SIAM J. ALG. DISC METH © 1981 Society for Industrial and Applied Mathematics
Vol 2, Noo L, March 1981 0196-5212/81/0201-0402 $01.00,0

A PROBLEM WITH TELEPHONES*
RICHARD T. BUMBY't

Abstract. This paper deals with the “telephone problem,” also krnown as the “gossip problem™.
Suppose n persons each have a piece of information. Pairs of them can share whatever information they
possess by making a telephone call. The question arises, what minimum number of calls allows all n persons to
obtain all n pieces of information. The answer is 21 — 4. One can then ask about properties of such minimal
sets of calls. In particular, we prove that the graph whose edges are the calls must contain a four-cycle.

1. Introduction. The *‘telephone problem' has often been solved in the literature
[1],[3), [7], and various extensions of the problem have been proposed [2], [4], [5]. This
paper is devoted to the proof of the *“four-cycle conjecture” introduced in [4] with the
words: “We are so convinced of the next statement that even though it is by definition a
conjecture, we shall call it a True conjecture: - -+ (italics theirs). The rumor of its
solution, hastily added in proof in [4], proved to be premature.

We now establish the notation for the proof. We assume that there are n persons
and k calls between them. The persons form a set U and the calls form an ordered set
T =(t;, - -, &) of (unordered) pairs of distinct elements of U, T is called a “system of
calls.”

It is natural to think of T as determining a graph G (T') whose verticles are [/ and
whose edges are the elements of 7. Thus, the elements of U are also called ‘*vertices" or
“nodes."”

The ordering on T can be used to introduce a relation a - b which holds iff there is
apatha =xq, -, x,, = b such that there is an increasing subsequence (s;: 1=/ =m)in
T and s; ={x;_,, x;}. The relation a - b means that b learns a’s information in the
system of calls T. If @ - b, we then have a path between a and b in G(T), so these points
lie in the same component of G(T').

DEFINITION. A system T is called pooling if a » b for each a, b e U.

This paper proves:

THEOREM 1. If T is pooling, then k =2n —4.

THEOREM 2. If T is pooling and k = 2n — 4, then G(T) contains a four-cycle.

2. The minimal partial ordering of T. We have described T as a sequence of
calls; that is, the ¢, are totally ordered in time. However, note that whether @ - b holds
depends only on the following partial order on T

DEFINITION. The minimal order on T is the transitive closure of the relation
{(t4):i=jand N1t # D).

Thus, two calls are ordered in the minimal order only if information can flow
through one call into another, or equivalently, if it is the case that their order in time
could not be reversed without changing information paths. If we consider all ¢
containing a fixed node, the minimal order gives a linear order on them. Since all the
essential properties of T are given by the minimal order, we will henceforth ignore the
original linear ordering,.

If we consider any linear ordering (time sequencing) of T that is compatible with
the minimal ordering, and select a time between two of the calls, we partition T into the
calls I before that time, and the calls F after that time. The pair (I, F) has the following
nice properties:
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(i) T=IUF,

(i) INF=3,

(iii) iel and r =i imply 1€,

(iv) fe Fand t=f imply te F.
That is, I and F are complementary lower and upper ideals of the partially ordered set
T. Conversely, if (I, F) has the properties (i)-(iv), then there is a time ordering of T that
performs the calls I before the calls F.

DEeFINITION. (I, F) satisfying (i)—(iv) above is a splitting of T.

If we give a splitting (I, F) and we have defined only one component, the other
component is its complement in T.

3. Components and closures. If (I, F) is any splitting and « is a node that is
involved in some call in F, we define min (u) to be the first call in F involving . Clearly,
if weteF, then min ()=t If t =(u;, uz) € F, then t =Zmin (), min (u2). Unless (=
min (1) = min (i), there is a call in F strictly smaller (earlier) than r. Also, if t>1eF,
then information can flow from ¢, through an increasing sequence of calls to t. The last
call of this chain before ¢ must share a node v with ¢, and so ¢t # min (u). This proves:

PROPOSITION 1. For any splitting (I, F), a call t = (u, v) of F is minimal in F iff
t=min (1) =min (v).

DeriNTTION. Given a splitting (I, F) with I =Zn —2 and G(I) not connected, any
component of G([) is a component of T.

Starting from the splitting (&, T'), we can successively “bring down” minimal
elements of F from F into 1. Thus, we can construct splittings (1, F) in which I (or F) has
any size from 0 to k. Clearly, any pooling must have k =n —1, so selecting {H|=n-2
shows that all poolings have components.

