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Introduction . It is now common for textbooks for a first course in Differential Equations to describe the
solution of the first-order, linear, constant-coefficient system
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whereM is ann by n matrix, in terms of a matrix exponenti!'t. However, there is only a limited discussion

of techniques for finding the matrix exponential. The student is left with the impression that it is necessary to
find eigenvalues and eigenvectors as the first step in employing this technique. This impression is reinforced
by giving examples that are limited to = 2 and a matrixM with integer entries whose characteristic
polynomial factors to reveal distinct integer eigenvalues, for which the determination of eigenvalues is easy.

Examples may also given in which the eigenvalues are complex (usually Gaussian integers), and the
solution is interpreted in this case. However, converting the solution to a useful form is tedious and rarely
performed accurately. Thus, no interesting example can be solved quickly enough to be useful for lectures
or examinations.

This appears to be an oversight, or perhapkective amnesiasince there ign easily remembered
formula(a phrase that was used as a title when part of this article was used as course notes) for the solution.
The unigueness theorem shows that once any proposed answer is verified, it is the only correct answer. Thus,
it is not necessary to perfect the underlying theory before proposing a method of solution. Any expression
that is easily checked may be seen to solve the equation — however it was discovered. There is an advantage
to having a obtaining solutions indirectly since it shifts the emphasis to verifying that the answer is correct
rather than merely expecting the student to echo (some of) the steps in one method of computing the answer.
In the same way that methods used in computer solutions are not just translations of a method used in proof,
but are optimized for that environment, methods for hand computation should show human solvers the same
respect.

Instead of trying to mechanize the process of solving differential equations, or the related process of
indefinite integration, more emphasis should be given to a “guess and check” approach (which is usually
called by the misleading name of “trial and error”). Although this makes the subject seem more of an art
than a science, the results will sometimes allow new principles for guessing answers to be formulated. This
approach will be used fan = 2 with complex eigenvalues. After finding the solution, a direct way of
obtaining it will be explored. This approach will then be generalized to apply to examples witB and
n=4.

The matrix exponential. To begin, let us first ask: what ¥? The usual answer is, “a vectormfeal (or
complex) functions of”. An initial conditionfor (1) is a vector ofn numbers which givey whent = 0.

It is convenient to consider as a vector function (rather than a veabdrfunctions) and denote this initial
value byY (0). The columns o&M! are then described as the solutions whose initial conditions are 1 in one
coordinate and 0 in all others. Routine linear algebra says thate¥tce known, the solution of an initial
value problem for the equatiai) is

Y(t) = eMy(0). (2

However, both(1) and(2) may be interpreted, and are correctyifs any matrix withn rows. Taking
Y (0) to be an identity matrix ir{2) gives us the



Working Definition. The matrix exponential eM! is the unique solution Y (t) to (1) with Y (0) = I, the n
by n identity matrix.

The characteristic polynomial. Even the usual solution ¢1) starts with a guess of the solution containing
some parameters and then finds values of these parameters giving a solution. Thatyues®ts, where

v is a constant vector andis a number. Substituting intd) shows that we have a solutionMv = Av.

Since it is now common for students to meet linear algebra early in their studies, we may freely use the
following

Standard Terminology. The polynomial detf(M — A1) is called the characteristic polynomial of M; a zero
of the characteristic polynomial is called an eigenvalue; the nonzero v with Mv = Av are called eigenvectors.

Whenn distinct eigenvalues can be found, it is not difficult to find an eigenvector for each eigenvalue,
and then by n matrix Swhose columns are the eigenvectors is an invertible matrix that satiéftes SA,
whereA is a diagonal matrix whose entries are the eigenvalues. This leads to

eMt — gehts 1, 3)

which looks like a formula for the solution. However, implementing this formula requirestbatl S—1

be computed, and this is not always easy (and is only possible if there is a basis of eigenvectors). Complex
eigenvalues are possible and the algebra needed to comBliis not familiar enough to have a high
likelihood of leading to correct answers. Unless enough time is spent to gain fluency with linear algebra
over C, this formula is likely to be painful to use. It would be better to refine our method of guessing.
Furthermore, an initial value problem formulated over the real numbers will have a solution that is a real
function. It would be desirable to get such solutions directly.

