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Introduction . It is now common for textbooks for a first course in Differential Equations to describe the
solution of the first-order, linear, constant-coefficient system

dY

dt
= MY, (1)

whereM is ann byn matrix, in terms of a matrix exponentialeMt . However, there is only a limited discussion
of techniques for finding the matrix exponential. The student is left with the impression that it is necessary to
find eigenvalues and eigenvectors as the first step in employing this technique. This impression is reinforced
by giving examples that are limited ton = 2 and a matrixM with integer entries whose characteristic
polynomial factors to reveal distinct integer eigenvalues, for which the determination of eigenvalues is easy.

Examples may also given in which the eigenvalues are complex (usually Gaussian integers), and the
solution is interpreted in this case. However, converting the solution to a useful form is tedious and rarely
performed accurately. Thus, no interesting example can be solved quickly enough to be useful for lectures
or examinations.

This appears to be an oversight, or perhapscollective amnesia, since there isan easily remembered
formula(a phrase that was used as a title when part of this article was used as course notes) for the solution.
The uniqueness theorem shows that once any proposed answer is verified, it is the only correct answer. Thus,
it is not necessary to perfect the underlying theory before proposing a method of solution. Any expression
that is easily checked may be seen to solve the equation — however it was discovered. There is an advantage
to having a obtaining solutions indirectly since it shifts the emphasis to verifying that the answer is correct
rather than merely expecting the student to echo (some of) the steps in one method of computing the answer.
In the same way that methods used in computer solutions are not just translations of a method used in proof,
but are optimized for that environment, methods for hand computation should show human solvers the same
respect.

Instead of trying to mechanize the process of solving differential equations, or the related process of
indefinite integration, more emphasis should be given to a “guess and check” approach (which is usually
called by the misleading name of “trial and error”). Although this makes the subject seem more of an art
than a science, the results will sometimes allow new principles for guessing answers to be formulated. This
approach will be used forn = 2 with complex eigenvalues. After finding the solution, a direct way of
obtaining it will be explored. This approach will then be generalized to apply to examples withn = 3 and
n = 4.

The matrix exponential. To begin, let us first ask: what isY? The usual answer is, “a vector ofn real (or
complex) functions oft”. An initial condition for (1) is a vector ofn numbers which giveY whent = 0.
It is convenient to considerY as a vector function (rather than a vectorof functions) and denote this initial
value byY(0). The columns ofeMt are then described as the solutions whose initial conditions are 1 in one
coordinate and 0 in all others. Routine linear algebra says that onceeMt is known, the solution of an initial
value problem for the equation(1) is

Y(t) = eMtY(0). (2)

However, both(1) and(2) may be interpreted, and are correct, ifY is any matrix withn rows. Taking
Y(0) to be an identity matrix in(2) gives us the
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Working Definition. The matrix exponential eMt is the unique solution Y(t) to (1) with Y(0) = In, the n
by n identity matrix.

The characteristic polynomial. Even the usual solution of(1) starts with a guess of the solution containing
some parameters and then finds values of these parameters giving a solution. That guess isY = veλt , where
v is a constant vector andλ is a number. Substituting into(1) shows that we have a solution ifMv = λv.
Since it is now common for students to meet linear algebra early in their studies, we may freely use the
following

Standard Terminology. The polynomial det(M − λI ) is called the characteristic polynomial of M ; a zero
of the characteristic polynomial is called an eigenvalue; the nonzero v with Mv = λv are called eigenvectors.

Whenn distinct eigenvalues can be found, it is not difficult to find an eigenvector for each eigenvalue,
and then by n matrix Swhose columns are the eigenvectors is an invertible matrix that satisfiesMS= S3,
where3 is a diagonal matrix whose entries are the eigenvalues. This leads to

eMt = Se3t S−1, (3)

which looks like a formula for the solution. However, implementing this formula requires thatS andS−1

be computed, and this is not always easy (and is only possible if there is a basis of eigenvectors). Complex
eigenvalues are possible and the algebra needed to computeeMt is not familiar enough to have a high
likelihood of leading to correct answers. Unless enough time is spent to gain fluency with linear algebra
overC, this formula is likely to be painful to use. It would be better to refine our method of guessing.
Furthermore, an initial value problem formulated over the real numbers will have a solution that is a real
function. It would be desirable to get such solutions directly.

