Iterated sumsets and Hilbert functions

Shalom Eliahou

Université du Littoral Côte d'Opale, Calais

New York Number Theory Seminar (on Zoom)
July 10, 2020

Introduction

[With Eshita Mazumdar. Preprint (2020) on arXiv.]

Let $A, B \subseteq G$ where G is an abelian group, e.g. $G=\mathbb{Z}$. Denote

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

the sumset of A, B. For $A=B$, denote

$$
2 A=A+A
$$

For $h \geq 2$, denote

$$
h A=A+(h-1) A,
$$

the h-fold iterated sumset of A. Of course, $0 A=\{0\}$ and $1 A=A$.

Problem (typical in Additive Combinatorics)

If A is finite, how does the sequence $|h A|$ grow with h ?

Specifically here, if $|h A|$ is given, what can one say about $|(h \pm 1) A|$?

Theorem (Plünnecke, 1970)

Let A be a nonempty finite subset of an abelian group. Let $h \geq 2$ be an integer. Then $|i A| \geq|h A|^{i / h}$ for all $1 \leq i \leq h$.

This is one Plünnecke inequality derived using graph theory.
Note. These estimates are equivalent to the main case $i=h-1$, i.e.

$$
|(h-1) A| \geq|h A|^{(h-1) / h} .
$$

Our approach

- Model the sequence $|h A|$ with the Hilbert function of a standard graded algebra $R(A)$.
- Apply Macaulay's theorem on the growth of Hilbert functions.

It allows us to recover and strengthen Plünnecke's estimate.

An example

Let $A \subset \mathbb{Z}$ satisfy $|5 A|=100$. Plünnecke's inequality yields

$$
\begin{aligned}
& |4 A| \geq 100^{4 / 5} \approx 39.8 \\
& |6 A| \leq 100^{6 / 5} \approx 251.18
\end{aligned}
$$

Hence

$$
\begin{aligned}
& |4 A| \geq 40 \\
& |6 A| \leq 251
\end{aligned}
$$

Can one do better? Yes. Our approach yields

$$
\begin{aligned}
& |4 A| \geq 61 \\
& |6 A| \leq 152
\end{aligned}
$$

How?

Hilbert functions

A standard graded algebra is a quotient $R=K\left[X_{1}, \ldots, X_{n}\right] / J$, where K is a field, $\operatorname{deg} X_{i}=1$ for all i, and J is a homogeneous ideal. So $R=\oplus_{i \geq 0} R_{i}$, with $R_{0}=K$ and $R_{i} R_{j}=R_{i+j}$ for all i, j.

The Hilbert function of the standard graded algebra $R=\oplus_{i \geq 0} R_{i}$ is the map $i \mapsto d_{i}=\operatorname{dim}_{K} R_{i} \forall i \geq 0$.

- What characterizes such numerical functions $i \mapsto d_{i}$?

Macaulay's classical theorem (1927) provides a complete answer.

- For instance, if $\operatorname{dim} R_{1}=n$, then $\operatorname{dim} R_{2} \leq(n+1) n / 2$. That is,

$$
d_{1}=\binom{n}{1} \Longrightarrow d_{2} \leq\binom{ n+1}{1+1}
$$

Binomial representation

Let $a, i \geq 1$ be positive integers. There is a unique expression

$$
a=\sum_{k=1}^{i}\binom{a_{k}}{k}=\binom{a_{i}}{i}+\binom{a_{i-1}}{i-1}+\cdots+\binom{a_{1}}{1}
$$

with decreasing integers $a_{i}>a_{i-1}>\cdots>a_{1} \geq 0$. We then define

$$
a^{\langle i\rangle}=\sum_{k=1}^{i}\binom{a_{k}+1}{k+1} .
$$

Example

$$
100^{\langle 5\rangle}=152
$$

Example: $100^{\langle 5\rangle}=152$

Let $a=100, i=5$. The 5th binomial representation of 100 is

$$
100=\binom{8}{5}+\binom{7}{4}+\binom{4}{3}+\binom{3}{2}+\binom{2}{1}
$$

Hence

$$
\begin{aligned}
100^{\langle 5\rangle} & =\binom{9}{6}+\binom{8}{5}+\binom{5}{4}+\binom{4}{3}+\binom{3}{2} \\
& =152
\end{aligned}
$$

From this we shall deduce: if $|5 A|=100$ then $|6 A| \leq 152$.

