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1. 0. Introduction.

The main results to be presented here deal with representations as a sum of four squares.

However, it is useful for purposes of exposition to consider the corresponding theorems for

sums of two squares. Since these results are so familiar, and part of elementary courses, it may

seem that these propositions are belaboring the obvious. However, there is a slight difference in

emphasis from the usual treatment that will be useful in describing the generalization. There are

two types of questions to be considered:algorithmic— how can one compute representations

of a number as a sum of two or four (or possibly some other number) of squares? — and

enumerative— is there a structure on the set of representations that allows their number to be

determined in an elementary manner?

The algorithmic question is treated to a certain extent in elementary texts. At this level, only

the question of representing primes is considered and the question of the speed of the algorithm is

generally ignored. Nonetheless, the usual algorithm for sums of two squares is polynomial-time

relative to finding a square root of−1 modulo the number to be represented. For sums of four

squares, the situation is a little different. Some books give algorithms which, while similar to

that for sums of two squares, fail to be polynomial-time. Other books modify the algorithm

so that it becomes polynomial-time if one has found an expression of−1 as a sum of two

squares modulo the number to be represented. Strangely, no comment seems to be made on this

distinction although the speed of algorithms is generally considered an important problem at the

present time. Furthermore, the emphasis in textbooks is entirely on the representation of primes.

This goes back to the early work on the subject. The formula for producing representations of

products from representations of the factors appears to reduce the question to that of representing

primes. However, questions of computational complexity make it clear that there may be some

benefits in avoiding factorization.

The development to be described here suggests that the proper role of factorization in the

question of representation as a sum of four squares occurs at the level of finding a representation

of −1 as a sum of two squares modulo the number to be represented. Recently, I found an

fast, sure and elementary procedure for fining such a representation modulo a prime (in many

different ways). Thus, representing a number as a sum of four squares is no more difficult than

factoring the number. It would be interesting to know its true complexity.

In some sense, the simpler problem of representations as a sum of two squares is more

complicated. There are fast probabilistic algorithms for finding square roots modulo primes,

which allows fast, but not sure, elementary computations of primes as a sum of two squares. In

addition, the algorithm of Schoof [6] gives a deterministic polynomial time computation of a



prime congruent to 1 mod 4 as a sum of two squares. This method is fast and sure, but I would

not consider it to be elementary.

The enumerative question has been solved using modular forms. This allows exact formulas

to be found for the number of representations of a number as a sum of 2, 4, 6 or 8 squares, and

approximate formulas for representations as a sum of 2k squares fork > 4 (see [3]). Again,

while these methods give good answers, they are far from elementary. In this article, I will

show that the same method that answers the algorithmic question also provides an answer to

the enumerative question. The new ingredient is a modification of the notion of “primitive

representation”. Actually, this is not new. The same method was studied by Aubry [1], but his

work was so painfully elementary that it appears to have been ignored. It is cited in Dickson’s

History, so it was easy enough to discover that these results had appeared — after they had been

rederived. Unfortunately, Aubry gives no references to the literature, and other references found

through Dickson have not shed any light on developments leading to this approach.

Preliminary investigations suggest that these results can be extended to sums of 2k squares,

and possible to sums of any even number of squares. Although the construction of Pfister

[4] works only for quadratic forms over fields, it appears possible to modify it to allow the

algorithmic and enumerative questions to be studied for sums of squares over the integers. For

the enumerative question, one expects that only results concerning the number of representations

by genus of forms will be obtained.

One notational matter: congruence will be denoted by an ordinaryequal sign. The modi-

fying phrase “(modn)” already serves to alert the reader that equality is being tested in a factor

ring of the ring of integers.

2. 1. Sums of two squares.

Definition. If GCD(x, y) = 1, the solution of x2+ y2 = m is said to be “primitive”.

Proposition 1.
2s2(n) =

∑
{s1(d)s

(0)
2 (e) : de= n} (1)

where sk(m) is the number of representations of m as a sum of k squares and s(0)k (m) is the
number of such representations that are primitive.

Proof. The left side counts{(ε, X,Y) : ε = ±1,n = X2 + Y2} and the terms on the right side

counts{(u, x, y) : d = u2,e= x2+ y2,GCD(x, y) = 1}.
Givend = u2, ande = x2 + y2, thende= (ux)2 + (uy)2. Sincen = de, a map from

union of the sets counted by the right side of equation (1) to the set counted by the left side can

be given byε = sgnu, X = ux,Y = uy. The inverse is given by settingu = εGCD(X,Y)

and then settingx = X/u and y = Y/u. The fact that these are inverses follows by standard

elementary number theory.