Complex exponentials To interpret complex exponentials, the formela= cost + i sint is used.
Suppose now that = 2 and the eigenvalues &l arer + si with s # 0. Then equation3) applies.

If the resulting expression is expanded and the complex exponeeitiafs! converted to real exponentials

and trigonometric functions, then

eMt = P! cosst + Q€' sinst,

where P and Q are 2 by 2 matrices of real numbers. It turns out to be much easier to idéhtfyd Q
from this equation than to calculate them fr@B). In particular, putting = 0 in this expression leads
(immediately!) toP = 1.

To find Q, we can differentiateM!. For the discovery of the solution, it suffices to consider only the
value att = 0. This should beM, and direct calculation shows it to b® + sQ. Since we havd® = |,
knowingr ands allows us to obtairQ as(1/s)(M —rl). The Cayley-Hamilton Theorem, which can be
verified by direct computation for 2 by 2 matrices, shows that the squageisf—1. A change to more
suggestive notation gives

Theorem 1. If n = 2 and M has eigenvalues r + Si, then

eMt = |e" cosst + J€' sinst. (E)
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where | is the identity and J is characterized by M = r| + sJ. Furthermore, J2 = —| so that it plays the
role of the number i in the algebra R[M] generated by M over R.
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Example 1 Let

One eigenvaluesis2i, so

A straightforward check shows that this is correct.

General properties of the matrix exponential The key to findingeM! in Example 1 was to consider the
exponentials of all matrices iR[M] and to express the desired exponential in terms of others that are easier
to compute. The validity of this approach is based on the following

Lemma. IfFNM = MN, then NeMt = eMIN. Also, NeM! = eMN implies that NM = MN.

Proof. The first part could be proved using the power series representatidt dbut it is more in keeping
with the present approach to note tiat) = eM!N satisfies(1) andF(0) = N. Now, letG(t) = NeMt,
Clearly,G(0) = N andG’(t) = NMeM!. ThusG(t) = F(t) if and only if G(t) satisfies(1), which holds
ifand only if NM = MN.

Corollary. If AB = BA, then e/ATBt — gAteBt

Proof. It suffices to show thattl (t) = e”leB! satisfieg1) with M = A+ B. We haveH'(t) = AefteBt +
eA'BeBt, and the lemma shows that the second teré8teB!, allowing the distributive law to apply to
give (1).

Taking A=rl andB = sJallows(E) to be recovered from special cases.

More two by two matrices. For any 2 by 2 matriM, if M =rl + Q, theneM! = &eQ!. We expect that
matricesQ of trace zero will play a special role, anccan be chosen to reduce to this special case. Since

eB! = | cost + Bsint when detB = 1, we can guess thaP! = | cosht + B sinht when detB = —1,

and this is easily verified. As before, other negative determinants are covered by taking a suitable constant
multiple of t in this expression. The definition @' as a series also shows tteft! = | + Bt when

detB = 0. Again, however one guesses this solution, a proof consists of showing that it satisfibsate

reduces td whent = 0. This use ofeading special caseseems much more robust than the traditional
solution.

Laplace transforms. If a course includes Laplace transforms, they may be used to solve problems with given
initial conditions. It is worth noting that this method applies to matrix solutions as well as the customary
vector solutions. Thu¥(s) = £(eM!) can be found directly from

sY(s) — | = MY(s)
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so that
Y(s) = (sl — M)™L.

For 2 by 2 matrices, the ability to express the entries of the inverse directly gives another approach to
Theorem 1. Moreover, the reduction to the case of matrices of trace zero and the use of hyperbolic functions
reflect familiar methods for efficiently recognizing inverse Laplace transforms.

A triumph of abstraction. By expression the solution in terms of a matdxound in R[M], we have
shifted emphasis from the matrM to its corresponding linear transformation. That is, we are looking at the
way thatM acts on all vectors ifR" instead of emphasizing its action on one particular basis. This approach
is also present in the use of eigenvectors, but the goal there only seems to find a better basis. The selection
of the matrixJ was based instead on abstract considerations — it represented the mumREM].