The basis of our proofs will be constructions involving the components of T. The
first construction will be closure.

Suppose that X is a component of T defined by the splitting (1o, Fo). Define Ax to
be the splitting (I, F) with the largest I < I such that X is a component of G(I). Define
By to be the splitting (I, F) with the largest I < I, that has a component with the same
vertices as X.

DEFINITION. If By is (1, F), then the component of G(I) with the same vertices as
X is the closure of X, denoted X. If X = X, Bx = Ax and X is closed, and (I, F) is called
the canonical splitting for X.

PROPOSITION 2. Given a splitting (I, F), if no minimal element of F joins two nodes
of X, then Ax = Bx, and hence, X is closed. In addition, if every minimal element of F
joins a node of X to a node not in X, then Ax = Bx = (I, F). Conversely, if (I, F) is the
canonical splitting of a closed X, every minimal element of F joins a node of X to a node
not in X.

Proof. Let Ax = (Ia, Fa) and Bx = (Ig, F). In is I with some additional calls from
F, that connect nodes of X. But, if no minimal element of F joins two nodes of X, no
such call can be moved into Iy without connecting X to some other component. If, in
addition, every minimal element of F joins a node of X to a node not in X, then no call
in F can be moved to I, without connecting X to some other component. Conversely, if
a minimal element of F connects two nodes of X, X is not closed, and if a minimal
element of F connects two nodes not in X, then (/, F) is not the canonical splitting of X.

COROLLARY. If X consists of a single point, then X is closed.

We use the convention that all “lemmas’ have the standing hypothesis that T" is a
pooling system on U. “Propositions’ deal with general call systems.

LEMMA 1. If any component X consists of a single point x, then k =Z2n —3. Hence,
Theorems 1 and 2 hold in this case.



A PROBLEM WITH TELEPHONES 15

Proof. From the corollary to Proposition 2, X is closed. Let (I, F) be its canonical
splitting. Except in the trivial case n = 1, no node of U has received all the information
yet, so each node u has a min (#). From Proposition 2, {min (u): u # x} are distinct, and
so F has =n — 1 elements. Since |I|= n — 2, the result follows.

From Lemma 1, if k =2n —4, then T can have no component consisting of a
single point. Let ming (#) be the first call involving u in T'; i.e., ming () is min () for
the splitting (&7, T'). Then for any splitting (I, F) with |I|=n -2, ming (1) € I for any
node u.

4. Minimal trees. Suppose we have a closed component X which is a tree. After
Lemma 1, we may assume that |X|>1. Let (, F) be its canonical splitting. As X is a
componentof G([), I is adisjoint union Ix U I'y, where Ix is all calls between nodes of X
and Iy is the rest. Let t, = (xq, x;) be a maximal element of I. In G(I —t,), X falls into
two parts X, X; with x; e X;(i =0, 1).

Suppose F has a minimal element t; = (x2, y) with y# X and x, # xo, x,. Then t,
and t, are incomparable in T. If we bring ¢, down into I and raise #, up into F, we get a
new splitting (I', F') with [I'| = |I|. What does G(I’) look like?

Say x;€ Xo; then the addition of #; to I —¢, causes X, to be connected to the
component containing y. As y must be outside X, this leaves X, as a component of
G(I'). The minimal elements of F' are t;, some minimal elements of F, and some
elements of F having nodes in common with 7,. None of these can have both nodes in
Xi. From Proposition 2, X is closed, with canonical splitting (I, F"), I'< I".

Induction on this construction proves:

ProPOSITION 3. If X is a closed tree component of T corresponding to a splitting
(£, F), then we can find a closed component X, € X (so X, is a tree) corresponding to a
splitting (1o, Fo) with |Io|Z|1| and, if |Xo|>1, a maximal element (x', x") in I, with
x', x" € Xy such that the only possible minimal elements of Fy are min (x') and min (x").

DeFiNITION. The component X, above is a minimal tree.

LEMMA 2. If some closed component of T is a tree, then k =2n —4.

Proof. From Proposition 3, we have a minimal tree X with canonical splitting (I, F)
such that |I|=n —2. Either | X| = 1 and Lemma 1 applies, or we have elements x', x"€ X
such that min (x') and min (x") are the only possible minimal elements of F. Since no
node except x' and x" can have received information from both x’ and x” during the calls
of 1, all nodes other than x’ and x" are members of some call in F. By Proposition 3,
{min (u): u # x’, x"} are distinct elements of F, so |F|=n —2.