Proposition 2. The number of primitive representations of m as a sum of two squares is four
times the number of solutions of the congruence z2 = −1 modm.

Proof. Again the proof is “bijective” (except for the factor of 4). We show that one-fourth of

the number of primitive representations and the number of solutions of the congruences are each

equal to the number of ideals of normm containing an element of the formz− i .

Suppose thatm = a2 + b2, represent the ordered pair of integers(a,b) by the Gaussian

integera+ bi , and consider the idealI that it generates. Whena andb are relatively prime,m

is the smallest rational integer inI , andI contains an element of the formz− i . Note thatz is

uniquely determined modulom by I . Each ideal is principal and has exactly four generators,

obtained by multiplying any one by a unit of the Gaussian integers. Thus, each generator of an

ideal I of normm gives a representation ofm as a sum of two squares. If this representation

were not primitive, so that GCD(a,b) = d > 1, thend would divide every element inI which

rules out the possibility that an element of the formz− i lies in I .

Sincea2 + b2 = 0 modm, the congruence requires thatz2 + 1 = 0 modm. The ideal

gives a solution of the congruence. On the other hand, givenm andz, form theZ submodule of

G generated bym andz− i . The congruence,z2 + 1 = 0 modm, implies that thisZ module

is also closed under multiplication byi , so it is an ideal inG.

It is also the case that arithmetic inG can be performed effectively. One way of doing

this is through “lattice reduction”. This calls for replacing the basism, z− i by an equivalent

basis in which the first element has smaller norm. This is easily done, sincez may be replaced

by theelement of least absolute valuein its residue class modm. The norm of the resulting

quantity is at mostm
2

4 + 1 while the norm ofm is m2. If m≥ 2, the former is at most half of the

latter. If the interchange of the order of the generators is accompanied by multiplying byz+i
m

and multiplying the second element by−1, the new basis{ z2+1
m , (−z) − i } has the same form

as the original basis. When a generator of the latter ideal is found, multiply byz− i and divide

by z2+1
m to get a generator of the original ideal. This gives a recursive algorithm for finding the

generator which terminates inO(logm) of these steps.

Remark. Lattice reduction in the plane is related to continued fractions. Some of the classical

algorithms for writing numbers as a sum of two squares use continued fractions. An efficient

version of such an algorithm is given by Brillhart [2]. To establish the connection between these

algorithms, start fromn which is to be expressed as a sum of two squares andz with n|z2 + 1.

Suppose thatz has been reduced modulon so that−n/2 ≤ z≤ n/2. Definen′ by z2+1= nn′,

and form the matrix

(
n

z

z

n′

)
which is seen to have determinant+1. The Euclidean algorithm,

applied to the first column, writes this matrix as a product of matrices of the form

(
a

1

1

0

)
. The

sequence of entriesa are the partial quotients in the continued fraction expansion ofn/z. Since

the matrix is symmetric, the sequence of partial quotients will bepalindromic. This gives an

expression of the original matrix in the formMt M , and the first column ofM gives a pair of

elements, the sum of whose squares isn. This, together with a recipe for stopping the Euclidean



algorithm when this column has been found, is to be found in [2]. The “lattice reduction” method

described above amounts to multiplying this matrix on leftand right by matrices inverting the

steps in the continued fraction.

The number of solutions ofz2 = −1 modm is a multiplicative function ofm, easily

determined whenm is a prime power.

The two propositions of this section are well-known and are the ingredients of a combina-

torial proof of a formula for the number of representations of a number as a sum of two squares.

They are sketched here to provide a guide to a similar result for sums of four squares in the next

section.

3. 2. Sums of four squares .

The classical treatment of this problem is less satisfactory than that of the representation as a sum

of two squares. This is due to the need to introduce the arithmetic of quaternions in order to copy

the proof of the previous section. The quaternions which are integer combinations of1, i, j and

k (which we shall call ‘integer quaternions” form a non-maximal order in the algebra of rational

quaternions. A version of the construction below, using a maximal order, appears in the paper

of Rabin and Shallit [5]. Use of the maximal order introduces some unnecessary difficulties

because of the more complicated nature of the group of units. The more complicated structure

of the ideals in the ring used here turns out to cause no trouble. Furthermore, the application to

counting representations was not mentioned by Rabin and Shallit. The algorithm given here for

writing m as a sum of four squares is fast, once one has a solution ofx2+ y2 = −1 modm. In

particular, the algorithm will be shown to be fast for prime values ofm in a later section. The

whole story can now be told fairly briefly.

