
Chapter 34

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 34.1-1

Showing that LONGEST-PATH-LENGTH being polynomial implies that
LONGEST-PATH is polynomial is trivial, because we can just compute the
length of the longest path and reject the instance of LONGEST-PATH if and
only if k is larger than the number we computed as the length of the longest
path.

Since we know that the number of edges in the longest path length is between
0 and |E|, we can perform a binary search for it’s length. That is, we construct

an instance of LONGEST-PATH with the given parameters along with k = |E|
2 .

If we hear yes, we know that the length of the longest path is somewhere above
the halfway point. If we hear no, we know it is somewhere below. Since each
time we are halving the possible range, we have that the procedure can require
O(lg(|E|)) many steps. However, running a polynomial time subroutine lg(n)
many times still gets us a polynomial time procedure, since we know that with
this procedure we will never be feeding output of one call of LONGEST-PATH
into the next.

Exercise 34.1-2

The problem LONGST-SIMPLE-CYCLE is the relation that associates each
instance of a graph with the longest simple cycle contained in that graph. The
decision problem is, given k, to determine whether or not the instance graph
has a simple cycle of length at least k. If yes, output 1. Otherwise output 0.
The language corresponding to the decision problem is the set of all 〈G, k〉 such
that G = (V,E) is an undirected graph, k ≥ 0 is an integer, and there exists a
simple cycle in G consisting of at least k edges.

Exercise 34.1-3

A formal encoding of the adjacency matrix representation is to first encode
an integer n in the usual binary encoding representing the number of vertices.
Then, there will be n2 bits following. The value of bit m will be 1 if there is an
edge from vertex bm/nc to vertex (m%n), and zero if there is not such an edge.

1

An encoding of the adjacency list representation is a bit more finessed. We’ll
be using a different encoding of integers, call it g(n). In particular, we will
place a 0 immediately after every bit in the usual representation. Since this
only doubles the length of the encoding, it is still polynomially related. Also,
the reason we will be using this encoding is because any sequence of integers
encoded in this way cannot contain the string 11 and must contain at least
one zero. Suppose that we have a vertex with edges going to the vertices in-
dexed by i1, i2, i3, . . . , ik. Then, the encoding corresponding to that vertex is
g(i1)11g(i2)11 · · · 11g(ik)1111. Then, the encoding of the entire graph will be
the concatenation of all the encodings of the vertices. As we are reading through,
since we used this encoding of the indices of the vertices, we won’t ever be con-
fused about where each of the vertex indices end, or when we are moving on to
the next vertex’s list.

To go from the list to matrix representation, we can read off all the adjacent
vertices, store them, sort them, and then output a row of the adjacency matrix.
Since there is some small constant amount of space for the adjacency list repre-
sentation for each vertex in the graph, the size of the encoding blows up by at
most a factor of O(n), which means that the size of the encoding overall is at
most squared.

To go in the other direction, it is just a matter of keeping track of the posi-
tions in a given row that have ones, encoding those numerical values in the way
described, and doing this for each row. Since we are only increasing the size of
the encoding by a factor of at most O(lg(n))(which happens in the dense graph
case), we have that both of them are polynomially related.

Exercise 34.1-4

This isn’t a polynomial-time algorithm. Recall that the algorithm from
Exercise 16.2-2 had running time Θ(nW) where W was the maximum weight
supported by the knapsack. Consider an encoding of the problem. There is
a polynomial encoding of each item by giving the binary representation of its
index, worth, and weight, represented as some binary string of length a = Ω(n).
We then encode W , in polynomial time. This will have length Θ(lgW) = b.
The solution to this problem of length a+b is found in time Θ(nW) = Θ(a∗2b).
Thus, the algorithm is actually exponential.

Exercise 34.1-5

We show the first half of this exercise by induction on the number of times
that we call the polynomial time subroutine. If we only call it zero times, all we
are doing is the polynomial amount of extra work, and therefore we have that
the whole procedure only takes polynomial time.

