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The Continued Fraction Algorithm Approached Through
Quadratic Forms

Richard T. Bumby

1. INTRODUCTION : At first glance the arithmetic continued fraction
appears to be a very well understood animal. The familiar Euclidean algorithm is
a close relative, and the continued fraction itself has been domesticated since
the time of Euler (1737). Almost every textbook in Number Theory has a section
dealing with continued fractions and one can even find books which are the
equivalents of 'Continued Fractions as Pets' (e.g. Olds [13]) or 'The Care and
Feeding of Continued Fractions' (e.g. Perron [14]).

This common domestic contined fraction is completely at home wherever
there is any interest in rational approximations to real numbers. When fed a real
number, the continued fraction algorithm rewards its master with an unlimited
number of rational numbers which are known as 'best approximations' to the
given number.

For many years, mathematicians have been staking out territories less
confining than the real line. As more of us dwell in those lands, the questions
arise: 'Can [ take my continued fraction with me?' ; or 'Do continued fractions
live there already?'. To a certain extent, these questions lead back to the more
" fundamental question : "What is a continued fraction?" Traditionally, continued
fractions are described very arithmetically. one starts with the Euclidean algorithm,
which in an ALGOL-type language would consist of the following steps.

(Initialization) integers p, q and a list A are required; p and q are arguments
of the procedure ; by changing signs of and interchanging p, q (as required), the
condition p 2 q 2 0 is established and A is set to an initial value which indicates
which transformations are performed in establishing this condition.
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(Loop) while q > 0 the following steps are repeated :

(Division) integers a , r are obtained which are characterized by p =ag+r

and0<r=<p;

(Substitution) replace p by g and q by r ;

(Concatenation) append a to the list A.

Since each value of the fraction p/qisequal to a plus the reciprocal of the next
value of p/q , the term 'continued fraction' is suggested. When the algorithm
terminates : q =0 ; p is the greatest common divisor of the original integers p,q ;
and A is a list of integers (preceded by some special character) from which the
original value of p/q may be recovered.

It is not necessary for p and q to be integers for the division step to be
performed. If p and q are allowed to be real numbers , there is stilll a unique
integer a and real number r satisfying the requirements of the division step. The
algorithm is still well-defined, but it need not terminate. In Theorem 3, it will be
shown that the infinite list A determines the original value of p/q. This allows the
nctation p/q = [A]. '

Remark on notation : Various conventions will be used in writing the
sequernce A, One that deserves special mention because it differs from customary
usage is that periodicity will be indicated by enclosing the period in parentheses.

The substitution step may now be written

B (S

The listA=<a_, ..., a > at any stage of the algorithm leads to a matrix

which transforms the current value of the column (p q)' to its initial value. The
elements a, of the list A are called "partial quotients'. The fact that this matrix
has determinant (-1)"*! plays a major role in the classical theory.



The Continued Fraction Algorithm Approached Through Quadratic Forms 3

If p 2 q 20, the initial value of A will be taken to be null. Some examples
are: 8/3=[2,1,2]. -

For p/q=(V5+ 1)/2, division givesa=l and g/r=(N5+ 1)/ 2.

Thus (VS + 1)/2 =[(1)] (see ' Remark on Notation' above).
From the analytic theory of continued fractions (which shall not otherwise be
mentioned here), it follows that (e + 1)/(e- 1) =2, 6, 10, 14, ......].

If the continued fraction does not terminate, then the initial segments of
the infinite list A are the continued fractions of rational numbers which are called
the convergents of the initial value of p/q. One view of continued fractions (see
Richards [15]) is that the continued fraction is this sequence of convergents.

The convergents p /q. = [a; , ....., 8] for n 2 1 are also called best
approximants to & = [A]. The term is justified by the following heuristics.

The effort required to specify a rational number may be assumed to be a
monotonic function of the denominator. Indeed, a "complexity measure" giving
the total number of symbols used in writing p/q is of the order of log p + log g.
When p/q is close to a, p is essentially just qo., so that our measure can be
nicely estimated by a function of q aione. A best approximant must then minimize
some measure of approximation for all rational numbers whose denominators
are subject to some fixed bound. If q is fixed, it is always possible to choose
p so that |qa -p|< 1/2. Usually this determines p uniquely - the only exception
occurs if 2qet is an odd integer. This allows €(q)=min {|qa-p|:pe Z'} 1o
be determined. (An actual attained minimum, not just a greatest lower bound.)

The interesting values of q are those for which £(q) is smaller than all
previous values. A proof of the equivalence of the ideas of "continued fraction”
and "best approximant” must include a proof that £(q) is not bounded below. This
is accomplished by Theorem 1. Indeed that result shows that q.e(q) is infinitely
often smaller than some fixed bound. The elegant simplicity of the proof has
changed little since Dirichlet [7]. The availability of this method makes £(q) a
more useful measure of approximation than the naive measure |o - 1/q |.