To begin with, write quaternions as(a+bi)+ (c+di)j , which may be abbreviatedα+β j
whereα andβ are complex numbers (for integer quaternions these are Gaussian integers). Note

thatβ j = jβ. This plays an important role in computing with quaternions, For example: the

conjugate ofα + β j is

α + β j = α − jβ = α − β j

and the norm is

Norm(α + β j) = (α + β j)(α + β j) = αα + ββ.
Since each ofαα andββ is a sum of two rational squares, norms of quaternions are sums of

four rational squares.

Definition. If the Gaussian integer GCD(α, β) = 1, this representation will be called “j -

primitive”.



Proposition 3.
4s4(n) =

∑
{s2(d)s

0
4(e) : de= n} (2)

with notation as in the preceding section except that s(0)4 (e) is the number of j -primitive repre-
sentations of e.

Proof. If γ ∈ G has normd andα+β j , with GCD(α, β) = 1 in G, has norme, thenγα+ γβ j
has normde. This latter expression is unchanged ifα andβ are multiplied by a unit,ε of G and

γ is divided byε. The factor of 4 in the formula arises from the 4 choices forε.

The inverse map is given by extracting a factor equal to a greatest common divisor ofα and

β in G for a given expressionα+ β j . This quantity must be a generator of the ideal spanned by

α andβ, so is uniquely determined up to multiplication by a unit ofG. The construction can be

made to look more like the corresponding result for sums of two squares if a canonical choice

among the four generators of an ideal inG is made.

Remark. Note thats2(n)
4 is a multiplicative function ofn. It will be shown that

s(0)4 (n)
8 is also

multiplicative, so that their convolutions4(n)
8 will then be multiplicative.

In order to count the number ofj -primitive representations ofm, it will be necessary to

compute with (right) ideals in the ring of integral quaternions. Ideals will turn out to either be

principal or to be multiples of(1− i,1− j). The latter type can be characterized as being ideals

for a larger order. This means that the arithmetic of the ring of integral quaternions will behave

as if all ideals were principal. Furthermore, this is effective. A lattice reduction argument can

again be used to find a generator for any ideal.

Proposition 4. The number of j -primitive representations of m as a sum of four squares is eight
times the number of solutions of the congruence x2+ y2 = −1 modm.

Proof. Given a j -primitive expressionα+β j of normm, look at the right ideal that it generates.

As a module relative to the induced right action ofG, it is generated byα + β j and−β + αj .
Since GCD(α, β) = 1 in G, it follows that the intersection of the module withG = G1 is

generated bym= αα+ββ, and that the whole module is generated bym and an element of the

form η − j .
Conversely, any ideal containingη− j must containηη+ 1, so that the intersection withG

is generated by an elementγ with GCD(γ, η) = 1. The ideal also contains(η− j)γ = ηγ − γ j
andγ j , so it containsηγ . Since GCD(η, γ ) = 1, this means thatγ |γ . Thus the ideal generated

by γ is ambiguous, so it is generated either by a rational integer or by a rational multiple of

1+ i . In the latter case, the product of the ideal with 1+ j is a multiple of 1+ i , so that the ideal

belongs to a larger order.

It remains to show that aG-module generated by a rational integerm and an elementη− j
with m|ηη + 1 is closed under right multiplication byj . However,

(η − j)j = 1+ ηj = (1+ ηη)− (η − j)η.



Thus the values ofη modm with ηη + 1 = 0 modm give the ideals whose intersection

with G is generated bym. One should note that, while the right action of quaternions is used,

the notion of primitivity is based on a left action ofG which is different from theG-module

structure obtained by restricting the right action.

This procedure gives what could be considered to be an elementary proof of a formula

for the number of representations ofm as a sum of four squares. In Proposition 4, it has been

shown that this number is 8 times a multiplicative function ofm. (The number of solutions of

a congruence is multiplicative by the Chinese Remainder Theorem, and the multiplicativity of

convolutions of multiplicative functions is a familiar exercise in elementary number theory.) A

formula will follow from

Proposition 5. The number of solutions of the congruence x2+ y2+ 1= 0 mod pk is

1 (all p, k = 0)

2 (p = 2, k = 1)

0 (p = 2, k > 1)

(p− 1)pk−1 (p = 1 mod 4, k > 0)

(p+ 1)pk−1 (p = 3 mod 4, k > 0)

Proof. The result form= 1, 2, or 4 can be obtained by inspection. Since there are no solutions

whenm = 4, there can be no solutions for any multiple of 4. For odd primesp, the number

of solutions of Norm(α) = a mod p for any integera is equal to the number of elements in(
Fp[x]
(x2+1)

)∗
divided by the number of elements inF∗p, since the norm map is an epimorphism.

