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Abstract. The divided cell algorithm was introduced by Delone in 1947 to calculate the inho-
mogeneous minima of binary quadratic forms and developed further by E. S. Barnes and H. P. F.
Swinnerton-Dyer in the 1950s. We show how advances of the past fifty years in both symbolic
computation and our understanding of homogeneous spectra can be combined to make divided cells
more useful for organizing information about inhomogeneous approximation problems.

A crucial part of our analysis relies on work of Jane Pitman, who related the divided cell algo-
rithm to the regular continued fraction algorithm. In particular, the relation to continued fractions
allows two divided cells for the same problem to be compared without stepping through the chain
of divided cells connecting them.
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1. PRELIMINARIES

Notational conventions and a basic framework for working with approximation prob-
lems are collected here for the convenience of the reader.

Diophantine Approximation problems deal with finding where the restriction of a
function to a special subset is small. In this paper, the function will be defined on the
plane R2 and the subset will be the integer lattice Z2. The function will take nonnegative
values, so “small” will mean “close to zero”. It is customary to work with the reciprocal
of the original function, and to freely treat 1 D 1=0 as a number, since it will be a
possible value of the supremum of a set of nonnegative numbers.

By working with the name denoting a function instead of the traditional convention of
denoting a sequence with subscripts, we are allowed the uncluttered notation limsupf
to denote the infimum over all cofinite subsets S of N of the supremum of the values of
f restricted to S .

The computation of the infimum of a function can often be organized by endowing
the domain with a partial order for which the given function is order preserving. If the
partial order has the property that descending sequences are finite, then the infimum of
the values over the whole set is equal to the infimum over the set of minimal points for
the partial order. This is valuable when the set of minimal points has special properties.
In particular, it is usually possible to index the minimal points by the set of all integers
Z so that a pair of adjacent minimal points has some special property. Such a function
defined on set of all integers Z will be called a chain.



The integer lattice in R2 is identified with Z2 by giving it a basis. Certain bases aid in
the identification of the minimal points. These depend on the expression and have been
called reduced. Dually, the expression giving the function in terms of a reduced basis
has also been called reduced.

Families of related problems lead to a space of reduced bases, and the study of all
reduced bases for a single problem can be expressed in terms of a dynamical system on
this space. This study will lead to strong results when the underlying space is compact.

Our emphasis here will be visual with pictures of the plane R2 including the lattice Z2.
However, while a basis for the lattice is used in the algebraic description of the objects
in the figure, other considerations may be used in the choice of viewing coordinates.

2. THE MARKOFF SPECTRUM

Traditionally, as in [1], the homogeneous Markoff Spectrum is the set of values

M.F / D sup
( p

D.F /

jF.x;y/j
W x;y 2 Z; .x;y/ ¤ .0;0/

)
(1)

where F.x;y/ D Ax2 C Bxy C Cy2 is an indefinite binary quadratic form of discrim-
inant D.F / D B2 � 4AC . The quantity M.F / is given as a normalized inverted min-
imum: normalized to allow natural comparison between values of different forms F ;
inverted to allow simpler expressions for interesting values in the spectrum. Those F
with F.x;y/ D 0 for integers x and y (not both zero), as well as those taking arbitrarily
small values, have M.F / D 1. The interesting cases are those for which M.F / is finite.

Since F is indefinite, it can be factored over R. We write

F.x;y/ D .a0x Cb0y/.a1x Cb1y/; (2)

and introduce new variables � D a0x C b0y, � D a1x C b1y to get F D ��. Then,p
D.F / D ja0b1 �a1b0j.
In particular, the expression F.x;y/ is encoded by the matrix

A D

�
a0 b0

a1 b1

�
: (3)

Left multiplication by this matrix takes the column with components .x;y/ to one with
components .�;�/. Thus, it gives a change of variables between the arithmetic and
geometric aspects of the study of the values of F on the integer lattice. The rows of
the matrix are the coefficients in the factors of F.x;y/. As a change-of-variables matrix,
its columns give the .�;�/ coordinates of the generators of the lattice.