Complex exponentials. To interpret complex exponentials, the formulaeit = cost + i sint is used.
Suppose now thatn = 2 and the eigenvalues ofM arer ± si with s 6= 0. Then equation(3) applies.

If the resulting expression is expanded and the complex exponentialse(r±si)t converted to real exponentials
and trigonometric functions, then

eMt = Pert cosst+ Qert sinst,

whereP and Q are 2 by 2 matrices of real numbers. It turns out to be much easier to identifyP and Q
from this equation than to calculate them from(3). In particular, puttingt = 0 in this expression leads
(immediately!) toP = I .

To find Q, we can differentiateeMt . For the discovery of the solution, it suffices to consider only the
value att = 0. This should beM , and direct calculation shows it to ber P + sQ. Since we haveP = I ,
knowing r ands allows us to obtainQ as(1/s)(M − r I ). The Cayley-Hamilton Theorem, which can be
verified by direct computation for 2 by 2 matrices, shows that the square ofQ is −I . A change to more
suggestive notation gives

Theorem 1. If n = 2 and M has eigenvalues r ± si, then

eMt = I ert cosst+ Jert sinst. (E)
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where I is the identity and J is characterized by M = r I + s J. Furthermore, J2 = −I so that it plays the
role of the number i in the algebra R[M ] generated by M over R.

Example 1. Let

M =
(

7 −13
2 −3

)
.

One eigenvalues is 2+ i , so

J = M − 2I =
(

5 −13
2 −5

)
;

eMt =
(

1 0
0 1

)
e2t cost +

(
5 −13
2 −5

)
e2t sint.

A straightforward check shows that this is correct.

General properties of the matrix exponential. The key to findingeMt in Example 1 was to consider the
exponentials of all matrices inR[M ] and to express the desired exponential in terms of others that are easier
to compute. The validity of this approach is based on the following

Lemma. If N M = M N, then NeMt = eMt N. Also, NeMt = eMt N implies that N M = M N.

Proof. The first part could be proved using the power series representation ofeMt , but it is more in keeping
with the present approach to note thatF(t) = eMt N satisfies(1) andF(0) = N. Now, letG(t) = NeMt .
Clearly,G(0) = N andG′(t) = N MeMt . ThusG(t) = F(t) if and only if G(t) satisfies(1), which holds
if and only if N M = M N.

Corollary. If AB= B A, then e(A+B)t = eAteBt

Proof. It suffices to show thatH(t) = eAteBt satisfies(1) with M = A+ B. We haveH ′(t) = AeAteBt +
eAt BeBt, and the lemma shows that the second term isBeAteBt, allowing the distributive law to apply to
give (1).

Taking A = r I andB = s J allows(E) to be recovered from special cases.

More two by two matrices. For any 2 by 2 matrixM , if M = r I + Q, theneMt = ert eQt. We expect that
matricesQ of trace zero will play a special role, andr can be chosen to reduce to this special case. Since
eBt = I cost + B sint when detB = 1, we can guess thateBt = I cosht + B sinht when detB = −1,
and this is easily verified. As before, other negative determinants are covered by taking a suitable constant
multiple of t in this expression. The definition ofeBt as a series also shows thateBt = I + Bt when
detB = 0. Again, however one guesses this solution, a proof consists of showing that it satisfies the(1) and
reduces toI whent = 0. This use ofleading special casesseems much more robust than the traditional
solution.

Laplace transforms. If a course includes Laplace transforms, they may be used to solve problems with given
initial conditions. It is worth noting that this method applies to matrix solutions as well as the customary
vector solutions. ThusY(s) = L(eMt ) can be found directly from

sY(s)− I = MY(s)
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so that
Y(s) = (s I − M)−1.

For 2 by 2 matrices, the ability to express the entries of the inverse directly gives another approach to
Theorem 1. Moreover, the reduction to the case of matrices of trace zero and the use of hyperbolic functions
reflect familiar methods for efficiently recognizing inverse Laplace transforms.

A triumph of abstraction . By expression the solution in terms of a matrixJ found inR[M ], we have
shifted emphasis from the matrixM to its corresponding linear transformation. That is, we are looking at the
way thatM acts on all vectors inRn instead of emphasizing its action on one particular basis. This approach
is also present in the use of eigenvectors, but the goal there only seems to find a better basis. The selection
of the matrixJ was based instead on abstract considerations — it represented the numberi in R[M ].