The relation between the two measures has been explored in depth
(see Perron [14, chap. IT]).
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It should be pointed out that the method of Theorem 1 can show with
equal ease that for all real numbers a, B, there are integers p,-q,r-such max.( |p|,
Igl, Ir| ) < N and max ( |qa - p|, |gB — 1| ) < C(a, B) N-'2 . However, many
"multidimensional continued fractions" failed to guarantee that they can produce
approximations p/q, r/q to (e, B) for which |qa - p| and |qf3 - r| are less than a
fixed bound. (see Brentjes [1].)

The expression q.&(q) which will be shown to be bounded is unnecessarily
special. Indeed, the only reason for taking the first factor to be exactly q was
that all measures of complexity are roughly the same when €(q) is small. The
natural object of study seems to be an indefinite real binary quadratic form. Such
an object may be defined word-by-word :

form =homogeneous polynomial
quadratic = of second degree

binary =in two variables

real =with real coefficient

indefinite  =taking both positive and negative values.

This level of generality seems well suited to studies of 'best approximations'
and 'continued fractions'.

In plain symbols, a binary quadratic form may be represented as a
combination of x?, xy, and y?, If indefinite, the form may also be considered as
the product of two linear factors. In this article, the letters occurring in the
expression

fix , y) = Az*+ Bxy + Cy* = (ax + fy) (yx + 8y) (2)
will be reserved for describing a quadratic form. When several forms occur,
subscripts will be used. The arithmetic theory of such forms deals with {f(x, y):
xeZ,ye, (x,y)#(0,0)}. In particular, one has

Theorm 1 : There are infinitely many pairs of integers (X , y) such that [f(x, y)|
< Clad + Bl + 18]).

Proof :  Foranyinteger N>0,the (N+ 1) pointswith0<x<N,0<y<N
satisfy LN < (ax + By) < UN, where L is the sum of those of {a , B} which are
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negative and U is the sum of those which are positive. Notice that U-L = |e|+ |(3]
Divide this interval into N? + 2N pieces of equal length. One of these intervals
must contain two of the values of (ax + By), say (ax, + By,) and (ax, + (By,).
Now, |x, - x,| £ N and |y, - y,| < N. From this it follows that

ly (%, = %)+ 8(y, -y < (vl + 18] ) N.
The construction has given

loe(x, = x,) + By, -yl < (laf + B ) AN + 2).
Thus (x, y) = ((x, - x,), (¥, - ¥,)) satisfies the requirements of the theorem.

If B/ is irrational, each point can arise in this way for only finitely many
values on N, so this construction leads to infinitely many points, as required. If,
however, /a is rational , then one has a non-zero point (x , y) with ax + By =0.
In this case the non-zero multiples of (x , y) satisfy the theorem.

Remark : Much more precise results of this nature will appear in this
article. However, the method of proof of Theorem 1 has proved generally valuable
in this type of Number Theory. In many applications, the fairly crude estimates
of this method differ from the best possible bounds by a bounded factor. In this
case, the continued fraction method leads to uncountably many forms. easily
described in terms of continued fractions, for which |fix , y)| 2| «8 - By| / V12
for all integers x , y not both zero. The difference between the upper bound
provided by Theorem 1 and this lower bound is not particularly large.

Clearly, multiplying every coefficient of f by some constant, also multiplies
the value of f(x , y) by the same constant. This effect can be suppressed by
considering the ratio of f(x , y) to some fixed expression , such as the
(|} +BD(|y])+ 18] ) used in Theorem 1, which has the same property. The quantity
ad - Py is a better choice (it is the discriminant of the form).

Definition 1 :  (The Markoff value of a form)
M(f) = |ad — Byl /inf { I[(x, )| : x,y e Z; fix ,y) # 0}.

Remark : Since values of f(x , y) occur in the denominator, M(f) is large
(possibly infinite) if f takes small values.
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The geometry of quadratic forms enriches the language available to describe
the properties of 'best approximations'. From the geometric viewpoint, x and y
are coordinates in the plane. The factorization (ax + By) (yx + 8v) represents
|f(x, y)| as a constant multiple of the product of the distances from (x , y) to two
lines through the origin. The points (x , y) with X and y integers form something
called a lattice in the plane. The origin also belongs to this lattice, hence it is a
distinguished point of this geometry. The plane should then be thought of as the
vector space R? with the origin distinguished as the identity of the additive group
of this vector space. The distinguished lines are fixed one-dimensional subspaces.
The lattice is a discrete subgroup with two generators. These generators are
then also a basis for the vector space.

For each point (u, v) of the plane, define its parallelogram

p(u, v) = { (x,y) : jax + By| < |au + Bv| ; [5x + 8y < [yu + dv|}

(as f will be fixed in this discussion , the dependence on f will not be indicated
explicityly). The set P(u, v) is always compact, so there are only finitely many
lattice points in P(u, v).