A change of basis in the lattice multiplies the matrix in (3) on the right by an integer
matrix of determinant ˙1; scaling the factors of F.x;y/ multiplies on the left by a real
diagonal matrix. The value of M.F / is not changed by these actions.

A visual approach to the Markoff Spectrum must show the integer lattice and the
lines aix C biy D 0 .i D 0;1/. However, it is more convenient to use .�;�/ as viewing
coordinates since a fixed F will be studied using different bases for the integer lattice.



FIGURE 1. Homogeneous example

In practice, this may be modified by a change of scale .�;�/ ! .a�;�=a/ in order to
bring different lattice points into focus. Because of this choice of viewing coordinates,
the lines where F.x;y/ D 0 will be called the axes of F . For example, a picture of
F.x;y/ D x2 � 3y2 on the integer lattice uses viewing coordinates .�;�/ with � D

x C y
p

3;� D x � y
p

3. Figure 1 shows this view of F D 0 (now just the coordinate
axes), the lattice generated by .x;y/ D .1;0/ and .x;y/ D .0;1/, and the lattice cell
whose .x;y/ coordinates are .0;0/; .1;0/; .1;1/; .0;1/.

In computing M.F /, if a lattice point P0 is closer to both axes than the lattice point P1

is, then jF j is smaller at P0 than at P1. This relation between P0 and P1 is a partial order
of the type mentioned in the Preliminaries. Thus, only the minimal points for this partial
order need be considered when finding M.F /. Arranging the minimal points in order of
their distance to a specified axis of F gives a chain of minimal points (except when an
axis contains a nonzero lattice point). Since these results are well known, and have been
given in detail in [2], features of this chain are only sketched here. The corresponding
results for inhomogeneous problems will be described later in more detail. Figure 1
shows that .x;y/ D .1;0/ and .x;y/ D .1;1/ are minimal points, but .x;y/ D .0;1/ is
not since .1;0/ is closer to both axes.

A full description shows that two successive minimal points always generate the
lattice. These are the reduced bases of the lattice. In a precise definition of a reduced
basis, it is convenient to fix the order of the axes, the order of the generators of the lattice,
and to choose between a generating vector and its negative. With one set of choices,
if x and y are the coordinates with respect to a reduced basis, one has a0 � a1 � 0
and b1 � �b0 � 0 in (2) and (3). Since the matrix (3) determines the reduced basis,
it is appropriate to also speak of a reduced matrix when these conditions hold. The
inhomogeneous case will also require matrices with b0 � 0 � a0, but these are avoided
in the tradition treatment of the homogeneous case.



For three consecutive minimal points, a matrix whose columns are the basis consisting
of the second and third points is the product of the corresponding matrix for the first and
second points with the matrix �

0 1
1 �a

�
(4)

with a D ba0=b0c. To restore orientation and obtain the required signs of the matrix
element, this must be multiplied on the left by a diagonal matrix whose first diagonal
entry is positive and whose second entry is negative. In the example, when the matrix
for the reduced basis .1;1/; .1;0/ multiplied by the matrix in (4) and rescaled, leads to
the equation�

1C
p

3 1

1�
p

3 1

��
0 1
1 �2

�
D

�
�1C

p
3 0

0 �1�
p

3

�"
1C

p
3

2
1

1�
p

3
2

1

#
: (5)

The space of all reduced matrices with fixed determinant forms a compact set. Note
that compactness requires that all inequalities be inclusive. Classical work often aimed
for unique representations and required some inequalities to be strict, but sacrificing
uniqueness to have a compact space of reduced matrices allows the Spectrum to be
characterized in terms of attained extrema.