Macaulay's theorem, first half

Macaulay's theorem characterizes the Hilbert functions of standard graded algebras. Here is a necessary condition.

Theorem (1/2)

Let $R=\oplus_{i \geq 0} R_{i}$ be a standard graded algebra over a field K, with Hilbert function $d_{i}=\operatorname{dim}_{k} R_{i}$. Then for all $i \geq 1$, we have

$$
d_{i+1} \leq d_{i}^{\langle i\rangle}
$$

Example

Assume $\operatorname{dim} R_{5}=100$, i.e. $d_{5}=100$. Macaulay states $d_{6} \leq d_{5}^{\langle 5\rangle}$. Now $100^{\langle 5\rangle}=152$ as seen above. Hence

$$
\operatorname{dim} R_{6} \leq 152 .
$$

Macaulay's theorem, full version

Remarkably, that necessary condition is also sufficient.

Theorem (Macaulay, 1927)

A numerical function $i \mapsto d_{i}$ is the Hilbert function of a standard graded algebra if and only if $d_{0}=1$ and $d_{i+1} \leq d_{i}^{\langle i\rangle}$ for all $i \geq 1$.

Example

Let $\left(d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)=(1,5,15,33,61,100,152)$. Then $d_{i+1} \leq d_{i}^{\langle i\rangle}$ for all $i=1, \ldots, 5$. By Macaulay's theorem, there exists a standard graded algebra $R=\oplus_{i \geq 0} R_{i}$ such that $\operatorname{dim} R_{i}=d_{i}$ for $i=0, \ldots, 6$. For instance, take

$$
R=K\left[X_{1}, \ldots, X_{5}\right] /\left(X_{5}^{3}, X_{4} X_{5}^{2}, X_{3}^{3} X_{5}^{2}\right) .
$$

A glimpse inside the box

(1) Denote $M_{d}=$ set of monomials of degree d in X_{1}, \ldots, X_{n}.
(2) Order M_{d} lexicographically: $X_{1}^{d}>X_{1}^{d-1} X_{2}>X_{1}^{d-1} X_{3}>\cdots>X_{n}^{d}$.
(3) A lexsegment in M_{d} is $L=\left\{v \in M_{d} \mid v \geq u\right\}$ for some $u \in M_{d}$.
(- Denote $\mathcal{M}=\left\{X_{1}, \ldots, X_{n}\right\}$. If $A \subseteq M_{d}$ then $\mathscr{M} A \subseteq M_{d+1}$.
(0) If $L \subseteq M_{d}$ is a lexsegment, then so is $\mathfrak{M} L$.
(0) Lexsegments have minimal growth: Let $A, L \subseteq M_{d}$ such that $|L|=|A|$ and L is a lexsegment. Then $|\mathcal{M} A| \geq|\mathcal{M} L|$.
(3) For $A \subseteq M_{d}$, denote $\bar{A}=M_{d} \backslash A$, its complement.
(3) Let $L \subseteq M_{d}$ be a lexsegment. If $|\bar{L}|=a$ then $|\overline{\mathcal{M} L}|=a^{\langle d\rangle}$.

The algebra $R(A)$

Let G be an abelian group and K a commutative field. Let $A \subset G$ be finite nonempty. We associate to A a standard graded K-algebra

$$
R=R(A)=\oplus_{h \geq 0} R_{h}
$$

whose Hilbert function $\operatorname{dim}_{K} R_{h}$ exactly models the sequence $|h A|$ for $h \geq 0$.