Definition 2 :  If (x,y) # (0, 0) is a lattice point such that the (relative)
interior of P(x , ¥) contains no lattice point other than (0, 0), then (x , y) is said to
be a minimal point of the form f.

Remark : Ifp‘c isrational, so that there are infinitely many lattice points
(x ,y) with ax + By = 0, then [ want those points on this line distinct from the
origin and closest to the origin to be called minimal points. In effect, this will
allow me to ignore such forms (called zero-forms because of their non-trivial
representation of zero) in the rest of the article. The theorems will be true, as
stated, but the non-trivial reperesentation of zero will exclude these forms as
soon as [ limit attention to forms which are bounded away from zero on the
minimal points.

Lemma 1 : [f(x,y)#(0,0)isalattice point, then P(x, y) contains a minimal
point.

Proof : Either (x, y) isitself a minimal point or there is a lattice point (x', ')
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# (0, 0) in the interior of P(x , y). As there can be only finitely many points in
each parallelogram and (x , y) € P(x', y"), the lemma follows by induction.

Corollary : M(f) =|ad - By| / Inf {f(x, y) : (x, y) minimal}.

Remark : Remember this! It will be needed in Theorem 5.

The minimal points of f may be ordered by the value of |ax + By|. In
particular , if jax + By| <|ax'+ By'|, then (x , y) is said to precede (x', ') and
(x',y") is said to follow (x , y).

Given two points P, = (x, , ¥,) and P, = (x, , y,) where P, precedes P,
the parallelogram

B={(x,y):|ox+By| <|ox, + By, [yx + dy| < [yx, + 8y,| }
contains both P and P, on its boundary. If P, is any minimal point not on the line
ax + By = 0, then one can find a point P preceding P, , using the method of
Lemmaz 1, so that B will contain no lattice point in its interior other than (0, 0). In
this case, P, and P, are said to be consecutive. If a/f3 and y/8 are both irrational,
this leads to a chain of minimal points P = (x_,y.), n € Z , with each pair
P, P_,, consecutive. If one or both of the ratios are rational , the modifications
are straightforward - an exercise for the reader.

The minimai points P, and P, A will be seen (Theorem 2) to always form
a basis for the lattice. A suitable choice of one of P, for each i will then give
a chain of bases. Adjacent bases will be related by matrices

for some integers a, > 0. The chain of integers <a > contains the information
about small values of | f| on lattice points.

Remark on notation : Angular brackets will be used to delimit a chain (i.e.
sequence indexed by positive and negative integers).

Definition 3 : Given a chain A = <a>, denote

T e i Rt et et Y
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by M _(A) and denote sup M (A) by M(A)

Section 3 is devoted to the study of the values taken on by M(A) as A
runs through all chains of positive integers. Notice that M(A) is finite if and only
if the a_ are bounded. It is not difficult to prove that the real numbers whose
continued fractions have bounded partial quotients form a set of measure zero
(see Koksma {12, IV. 5]). However;-emphasizing the'sequence (resp: chain) of
partial quotients rather than the number (resp. form) represented shows that
there are already uncountably many examples with each a. € {1, 2}. This ability
to synthesize examples by exhibiting the chain of partial quotients is a powerful
tool.

The functions M(f) of Definition 1 and M(A) of Definition 3 will be related
in section 2. As you might expect, if A is the chain determined by the form f;
then M(A) = M(f) (see Theorem 5). In particular, showing M(A) < V12 if all a
€ {1, 2} will lead to family of forms mentioned in the Remark that followed
Theorem 1.

In order to recover information about rational approximations to real
numbers, some modifications are necessary. The traditional questions translate
into the behavior of |y| |ay - x| for large values of y. This requires substituting
"lim inf" for the "inf" in Definition 1. See Cusick [5] for more information on this
topic.

2. Reduction Theory : Much of modern mathematics strives to describe
geometric objects in a coordinate-free manner. Unfortunately, a quadratic form
requires coordinates in order to be written as a polynomial. However, the concept
of a minimal point, and even the value of the form at that minimal point can be
defined by a picture and so is, in some sense, independent of coordinates. The

equivalence of forms is introduced to allow certain admissible changes of
coordinates. The reduction theory seeks to define a special coordinate system
determined by the geometry of the picture in reference. Each minimal point will

then be associated with a reduced form. In general, a form has infinitely many
minimal points, so that there will be infinitely many reduced forms associated
with (and equivalent to) a given form. These forms are related in a way which
gives rise to the continued fraction.
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The continued fraction associated to a form f gives rise to matrices which
represent changes of coordinates in the plane. These changes of coordinates all
preserve the origin;-which is the point of interseetion of the two lines on-which
f=0, as well as beinga pointofthe lattice whichcarries the arithmetic aspect of
the study.