The chain of the matrices given by (4) is one description of the steps in the continued
fraction algorithm. It produces a symbolic dynamics that is useful for describing the
relation between the reduced bases of a given form and the computation of M.F /. In
particular, a consistent choice of a vector from each reduced basis leads to a chain of
minimal points .xn;yn/, and M.F / D supMn.F / where

Mn.F / D

p
D.F /

jF.xn;yn/j
: (6)

Each index n should be associated with both the minimal point .xn;yn/ and the
reduced basis with this point as first element. A sequence of indices can be found for
which Mn.F / ! M.F / and also the corresponding reductions converge (see Lemma 6
of Chapter 1 of [1]). This shows that every value in the Markoff Spectrum is an attained
supremum. This result is known as the Compactness Theorem for the Markoff Spectrum.

A novel variation on this approach, allowing generalization to higher dimensions, can
be found in [3].

The Divided Cell Algorithm transfers these properties of the continued fraction to
inhomogeneous problems.

3. THE LAGRANGE SPECTRUM

If the form F.x;y/ in (2) is x.y �x˛/, then F.0;1/ D 0, giving M.F / D 1. However,
if ˛ is irrational, no other minimal points .x;y/ have F.x;y/ D 0. If 0 < ˛ < 1, we
set .x�1;y�1/ D .1;0/ and .x0;y0/ D .0;1/, giving a reduced basis; and then index the
other minimal points by positive integers. Properties of rational approximations to ˛ are



determined by L.˛/ D limsupMn.F / for n 2 N. The set of such values is called the
Lagrange Spectrum. Theorem 1 of chapter 3 of [1] says that the Lagrange Spectrum
is a subset of the Markoff Spectrum. This follows from the proof of the Compactness
Theorem for the Markoff Spectrum. When L.˛/ is finite, the forms appearing in the
construction are all equivalent to F , but the limiting form F � is nonzero on all lattice
points other than the origin and L.˛/ D M.F �/.

In this paper, we will concentrate on the inhomogeneous Markoff Spectrum, but
applications to the inhomogeneous Lagrange Spectrum will follow by constructing a
convergent sequence of reductions of the inhomogeneous expression x.y �x˛ �ˇ/.

4. THE INHOMOGENEOUS MARKOFF SPECTRUM

For inhomogeneous problems, the form F defined in (2) is replaced by

FI .x;y/ D .a0x Cb0y C c0/.a1x Cb1y C c1/; (7)

while we continue to require .x;y/ 2 Z2. Figures illustrating such problems will con-
tinue to be drawn in viewing coordinates for which FI .x;y/ D 0 on the axes of the
coordinate system. The origin of this coordinate system is no longer required to be a
lattice point. For example, Figure 2 modifies the example of Figure 1 by using factors
�I D x C y

p
3 � 1 � 0:5

p
3 and �I D x � y

p
3 � 1 C 0:5

p
3 to study the expression

FI .x;y/ D �I �I . Note that the origin is now at .x;y/ D .1;0:5/. The parallelogram in
the figure has vertices whose .x;y/ coordinates are .0;0/; .1;1/; .2;1/, and .0;1/ with
edges that form a reduced basis. Earlier work has required that .c0; c1/ not be in the
lattice generated by .a0;a1/ and .b0;b1/ to explicitly exclude the homogeneous case.
We propose to allow this case to exclude itself because it necessarily has a lattice point
where FI .x;y/ D 0 and interest will be centered on those FI .x;y/ that are bounded
away from zero on the lattice. Notice that the parallelogram in Figure 2 has one vertex
in each quadrant bounded by axes of FI . This property defines a divided cell: the word
“cell” refers to a fundamental parallelogram of the lattice, and it is “divided” by having
its vertices separated by the axes.

The definition of the inhomogeneous Markoff value is

MI .FI / D sup
( ˇ̌̌̌

a0b1 �a1b0

FI .x;y/

ˇ̌̌̌
W x;y 2 Z

)
(8)

using the notation of (7). Note that the origin of the lattice is not excluded here, since it
has no special role in FI .

