Iterated sumsets and Hilbert functions

Shalom Eliahou

Université du Littoral Côte d'Opale, Calais

New York Number Theory Seminar (on Zoom)

July 10, 2020

Introduction

[With Eshita Mazumdar. Preprint (2020) on arXiv.]

Let $A, B \subseteq G$ where G is an abelian group, e.g. $G = \mathbb{Z}$. Denote

 $A+B=\{a+b\mid a\in A,b\in B\},$

the **sumset** of A, B. For A = B, denote

2A = A + A.

For $h \ge 2$, denote

hA = A + (h-1)A,

the *h*-fold **iterated sumset** of *A*. Of course, $0A = \{0\}$ and 1A = A.

Problem (typical in Additive Combinatorics)

If A is finite, how does the sequence |hA| grow with h?

Shalom Eliahou (ULCO)

Specifically here, if |hA| is given, what can one say about $|(h\pm 1)A|$?

Theorem (Plünnecke, 1970)

Let A be a nonempty finite subset of an abelian group. Let $h \ge 2$ be an integer. Then $|iA| \ge |hA|^{i/h}$ for all $1 \le i \le h$.

This is one **Plünnecke inequality** derived using graph theory.

Note. These estimates are equivalent to the main case i = h - 1, i.e. $|(h-1)A| \ge |hA|^{(h-1)/h}$.

Our approach

- Model the sequence |hA| with the **Hilbert function** of a standard graded algebra R(A).
- Apply Macaulay's theorem on the growth of Hilbert functions.

It allows us to recover and strengthen Plünnecke's estimate.

Shalom Eliahou (ULCO)

Iterated sumsets and Hilbert functions

An example

Let $A \subset \mathbb{Z}$ satisfy |5A| = 100. Plünnecke's inequality yields

$$|4A| \ge 100^{4/5} \approx 39.8$$

 $|6A| \le 100^{6/5} \approx 251.18$

Hence

$$\begin{array}{rrrr} |4A| & \geq & 40 \\ |6A| & \leq & 251 \end{array}$$

Can one do better? Yes. Our approach yields

$$|4A| \geq 61$$
$$|6A| \leq 152$$

How?

Shalom Eliahou (ULCO)

Hilbert functions

A **standard graded algebra** is a quotient $R = K[X_1, ..., X_n]/J$, where K is a field, deg $X_i = 1$ for all i, and J is a homogeneous ideal. So $R = \bigoplus_{i>0} R_i$, with $R_0 = K$ and $R_i R_j = R_{i+j}$ for all i, j.

The **Hilbert function** of the standard graded algebra $R = \bigoplus_{i \ge 0} R_i$ is the map $i \mapsto d_i = \dim_K R_i$ $\forall i \ge 0$.

• What characterizes such numerical functions $i \mapsto d_i$?

Macaulay's classical theorem (1927) provides a complete answer.

• For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$. That is,

$$d_1 = {n \choose 1} \implies d_2 \leq {n+1 \choose 1+1}.$$

Binomial representation

Let $a, i \ge 1$ be positive integers. There is a **unique expression**

$$a = \sum_{k=1}^{i} \binom{a_k}{k} = \binom{a_i}{i} + \binom{a_{i-1}}{i-1} + \dots + \binom{a_1}{1}$$

with decreasing integers $a_i > a_{i-1} > \cdots > a_1 \ge 0$. We then define

$$a^{\langle i \rangle} = \sum_{k=1}^{i} {a_k+1 \choose k+1}.$$

Example

$$100^{(5)} = 152.$$

Example: $100^{(5)} = 152$

Let a = 100, i = 5. The 5th binomial representation of 100 is

100 =
$$\binom{8}{5} + \binom{7}{4} + \binom{4}{3} + \binom{3}{2} + \binom{2}{1}$$

Hence

$$100^{\langle 5 \rangle} = \binom{9}{6} + \binom{8}{5} + \binom{5}{4} + \binom{4}{3} + \binom{3}{2}$$
$$= 152.$$

From this we shall deduce: if |5A| = 100 then $|6A| \le 152$.

Macaulay's theorem, first half

Macaulay's theorem characterizes the Hilbert functions of standard graded algebras. Here is a **necessary condition**.

Theorem (1/2)

Let $R = \bigoplus_{i \ge 0} R_i$ be a standard graded algebra over a field *K*, with Hilbert function $d_i = \dim_K R_i$. Then for all $i \ge 1$, we have

 $d_{i+1} \leq d_i^{\langle i \rangle}.$

Example

Assume dim $R_5 = 100$, i.e. $d_5 = 100$. Macaulay states $d_6 \le d_5^{(5)}$. Now $100^{(5)} = 152$ as seen above. Hence

dim $R_6 \leq 152$.