Now, suppose we want to show that if we only make n + 1 calls to the
polynomial time subroutine. Consider the execution of the program up until
just before the last call. At this point, by the inductive hypothesis, we have
only taken a polynomial amount of time. This means that all of the data that

2

we have constructed so far fits in a polynomial amount of space. This means
that whatever argument we pass into the last polynomial time subroutine will
have size bounded by some polynomial. The time that the last call takes is then
the composition of two polynomials, and is therefore a polynomial itself. So,
since the time before the last call was polynomial and the time of the last call
was polynomial, the total time taken is polynomial in the input. This proves
the claim of the first half of the input.

To see that it could take exponential time if we were to allow polynomi-
ally many calls to the subroutine, it suffices to provide a single example. In
particular, let our polynomial time subroutine be the function that squares its
input. Then our algorithm will take an integer x as input and then square
it lg(x) many times. Since the size of the input is lg(x), this is only linearly
many calls to the subroutine. However, the value of the end result will be

x2
lg(x)

= xx = 2x lg(x) = 2lg(x)2
lg(x) ∈ ω(22

lg(x)

). So, the output of the function
will require exponentially many bits to represent, and so the whole program
could not of taken polynomial time.

Exercise 34.1-6

Let L1, L2 ∈ P . Then there exist algorithms A1 and A2 which decide L1

and L2 in polynomial time. We will use these to determine membership in the
given languages. An input x is in L1∪L2 if and only if either A1 or A2 returns 1
when run on input x. We can check this by running each algorithm separately,
each in polynomial time. To check if x is in L1 ∩ L2, again run A1 and A2,
and return 1 only if A1 and A2 each return 1. Now let n = |x|. For i = 1
to n, check if the first i bits of x are in L1 and the last n − i bits of x are
in L2. If this is ever true, then x ∈ L1L2 so we return 1. Otherwise return
0. Each check is performed in time O(nk) for some k, so the total runtime is
O(n(nk + nk)) = O(nk+1) which is still polynomial. To check if x ∈ L1, run
A1 and return 1 if and only if A1 returns 0. Finally, we need to determine if
x ∈ L∗1. To do this, for i = 1 to n, check if the first i bits of x are in L1, and the
last n− i bits are in L∗1. Let T (n) denote the running time for input of size n,
and let cnk be an upper bound on the time to check if something of length n is
in L1. Then T (n) ≤

∑n
i=1 cn

kT (n− i). Observe that T (1) ≤ c since a single bit

is in L∗1 if and only if it is in L1. Now suppose T (m) ≤ c′mk′ . Then we have:

T (n) ≤ cnk+1 +

n−1∑
i=0

c′ik
′
≤ cnk+1 + c′nk

′+1 = O(nmax k,k′).

Thus, by induction, the runtime is polynomial for all n. Since we have exhib-
ited polynomial time procedures to decide membership in each of the languages,
they are all in P , so P is closed under union, intersection, concatenation, com-
plement, and Kleene star.

Exercise 34.2-1

3

To verify the language, we should let the certificate be the mapping f from
the vertices of G1 to the vertices of G2 that is an isomorphism between the
graphs. Then all the verifier needs to do is verify that for all pairs of vertices
u and v, they are adjacent in G1 if and only if f(u) is adjacent to f(v) in G2.
Clearly it is possible to produce an isomorphism if and only if the graphs are
isomorphic, as this is how we defined what it means for graphs to be isomorphic.

Exercise 34.2-2

Since G is bipartite we can write its vertex set as the disjoint union S t T ,
where neither S nor T is empty. Since G has an odd number of vertices, ex-
actly one of S and T has an odd number of vertices. Without loss of generality,
suppose it is S. Let v1, v2, . . . , vn be a simple cycle in G, with v1 ∈ S. Since n
is odd, we have v1 ∈ S, v2 ∈ T , . . . , vn−1 ∈ T , vn ∈ S. There can be no edge
between v1 and vn since they’re both in S, so the cycle can’t be Hamiltonian.

