→∞ ϕ(x) = 0. Moreover, ϕ is given by (9.68).

Differentiation is a linear operation, and so we may regard the Laplace operator ∆ as a linear

transformation, acting not on a finite dimensional vector space, but on the space of twice continuously

differentiable functions. This space may be regarded as an vector space because we have a natural

notion of “vector addition” and “scalar multiplication” on it. More specifically, for numbers a, b ∈ R
and twice continuously differentiable functions ϕ and ψ define aϕ+ bψ to be the function given by

(aϕ+ bψ)(x) = aϕ(x) + bψ(x) .

There is no finite set of functions that spans this vector space, so it is infinite dimensional.

Theorem 105 can be viewed as specifying a transformation that is inverse to the Laplacian.

While the Laplacian is a differential operator – its action consists of taking derivatives – the inverse

transformation is an integral operator as we might expect on account of the Fundamental Theorem

of Calculus. If we define the operation G on the space of twice continuosly differentialbe functions

that are identically zero outside of B(0, R) for some R by

Gϕ(x) := − 1

4π

∫
R3

1

‖x− y‖
ϕ(y)dV .

then by Theorem 104, when ∆ϕ is twice continuously differentiable and equals 0 outside B(0, R) for

some R,

G∆ϕ(x) = ϕ(x)

for all x ∈ R3.

9.4.3 The Hodge Decomposition of vector fields

Let F(x) = (P (x), Q(x), R(x)) be a twice continuously differentiable vector field. Then curlF(x) is

a continuously differentiable vector field, and we may take the curl again. Since

curlF(x) =

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
,

the x-component of curl(curlF)(x) is

∂

∂y

(
∂Q

∂x
− ∂P

∂y

)
− ∂

∂z

(
∂P

∂z
− ∂R

∂x

)
= −

(
∂2

∂y2
+

∂2

∂z2

)
P (x) +

∂

∂x

(
∂

∂y
Q(x) +

∂

∂z
R(x)

)
= −∆P (x) +

∂

∂x
(divF(x)) .

Similar computations show that the y-component is−∆Q(x)+ ∂
∂x (divF(x)) and that the z-component

is −∆R(x) + ∂
∂z (divF(x)). Therefore, if we define

∆F(x) = (∆P (x),∆Q(x),∆R(x)) ,

we have proved the following:
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Lemma 35 (Curl-curl identity). Let F(x) be a twice continuously differentiable vector field. Then

curl(curlF)(x) = ∇(divF(x))−∆F(x) . (9.69)

Now suppose that F is a four times continuously differentiable vector field such that for some

R, F(x) = 0 whenever ‖x‖ > R. Define %(x) := divF(x). (We will be taking lots of derivatives

soon.) Then % is (at least) twice continuously differentiable and %(x) = 0 whenever ‖x‖ > R. Define

φ(x) = − 1

4π

∫
R3

1

‖x− y‖
%(y)dV which, by the definition of % , is the same as

φ(x) = − 1

4π

∫
R3

1

‖x− y‖
divF(y)dV . (9.70)

By Theorem 104, lim‖x‖→∞ φ(x) = 0, and ∆φ(x) = div∇φ(x) = %(x) = divF(x) for all x ∈ R3.

Therefore, if we define

G(x) := F(x)−∇φ(x) ,

divG(x) = %(x)− %(x) = 0, and hence G(x) is divergence free and continuously differentiable. Then

by Theorem 102, there is a vector field A such that G(x) = curlA(x) for all x.

There is another way to find A using the curl-curl identity: Notice that since the curl of a

gradient is zero, curlG(x) = curlF(x) for all x. Hence

curl(curlF)(x) = curl(curlG)(x) = −∆G(x)

since G(x) is divergence free. Since F(x) = 0 whenever ‖x‖ > R, each component of curl(curlF) has

this property, and is also twice continuously differentiable since F itself is four times continuously

differentiable. Then by Theorem 104,

G(x) =
1

4π

∫
R3

1

‖x− y‖
curl(curlF)(y)dV .

Now define

A(x) :=
1

4π

∫
R3

1

‖x− y‖
curlF(y)dV (y) . (9.71)

Making the change of variables z := x− y, whose Jacobian factor is 1, we can write this as

A(x) :=
1

4π

∫
R3

1

‖z‖
curlF(x− z)dV (z) .

Differentiating under the integral sign, and then undoing the change of variables, we see that

curlA(x) = G(x) for all x. Therefore, F can be decomposed as F = ∇φ + curlA where φ is

given by where φ is given by (9.70) and A is given by (9.71), and

lim
‖x‖→0

φ(x) = 0 and lim
‖x‖→0

A(x) = 0 . (9.72)

This decomposition is unique: Suppose that we also have F = ∇ψ + curlB where ψ and B satisfy

the analogs of (9.72). Then

∇(φ− ψ) = curl(B−A) .