To describe an inhomogeneous problem, the matrix of (3) must be replaced by

B D

�
a0 b0 c0

a1 b1 c1

�
: (9)

Left multiplication by this matrix takes the column with components .x;y;1/ to one with
components .�I ;�I /. Again, the rows of the matrix are the coefficients in the factors of
FI .x;y/. The interpretation of columns is a little different from the homogeneous case:



FIGURE 2. Inhomogeneous example

the third column is the image of the origin, and the first two columns give generators
of the lattice. If the matrix is augmented with a third row Œ0 0 1�, one gets the affine
change-of-variables matrix relating the column with components .x;y;1/ to one with
components .�I ;�I ;1/. In this matrix, a column with 0 in the third position represents a
direction; one with 1 in the third position represents a point. The vertices of the cell are
found by adding the sum of a subset of the first two columns to the third column. All
such columns have 1 in the third position, so they can be expected to represent points.

Left multiplication by a two by two diagonal matrix changes the scale on the axes and
right multiplication by an integer matrix with a third row Œ0 0 1� and determinant ˙1
gives an affine change of basis in the lattice.

5. DIVIDED CELLS AS REDUCED OBJECTS

We continue the convention of using the .x;y/ for coordinates in the integer lattice, but
describing geometric properties using .�I ;�I / as viewing coordinates.

Divided cells will be the reduced objects for the study of FI .x;y/ on the integer
lattice. Several proofs of the existence of divided cells have been given, beginning with
Delone [4] in 1947. Our proof uses work of Pitman [5], and will be given after discussing
the role of divided cells in Diophantine Approximation.

We choose the line a0x C b0y C c0 D 0 to be the vertical axis in Figure 2 with the
positive halfspace on the right. Treating the vertices of the cell as the basic fundamental
parallelogram of Z2 with .0;0/ in the lower left quadrant of the figure, gives c0 �

0;b0 Cc0 � 0;a0 Cc0 � 0;a0 Cb0 Cc0 � 0. These inequalities imply a0 � jb0j. A similar
analysis of a1x Cb1y Cc1 D 0 as the horizontal line leads to b1 � ja1j. Conversely, these
conditions on a0;a1;b0;b1 give a nonempty set of possible solutions for c0; c1. Since



FIGURE 3. Cells and Boxes

MI .FI / is invariant under scaling of the linear factors of FI .x;y/, one may introduce a
convenient scaling, like a0 D b1 D 1. Then a1 and b0 are each chosen from the interval
Œ�1;1�, and then each of c0 and c1 is chosen from an appropriate closed intervals. In
this way, the space of divided cells can be represented by the fourth power of a closed
interval. This scaling will not be used in this paper, but we will insist that a0 > 0 and
b1 > 0, forcing the base vertex to be in the third quadrant.

This construction shows that the specification of a divided cell can be done in two
steps: first choose generators of the lattice giving the directions of the sides of the cell;
then locate the origin. Barnes [6] introduced the term “I-reduced” for the lattice bases
arising in this way. We keep the name, but take it to mean that a0 � ja1j and b1 � jb0j.

If a1b0 � 0, the cells are essentially the reduced cells of the homogeneous case. Such
cells will be called Gaussian, or G-cells, indicating that they are reduced in the sense of
Gauss. Note that, in contrast to the homogeneous case, no attempt is made to fix the sign
of a1.

The cells that are not Gaussian will be called N-cells. Since definitions should use
inclusive inequalities, the correct characterization of an N-cell is a1b0 � 0. This allows
a cell to be both a G-cell and an N-cell, but only when one of its sides is parallel to an
axis.

If a parallelogram is an I-reduced cell, then the possible locations of the origin in the
cell form a rectangle inside the cell. This rectangle is called the inner box (which we
will sometimes call simply a “box”) of the I-reduced cell. Figure 3 shows two typical
examples. In the figure, a G-cell is on the left and an N-cell is on the right. The width
of the box is a0 � ja1j, so that it degenerates to a vertical line segment if a0 D ja1j.
Similarly, the inner box degenerates to a horizontal line segment if b1 D jb0j. When
both a0 D ja1j and b1 D jb0j, the box is only a single point. This illustrates that the
first row, which gives the coefficients in the equation of the axis shown in the vertical
position and describes the first coordinates of the cell, governs the divided cell step. As
in the homogeneous case, the partial order defining minimal points considers distances
to both axes. However, this time it is necessary to treat each quadrant separately. Within
a fixed quadrant, points that are closer to both axes will be smaller points in the partial
order. We call this the basic partial order. It will need to be modified, but this is a good
tentative definition.