- Consider the group algebra $K[G]$ of G. Its canonical K-basis is the set of symbols $\left\{t^{g} \mid g \in G\right\}$, and its product is induced by the formula

$$
t^{g_{1}} t^{g_{2}}=t^{g_{1}+g_{2}}
$$

for all $g_{1}, g_{2} \in G$.

- Consider $S=K[G][X]$, the one-variable polynomial algebra over $K[G]$.
- A natural K-basis for S is the set

$$
\mathcal{B}=\left\{t^{g} X^{n} \mid g \in G, n \in \mathbb{N}\right\}
$$

- The product of any two basis elements is given by

$$
t^{g_{1}} X^{n_{1}} \cdot t^{g_{2}} X^{n_{2}}=t^{g_{1}+g_{2}} X^{n_{1}+n_{2}}
$$

for all $g_{1}, g_{2} \in G$ and all $n_{1}, n_{2} \in \mathbb{N}$.

- We define the degree of a basis element as

$$
\operatorname{deg}\left(t^{g} X^{n}\right)=n
$$

for all $g \in G$ and all $n \in \mathbb{N}$.

- Thus $S=\oplus_{h \geq 0} S_{h}$ is a graded K-algebra, where for all $h \geq 0, S_{h}$ is the K-vector space with basis the set $\left\{t^{g} X^{h} \mid g \in G\right\}$.

Definition

Set $A=\left\{a_{1}, \ldots, a_{n}\right\}$. We define $R(A)$ to be the K-subalgebra of S spanned by the set $\left\{t^{a_{1}} X, \ldots, t^{a_{n}} X\right\}$. That is,

$$
R(A)=K\left[t^{a_{1}} X, \ldots, t^{a_{n}} X\right] .
$$

- Since $R(A)$ is finitely generated over K by elements of degree 1 , it is a standard graded algebra.
- We then have $R=\oplus_{h \geq 0} R_{h}$, where R_{h} is the K-vector space with basis the set $\left\{t^{b} X^{h} \mid b \in h A\right\}$.
\triangleright For instance, $R_{2}=\left\langle t^{a_{i}+a_{j}} X^{2} \mid 1 \leq i \leq j \leq n\right\rangle$.
- It follows that

$$
\operatorname{dim} R_{h}=|h A|
$$

for all $h \geq 0$.

Example revisited

Let $A \subset \mathbb{Z}$ satisfy $|5 A|=100$. Let $R=R(A)=\oplus_{h \geq 0} R_{h}$ be the associated standard graded algebra, with $\operatorname{dim} R_{h}=|h A|$ for all $h \geq 0$.

- So $\operatorname{dim} R_{5}=100$. Macaulay implies $|6 A|=\operatorname{dim} R_{6} \leq 100^{\langle 5\rangle}=152$.
- Claim: $\operatorname{dim} R_{4}=|4 A| \geq 61$. Assume for a contradiction $\operatorname{dim} R_{4} \leq 60$. Now

$$
60=\binom{7}{4}+\binom{6}{3}+\binom{3}{2}+\binom{2}{1}
$$

whence $60^{\langle 4\rangle}=98$. Macaulay would then imply

$$
\operatorname{dim} R_{5} \leq 60^{\langle 4\rangle}=98
$$

a contradiction. This proves the claim. Summary:

When $\|5 A\|=100$	$\|4 A\| \geq$	$\|6 A\| \leq$
Plünnecke	40	251
Macaulay	61	152

Optimality

- Are the bounds $|4 A| \geq 61,|6 A| \leq 152$ optimal, at least over \mathbb{Z} ?
- Probably not, but they are close to it. For instance, let

$$
A=\{0,1,5,8,49\} .
$$

Then $|5 A|=100$ as required, and $|4 A|=63,|6 A|=145$.
We conjecture that this is best possible over \mathbb{Z}.