LEMMA 3. If k =2n —4, and some closed component X corresponding to a splitting
(I, F) is a tree, then |I|=|F|=n~2. If X is a minimal tree, then F has precisely two
minimal elements, and every element of F is min (u) for some u.

Proof. By Proposition 3, construct a minimal tree X, in X and its canonical splitting
(I', F'). However, while proving Lemma 2, we showed that |I', |F'| = n — 2, so we must
have |I'| = |F'| = n —2. By construction, |I|=<|I'|, and |I|=n —2 since (I, F) generates
components, o |I|=|F|=n~2. If X is a minimal tree, {min (u): u # x', x"} already
gives all n —2 elements of F. Because |[[|=n—2, X # U, and x', x" must receive future
calls, so min (x') and min (x") must exist and be min (u) for some u # x', x". This implies
that they are distinct, and Proposition 1 shows they are exactly the minimal elements
of F.

If k =2n —4 and X is a minimal tree with canonical splitting (I, ), Lemma 3 shows
that X and F determine x' and x". Note that G(F) must consist of two trees with all
information flowing outward from x' and x".

This lemma demonstrates why minimal trees are called “minimal.” Suppose that a
minimal tree X contained a smaller tree component. This could only be if X had a
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maximal element other than {x', x"}. But, this would allow us to construct a splitting that
contradicts Lemma 3: Raise this other maximal element into F and lower min (x) and
min (x") into [. Since X is closed, all these calls are incomparable, and the part of X left
without {x', x"} is a closed tree. But, we have now made |I|=n —1, so the canonical
splitting for this tree must have |I| = n — 1. Thus, in a minimal tree, the calls of I transfer
information inward along the tree into x' and x". This fact about minimal trees is not
needed for our proofs, but is a useful tool; see, e.g., [6].

5, Completion of the proof of Theorem 1. We begin with a construction.

PROPOSITION 4. Suppose (1, F) is a splitting with |I|=n —2 such that at least two
components of G(I) are trees. Then one of these components is closed or both contain
closed components (which must be trees).

Proof. Call the components X and Y. If either is closed we are done, so we may
assume by Proposition 2 that F has a minimal element y which joins two nodes of Y.
X is not a point, so I contains a maximal element x € X.

Interchange x and y, that is, raise x into F and lower y into I, to form a splitting
(I', F"). Thus, [I'| = I}, and in G(I') the points of X fall into two components X, and X,
while the nodes of Y no longer span a tree in G(I).

Each X, is a tree, so we may apply this construction inductively to produce a closed
component inside X. Reversing the roles of X and Y produces a closed component
inside Y.

LEMMA 4. There is a closed component of T which is a tree.

Proof. Let (I, F) be any splitting with |I| = n — 2. Counting edges of G (I) shows that
at least two components of G([) are trees. Proposition 4 gives the desired result.

Proof of Theorem 1. Lemma 2 and Lemma 4 prove Theorem 1.

Proposition 4, together with Lemma 3, gives additional insight into the structure of
pooling systems with k = 2n — 4. The remainder of this section is devoted to such results
which are not needed for the proof of Theorem 2, but are of independent interest. So we
now concentrate on T which are pooling with k =2n —4. We let (I, F) be a splitting
satisfying the hypothesis of Proposition 4.

If one of the tree components, say X, is closed, then Lemma 3 implies that
|I| = n —2 and every minimal element of F has one end in X. Thus, all components are
closed. Now applying the same analysis to Y, we find that the minimal elements of F
must link X and Y. There can be no further tree components, so every other component
must have the same number of edges as nodes. If u is a minimal element of F, then one
component of G(I U u) is a tree containing X and Y. Again, Lemma 3 tells us that this
component is not closed, so adding an element of its closure gives a splitting (I', F') with
[I'|=n and all components of G(I') having the same number of edges as nodes. Call
such a splitting “‘balanced.”

Now suppose that the tree components of G(I) are not closed. The construction of
Proposition 4 does not change ||, nor does it alter any component disjoint from the
trees X and Y. When we are finished, we have a closed tree component. Thus, |[I|=n -2
and any component other than X or Y is closed and has the same number of edges as
nodes. If we add a minimal element of F joining two nodes of X and a minimal element
of F joining two nodes of Y to the given I, we will obtain a balanced splitting (I', F').