6. THE DIVIDED CELL ALGORITHM

Once one divided cell is available, it is possible to construct a chain of divided cells
containing that cell. This construction is the Divided Cell Algorithm. It must be shown
that MI .FI / can be computed using only the vertices of the cells obtained by this
algorithm. This is essentially the content of Theorem 5 of [7]. Another approach to
using divided cells to compute MI .FI / is given by the theorem on page 530 of [4].
Our proof will distinguish six related chains arising from the divided cell algorithm: a
chain of cells, a chain of boxes, and four chains of minimal points. The relations among
these chains is not as direct as it is in the homogeneous case, so it is useful to keep
them separate while showing how they are related. The chains of minimal points — one
chain in each quadrant — play a key role in showing that all divided cells lie in a single
chain and are used to characterize the quantity MI .FI / defined in (8). Since the chains
in different quadrants are independent, distances in different quadrants may be weighted
differently. We don’t explore that here, but some consequences can be found in Section 3
of [7]. Finally, the chain of boxes shows the simplest progression from one axis to the
other. All of these chains terminate if there is a lattice direction parallel to an axis, but
our statements will make no effort to distinguish that case.

The construction of the Divided Cell Algorithm is used in two settings: given expres-
sion FI , it produces its chain of divided cells; given only an I-reduced basis for a lattice,
it describes all possible successor I-reduced bases.

Theorem 1. If FI admits one divided cell, then there is a chain of divided cells con-
taining that cell. Given an I-reduced basis, there is one shape of an N-cell arising as a
successor and one possible shape of a G-cell arising as a successor. The N-cell always
occurs, but the G-cell may not: the number of positions of the N-cell is always one more
than the number of positions of the G-cell.

Proof. Suppose that we are given a divided cell defined by a matrix as in (9). Since this
is a divided cell, a0 � ja1j and b1 � jb0j, with additional bounds on each ci in terms of
ai and bi . The details of the divided cell step depend on the sign of b0. The algorithm
terminates if b0 D 0, and there are only minor differences between the other cases, so
only the case of b0 > 0 will be illustrated.

The definition of a divided cell then gives that c0 < c0 Cb0 � 0 � c0 Ca0, so that the
line segment from .c0; c1/ to .c0 Cb0; c1 Cb1/ forms the left side of the cell and crosses
the horizontal axis. This side can be extended until it crosses the vertical axis, giving an
integer h > 0 with c0 Chb0 � 0 � c0 C .hC1/b0. The segment from T�W.c0 Chb0; c1 C

hb1/ to TCW.c0 C hb0 C b0; c1 C hb1 C b1/ will form the top of the next cell. Similarly,
the bottom of the next cell is found by extending the right side to get a segment from
B�W.c0 Ca0 �kb0; c1 Ca1 �kb1/ to BCW.c0 Ca0 Cb0 �kb0; c1 Ca1b1 �kb1/ for some
k > 0. Since segments T C �TC and B�BC both cross the vertical axis, it follows that
.hCk �1/b0 � a0 � .hCk C1/b0. This analysis shows that right multiplication by

S D

24 0 �1 1
1 hCk �k
0 0 1

35.b0 > 0/ or S D

24 0 1 0
�1 hCk 1�h

0 0 1

35.b0 < 0/ (10)



FIGURE 4. Successor Cells and Boxes

gives the matrix representing the next cell. In each case, h and k are positive integers
with .h C k � 1/ jb0j � a0 � .h C k C 1/ jb0j. If a0=b0 is not an integer, h C k must be
one of the two integers nearest to ja0=b0j.

