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Premeasures

A function � defined on a class C of subsets of a given set X is
called a premeasure if

; 2 C

.8C 2 C/ 0 � �.C / � C1

�.;/ D 0

In some examples X will be embedded in a larger set Y and
C will be described in Y with the sets understood to be the
intersections of those sets with X .



Method I

For all subsets E of X , let

�.E/ D inf
X

�.Ci /

where the Ci are a finite or countable collection of sets in C

covering E (i.e., each x 2 E belongs to at least one Ei ).

Then � is an outer measure (defined on the next slide). The
definitions make the proof a simple exercise.



Outer Measures

A function � defined on the class of all subsets of a given set
X is called an outer measure if
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Measurable sets

A set E is called measurable if for all sets A and B with A �
E and B \E D ;, we have

�.A [ B/ D �.A/C �.B/

Definitions assure that ; is measurable, the complement of a
measurable set is measurable, and countable unions of measur-
able sets are measurable.



Examples

1. Counting measure: the number of points in a finite set and
C1 for infinite sets.

2. Lebesgue measure in Rn: start with a premeasure on “rect-
angles” equal to the product of the side lengths and use Method
I.



The Cantor middle third set

Start from the closed unit interval.

Remove the open middle third.

Repeat on each remaining interval.

The set remaining after countably many steps is the Cantor set.

After n such steps, there are 2n intervals, each of length 3�n.
The measure approaches zero, but uncountably many points
remain.

We seek a finer description of the size of the set.



The construction premeasure

Let C be the collection of all intervals appearing in the con-
struction of the Cantor set and no other intervals. For an in-
terval I appearing at step n, let �.I / D 2�n. For the induced
measure, the Cantor set is measurable and has measure 1.

Note that the measure of each interval in C is its length to the
power log 2= log 3. The description we seek will has this as the
dimension of the Cantor set.



An arithmetic description

The Cantor set construction should remind you of expansions
of numbers base 3. The numbers in Œ0; 1� removed at step n
are those numbers whose n-th ternary digit must be 1. That
is, 1=3 is not removed because it can be written as 0:0222 : : : as
well as 0:1. This suggests that the set that uses only k of the
n available digits base n should have dimension log k= logn
based on a premeasure on the collection of intervals selected
by initial digits in the base n expansion.



A temporary fix

For now, there will be a fixed construction and the premeasure
will be defined only on the result of that construction. In the
final theory, there will be a uniform definition of the measure
of dimension d and a set will be said to have dimension d if
it is measurable for that measure with a measure that is both
positive and finite.



More general sets

More generally, substrings—rather than single digits—may be
excluded. For example, suppose that we wish to exclude the
string 11 in the binary expansion of numbers in Œ0; 1�. Intervals
with the excluded string should again have � D 0, but there are
two types of intervals contributing to the construction: those
for which the previous digit was 0 and those for which it was
1. The first type may be followed by 0 or 1; the second, only
by 0.



A Goldilocks principle

After n steps, the construction intervals still have length 2�n,
and we should let � be some power of the length of the inter-
val, but how do we choose the power? If the exponent is too
small, the measures of parts of construction intervals may add
to more than the measure of the interval, so we get no interest-
ing measurable sets. If the exponent is too large, all sets get
measure zero.



Graph-based constructions

The construction just described may be represented by a di-
rected graph with nodes 0 and 1 and edges from 0 to both 0
and 1 and from 1 only to 0. A premeasure could be defined
on more general sets that are unions of disjoint construction
intervals: m0 of type 0 and m1 of type 1. If such a set is rep-
resented by a vector with entries m0; n1, then the set obtained
by subdividing all contributing construction intervals would be
represented by the vector�

1 1

1 0

��
m0

m1

�



The dimension for graph directed constructions

After several steps, the ratio of types of intervals will be given
by the entries of the eigenvector of the largest eigenvalue �
and each step will multiply the number of intervals by �. The
exponent giving a useful measure is log�= log 2. In this case
� D .1C

p
5/=2.



Perron’s Theorem

More general graphs allow a similar description using a square
matrix whose number of rows is the number of nodes with
.i; j / entry the number of edges from node i to node j . In
particular, all entries are nonnegative. It is also reasonable to
expect that the graph be strongly connected (there is a path
joining every ordered pair of nodes). Then some power of the
matrix has all entries positive. Perron proved that such a matrix
has a simple positive eigenvalue that is strictly larger than the
absolute value of any other eigenvalue.



The Perron-Frobenius Theorem

Frobenius extended this theorem to cover all nonnegative ma-
trices. The dominant eigenvalue need no longer be simple, and
no longer strictly dominant, but the structure is completely de-
scribed.

Others have extended the theory to apply to operators in infinite
dimensional spaces. New settings are still usually referred to
without additional names.



Metric considerations

This suggests that a d -dimensional measure on R could be de-
fined by defining � of an interval to be the d -th power of the
length of the interval. However, the “Method I” construction
fails to account for our feeling that covers by short intervals are
expected to be more accurate than covers including long ones.
To account for this, we may restrict our original family to in-
tervals of length no more than some give ı. This gives different
measures for each ı. Decreasing ı increases the outer measure
of every set since the infimum in the Method I construction is
taken over a smaller family of covers.



Metric considerations

In the general theory, the sets in C will be described in an ar-
bitrary metric space, and the premeasure � will be taken to be
the d -th power of the diameter of the set.

A set of dimension d will be measurable and have finite mea-
sure for all such measures. Sets of smaller dimension will have
measure zero and sets of larger dimension will generally fail to
be measurable.



Method II

The individual measures constructed from restricting the di-
ameter of the sets in C have no special significance. We need
to take a limit as ı ! 0. Since the outer measure of a set in-
creases as ı decreases, the limit exist (it may beC1) and is the
supremum of Method I measures defined by sets of bounded
diameter.



Hausdorff measure

The Hausdorff d dimensional measure in any metric space is
the Method II measure defined with C being all bounded sub-
sets with premeasure the d -th power of the diameter. Other
functions of the diameter have also been used, but powers are
most appropriate for examples considered here. Measuring a
set with a dimension that is too small now makes the set mea-
surable with infinite measure, and a dimension that is too large
gives zero measure.



Hausdorff dimension

It is easily seen that there is at most one dimension for which a
given set can have a measure that is finite and positive. This is
the Hausdorff dimension of the set.

To show that our “missing digit” examples have the dimension
announced earlier, we need to show that enlarging the family
C has only a minor effect on the measure.

Such arguments are easy for subsets of R.



Continued fractions

A more interesting example is the set of numbers whose con-
tinue fraction example is restricted. In particular, one may al-
low only 1 and 2 as partial quotients. The construction still
looks like a Cantor set, but each removed interval depends on
the steps leading to that point in the construction.

In this case, the dimension is found by studying an operator
on the space of functions on Œ0; 1� built from mapping f .x/ to
f .c C 1=x/ for c D 1 and c D 2.