Such changes of coordinates may be given by

x (3)

In particular, (ax + By) becomes
a(mx' + ny') + B(rx' + sy") = (am + Br)x' + (an + Bs)y’
and similarly for (yx + 8y). Thus f(x , y) = f'(x', y") where ' is determined by o'
, B, Y, and &' satisfying
a B m B a' B

- 4)
Y & r s & &'

Ifm, n.r. sare integers, then the lattice of points with (x', y') coordinates
in Z will have (x , y) coordinates in Z. If, in addition , ms - nr = =1 then the
lattices with respect to the two coordinate systems will be the same. From this it
follows that the sets of values of f and ' on the integer lattice are the same. If
fand f' are related by (4), and (x , y) and (x', y') are points related by (3), then
one might say that fis equivalent to f' with (x , y) corresponding to (x', ¥'). (The
- construction really gives an equivalence relation on factorizations, so one must
be careful in speaking of equivalence of forms.)

A reduction theory of quadratic forms is a procedure for producing all
forms equivalent to a form f which have some specific nice property. These are
the reduced forms. The theory will also produce all interrelations between the
reduced forms. Before defining a reduced form, [ will take vou half-way with
the following definition (which is not standard).

Definition 4 : A form for which (0, 1) is a minimal point is called semi-
reduced.
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Proposition : For each form fand each minimal point (x, , y ) of f, there is
a semi-reduced form f' such that f' is equivalent to f with (0, 1) corresponding

to (x, , yo).

Proof : Since (x,, y,) is aminimal point, it is impossible for x_and y, to have
a common factor greater than 1. The Euclidean algorithm then yields integers x,
and y, such that x y, - y x, = L. Put

m n X X

1 0
r S Yo Y

in (3) and (4), to obtain the required equivalence.

Proposition : The form f(x,y) = (ax + By) (yx + dy) is semi-reduced if and
only if there are at least two integers in the closed interval with endpoints - a/3
and - /9.

Proof : Itisimmediate from the definitions that f{x , y) is semi-reduced if and
only if there is no simultaneous solution to

aex + By| < |Bf and |yx + 8y| <3|

except (0, 0). Forx =0, only y =0 satisfies either inequality. Given x # 0, each of
these inequalities demands that y should be within 1 of some real number. The
number solutions of simultaneous diophantine inequalities of this type depends
only on the number of integers between the numbers.

If no integers between the numbers, then two solutions.
If one integers between the numbers, then one solutions.
If more than one integer between the numbers, then no solutions.

The numbers in question are —ax /B amd -yx /3. The "only if" part of the
proposition follows from taking x = 1. To prove the converse, suppose there are
at least two integers between x = 1. To prove the converse, suppose there are at
least two integers between —c /3 and -y /3.
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This has the direct consequence that there are no solutions with x = + 1, and the
additional result that | (- / B) - (~y /8) | 2 1. Thus, if x| 2 2, |(~ax /B) - (-yx /8)| = 2.
This guarantees that the numbers have more than one integer between them,
and hence that the inequalities have no solution with this value of x.

Theorem 2 : Iff(x,y)is semi-reduced, and if (0, 1), (x, , y,) are consecutive
minimal points, thenx, = £ 1.

Proof : The above proposition shows that there is more than one integer
between —o./ B and - y/8. Let v, be the integer in this interval closest to — /8. In
particular, |y, + ¥/8| < 1 and , hence, |y + 8y,| < 8. Furthermore, for any x , the
integer xy, lies between —a /3 and - /6.

Nowlet (0, 1) and (x, , y,) be consecutive minimal points. Recall that this
means that there are no non-zero solutions of

loex + By| < |ax, + By, | and |yx + dy| < 6.

In other words, (x, , y,) minimizes [ax + By| among all (x , y) with [y + yx /3| < I.
If x, were known , y would be one of the integers adjacent to — yx, /8. Indeed,
since |ax + Py] is to be minimized, y must be the integer between —ax, /B and
- ¥X, /8 closest to - yx, /8. Now x,y, is also an integer between —ax, /B and
- X, /8. Since y, is closest to one end, x,y, is at least as close to the other end,
ie |ax, /B+xy,|<|ax, /B +yl|

Thus,

lox, + By, | 2 |ax, + By, v.| 2| x| |e.By.|
~ If |x,|> 1, this would contradict the defining property of (x, , y,).
Corollary : If(x,,y,) and(x,,y,)are consecutive minimal points of f, then

there is a form " equivalent to f with (0, 1) and (1, 0) corresponding to (x,, ¥,)
and (xl b | Y|)'

Proof : Thereis no loss of generality in assuming that fis already semireduced
and that (x, y,) = (0, 1). Theorem 2 then says that x, may be taken to be 1. The
required equivalence is then given by the matrix
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g o
TR

in equations (3) and (4).

If (0, 1) and (1, 0) are already consecutive minimal points, then the
construction used in Theorem 2 must lead toy = 0. That is, 0-must be the integer
between (-a /) and (-y /8) which is closest to (- y/8). An application of the
transformation x' =x , y' = - y to f will change the signs of the ratios (a /B) and
(v /8) while keeping (0, 1) and (1, 0) as consecutive minimal points. Performing
this change if necessary allows one to enforce the normalization

1>-y/620-12-a/p (5)

Definition 5 : A form satisfying (5) is said to be reduced .