The shape of the successor cell is determined by h C k; and the position by h. Those
with different h and the same h C k are translates of one another The leftmost possible
cell is an N-cell with h D 1 and k as large as possible. If ja0=b0j < 2, this is the only
successor. Otherwise, the rules for determining the inner box show that decreasing k by
1 and keeping h fixed gives a G-cell whose inner box abuts the box of this leftmost cell.
Then, keeping this k and increasing h by 1 gives a translate of the leftmost N-cell whose
inner box abuts the box of this G-cell. The rightmost box will be an N-cell, and the the
union of the inner boxes of these possible successors covers the inner box of the original
cell.

Note that the first row of (9), which gives the coefficients in the equation of the axis
shown in the vertical position and describes the first coordinates of the cell, governs the
divided cell step.

The first part of Theorem 1 is illustrated in Figure 4 showing a divided cell with its
box and, in two separate graphs, two successor cells with their boxes. In this picture, the
original cell is a G-cell, and both types of successor are shown with the G-cell on the left
(note that this figure contains G-cells with different signs of a1). Several lattice points
are also included.

Figure 4 may also be used to analyze the chain of divided cell vertices in each
quadrant. In the pictures, the common lattice direction of a cell and its successor gives
a line joining the vertices of those cells in the second quadrant, and also in the fourth
quadrant. Moreover, these two lines are adjacent lattice lines in that direction, so that
there are no lattice points interior to the strip bounded by those lines. However, in the
fourth quadrant of the second picture there is a point on one of these lines that is not
a vertex of a divided cell although it meets our preliminary requirement for being a
minimal point. We will now resolve this difficulty. We state the theorem for the first
quadrant in order to have names for the edges that we use, and concentrate on points
with small first coordinate but the proof is readily applied to both coordinates in all
quadrants.



Theorem 2. Given a divided cell C , let I be the projection of the open top edge of C on
the horizontal axis. For each lattice line L parallel to this edge, let IL be the points on
L whose projection on the horizontal axis lies in I . Then each IL contains at most one
lattice point, and only those above the top edge of C contain such a lattice point in the
first quadrant. Furthermore, the projections onto the vertical axis of the IL are disjoint,
so the ordering of these points by their second coordinate is the same as the order on
the line L containing the point.

Proof. For a lattice line L, the distance between consecutive lattice points on L is fixed,
and the top edge of C gives one example of such a pair of points. Again, since the
lines are parallel, the difference of first coordinates is also fixed and equal to the width
of I in this case. Similarly, the relation between projections on the vertical axis of two
consecutive IL is also fixed, so it will be the same as the relation between the projections
of the top and bottom edges of C . However, C is a divided cell, so all points on the top
edge have positive second coordinate and all points on the bottom edge have negative
second coordinate, so the projections of these edges are disjoint. For L below the top
edge of C , all points of IL have negative second coordinate, so IL contains no point in
the first quadrant.

Any point in the first quadrant that is closer to the vertical axis than the vertex P of
C in that quadrant must project into I , but Theorem 2 shows that all lattice points with
that property have larger second coordinate than P . Hence P is a minimal point.

When a side of C is extended to meet the positive vertical axis, one obtains a lattice
line with one lattice point on each line parallel to the top edge of C . When this is the
left side of the C , the first description of the divided cell step shows that the first lattice
point in the first quadrant is a vertex of the successor divided cell. If it is the extension
of the right side of C that meets the positive vertical axis, the first several lattice points
will be in the first quadrant, but only the first and last of these are vertices of divided
cells. This is easily accommodated by augmenting the basic partial order.

Theorem 3. If a line meets a quadrant in a bounded interval, the product of the distances
to the axes is zero at the endpoints of the interval and has a unique interior maximum.
The distance decreases as one moves from the location of the maximum towards either
axis.

Proof. A calculus exercise! When expressed in terms of one of the coordinates the
distance is a quadratic polynomial with negative coefficient of the second degree term.

When the line in Theorem 3 is a lattice line, this says that we may modify the basic
partial order to also say that a lattice point is greater than another lattice point on the
line that is on the same side of the point of maximum value of FI and farther from that
point. With this modification, the only minimal points on the line in this quadrant are the
vertices of the original divided cell and its successor.