We now show that a balanced splitting has at most two components and that these
components are closed. A single component arises only from a splitting (Z, F') for which
G (I) has only two components, both closed trees. We may then limit ourselves to the
case in which G(I') has more than one component. Remove any maximal element from
I'. The resulting graph has one tree component, and the total number of components is
either the same or increased by one. By Lemma 3, the tree cannot be closed and hence,
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by the corollary to Proposition 2, cannot consist of a single point. Now remove a
maximal element of this tree to get a splitting satisfying the hypothesis of Proposition 4.
As we have already noted, all components other than the trees are closed, so all
components of G (/') except the one we dissected are closed. But we could have chosen
any component, so all components are closed.

If G(I') has more than two components, add a minimal element of F'. This
connects only two components. Dissecting any other components leads to a splitting
satisfying the hypothesis of Proposition 4 for which |7|>n -2, which we have seen
contradicts Lemma 3. Thus, G(I’) can have only two components. Also, if the removal
of a maximal element of I' were to give a graph with three components, we could add a
link to the tree component to give a new balanced splitting with three components.
Thus, this possibility is also ruled out. Finally, removing a maximal link from the tree
component gives a splitting with |I| = n — 2 and two tree components. If these trees were
not closed, we could construct a balanced splitting with three components by closing
them. Thus:

THEOREM 3. If T'is pooling with k =2n —4 and (I, F) is a splitting with |I|zn -2
with at least two tree components in G(I), then [I|=n —2 and one of these cases holds:

Case 1. The two trees are closed, and they are the only components.

Case 11. The two trees are closed and there is one other component, If one removes a
maximal link from this component, one gets a single tree ; and if one removes a maximal
link from this, then one gets two closed trees. There isan I" < I such that G(I'") is the union
of four closed trees.

Case I11. The trees are not closed. Now there can be no further components. Removal
of a maximal link from each of the components again gives closed trees.

6. Blocks. Let T be a pooling system with k = 25 —4 and (1, F) a splitting with
some minimal tree component X. This gives, from Lemma 3, elements x’, x"e X
such that F' = {min («): u # x', x"}. This X will be fixed for the rest of the section.

ProrosiTiON 5. With these assumptions, if u € U — X, then there are elements u', u"
such that u » u' and u - u" in I and min (u') = {«', x'} and min (u") = {u", x"}.

Proof. Consider the path u = u, u, - - - s Wiy, Uy =x" proving u -»x" in T, Since y
and x belong to differcnt components of G(I), some step must be in F, and hence, all
steps from that point on must be in F. The last step, {#; 1, x'} must be min (u;_,), but
then {u;_5, u,_,} cannot belong to F. The element iy is the desired u'. We find u" the
same way, starting from u - x".

Note that u’ and u"” must lie on the same component of G(I) as u does. From a
count of edges of G(I), there is a component Y of G(I), different from X, which is a
tree. The component Y is an example of a “‘block.”

DEFINITION. A tree component Y is a block if for each yeY, therearey', y"e Y
such that y - y’, y" in Y and min (y") = {x’, y'} and min (y") = {x", y"}.

Knowing that blocks exist, we will construct “minimal blocks” by inductively
reducing the size of a block until certain properties hold. If ¢ ={y,, y,} is a maximal
elementin Y, then any sequence of calls that provesu—»uvin Y mustproveu->pin Y —¢
or else the last step is 1. In the latter case, v = y, and u - yiinY —torv=y andu-y,
in Y-t G(Y —1) has two components Yy, Y, with y;e Y;(i =0, 1).

If min (yy) # {y1, x'} or {y,, x"}, then y, can never be a y' or y". From this it follows
that Y, is a block. Similarly, if min (y,) # {y,, x'} or {yo, x"}, then Y is a block. In either
case, we get a smaller block.

Now suppose that min (y,) and min ( ¥1) both involve the same element of X, say x'.
Ifye Yo,theny - y"in Y —ts0 y"e Y,. Either y'€ Yo, in which case we also have y - y'
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in Y —r;0r y' = y,. Inthe latter case, y - yoin Y —1,so we could use yo for y' instead. In
either case, Yj is a smaller block than Y. (In fact, Y, is also.)
LEMMA 5. Minimal blocks exist, and if Y is a minimal block with yo, y1 @ maximal
edge, then either (x'—x"—yo—y1—x') or (x'—x"—y1—yo—x') is a four-cycle in G(T).
Proof. Induction on the above construction gives a minimal block. The only
minimal blocks are where yo and y, are adjacent to different elements of ' £
This completes the proof of Theorem 2.
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