The effect of all this is to give, for each form f and minimal point P_ of f,
a reduced form £ equivalent to f with (0, 1) corresponding to P,_. The chain of
minimal points of f induces a chain of reduced forms <f > equivalent to f. In
order to determine the relation between consecutive elements in such a chain , it
suffices to take a reduced form f and determine the reduced form which
corresponds to the minimal point (1, 0). Using the method of Theorem 2, let a be
adjacent to -8/y on the interval (-B/a , -8/y). Then (1, 0) and (a , 1) are
consecutive minimal points, From (5), one has a = [-3/y]. Thus the transformation
from one reduced form to the next in a chain is given by a matrix of the form

a 1
1 0
Witha =[-8 /¥,], this gives

G = aln(xn = ﬁn Tn*l o anYn 5 51\

n+l
Bo =<, SR R (6)
o B st e S <80 Ty = =07 —e)

In particular, a_ = [a_, /B, ,,]. The step from f_, to f can thus be recovered
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from the factored form of £, . In this way, a given form f; leads to the entire
chain <a >. It also follows from (6) that

(=8.0y,) = [@ s I G A |
(2/B) = lagac. s a_, (e /B_)] (7
(These ratios were asserted to be greater than 1 in (5).)

Theorem 3 : If &= [a e a,E, Jwitheacha 2land 1 <& , <o,
then £ is confined to a closed interval. The intervals obtained in this manner from
an infinite sequence of positive integers <a> are nested and their intersection is
a single point.

Proof : Using (1) and the fact that

ao 1 a'll 1 pu*l Pn-‘
..... has the form

1 0 1 0 qn-»l qn_l

(where all P, and q, are non-negative. and all but q, are actually positive) gives
E=P_ & ., 14,/9,.& .., T 9, The denominator of this expression is always
positive. Furthermore, £ is the function of, £ ,, whose derivative is always of the
same sign as the constant P, q_-P_q__, (which just happens to be (-1)™") so it
is monotonic. Specifying the value of a , has the same effect as confining &,
to the interval a , < & < l+a  This proves all but the last assertion of the
theorem, To show that the intersection of the intervals is a single point, it suffices
to show that the length of the n-th interval determined by <a >approaches zero
as n goes to infinity. This length is easily seento be 1/q_, (q,,,* q,)-
Since q, =0, q, =1land q., = agq, +q,,= g, *q,, it follows easily that
g, z((1+ V5)/2)** forn = 1. This completes the proof.

Corollary : The chain <a > determines the form f; up to a constant factor.

Proof : Thea withn2> 0 determine the ratio v/5, and those with n < 0
determine a/p.

Consider the special case in which <a > is periedic, and suppose the period
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Consider the form f, in the chain of reduced forms determined by <a >. It
follows from Theorem 3 that M transforms f| into a multiple of itself. Thus the
form £, (x,y) = (ax + By) (yx + dy) where (a,) and (y,8) are row eigenvectors
of M. Since the form is reduced, o/ is positive and y/8 is negative. It is thus
immediate that the two eigenvectors are independent. The corresponding
eigenvalues are then real numbers whose product is det (M) = (-1). Since all
a2 1, it follows that tr(M) = 1 for all M and, moreover, if det(M) = +1, then
tr(M) 2 3. Thus the eigenivalues are necessarily real quadratic irrationals.
(Exercise: fill in the details here.) Since the eigenvalues are conjugate over the
rational, the same must be true of their corresponding (row) eigenvectors; but
these are known to be (a,3) and (y,8). In others words, f is a multiple of a form
with integer coefficients.

Conversely, suppose that a given form f(x,y) = Ax*+Bxy + Cy? has
integer coefficients. All equivalent forms must also have integer coefficients. In
addition, equivalence preserves the discriminant B - 4AC. Periodicity follows
from the following result of Lagrange (1770)

Proposition : There are only finitely many reduced forms with integer
coefficients and fixed discriminant.

Proof : Suppose that C > (. Then F(z) = Cz* + Bz + A has (-a/B) and
(-y/8) as roots, so that (5) yields: F(1) > 0; F(0) £0; F(-1) 0. Evaluation of F at
1,0,and-1 thengives:A+B+C>0;A<0; A-B+C<0. Thus B> |A+C| =0
While A and C have opposite signs.

For reduced forms, it follows that B? is no larger than the discriminant.
Hence there are only a finite number of values of B if the discriminant is fixed.
For each value of B, one gets a fixed value of —-4AC. If this is not zero, then

1
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there are only finitely many possible integer values of A and C. In the unlikely
case that the discriminant is a perfect square, so that this quantity could be zero,
the condition |A+C| < B gives only finitely many values of A and C with A<(0<C

Corollary : The chain associated with a form with integer coefficients is
purely periodic.