Macaulay's theorem, full version

Remarkably, that necessary condition is also sufficient.

Theorem (Macaulay, 1927)

A numerical function $i \mapsto d_i$ is the Hilbert function of a standard graded algebra **if and only if** $d_0 = 1$ and $d_{i+1} \leq d_i^{\langle i \rangle}$ for all $i \geq 1$.

Example

Let $(d_0, d_1, d_2, d_3, d_4, d_5, d_6) = (1, 5, 15, 33, 61, 100, 152)$. Then $d_{i+1} \leq d_i^{\langle i \rangle}$ for all i = 1, ..., 5. By Macaulay's theorem, there exists a standard graded algebra $R = \bigoplus_{i \geq 0} R_i$ such that dim $R_i = d_i$ for i = 0, ..., 6. For instance, take

$$R = K[X_1, \ldots, X_5]/(X_5^3, X_4X_5^2, X_3^3X_5^2).$$

A glimpse inside the box

- O Denote M_d = set of monomials of degree d in X_1, \ldots, X_n .
- Order M_d lexicographically: $X_1^d > X_1^{d-1}X_2 > X_1^{d-1}X_3 > \cdots > X_n^d$.
- So A lexsegment in M_d is $L = \{ v \in M_d \mid v \ge u \}$ for some $u \in M_d$.
- Denote $\mathcal{M} = \{X_1, \dots, X_n\}$. If $A \subseteq M_d$ then $\mathcal{M}A \subseteq M_{d+1}$.
- If $L \subseteq M_d$ is a lexsegment, then so is $\mathcal{M}L$.
- Solution Lexsegments have minimal growth: Let $A, L \subseteq M_d$ such that |L| = |A| and L is a lexsegment. Then $|\mathcal{M}A| \ge |\mathcal{M}L|$.
- So For $A \subseteq M_d$, denote $\overline{A} = M_d \setminus A$, its complement.

• Let $L \subseteq M_d$ be a lexsegment. If $|\overline{L}| = a$ then $|\mathcal{M}L| = a^{\langle d \rangle}$.

The algebra R(A)

Let *G* be an abelian group and *K* a commutative field. Let $A \subset G$ be finite nonempty. We associate to *A* a standard graded *K*-algebra

 $R = R(A) = \oplus_{h \ge 0} R_h$

whose Hilbert function $\dim_{\mathcal{K}} R_h$ exactly models the sequence |hA| for $h \ge 0$.

• Consider the **group algebra** K[G] of G. Its canonical K-basis is the set of symbols $\{t^g | g \in G\}$, and its product is induced by the formula

 $t^{g_1}t^{g_2} = t^{g_1+g_2}$

for all $g_1, g_2 \in G$.

• Consider S = K[G][X], the one-variable polynomial algebra over K[G].

• A natural K-basis for S is the set

 $\mathcal{B} = \{ t^{g} X^{n} \mid g \in G, n \in \mathbb{N} \}.$

• The product of any two basis elements is given by

 $t^{g_1}X^{n_1} \cdot t^{g_2}X^{n_2} = t^{g_1+g_2}X^{n_1+n_2}$

for all $g_1, g_2 \in G$ and all $n_1, n_2 \in \mathbb{N}$.

We define the degree of a basis element as

 $\deg(t^g X^n) = n$

for all $g \in G$ and all $n \in \mathbb{N}$.

• Thus $S = \bigoplus_{h \ge 0} S_h$ is a graded *K*-algebra, where for all $h \ge 0$, S_h is the *K*-vector space with basis the set $\{t^g X^h \mid g \in G\}$.

Definition

Set $A = \{a_1, ..., a_n\}$. We define R(A) to be the K-subalgebra of S spanned by the set $\{t^{a_1}X, ..., t^{a_n}X\}$. That is, $R(A) = K[t^{a_1}X, ..., t^{a_n}X].$

- Since R(A) is finitely generated over K by elements of degree 1, it is a standard graded algebra.
- We then have $R = \bigoplus_{h \ge 0} R_h$, where R_h is the *K*-vector space with basis the set $\{t^b X^h \mid b \in hA\}$.

 $\triangleright \text{ For instance, } \textbf{R}_2 = \langle t^{a_i + a_j} X^2 \mid 1 \leq i \leq j \leq n \rangle.$

It follows that

$$\dim R_h = |hA|$$

for all $h \ge 0$.