Taking the divergence of both sides, we obtain ∆(φ − ψ) = 0, so that φ − ψ is harmonic, and

furthermore lim‖x‖→∞(φ(x) − ψ(x)) = 0. Then by Corollary 7, φ(x) − ψ(x) = 0 for all x. Hence

φ = ψ, and then B = A.
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Theorem 106. Let F be a four times continuously differentiable vector field such that for some R,

F(x) = 0 whenever ‖x‖ > R. Then there is a unique twice continuously differentiable function φ

and a unique twice continuously differentiable vector field A such that F(x) = ∇φ(x) + curlA(x) and

such that (9.72) is satisfied. Moreover, φ is given by (9.70) and A is given by (9.71)

The decomposition provided by Theorem 106 is called the Hodge decomposition of F. Notice

that if F satisfies the hypotheses of Theorem 106, and divF(x) = 0 for all x and curlF(x) = 0 for

all x, then by (9.70), φ(x) = 0 for all x and by (9.71), A(x) = 0 for all x. Then F(x) = 0 for all x:

Under suitable smoothness and decay properties (such as (9.72)), a vector field F is determined by

its curl and its divergence.

Without some decay condition such as (9.72), there can be no uniqueness. The are plenty of

functions h(x) that are Harmonic on all of R3; e.g. h(x) = x or h(x) = xyz. Then adding h to φ and

subtracting ∇h from A gives us a new pair ψ = φ− h and B = A−∇h such that F = ∇ψ + curlB.

However, ψ and B do not satisfy the analog of (9.72).

9.5 Exercises

1. Let D ⊂ R2 be the region that is to the left of the parabola x = y(2 − y) and below the

line x − 2y + 4 = 0. Let C be its boundary given the outward normal orientation. Let F(x, y) =

( − 2xy, 4y + xy) Calculate the flux integral

∫
C

F ·Nds both directly, and by making use of the

Divergence Theorem.

2. Let C be the oriented curve in the plane that starts at (0, 0), and moves along straight line

segments form this point to (1, 2), then from this point to (− 1, 4), then from this point to (− 3, 2),

and finally then from this point to (− 2, 0). Let F(x, y) = (x3y+ y2x2, x+ y+x2y+ y2x). Compute

the flux integral

∫
C

F ·Nds.

3: Let S be the part of the surface in R3 given by
√
x2 + y2 = 8 − z that lies inside the cylinder

x2 + y2 = 4. With F = (2yz − y2, x2z − 2x, x2y), compute the flux∫
S

F ·NdS ,

where N is taken to point outward from the z-axis.

4: Let V be the region in R3 that lies inside the sphere x2 + y2 + z2 = 4, and above the graph of

z = 1/
√
x2 + y2, as in problem 8. Let F = (y + z2, x + z2, 2z(x + y)) and let N be the outward

normal to S , the boundary of V. Compute the total flux∫
S

F ·NdS .

5: Consider the two vector fields

F = (yz2 − 2xy, xz2 − x2, 2xyz) and G = (z2, y, x) .

(a) Compute the divergence of F and G.
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(b) Let S be the unit sphere, and N its outward normal. Compute∫
S

F ·NdS and

∫
S

G ·NdS .

Justify your answers to receive credit.

6: Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

(a) Compute the divergence F and G.

(b) Let V be the intersection of the ball of radius 1 centered at the origin, and the ball of radius 1

centered at (1, 0, 0). Let S be the boundary of V orient with the outward unit normal N. Compute∫
S

F ·NdS and

∫
S

G ·NdS .

7: As in Exercise 3,et S be the part of the surface in R3 given by
√
x2 + y2 = 8− z that lies inside

the cylinder x2 + y2 = 4. With F = (2yz− y2, x2z− 2x, x2y), Use Stokes’ Theorem evaluate the flux∫
S

F ·NdS ,

where N is taken to point outward from the z-axis, by computing a line integral.

8: Consider the two vector fields

F = (yz2 − 2xy, xz2 − x2, 2xyz) and G = (z2, y, x) .

(a) Compute the curls of F and G.

(b) Let S be the part of the centered sphere of radius 2 that lies above the plane x + y + z = 1,

oriented with its unit normal N pointing upwards. Compute∫
S

F ·NdS and

∫
S

G ·NdS .

Justify your answers to receive credit.

(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential

function for it.

9: Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

(a) Compute the curl of F and G.

(b) Let S be the part of the ellipsoidal surface x2 +
1

2
y2 +

1

4
z2 = 1 above the plane z = 1, oriented

so the unit normal N points upwards. Compute∫
S

F ·NdS and

∫
S

G ·NdS .

(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential

function for it.
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