In fact, much more was shown. Only the fact that the minimal polynomid afias of degree 2 was
needed to obtain the expression &' and to verify that it was correct. This means that it is degree of
the minimal polynomial rather than the size of the matrix that determines the structure of exponential. A
description ofR[ M] using matrices that satisfy equations of low degree will lead to a simple computation
of eMt,

An example with repeated complex roots Let

0
0
1
1

Since this is block-triangular, its characteristic polynomial is easily recognized tt’be 4x + 8)2. The
eigenvalues are thus22i. Since

M2 —4M + 8| =

[oNeNelNo)
[eNeoNeoNo)
QON B
[oNeNel o)

the characteristic polynomial is also the minimal polynomial. While this can be factored into relatively
prime polynomials ove€, there is no factorization into relatively prime polynomials with real coefficients.
Since we are aiming to avoid algebra over the complex numbers, we seek a different approach.

The ring generated bl over R may be identified with the ring of polynomials in an indeterminate
x modulo the primary ideal generated ty? — 4x + 8)2. Call this ringS. In S, the ideall generated
by x? — 4x + 8 is nilpotent, andS/| is isomorphic toC. A key result for computation is that the ring
homomorphisnt — S/I has a left inverse. In particulgB has a subring isomorphic ©, and elements of
Scan be written as a sum of a nilpotent element and an element of this subriMgs Mvritten as a sum of
an element of this subring and an element &M will be the product of the exponentials of two elements
of Sthat satisfy equations of degree 2.

We will identify the subring isomorphic t€ by producing an element of the forin= (x — 2)/2 +
(x2 4 4x + 8)y, with y € Sthat plays the role dfin the sense thgt? = —1 in S. Direct computation gives

1
i2+1= Z(x2+4x+8)(4xy—8y+l) mod (x2 + 4x + 8)2.
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We get the value of that we seek ifix — 2)y = —1/4 (mod x2 + 4x + 8). Since(x — 2)2 = —4
(mod x2 + 4x + 8), the unique solution modulr? + 4x + 8 isy = (x — 2)/16. Computing the matrix
corresponding tq gives

0 -8 2 0
J_} 8 0 1 1
—g8lo0o O 4 4
0O 0 -20 -4
Inverting the definition of) gives
M=2+2J+N
with
00 2 O
1 5 1fo 0 -1 -1
N_—é(M—z)(M —4M+8I)_z1 00 0 0
00 0 O

SinceJ andN belong toR(M), LN = N J and we get

Mt _ o2t 2JteNt

e
=e®(l cos2 + Jsin2)(l + Nt)

= le®cos2 + JE!sin + Ntcos2 + JNtsin2

The matrix coefficients have all been shown except for

M2 — 4M + 8l
2 .

JN=-

I
[eNeNele]
[eoNeNelNo]
OODN B
[eNeNel o]

The process of solving foy is exactly Newton's Method i1 (sometimes called Hensel's Lemma in
this context). We are seeking a root of the separable polynoptigl = x2 + 1, and if we have already
found a root ofp(x) modulo 1 ¥, thenp(x + y) = p(x) + p'(x)y (mod 1%). Sincep(x) € | and p’(x)
is relatively prime top(x), p'(x) is invertible modulol . This allows us to find/ such thep(x + y) € 1%,
Since we are working in a ring for which some power a§ zero, iterating this leads to an exact solution.

Splitting by projections. We have described exponentials of matrices rather than of linear transformations,
but the exponentials that we have found involved products of scalar functidnsitsf matrices inR[M].
Such results could be expressed in a coordinate-free manner. However, matrices will be used in both proofs
and examples, although the proofs will contain some matrices that need never be found in practice. This is
because some constructions require transformations acting on a subspace of dimemgfom < n. To
find anm by m matrix representing this action, one chooses a basis for the subspace. This basis is useful in
the proof, but there will never be any need to compute it. hg n matrices that appear in an expression
for eMt will all be found directly, and not in terms of any factorization that may be used in theoretical
discussions.

The traditional solution when = 2 andM has distinct real eigenvalues may be written in the form
eMt = E ettt + Eye2t for some matrice€; andEo. The Spectral Decompositioof M identifiesE; as
the projection onto the; -eigenspace ol whose kernel is the other eigenspace.

