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A divided cell

The bold lines are the lines where the given expression is zero. The

cell is divided by having one vertex in each quadrant bounded by

the lines.



Two coordinate systems

The picture shows two coordinate systems related by an affine

transformation. One is the basis of the integer lattice; the other is

a basis whose axes are the lines. If the equations of the lines are

ai x + bi y + ci = 0 for i = 0 (crossing the first generator) and

i = 1 (crossing the second generator), the matrix

M =

[ a0 b0 c0
a1 b1 c1
0 0 1

]

defines the relation between the coordinate systems.



The divided cell step

The next divided cell in a chain is formed by extending the vertical

sides until they cross the other line.



The lattice basis

The basis of the lattice has changed, so the fundamental domain is

no longer a square. To put the cell in the position of the original

picture, both the basis of lattice and the location of origin as the

lower left corner of fundamental domain (where the expressions

defining the lines are negative when a0 > 0 and b1 > 0) must be

changed. This includes an arbitrary choice of base vertex for the

cell. It will require that a cell be distinguished from its reflection.

Such a choice was usually implicit in classical work, but we now

know that it is safer to describe the automorphisms that identify

equivalent objects before ignoring them.



The step matrix

When the lines are expressed in terms of the new lattice basis, the

matrix M is right multiplied by the matrix of an affine transforma-

tion from the plane with the new basis to the plane with the old

basis. The third column is the old name for the new origin and the

first two columns are the old names for the directions crossing the

given lines (in the given order). This matrix has one of two forms

depending on the sign of the slope of b0/a0 (which is the sign of

b0 since a0 > 0, by convention).



Positive slope

The entries in the first row have opposite signs and the transition

matrix has the form [ 0 1 0
−1 n −k
0 0 1

]

with k ≥ 0.



Negative slope

The entries in the first row have the same sign and the transition

matrix has the form [ 0 −1 1
1 n −k
0 0 1

]

with k ≥ 0.



Three coordinate systems

There is a third coordinate system: the one used for viewing im-

ages. Thus, one has two changes of coordinates.

lattice −→ lines −→ view

It would simplify the presentation if the lines −→ view map were

always a simple (positive) rescaling of axes. This convention will

be used in the remainder of this presentation.



The relative approach

Instead of requiring that a scaling of the axes preserve the size of

the lattice (as measured, for example, by the area of the fundamen-

tal domain), one could use an arbitrary scaling, and divide any

values found by an appropriate measure of size to obtain some-

thing invariant under scaling. This approach is now standard in the

study of the (homogeneous) Markoff Spectrum, where it is also

customary to invert the values of forms to get quantities that are

more easily identified in the continued fraction.



Other views

If a product of two linear forms is found to be a multiple of an

indefinite quadratic form with integer coefficients, the algebra can

be emphasized by considering only forms with relatively prime

integer coefficients. In this case, the discriminant of the form

is usually preserved. This involves the use of scalings so that

reductions are represented by ideals in fixed order.



What killed the divided cell algorithm?

• The Markoff Spectrum had not yet been studied systematically;

• the main motivating problem — the Euclidean algorithm (for the

norm) in quadratic fields — was settled;

• . . .



. . . and calculation

The Brunviga was used for numerical work.



The chain of divided cells contains all minima

We are now considering the expression xy on a lattice. The points

in each quadrant that are farther from both lines can be excluded

from consideration in a search for the minima of |xy|. Furthermore,

there are no lattice points in a strip bounded by two parallel sides

of a divided cell, and the divided cell step includes a vertex on

each of the next nearest lines in those directions. Repeating this

observation in both directions on the chain shows that only the

vertices of the divided cells need be considered in a search for

minima.



The cell and the box

If we have a fundamental parallelogram of the lattice, we can ask

which translations of that figure can be a divided cell. The set of

all possible origins of the axis coordinate system form a rectangle

which we call the inner box of the cell.

In the axis coordinate system, it is the columns of matrix M (in-

troduced on an early slide) that are significant. The third column

(with entries ci ) is the location of the base vertex and the other two

columns are vectors generating the lattice.



Reduced forms

The lattice bases for which this box is nonempty were called I -

reduced by Barnes. He showed that there are only finitely many

I -reduced bases belonging to ideals of quadratic orders with fixed

discriminant. This reduces the problem of finding the behavior

of all inhomogeneous problems involving the same quadratic part

with rational coefficients to the study of a finite set of cells and

the relations between them determined by the divided cell step.



Characterizing reduced forms

For the vertices of the cell to lie in different quadrants with the base

vertex in the third quadrant requires that the entries of M satisfy:

c0 ≤ 0, c0 +a0 ≥ 0, c0 +b0 ≤ 0, c0 +a0 +b0 ≥ 0. Existence of a

suitable c0 requires a0 ≥ |b0|. A similar collection of inequalities

for the elements in the second row of M gives b1 ≥ |a1|. This is

(essentially) the characterization given by Barnes. Note that these

give closed intervals of admissible values of the off-diagonal terms

since we do not wish to exclude forms that represent zero.



A picture of a cell and its box

There are two types of I -reduced cells. One is Gaussian reduced.

Here is an example with its inner box.



Another picture of a cell and its box

Here is a non-Gaussian example with its inner box.



Existence of divided cells

If you have one divided cell, there is an algorithm for producing a

chain of divided cells, but the question of existence of a divided

cell has been avoided so far in this presentation. The existence of

a divided cell for every expression was proved by Delone, but a

better proof was a by-product of the thesis of Jane Pitman (to be

shown presently).