Augmenting the basic partial order in this way on every lattice line gives a new partial
order and forming the transitive closure called the extended partial order with fewer
minimal points. When comparing points in the extended partial order, we say the P is
nearer that Q if P � Q in the extended partial order.



FIGURE 5. All Successor Boxes

Theorem 4. If divided cells exist, every minimal lattice point for the extended partial
order is a vertex of a divided cell.

Proof. This is now little more than using a known divided cell as the basis and using
previous results of this section for an induction step. By symmetry, it suffices to show
the result for minimal lattice points in the first quadrant that are closer to the vertical axis.
By Theorem 2 there are finitely many minimal lattice points whose second coordinate
lies between that of this point and the original divided cell vertex. By the discussion
following Theorem 3, the first of these is the vertex of a divided cell. There are fewer
minimal lattice points in the first quadrant between this cell and the selected point.

We now illustrate the second part of Theorem 1 with Figure 5. To draw both Figure 4
and Figure 5, we used a0=a1 D 2 C

p
5 � 4:236. The two parts of Figure 5 show the

number of each type of cell predicted by Theorem 1. To avoid clutter, the cells are not
shown in Figure 5, but the vertices are. Note that lattice points appear as vertices of the
inner box of an N-cell, but the inner box of a G-cell is strictly interior to the cell and
contains no lattice point. The cells that are collected in each of the pictures in Figure 5 are
translates of one another in agreement with the expressions for their vertices appearing
in the proof of Theorem 1. What Figure 5 shows is that the inner boxes of two successor
cells intersect in at most a vertical segment and that the union of all of these boxes covers
the inner box of the original cell.

Combining this with the proof of Theorem 4 we find that the chain of boxes shows a
systematic increase of height and decrease of width as we step through the chain.

7. PITMAN’S THEOREM

Jane Pitman [5] related divided cells, which are the reduced cells of an inhomogeneous
approximation problem, to the reduced bases of the corresponding homogeneous prob-
lem given by the continued fraction algorithm. Consequences of her work are an easy



FIGURE 6. Three boxes form a fundamental domain

proof of the existence of divided cells (given here as the Corollary to Theorem 5) and
tools for recognizing minimal points.

Theorem 5. The cell of a Gaussian reduced form gives rise to two I-reduced N-cells.
If the Gaussian cell has a1 � 0, then the matrices corresponding to the other cells are
obtained by multiplying its matrix by24 1 0 0

1 1 0
0 0 1

35 or

24 1 �1 1
0 1 0
0 0 1

35 : (11)

The union of the inner boxes of these three cells is (apart from duplication on the
boundary) a fundamental domain for the lattice.

Proof. Figure 6 gives a “proof without words”. It illustrates how the fundamental do-
main of the given Gaussian cell may be cut into pieces that may be translated and re-
assembled to form the union of the three boxes described in the statement of the theorem.
The parallelogram whose sides are not horizontal or vertical is the given cell. The box in
the center of the figure is the inner box of this cell. The other boxes are the inner boxes
of N-cells described in the statement of the theorem. The dashed line divides the part
of the original cell outside the boxes into pieces congruent to the portions of the boxes
outside the cell.

Corollary. Every linear inhomogeneous problem in R2 has divided cells.

Proof. Employ the homogeneous theory to reduce the linear part .a0x C b0y/.a1x C

b1y/. Then locate the intersection of the axes in Figure 6. The cell corresponding to that
box is a desired divided cell.



The N-cells described by 5 are called the neighbors of the G-cell in that theorem. One
of these neighbors is characterized by ja0=b0j � 2; the other by jb1=a1j � 2. If both of
these hold, then the N-cell serves as an immediate link between consecutive reductions
of the linear part of FI .x;y/. However, it is also possible to find N-cells for which
neither of these will hold, so that they are not neighbors of a G-cell. Such cells will be
considered in the next section.