Proof : Foreachreduced form with the given discriminant, the construction of
its immediate successor or predecessor in any chain depends only on the form
itself, Thus this operation induces a permutation of the reduced forms.

Theorem 4 : A purely periodic continued fraction [(a,..., a )] represents a
quadratic irrational &, whose conjugate (inQ(3)) n satisfies-l/m=[(a,....,a)].

Proof : Consider the form represented by the chain <(a,...a )>. It has
already been noted that this is a multiple of a form with integer coefficients, and
that it does not factor over the rationals. Formula (7) gives the conclusion with

£ =(-5,/v,) and 71 = (-B/a,), its conjugate.
Corollary : If A is purely periodic, then M(A)® is rational.

Proof : M(A)=M, (A) for some k since M_(A) assumes only finitely many
values as n varies. There is no loss of generality in assuming M(A) = M (A).
Substituting the result of Theorem 4 into Definition 3 gives M (A) =& - 1 where
£ and n are two roots of a quadratic equation with rational coefficients. The
result follows.

' Remarks : Theorem 4 is due to Galois (1829). See Koksma [12, § 23] for
more details. Equation (5) expresses the fact that the form represented by A is
reduced as a condition on the conjugates &, n. It is now easy to use Theorem 3
to show that the continued fraction of any quadratic irrational is eventually
periodic. Theorem 4 will then imply that the conjugates have periods which are
the reverses of each other. Herzog [11] has given a complete analysis of the 28
possible behaviours of the preperiods of continued fractions of conjugate numbers.
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Theorem 5 : If the form f corresponds to the chain A, then M(f) = M(A).
B.Y,-«.5,
Proof : Applying (7) gives M (<a >) =—ay——(nccessan'ly positive from

definition 3). But |By - @ 6 | = (a8~ Byl and a v = £ (1,0) = £ (p ). The

ntn non

corollary of lemma 1 gives the desired result.

3. The Markoff Spectrum : The set of values of M(f) (from def. 1), or
equivalently by Theorem 5, M(<a >) (fromrdef. 3) is called the Markoff Spectrum.
My own work in this area has emphasized the approach through the chain <a >.

It is useful in constructing examples to know that every value in the
Markoff spectrum can be realized by a chain A for which all M (A) < M, (A),
so that M(A) = M, (A). This is a version, within the continued fraction approach,
of a compactness theorem in the geometry of the numbers due to Mahler
(see[4, chapter 5]) .Such a 'compactness theorem' has figured prominantly in
the writing on the Markoff spectrum since 1970, but did not seem to be noticed
earlier. Various writers seem to have discovered it independently. I learned it
from Hall [10].

Lemma 2 : For each chain A = <a> with all as< M, there is a chain
A¥ = <an*> such that :

1) every finite string in A* occurs somewhere in A;
1) M(A*) =M (A*) = M(A).

Proof : Construct the elements of A* in the ('spiral’) order ay, a¥}, a*, a¥, a*,,
... using an inductive process. At each stage, one will have an initial segment of

this sequence (the null segment at stage 0) for which it is true that

M(A) = sup{M (A) : a_, =a*forall i with a* defined} (8)

1

Note that at stage 0, before any of the a* have been defined, this is exactly
the definition of M(A). The inductive step requires that a value be assigned to
the first free a* in the spiral ordering. Condition (i) restricts attention to a set of
possible values for a* which is finite since a* < M. To show this set is
non-empty, find any n suchthata  =a* for all previously defined a* . Then
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a . is a possible value of a *. For each possible value, form the supremum (8)
(the supremum over the null set may be taken to be zero). Now M(A) is the
maximum of the finitely many values obtained in this way. Thus, at least one of
these values is equal to M(A). This allows one to choose a*so that (8) is satisfied
and to continue the induction.

It is immediate that M(A*) 2 M (A*) 2 M(A) for the sequence constructed
in this way. As M(A*) < M(A) follows from (i), the lemma is proved.

As an application of this, consider those chains A for which M(A) =
M (A) and a, = N. It is classical, and will be proved below. that this entails

JNTFE<M(A) < N?+ 4N, When N = 1, this allows only M(A) = V5; When

N=2, V8 < M(A) < V12; and when N > 3, V13 < M(A). Lemma 2 guarantees
that every value in the Markoff spectrum lies in one of these intervals. Hence:
i) the smallest value in the Markoff spectrum is V5;
i)  there are no values in the spectrum between V5 and V8;
iii) there are no values in the spectrum between V12 and V13.

Items (1) and (ii) were known to Markov and are part of his result that the
portion of the spectrum below 3 is discrete (see[3]). Item (iil), is due to perron (see
Koksma [12, I1.2]). Let's begin with the special cases needed for this resull.

Propositien : Ifa, =N and M(A) = M (A), then M(A) € YN* & 4?\: The
upper bound is attained for A = <(N,1)>.