Example revisited

Let $A \subset \mathbb{Z}$ satisfy |5A| = 100. Let $R = R(A) = \bigoplus_{h \ge 0} R_h$ be the associated standard graded algebra, with dim $R_h = |hA|$ for all $h \ge 0$.

- So dim $R_5 = 100$. Macaulay implies $|6A| = \dim R_6 \le 100^{(5)} = 152$.
- Claim: dim $R_4 = |4A| \ge 61$. Assume for a contradiction dim $R_4 \le 60$. Now

$$60 = \binom{7}{4} + \binom{6}{3} + \binom{3}{2} + \binom{2}{1}$$

whence $60^{\langle 4\rangle}=98.$ Macaulay would then imply $dim\, {\it R}_5 \le 60^{\langle 4\rangle}=98,$

a contradiction. This proves the claim. Summary:

When 5 <i>A</i> = 100	4 <i>A</i> ≥	$ 6A \leq$
Plünnecke	40	251
Macaulay	61	152

Optimality

- Are the bounds $|4A| \ge 61$, $|6A| \le 152$ optimal, at least over \mathbb{Z} ?
- Probably not, but they are close to it. For instance, let

 $A = \{0, 1, 5, 8, 49\}.$

Then |5A| = 100 as required, and |4A| = 63, |6A| = 145.

We conjecture that this is **best possible** over \mathbb{Z} .

```
ConjectureLet A \subset \mathbb{Z} satisfy |5A| = 100. Then|4A| \geq 63,|6A| \leq 145.
```

Recovering Plünnecke's estimate

Let $A \subset \mathbb{Z}$ be finite with $|A| \ge 2$. Let $h \ge 2$.

Theorem (Plünnecke, 1970)

$$|(h-1)A| \ge |hA|^{(h-1)/h}.$$

We recover this estimate as follows.

Theorem (E.-Mazumdar, 2020+)

$$|(h-1)A| \geq \frac{\theta(x,h)}{|hA|^{(h-1)/h}}$$

where $\theta(x,h) \ge 1$ is a well-defined real number depending on |hA|, h.

For that, we need a condensed version of Macaulay's theorem. It involves $\begin{pmatrix} x \\ h \end{pmatrix}$ for $x \in \mathbb{R}$.

Binomial coefficients as functions

For $h \in \mathbb{N}$ and $x \in \mathbb{R}$, denote as usual

$$\binom{x}{h} = \frac{x(x-1)\cdots(x-h+1)}{h!} = \prod_{i=0}^{h-1} \frac{x-i}{h-i}.$$

Lemma

Let $h \ge 1$ be an integer. Then the map $\mathbf{y} \mapsto \binom{\mathbf{y}}{h}$ is an increasing bijection from $[h-1,\infty)$ to $[0,\infty)$. Hence $\mathbf{y}_1 \le \mathbf{y}_2 \iff \binom{\mathbf{y}_1}{h} \le \binom{\mathbf{y}_2}{h}$.

This is a direct consequence of Rolle's theorem.

Corollary

Let $h \ge 1$ be a positive integer. Let $z \in [0,\infty)$. Then there exists a unique real number $x \ge h-1$ such that $z = {x \choose h}$. If $z \ge 1$ then $x \ge h$.

A condensed version

(For smoother applications of Macaulay's theorem)

Theorem (E. 2018)

Let $R = \bigoplus_{i \ge 0} R_i$ be a standard graded algebra. Let $i \ge 1$. Let $x \ge i - 1$ be the unique real number such that $\dim R_i = \begin{pmatrix} x \\ i \end{pmatrix}$. Then

$$\dim R_{i-1} \ge \binom{x-1}{i-1}, \ \dim R_{i+1} \le \binom{x+1}{i+1}.$$

Notation

For an integer $h \ge 1$ and a real number $x \ge h$, we denote

$$\theta(x,h) = \frac{h}{x} {\binom{x}{h}}^{1/h}.$$

We can now prove our main result, namely:

Theorem

Let $h \ge 2$. Then $|(h-1)A| \ge \theta(x,h)|hA|^{(h-1)/h}$, where $x \ge h$ is the unique real number such that $|hA| = \binom{x}{h}$. Moreover, $\theta(x,h) \ge 1$.

Proof.