In fact, much more was shown. Only the fact that the minimal polynomial ofM was of degree 2 was
needed to obtain the expression foreMt and to verify that it was correct. This means that it is degree of
the minimal polynomial rather than the size of the matrix that determines the structure of exponential. A
description ofR[M ] using matrices that satisfy equations of low degree will lead to a simple computation
of eMt .

An example with repeated complex roots.. Let

M =


2 −2 1 0
2 2 0 0
0 0 3 1
0 0 −5 1

.
Since this is block-triangular, its characteristic polynomial is easily recognized to be(λ2 − 4λ + 8)2. The
eigenvalues are thus 2± 2i . Since

M2− 4M + 8I =


0 0 1 1
0 0 2 0
0 0 0 0
0 0 0 0

,
the characteristic polynomial is also the minimal polynomial. While this can be factored into relatively
prime polynomials overC, there is no factorization into relatively prime polynomials with real coefficients.
Since we are aiming to avoid algebra over the complex numbers, we seek a different approach.

The ring generated byM overR may be identified with the ring of polynomials in an indeterminate
x modulo the primary ideal generated by(x2 − 4x + 8)2. Call this ring S. In S, the idealI generated
by x2 − 4x + 8 is nilpotent, andS/I is isomorphic toC. A key result for computation is that the ring
homomorphismS→ S/I has a left inverse. In particular,Shas a subring isomorphic toC, and elements of
Scan be written as a sum of a nilpotent element and an element of this subring. IfM is written as a sum of
an element of this subring and an element ofI , eMt will be the product of the exponentials of two elements
of S that satisfy equations of degree 2.

We will identify the subring isomorphic toC by producing an element of the formj = (x − 2)/2+
(x2+ 4x+ 8)y, with y ∈ S that plays the role ofi in the sense thatj 2 = −1 in S. Direct computation gives

j 2+ 1≡ 1

4
(x2+ 4x + 8)(4xy− 8y+ 1) mod (x2+ 4x + 8)2.
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We get the value ofj that we seek if(x − 2)y ≡ −1/4 (mod x2 + 4x + 8). Since(x − 2)2 ≡ −4
(mod x2 + 4x + 8), the unique solution modulox2 + 4x + 8 is y = (x − 2)/16. Computing the matrix
corresponding toj gives

J = 1

8


0 −8 2 0
8 0 1 1
0 0 4 4
0 0 −20 −4


Inverting the definition ofJ gives

M = 2+ 2J + N

with

N = −1

8
(M − 2)(M2− 4M + 8I ) = 1

4


0 0 2 0
0 0 −1 −1
0 0 0 0
0 0 0 0

.
SinceJ andN belong toR(M), L N = N J and we get

eMt = e2t e2J teNt

= e2t (I cos 2t + J sin 2t)(I + Nt)

= I e2t cos 2t + Je2t sin 2t + Nt cos 2t + J Nt sin 2t

The matrix coefficients have all been shown except for

J N = 1

4


0 0 1 1
0 0 2 0
0 0 0 0
0 0 0 0

 = M2− 4M + 8I

4
.

The process of solving fory is exactly Newton’s Method inS (sometimes called Hensel’s Lemma in
this context). We are seeking a root of the separable polynomialp(x) = x2 + 1, and if we have already
found a root ofp(x) modulo I k, then p(x + y) ≡ p(x) + p′(x)y (mod I 2k). Sincep(x) ∈ I and p′(x)
is relatively prime top(x), p′(x) is invertible moduloI . This allows us to findy such thep(x + y) ∈ I 2k.
Since we are working in a ring for which some power ofI is zero, iterating this leads to an exact solution.

Splitting by projections. We have described exponentials of matrices rather than of linear transformations,
but the exponentials that we have found involved products of scalar functions oft with matrices inR[M ].
Such results could be expressed in a coordinate-free manner. However, matrices will be used in both proofs
and examples, although the proofs will contain some matrices that need never be found in practice. This is
because some constructions require transformations acting on a subspace of dimensionm with m < n. To
find anm by m matrix representing this action, one chooses a basis for the subspace. This basis is useful in
the proof, but there will never be any need to compute it. Then by n matrices that appear in an expression
for eMt will all be found directly, and not in terms of any factorization that may be used in theoretical
discussions.