Proof : M(A)is an increasing function of each a,, and a decreasing function
4 If it were known that all a < N, the given chain would certainly
give the largest value of M(A). To prove the result as stated, let x=[a , a,, ...]
andy = [a, a,,a, ..] so that M (A) =x +y - N. Without loss of generality, it
may be assumed that x 2 y. Now: how large can x be? Ifa >1, then y < x < [N.2]
which requires that M (A) < N +1, which is much smaller than M (<(N,1)>).
One may then assume a = 1. Introduce u = [a,, a, ...] and observe that

i y
MQ(A)=y+u+l M:(A)=u+——""——

y+l'

" ofeacha




18 Richard T. Bumby

The assumption that M (A) 2 M,(A) is equivalent toy 2 u. Hence,u sy <x=
[N, 1, u] which forces u < [(N, 1)].

This shows the use of the compactness theorem in analyzing the Markoff
Spectrun. For lower bounds, the problem is different: itis desirable to show that

the presence of certain strings in A force M(A) to be large . The method of

the above proposition does not do this since it assumes that M(A) = M (A). For
example, it would be useful to know that the presence of any 4 in A force
M(A) > ¥20. An approach which relied on the compactness theorem could
obtain such a result only after a long analysis of chains A with a = 3.

s
Proposition : If A is any chain, write M (A) = max (M_,(A), M (A),
M., (A)). Ifa =N, then M! > VNZ+4,
Proof : Writtu=[a ,a ,..Jandy=[a ..]- Then N.M_ (A)=(Nu
+ 1) = 1I/(Ny + 1) and NM __ (A) = (Ny + 1)-1/(Nu + 1). This shows the
equivalence of M_ (A)=M _ (A) with the simpler condition u =y (since z+ /2

n+1? an+2’

is increasing function forz> 1). As in the previous proposition M (A)2M _ (A)
isequivalenttoN+ /u=yand M (A)=M, (A)isequivalenttoN + l/y>u. A
figure can be drawn to illustrates the manner in which the quadrant where u >
1 and y > 1 is dissected into regions where the three numbers M_ (A), M (A),
M _, (A) occur in a particular order of size . The three curves meet at the point
where u=y =[(N)]. As M (A) is a decreasing function of both u and y while
M . (A) are increasing functions, the minimum value of M (A) occurs on one
of the solid curves of the figure. Consider the typical are {(u, N+ l/u): 1 <u<
[(N)]}. Here M(A) = x + 1/x with x = N + 1/u. As this is an increasing function
of x, the minimum occurs for the smallest x, for which u=[(N)]. Similar analysis

of the other arcs proves the proposition.
Corollary : Ifanya >N, then M(A) 2 VN?+ 4.

Remark : The function z + 1/z occur prominantly in these proofs. The critical
fact is that they are increasing functions of z for z > 1.
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These two propositions are typical of Perron's method. The next result,
independently discovered by Gbur [9] and myself [3] allows Perron's method to
be applied in greater generality than had been earlier realized.

Theorem 6 : Suppose thatk>0and writeu=[a,a ,a,, ...]Jandy=[a,

a_.,a,, .. Define m, n,r, and s by

m n = a] 1 az l ........ ak-l 1 (9)

r s 1 0] |1 0 1 0
Then M (A) 2 M (A) if and only if (u = y) 2 (n - r)/m.
Proof : Since the factors on the right side of (9) are ali symmetric matrices, the
effect of transposing is only to invert the order of the factors. Thus

M sl 1 a, 1 ©)

n s 1 0 1 0
It then follows that

M (A)=u+(ry+s)/(my+n),M (A)=y+ (nu+s)/(mu+r) and
m(My(A)-M, (A))=((mu+r) - (ms - m)(mu+r)) - ((my +n) - (ms-m)/(my +n)).

Here (ms—nr)=(-1)*"', so that the expression on the right is the difference
ol two values of one of the functions z + 1/z, which are increasing functions for
all z> 1. As (mu+r) and (my + n) are certainly greater than 1, this implies that
M,(A) > M, (A) if and only if mu + r > my + n, as required.

Corollary : Ifa,=a _for1<i<k-1, then M (A)=M, (A)ifandonlyif u = y.
Corresponding results for k <0 are clear and will be used without further
comment. '
Theorem 6 has been useful in determining the extreme values of M(A)
under the assumptions that M(A) = M (A) and that certain a, are fixed.
(These are the "local" extrema considered by Davis and Kinney [6].)

The cases of interest in this analysis have all a, < 4, because of the
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phenomenon know as "Hall's ray". It has been shown by Freiman [8] building on
earlier results (see [10], [16]) that all numbers greater than 4.52783 belong to
the Markoff spectrum, and that 4.52782955 does not. Thus, only with small
values of a, will this local analysis have consequences about global properties of
the Markoff spectrum.