Conjecture

Let $A \subset \mathbb{Z}$ satisfy $|5 A|=100$. Then

$$
\begin{aligned}
& |4 A| \geq 63 \\
& |6 A| \leq 145
\end{aligned}
$$

Recovering Plünnecke's estimate

Let $A \subset \mathbb{Z}$ be finite with $|A| \geq 2$. Let $h \geq 2$.
Theorem (Plünnecke, 1970)

$$
|(h-1) A| \geq|h A|^{(h-1) / h} .
$$

We recover this estimate as follows.
Theorem (E.-Mazumdar, 2020+)

$$
|(h-1) A| \geq \theta(x, h)|h A|^{(h-1) / h}
$$

where $\theta(x, h) \geq 1$ is a well-defined real number depending on $|h A|, h$.
For that, we need a condensed version of Macaulay's theorem. It involves $\binom{x}{h}$ for $x \in \mathbb{R}$.

Binomial coefficients as functions

For $h \in \mathbb{N}$ and $x \in \mathbb{R}$, denote as usual

$$
\binom{x}{h}=\frac{x(x-1) \cdots(x-h+1)}{h!}=\prod_{i=0}^{h-1} \frac{x-i}{h-i} .
$$

Lemma

Let $h \geq 1$ be an integer. Then the map $y \mapsto\binom{y}{h}$ is an increasing bijection from $[h-1, \infty)$ to $[0, \infty)$. Hence $y_{1} \leq y_{2} \Longleftrightarrow\binom{y_{1}}{h} \leq\binom{ y_{2}}{h}$.

This is a direct consequence of Rolle's theorem.

Corollary

Let $h \geq 1$ be a positive integer. Let $z \in[0, \infty)$. Then there exists a unique real number $x \geq h-1$ such that $z=\binom{x}{h}$. If $z \geq 1$ then $x \geq h$.

A condensed version

(For smoother applications of Macaulay's theorem)

Theorem (E. 2018)

Let $R=\oplus_{i \geq 0} R_{i}$ be a standard graded algebra. Let $i \geq 1$. Let $x \geq i-1$ be the unique real number such that $\operatorname{dim} R_{i}=\binom{x}{i}$. Then

$$
\operatorname{dim} R_{i-1} \geq\binom{ x-1}{i-1}, \quad \operatorname{dim} R_{i+1} \leq\binom{ x+1}{i+1} .
$$

Notation

For an integer $h \geq 1$ and a real number $x \geq h$, we denote

$$
\theta(x, h)=\frac{h}{x}\binom{x}{h}^{1 / h} .
$$

We can now prove our main result, namely:
Theorem
Let $h \geq 2$. Then $|(h-1) A| \geq \theta(x, h)|h A|^{(h-1) / h, ~ w h e r e ~} x \geq h$ is the unique real number such that $|h A|=\binom{x}{h}$. Moreover, $\theta(x, h) \geq 1$.

Proof.

Condensed Macaulay directly implies $|(h-1) A| \geq\binom{ x-1}{h-1}$. Now $\binom{x-1}{h-1}=\frac{h}{x}\binom{x}{h}$, since

$$
\binom{x}{h}=\prod_{i=0}^{h-1} \frac{x-i}{h-i}=\frac{x}{h} \prod_{i=1}^{h-1} \frac{x-i}{h-i}=\frac{x}{h}\binom{x-1}{h-1} .
$$

Proof (continued).

 Hence$$
\begin{aligned}
|(h-1) A|^{h} & \geq\binom{ x-1}{h-1}^{h} \\
& =\left(\frac{h}{x}\right)^{h}\binom{x}{h}^{h} \\
& =\left(\frac{h}{x}\right)^{h}\binom{x}{h}\binom{x}{h}^{h-1} \\
& =\theta(x, h)^{h}|h A|^{h-1}
\end{aligned}
$$

Taking h th roots, we get $|(h-1) A| \geq \theta(x, h)|h A|^{(h-1) / h}$, as desired. It remains to show $\theta(x, h) \geq 1$.