M
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We have already seen a multiplicative factorization of the matrix exponential, but thisaidditive
splitting. With suitable modification, such a splitting can be found for any idempot&]jt\t]. Since basic
expressions have been found that use spaces other than the one-dimensional space spanned by an eigenvector,
it is more useful to have a means of using splittings inductively than to aim for a universal formula for the
exponential.

To study this splitting, fix a matriXE such thatE2 = E andEM = ME. Letm be the rank ofE.
Choose a basis for the column spac&and letB be ann by m matrix whose columns are this basis. Since
M takes this column space to itself, there is a malfixsuch thatM B = BM’. This M’ is unique since
the columns o are linearly independent. Furthermore, there is a unique matrsuch thatt = BB'.
SinceB = EB = (BB')B = B(B’B), the independence of the columns®fhows thaB’'B = |. Thus,

M"E = B(M’)"B’ for all n. More generally, for any polynomigl, p(M)E = Bp(M")B'.

Proposition. fFEM = ME, E?2 = E, and MB = BM’, then
eV'E — BM'B', (P)

Hence, if

Mt =" fityp (M),
i

then
ME=) fithp(ME=) fit)p(ME)E. (S)
i i

Proof First, note thaeM!B and BeM" both satisfy(1) and evaluate t@ whent = 0. The uniqueness

theorem of differential equations then shows that they are equal. Now, multiply on the rightdypbtain

(P). The remaining statements follow from the discussion that preceded the statement of the Proposition.
If E2 = E, eM! = eME 4+ eM!(] — E) and each of these terms is given by the actioMasn the range

of Eorl — Eif EM = ME. The terms will be evaluated using one of the sum$Sin(or the corresponding

statement fot — E). The matricesM’ andB’ and equatioriP) are used in the proof, but do not need to be

found.

Athree dimensional example. Markov matrices are a good source of examples allowing robust calculation,

so let
1 3 15
M =E(3 3 1).
4 6 4

The column sums are all 1, so this has 1 as an eigenvalue, and its eigenvector is easily fodhd thhe3).
The projection on this subspace that commutes Witls a matrix with all columns equal to the multiple of
this vector with sum of entries equal to 1. Thus,

l(18 18 13) 1( 34 18 —18)
E=—(11 11 11 |—E=—(-11 41 —11).
52\23 23 2 52\ _23 _23 29

SincekE is constructed from eigenvectors @f, ME = E. To get the action on the two dimensional space
of vectors with column sums zero, which is the range of the projection E), form

| [-12 —64 40
M —E)=—( 23 23 —29).
260\ _17 41 -—11
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This matrix has trace zero and one of its eigenvalues is known to be zero, so the sum of the other two
eigenvalues is zero. The square of this matrix is seen te(be- E)/25, so(l — E)M acts likei /5 on the
range of(l — E). Thus, using the known exponentials of the actiobobn the subspaces, we have

. /18 18 1 34 _18 _18\ . 12 _e4 40
t/5 t/5
eMt—i(n 11 1Z)+C°3/)<—11 41 —11>+S'n(/)< 23 23 —29).

52\23 23 2 2 \_23 23 29 52 \_11 41 -11

The product oM with the matrices in this expression have already been determined, so the verification that
this iseMt is easy.

Expressing the projections in terms ofM. It was remarked in passing that the projectBrcommutes

with M because it can be expressed as a polynomi#l inAlthough we foundE in the Markov example

by determining the eigenvector, an approach that applies to more general matrices would to compute the
characteristic polynomial using the method of Leverrier ( or Faddeev’s modification, see [Faddeeva] for
details). This method is very robust for hand computation, which led to its frequent rediscovery (see
[Householder] for more information). If this characteristic polynomial can be factored into relatively prime
factors, the Euclidean algorithm can be used to construct idempotents. In the Markov example, this gives
E = (25M?+1)/26. This has been called an “application of the Chinese remainder theorem” (see [Oberst]).
Any factorization of the minimal polynomial d¥! into relatively prime factors reduces the determination

of eM! to finding the exponentials of matrices whose minimal polynomials are those factors.
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