Our notation thus need only represent the elements of the chain A by
single digits, so a minimum of punctuation will be required. Out with the commas
and spaces separating terms! On the other hand, a, plays a special role, so need
to be located easily. I propose delimiting it with dots. Thus the chains witha , =
a,=a,=a;~2anda_,=a,=a,=a,=a =a,=a= | would be said to "contain
the string 21111.2.12112". In working with the continued fraction representation
of numbers, the fact that this representation is alternately an increasing and
decreasing function of the partial quotients makes it desirable to separate pairs
of integers by spaces. Thus, if all partial quotients are bounded by 2, the pairs 12,
11, 22, 21 in this order should be considered as the basic "digits" of the
representation. They must be separated by spaces so one can see where each
symbol begins. Periodicity will be indicated by enclosing the period in parantheses.

So far we have shown:
Max(.1.) = M(<(1)>) =5
Max(.2.) = M(<(2)>) =8
Max(.2.) = M(<(21)>) = V12
some further examples

Example | : Max (2.2.2)

Introduce x=[a _,a_,..]andy =[a,, a,,...]. M(A) is an increasing function
of both of these quantities so they should be as large as possible. The corollary to
Theorem 6 fork =-2 and k = 2 gives

x<s[22 y] y<$[22 x]
Each quantity is bounded by an increasing function of the other. Composing

these gives
xs[22 22 x]

wt
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which requires x < [(2)]. This, in turn gives y < [(2)]. These values give the
desired maximum, Notice that this is the same as Min(2.2.2), so this constaraint
determined only a single point.

Example 2: Min(.2.1)

Takex=[a a,,...Jandu=[a,a,..]. Thenx £uand M (A)Zu + l/u.
Thus small values of M (A) must have small values of u. Assume a,= 1. (The
result will justify the assumption.) Introduce y = [a,, a,, ...] Apply the corollary
of Theorem 6 with k = 3 to get y < [2x]. Combine with the previous result
(k=-1)x<[211y]. Thus each of x and y is bounded by a decreasing function of
the other. As in the analysis of the figure , the "vertex" x = [(21 12)]
y=[(22 11)] actually minimizes max(M,(A), M (A), M,(A)). The periodic

chain <(2211)> then gives the desired minimum (which 191_5:2—_1 ).

5
Remark : Notice that this gives a lower bound on max(M(A), M (A),
M (A))ifa,=2,a =a,= 1. Any chain A containing the string 211", would have
M(A) 2 V221/5.
Example 3: Max(21111.2.12112)

Start with x = [a  a_,..] and y = [a.a,,...]. The desired maximum is
given by choosing x and y as large as possible subject to the infinitely many
conditions of Theorem 6. I will only sketch the calculation. This calcuiation would
only be done only after simpler strings had been studied. It would then be known
that certain strings force larger values of M(A) than known bounds on M, (A),
hence these strings may be excluded. Likewise, some applications of Theorem 6
would be redundant since the analysis of max(.1.) and max(2.2.2), for example,
leads to nearby locations in the chain where M, (A) is larger unless M(A) < V5

or V8, respectively. The same will be true of every such upper bound result. It is
thus not much work to show that the continued fraction for x begins

x=[2121 1122112121 11 12x,].

The bound on x, produced by Theorem 6 is very close to the bound on x. This
suggests that x = X, giving periodicity, for the desired maximum. This can
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actually be proved (see Bumby [2]). Similarly it can be shown that
y=[(2121112122)]

This was the first endpoint of a gap in the Markoff Spectrum which required two
different periods.

" In general suppose J > 0 and a_ is known for i < j. Theorem 6 gives all
restrictions on the remaining a, in order to have M(A) = M(A). Letu=[a, a ,
land y = la,a

J“"“

.J. Increasing u would relax all of these conditions, so
max(y) will not decrease and min(y) will not increase. In finding the maximum
for chains containing a given finite string, the upper bounds oneachofu=|[a, a  a ,,...]
andv=[a; a a,..] will be increasing functions of the other. Thus, it has always
been easy to give convincing calculations of maximum values. In the case of
minima, however, u and v are bounded below by decreasing functions which
may be discontinuous. It is more difficult to describe the values of u and v which
minimize M(A). but it has not been too difficult to find minima in practice.

4. Conclusion : Much of this paper is an elaboration of themes of Cassels
[4]. In particular, the emphasis on the infimum of a function restricted to a lattice
can be found in chapter II, and the approach to continued fractions is sketched in
section X.8. I wish to call special attention to the concluding remarks of [4, X.8]
where several problems are mentioned for which analogs of the continued fraction
could lead to new results.

There is no difficulty generalizing definitions 1 and 2 and proving an analog
of Lemma | for any of these examples. There is considerable difficulty going
any farther, since analogs of (5) as a characterization of reduced forms do not
seem to exists and no generalization of Definition 3 has been found.

Although the work on the Markoff Spectrum has relied heavily on
Definition 3, it should be noted that Theorem 6 uses only thematrices relating a
pair of reductins and not the factorization of this matrix given by the continued
fraction. This suggests that continued fraction methods might be available where
continued fractions themselves have no analog.

]
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