The boxes shown in Figure 6 give the matrices shown in 11. The third column affects
only the location of a cell and not its shape, and is significant only for describing cells
having some particular relation to the original G-cell.

When a1 � 0, the transition matrices of (11) are replaced by24 1 1 0
0 1 0
0 0 1

35 or

24 1 0 0
�1 1 0

0 0 1

35 : (12)

(If a1 D 0, its sign should be chosen opposite to the sign of b0; if a1 D b0 D 0 the
different constructions only involve cells with degenerate boxes.)

8. SUPERFLUOUS CELLS

This section investigates the role of the I-reduced cells that are neither G-cells nor
neighbors of G-cells. We refer to such cells as superfluous cells for a reason that is
given in Theorem 6.

Figure 7 shows the portion of a chain of divided cells starting with a cell C� for
which �2 < a0=b0 < �1 and b1=a1 < �2 (the values used when drawing the figure
were �.3C

p
5/=4 � �1:309016994 and �.3C

p
5/ � �5:236067977). The figure also

includes the inner box of the first cell that is seen to also be the inner box of all cells
shown. All but the last of these has a unique successor, and the figure shows this chain
of unique successors. The last cell shown, CC, has a0=b0 < �2, so there will be a choice
of possible successors, none of which are shown. For all the cells C shown in Figure 7,
the cell CC will be called the forward anchor of C and C� will be called the backward
anchor of C .

Theorem 6. For superfluous cell, the anchors are uniquely determined. For every vertex
of a superfluous cell, a vertex of one of the anchors is nearer in the extended partial
order.

Proof. Since 1 � ja0=b0j � 2, the proof of Theorem 1 shows that the divided cell
algorithm involves a unique successor that is also an N-cell. As long as that cell is
superfluous, the algorithm generates a unique forward chain. A closer examination of
the function giving a0=b0 for the successor in terms of the corresponding quantity in
the original cell is an expansive mapping with ˙1 as fixed points. From this, it follows
that, apart from degenerate cases, the chain starting from any superfluous cell will reach
a neighbor of a G-cell in a finite number of steps. (This is not difficult to show, but the
details are awkward to express, so they will be omitted.) The process stops at the forward
anchor of the superfluous cell. The process of stepping backwards through the chain of



FIGURE 7. Superfluous cells

divided cells is governed by the ratio b1=a1 in the same way, leading to the backward
anchor of the original cell. Thus, Figure 7 describes the only way that superfluous cells
can occur and relates these cells to the anchors that are attached to consecutive reduced
bases of the lattice.

Two of the vertices of a superfluous cell are also vertices of its inner box. These will
be called the inner vertices of the cell. The inner vertices are shared with all cells shown
in Figure 7 including the anchors, so they have now been found in a non-superfluous
cell.

The remaining vertices of the cells in Figure 7 (the outer vertices) lie on a lattice line
parallel to and adjacent to the line joining the inner vertices, and each lattice point on
this line is greater than or equal to one of the anchors in the extended partial order.

9. A RIGOROUS FRAMEWORK

The emphasis here has been visual. Figures were used to illustrate the constructions and
proofs. These figures were drawn using the Maple Symbolic Computation System. In
order to tell the system what to draw, the cells and boxes were represented by matrices
like B of (9).

The visual approach was present in [4], but was not used much by subsequent authors.
Computers have facilitated the re-introduction of graphics into exposition, including the
use of color where appropriate (the figures in this paper were presented in color at the
conference). At the same time, increasing fluency in the language of Linear Algebra has
encouraged the use of matrices to represent the objects met in the study. Our intent here
was to use these developments to present old results in a way that will encourage new
research.

Some weaknesses of the Divided Cell Algorithm have appeared in our exposition, but



we have also shown that its application to Inhomogeneous Diophantine Approximation
can rely on methods like the ordinary continued fraction that are associated to the Ho-
mogeneous Markoff Spectrum. Divided Cells become a tool for organizing the subject
rather than a device for computing properties of individual problems.
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