Proof (continued).

Equivalently, let us show $\theta(x, h)^{h} \geq 1$:

$$
\theta(x, h)^{h}=\left(\frac{h}{x}\right)^{h}\binom{x}{h}=\prod_{i=0}^{h-1} \frac{h(x-i)}{x(h-i)}
$$

and $h(x-i) \geq x(h-i)$ for all $0 \leq i \leq h-1$ since $h \leq x$.

- In fact, we actually strengthen Plünnecke's estimate:

Proposition

For all $h \in \mathbb{N}, x \in \mathbb{R}$ such that $x>h \geq 2$, one has $1<\theta(x, h)<e$.
Proof by elementary manipulations, using $\frac{h^{h}}{h!}<\sum_{k \in \mathbb{N}} \frac{h^{k}}{k!}=e^{h}$.

Proposition (Asymptotic behavior)

Let $h \geq 2$ be an integer. Then for x large,

$$
\theta(x, h) \sim \frac{(2 x-h) e}{2 x(2 \pi h)^{1 /(2 h)}}
$$

In particular,

$$
\lim _{x \rightarrow \infty} \theta(x, h)=(2 \pi h)^{-1 /(2 h)} e
$$

The proof uses the following
Approximation formulas, including Stirling's

$$
\begin{aligned}
n! & \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \\
\binom{n}{k} & \sim \frac{(n / k-1 / 2)^{k} e^{k}}{\sqrt{2 \pi k}}
\end{aligned}
$$

Proposition

$$
\lim _{x \rightarrow \infty} \theta(x,\lfloor x / 2\rfloor)=2 .
$$

Indeed, Stirling's formula implies $\theta(n,\lfloor n / 2\rfloor) \approx 2\left(\frac{2}{\pi n}\right)^{1 / n}$.

Figure: Values of $\theta(1000, h)$ for $h=1, \ldots, 1000$

Numerical behavior of improvement factor $\theta(x, h)$

| $\theta(x, 3)$ | >1.5 | $x \geq 12$ | |
| ---: | :--- | :--- | :--- | :--- |
| $\theta(48,2)$ | >2 | | |
| $\theta(x, 6)$ | >2 | $x \geq 1210$ | |
| $\theta(1210, h)$ | >2 | | $h \in[6,595]$ |
| $\theta(x, h)$ | >2.70 | $x \geq 200000$ | $h \in[1200,1300]$ |
| $\theta(x, h)$ | >2.71 | $x \geq 1100000$ | $h \in[2600,3700]$ |

Theoretical and numerical evidence suggest:

$$
\lim _{x \rightarrow \infty} \theta\left(x,\left\lfloor x^{1 / 2}\right\rfloor\right)=e .
$$

Some references

：S．Eliahou，Wilf＇s conjecture and Macaulay＇s theorem，J．Eur． Math．Soc． 20 （2018）2105－2129．
：S．Eliahou and E．Mazumdar，Iterated sumsets and Hilbert functions，arXiv：2006．08998［math．AC］．
围 J．Herzog and T．Hibi，Monomial ideals．Graduate Texts in Mathematics，vol．260，Springer，London， 2011.
目 F．S．Macaulay，Some properties of enumeration in the theory of modular systems，Proc．Lond．Math．Soc． 26 （1927）531－555．
专 M．B．Nathanson，Additive Number Theory，Inverse Problems and the Geometry of Sumsets．Graduate Texts in Mathematics，vol．165， Springer，New York， 1996.
㐭 H．Plünnecke，Eine zahlentheoretische Anwendung der Graphentheorie，J．Reine Angew．Math． 243 （1970）171－183．
围 T．TAo and V．Vu，Additive combinatorics．Cambridge Studies in Advanced Maths，105．Cambridge University Press， 2006.

Thank you for your attention!