Condensed Macaulay directly implies $|(h-1)A| \ge \binom{x-1}{h-1}$. Now $\binom{x-1}{h-1} = \frac{h}{x}\binom{x}{h}$, since $\binom{x}{h} = \prod_{i=0}^{h-1} \frac{x-i}{h-i} = \frac{x}{h} \prod_{i=1}^{h-1} \frac{x-i}{h-i} = \frac{x}{h} \binom{x-1}{h-1}$.

Proof (continued).

Hence

 $|(h-1)A|^{h} \geq {\binom{x-1}{h-1}}^{h}$ = ${\binom{h}{x}}^{h} {\binom{x}{h}}^{h}$ = ${\binom{h}{x}}^{h} {\binom{x}{h}}^{h-1}$ = $\theta(x,h)^{h} |hA|^{h-1}$.

Taking *h*th roots, we get $|(h-1)A| \ge \theta(x,h)|hA|^{(h-1)/h}$, as desired. It remains to show $\theta(x,h) \ge 1$.

Proof (continued).

Equivalently, let us show $\theta(x, h)^h \ge 1$:

$$\theta(x,h)^h = \left(\frac{h}{x}\right)^h \binom{x}{h} = \prod_{i=0}^{h-1} \frac{h(x-i)}{x(h-i)},$$

and $h(x-i) \ge x(h-i)$ for all $0 \le i \le h-1$ since $h \le x$.

• In fact, we actually strengthen Plünnecke's estimate:

Proposition

For all $h \in \mathbb{N}$, $x \in \mathbb{R}$ such that $x > h \ge 2$, one has $1 < \theta(x, h) < e$.

Proof by elementary manipulations, using $\frac{h''}{h!}$

$$g \, rac{h^h}{h!} < \sum_{k \in \mathbb{N}} rac{h^k}{k!} = e^h.$$

Proposition (Asymptotic behavior)

Let $h \ge 2$ be an integer. Then for x large,

$$heta(x,h)\sim rac{(2x-h)\,e}{2x(2\pi h)^{1/(2h)}}.$$

In particular,

$$\lim_{x\to\infty} \theta(x,h) = (2\pi h)^{-1/(2h)} e.$$

The proof uses the following

Approximation formulas, including Stirling's

$$n! \sim \sqrt{2\pi n} \left(rac{n}{e}
ight)^n \ \left(rac{n}{k}
ight) \sim rac{(n/k-1/2)^k e^k}{\sqrt{2\pi k}}$$

Proposition

$\lim_{x\to\infty} \theta(x,\lfloor x/2\rfloor) = 2.$

Indeed, Stirling's formula implies $\theta(n, \lfloor n/2 \rfloor) \approx 2 \left(\frac{2}{\pi n}\right)^{1/2}$

Figure: Values of $\theta(1000, h)$ for $h = 1, \dots, 1000$

Shalom Eliahou (ULCO)

Numerical behavior of improvement factor $\theta(x, h)$

$\theta(x,3)$	>	1.5	<i>x</i> ≥ 12	
θ(48,2)	>			
$\theta(x, 6)$	>	2	<i>x</i> ≥ 1210	
$\theta(1210,h)$	>	2		<i>h</i> ∈ [6,595]
$\theta(x,h)$	>	2.70	<i>x</i> ≥ 200000	<i>h</i> ∈ [1200, 1300]
$\theta(x,h)$	>	2.71	<i>x</i> ≥ 1100000	<i>h</i> ∈ [2600, 3700]

Theoretical and numerical evidence suggest:

$$\lim_{x\to\infty}\theta(x,\lfloor x^{1/2}\rfloor)=e.$$

Some references

- S. ELIAHOU, Wilf's conjecture and Macaulay's theorem, J. Eur. Math. Soc. 20 (2018) 2105–2129.
- S. ELIAHOU AND E. MAZUMDAR, Iterated sumsets and Hilbert functions, arXiv:2006.08998 [math.AC].
- J. HERZOG AND T. HIBI, Monomial ideals. Graduate Texts in Mathematics, vol. 260, Springer, London, 2011.
- F.S. MACAULAY, Some properties of enumeration in the theory of modular systems, Proc. Lond. Math. Soc. 26 (1927) 531–555.
- M.B. NATHANSON, Additive Number Theory, Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics, vol. 165, Springer, New York, 1996.
- H. PLÜNNECKE, Eine zahlentheoretische Anwendung der Graphentheorie, J. Reine Angew. Math. 243 (1970) 171–183.
- T. TAO AND V. VU, Additive combinatorics. Cambridge Studies in Advanced Maths, 105. Cambridge University Press, 2006.

Shalom Eliahou (ULCO)

Thank you for your attention!