If the quadratic part is fixed, it is natural to consider the chain of

reduced forms given by the continued fraction of the quadratic

part of the expression.



The three boxes

The cell of a Gaussian reduced form found in the usual continued

fraction chain of forms has two I -reduced neighbors obtained by

multiplying its matrix on the right by[
1 1
0 1

]
or

[
1 0

−1 1

]
Only 2 by 2 matrices are shown because we are interested in the

shape of the cell and not its position.



The three box theorem

Pitman’s theorem asserts that the union of the inner boxes of these

three cells is (apart from edges) a fundamental domain of the

lattice. In particular, every possible origin belongs to one of these

three inner boxes, and the corresponding cell is divided by the axes.



A picture of the three box theorem



Technicalities

The strict alternation of orientation in the ordinary continued frac-

tion is not present in the chain of divided cells. Indeed, a consistent

orientation has been enforced. The signs of the off-diagonal terms

distinguish two views of the same cell. Thus, any matrix with

a1b0 < 0, not just those with a1 < 0, should be considered Gaus-

sian, and this will modify the rules for constructing its neighbors

in the 3 box theorem. There is a more subtle pattern of orientation

here (that will be suppressed in this report, except to note that the

parity of partial quotients plays a major role).



Axis view of successors

Here are the inner boxes for all divided cell successors of one cell.



Finding all divided cells

The I -reduced forms have a0 ≥ |b0| and b1 ≥ |a1|. If the cell is

non-Gaussian with a1 ≥ 0 and b0 ≥ 0, and a0 ≥ 2b0, then

M− =

[
a0 − b0 b0
a1 − b1 b1

]
is also I -reduced and is the second type of Gaussian cell.

If 2a1 ≥ a0 ≥ a1, then the slopes of M− are in the intervals [0, 1]

and [−1, 0]. Right multiplication by a matrix that inverts these

quantities, adjusts the signs of the diagonal and translates to make

−b1 ≤ a1 ≤ 0 gives a Gaussian reduced cell.



Restriction to the 3-box cells

The first type of non-Gaussian cell is one of the neighboring cells

in the 3-box picture, but the second may not be. However, a study

of divided cell steps shows both how they arise in the divided

cell algorithm and why only those in the 3-box picture need to be

considered. A picture will illustrate this result.



The superfluous cells

Here are some successive cells. All have the same box, so two

vertices are shared by all cells. The remaining vertices lie on a

fixed pair of lines, and in a pair of opposite quadrants.



What does the picture show?

Only the unshared vertices closest to the axes need to be con-

sidered. The cells having these vertices can be shown to belong

to 3-box pictures. Thus, it is not necessary to strictly follow

the divided cell algorithm — one can use the ordinary continued

fraction and the neighbors of its reduced cells to list the essential

divided cells.



The Markoff viewpoint

Studies of the Diophantine properties of quadratic forms and their

related inhomogeneous expressions now look at the actual infi-

mum of values of the expression over a chain of equivalent expres-

sions. In the homogeneous case, these infima lead to the Markoff

Spectrum. Earlier work blurred the distinction between chains of

equivalent forms and sequences of best approximants of numbers

associated with the factors of the form, which leads to what is now

known as the Lagrange Spectrum.



Zero is a number

The Lagrange approach assumes that an isolated small value is an

accident, and uses a limit to identify essential properties of rational

approximations to a number.

By contrast, the Markoff approach will accept an actual minimum,

however atypical. In particular, a single lattice point where the

expression is zero allows one to ignore everything else about the

expression.



Expressions based on zero forms

The expressions

(ax + y + c0)(y + c1)

for integer a give families that are valid objects of study although

they were largely ignored in earlier work. Using the coefficients

of the factors to define the matrix M and interpreting the columns

of M tells us that this is equivalent to considering translates of the

lattice generated by (a, 0) and (1, 1). The fundamental domain of

this lattice has area a, so all values of the expression need to be

divided by a to get comparable quantities.



An extreme case

For a = 1, this is equivalent to the integer lattice. Here, the cell

with vertices (0, 0), (1, 0), (1, 1), (0, 1) is the only divided cell

whose box doesn’t reduce to an interval. For −1 ≤ c ≤ 0, there is

an integer x with 0 ≤ |x + c| ≤ 1/2, and these bounds are attained.

The other factor is similar, so the absolute value of the expression

takes all values between 0 and 1/4.



The next case

For a = 2, the given lattice generators may be interpreted as being

Gaussian reduced or not. In the latter interpretation, it is a neighbor

of a Gaussian reduced cell with vertices (0, 0), (1, −1), (2, 0),

(1, 1), whose box reduces to the single point (1, 0). The non-

Gaussian cells in this picture are the only cells that need to be

considered. The point (3/2,
1/2) has largest minimum distance to

cell vertex since the other diagonal of the box separates the points

closer to (2, 0) from those close to (1, 1). The values at those

vertices are equal on this line and maximal at the center.



Something new

The case a = 3 does not seem to have been considered previously.

The “largest minimum” is 4/9 attained at (5/3,
1/3) To prove this,

one considers the intersection of two boxes for successive divided

cells for the lattice spanned by (1, 1) and (3, 0). The other lattice,

spanned by (2, 1) and (3, 0) doesn’t allow minima greater than 1/4.



A picture of the proof

The critical point is found by considering the lines shown that give

equal values at two vertices. Other lattice points give larger values.



It’s not always so easy

To compare vertices in adjacent quadrants, where the expression

has opposite signs, the locus of equal absolute values is an arc

of a hyperbola, so the pictures aren’t as neat. However, it is still

possible to find critical points by hand computation.