The traditional solution whenn = 2 andM has distinct real eigenvalues may be written in the form
eMt = E1eλ1t + E2eλ2t for some matricesE1 andE2. TheSpectral Decompositionof M identifiesEi as
the projection onto theλi -eigenspace ofM whose kernel is the other eigenspace.
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We have already seen a multiplicative factorization of the matrix exponential, but this is anadditive
splitting. With suitable modification, such a splitting can be found for any idempotent inR[M ]. Since basic
expressions have been found that use spaces other than the one-dimensional space spanned by an eigenvector,
it is more useful to have a means of using splittings inductively than to aim for a universal formula for the
exponential.

To study this splitting, fix a matrixE such thatE2 = E and E M = M E. Let m be the rank ofE.
Choose a basis for the column space ofE and letB be ann by m matrix whose columns are this basis. Since
M takes this column space to itself, there is a matrixM ′ such thatM B = BM′. This M ′ is unique since
the columns ofB are linearly independent. Furthermore, there is a unique matrixB′ such thatE = B B′.
SinceB = E B = (B B′)B = B(B′B), the independence of the columns ofB shows thatB′B = I . Thus,
MnE = B(M ′)nB′ for all n. More generally, for any polynomialp, p(M)E = Bp(M ′)B′.

Proposition. If E M = M E, E2 = E, and M B = BM′, then

eMt E = BeM ′t B′. (P)

Hence, if
eM ′t =

∑
i

fi (t)pi (M
′),

then
eMt E =

∑
i

fi (t)pi (M)E =
∑

i

fi (t)pi (M E)E. (S)

Proof. First, note thateMt B and BeM ′t both satisfy(1) and evaluate toB when t = 0. The uniqueness
theorem of differential equations then shows that they are equal. Now, multiply on the right byB′ to obtain
(P). The remaining statements follow from the discussion that preceded the statement of the Proposition.

If E2 = E, eMt = eMt E+eMt (I −E) and each of these terms is given by the action ofM on the range
of E or I −E if E M = M E. The terms will be evaluated using one of the sums in(S) (or the corresponding
statement forI − E). The matricesM ′ andB′ and equation(P) are used in the proof, but do not need to be
found.

A three dimensional example.. Markov matrices are a good source of examples allowing robust calculation,
so let

M = 1

10

( 3 1 5
3 3 1
4 6 4

)
.

The column sums are all 1, so this has 1 as an eigenvalue, and its eigenvector is easily found to be(18,11,23).
The projection on this subspace that commutes withM is a matrix with all columns equal to the multiple of
this vector with sum of entries equal to 1. Thus,

E = 1

52

(18 18 18
11 11 11
23 23 23

)
I − E = 1

52

( 34 −18 −18
−11 41 −11
−23 −23 29

)
.

SinceE is constructed from eigenvectors ofM , M E = E. To get the action on the two dimensional space
of vectors with column sums zero, which is the range of the projection(I − E), form

M(I − E) = 1

260

(−12 −64 40
23 23 −29
−11 41 −11

)
.
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This matrix has trace zero and one of its eigenvalues is known to be zero, so the sum of the other two
eigenvalues is zero. The square of this matrix is seen to be−(I − E)/25, so(I − E)M acts likei /5 on the
range of(I − E). Thus, using the known exponentials of the action ofM on the subspaces, we have

eMt = et

52

(18 18 18
11 11 11
23 23 23

)
+ cos(t/5)

52

( 34 −18 −18
−11 41 −11
−23 −23 29

)
+ sin(t/5)

52

(−12 −64 40
23 23 −29
−11 41 −11

)
.

The product ofM with the matrices in this expression have already been determined, so the verification that
this iseMt is easy.

Expressing the projections in terms ofM . It was remarked in passing that the projectionE commutes
with M because it can be expressed as a polynomial inM . Although we foundE in the Markov example
by determining the eigenvector, an approach that applies to more general matrices would to compute the
characteristic polynomial using the method of Leverrier ( or Faddeev’s modification, see [Faddeeva] for
details). This method is very robust for hand computation, which led to its frequent rediscovery (see
[Householder] for more information). If this characteristic polynomial can be factored into relatively prime
factors, the Euclidean algorithm can be used to construct idempotents. In the Markov example, this gives
E = (25M2+ I )/26. This has been called an “application of the Chinese remainder theorem” (see [Oberst]).
Any factorization of the minimal polynomial ofM into relatively prime factors reduces the determination
of eMt to finding the exponentials of matrices whose minimal polynomials are those factors.
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