This gives the stated result whenk = 1. Hensel’s lemma completes the proof.

Since the functions12s1(), 1
4s(0)2 (), 1

4s2(), 1
8s(0)4 () and 1

8s4() are all multiplicative, the gen-

erating function of the form
∑{ f (n)n−s : n ≥ 1} will have an Euler product decomposition,

allowing an expression in terms of the Riemann zeta function and Dirichlet L-functions. The

theorems expressing some of these functions as convolutions of other functions give the generat-

ing functions as products of the corresponding generating functions. The results are summarized

below. In the table,χ(p) is the character which is±1 with p = χ(p) (mod 4) for odd p and 0



for p = 2.

f
∑

f (pk)p−ks

1
2s1 (1− p−2s)−1

1
4s(0)2 (1+ p−s)(1− χ(p)p−s)−1

1
4s2 (1− p−s)−1(1− χ(p)p−s)−1

1
8s(0)4 (1+ 21−s) (p = 2)

(1− χ(p)p−s)(1− p1−s)−1 (p 6= 2)
1
8s4 (1− 2−s)−1(1+ 21−s) (p = 2)

(1− p−s)−1(1− p1−s)−1 (p 6= 2)

This agrees with the classical result that1
8s4(n) is the sum of the divisor ofn that are not divisible

by 4.

4. 3. Sums of two squares modulo primes. .

It remains to give an algorithm for solvingx2 + y2 = −1 mod p. The motivation comes

from an approach to finding square roots modulop.

Notation: Let p− 1 = 2g · h with h odd. Fora mod p, let Lev(a) = LEAST{k : a2kh = 1}.
Thus the elements for whichah = 1 have Lev(a) = 0 and, isc is a quadratic non-residue, then

Lev(c) = g.

In [7], Shanks describes an algorithm (which turned out to be older than its author) for

solvingx2 = a mod p whenever an elementc is known with Lev(c) > Lev(a). The algorithm

is easily seen to befast, and it issure if an appropriate value ofc is available. I would also

consider it to beelementary. The discovery of a quadratic non-residue is fast in practice, but

no sureway of finding one quickly is known without the assumption of appropriate Riemann

hypotheses.

One implementation of the algorithm is based on maintaining an equation of the form

ax = y2 mod p starting fromx = ah andy = a
h+1

2 . In particular, the order ofx modulop is a

power of 2. The given elementc is used to find an elementu whose order modulop is exactly

21+Lev(x). Replacingy by yu andx by xu2 preserves the conditions onx andy and lowers the

value of Lev(x). When Lev(x) = 0, the only possibility isx = 1 mod p, so thata = y2 mod p.

If a quantity ,c is known with Lev(c) > 1, thenx2 = −1 mod p can be solved. Thisx,

with y = 0 gives a solution ofx2+ y2 = −1 mod p. This means that we may confine attention

to the case in which every number obtained in the following algorithm is at level 0 or 1. Such

numbers can be written as±u2 by an effective computation. It is convenient to write the equation

we are trying to solve in the homogeneous formx2+ y2 = −z2. We construct a finite sequence

of numberscj — of length at mostC log p — stopping when we get an element which is not at

level 1. The numbers themselves are constructed, but, since they will all be at level 1, we may

think of them as being of the form−z2 mod p for somez which can be computed. The bound



on the number of elements in the sequence depends on the fact that one is constructing actual

integers whose (archimedean) size is decreasing. This brings a little bit ofglobal arithmetic

(about as complicated as 1+ 1= 2) into the process.

The first number will bec0 = p− 1. This is at level 1. Now,

cj+1 =
{

cj /2 if 2|cj

cj − 1 otherwise

This process would set somecj = 1 if it did not stop earlier, but Lev(1) = 0, so the process

can not only produce numbers at level 1. If it first produces an element at level 0, the equation

cj = 1+cj+1 or cj = cj+1+cj+1 gives the elementcj at level 1 as a sum of two elements taken

from {1, cj+1} at level 0. This solves the required congruence. We have also seen how to solve

the congruence if an element of level greater than 1 is produced.

Remark. It should be noted that all algorithms described here have been tested for all values

of p < 216. The original motivation involved testing various methods for discovering solutions

of x2 = a mod p. That analysis led to a different algorithm for discovering a solution of

x2 + y2 = −1 mod p which used only computations modulop, but was more complicated in

other ways than the present proof.
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