Exercise 34.2-3

Suppose that G is hamiltonian. This means that there is a hamiltonian cycle.
Pick any one vertex v in the graph, and consider all the possibilities of deleting
all but two of the edges passing through that vertex. For some pair of edges
to save, the resulting graph must still be hamiltonian because the hamiltonian
cycle that existed originally only used two edges. Since the degree of a vertex
is bounded by the number of vertices minus one, we are only less than squaring
that number by looking at all pairs (

(
n−1
2

)
∈ O(n2)). This means that we are

only running the polynomial tester polynomially many independent times, so
the runtime is polynomial. Once we have some pair of vertices where deleting
all the others coming off of v still results in a hamiltonian graph, we will re-
member those as special, and ones that we will never again try to delete. We
repeat the process with both of the vertices that are now adjacent to v, testing
hamiltonicity of each way of picking a new vertex to save. We continue in this
process until we are left with only |V | edge, and so, we have just constructed a
hamiltonian cycle.

Exercise 34.2-4

This is much like Exercise 34.1-6. Let L1 and L2 be languages in NP, with
verification algorithms A1 and A2. Given input x and certificate y for a language
in L1∪L2, we define A3 to be the algorithm which returns 1 if either A1(x, y) = 1
or A2(x, y) = 1. This is a polynomial verification algorithm for L1∪L2, so NP is
closed under unions. For intersection, define A3 to return 1 if and only if A1(x, y)
and A2(x, y) return 1. For concatenation, define A3 to loop through i = 1 to n,
checking each time if A1(x[1..i], y[1..i]) = 1 and A1(x[i+1..n], y[i+1..n]) = 1. If
so, terminate and return 1. If the loop ends, return 0. This still takes polynomial
time, so NP is closed under concatenation. Finally, we need to check Kleene star.
DefineA3 to loop through i = 1 to n, each time checking ifA1(x[1..i], y[1..i]) = 1,

4

and y[i + 1..n] is a certificate for x[i + 1..n] being in L∗1. Let T (n) denote the
running time for input of size n, and let cnk be an upper bound on the time to
verify that y is a certificate for x. Then T (n) ≤

∑n
i=1 cn

kT (n− i). Observe that
T (1) ≤ c since we can verify a certificate for a problem of length 1 in constant
time. Now suppose T (m) ≤ c′mk′ . Then we have:

T (n) ≤ cnk+1 +

n−1∑
i=0

c′ik
′
≤ cnk+1 + c′nk

′+1 = O(nmax k,k′).

Thus, by induction, the runtime of A3 is polynomial. Note that we only
needed to deal with the runtime recursion with respect to the length of x, since
it is assumed |y| = O(|x|c) for some constant c. Therefore NP is closed under
Kleene star.

A proof for closure under complement breaks down, however. If a certificate
y is given for input x and A1(x, y) returns false, this doesn’t tell us that y is a
certificate for x being in the complement of L1. It merely tells us that y didn’t
prove x ∈ L1.

Exercise 34.2-5

Suppose that we know that the length of the certificates to the verifier are
bounded by nk−1, we know it has to be bounded by some polynomial because
the verifier can only look at polynomially many bits because it runs in polyno-
mial time. Then, we try to run the verifier on every possible assignment to each
bit of the certificates of length up to that much. Then, the runtime of this will

be a polynomial times 2n
k−1

which is little oh of 2n
k

.

Exercise 34.2-6

The certificate in this case would be a list of vertices v1, v2, . . . , vn, starting
with u and ending with v, such that each vertex of G is listed exactly once and
(vi, vi+1) ∈ E for 1 ≤ i ≤ n − 1. Since we can check this in polynomial time,
HAM-PATH belongs to NP.

Exercise 34.2-7

For a directed acyclic graph, we can compute the topological sort of the
graph by the method of section 22.4. Then, looking at this sorting of the
vertices, we say that there is a Hamiltonian path if as we read off the vertices,
each is adjacent to the next, and they are not if there is any pair of vertices so
that one is not adjacent to the next.

If we are in the case that each is adjacent to the next, then the topological
sort itself gives us the Hamiltonian path. However, if there is any pair of vertices
so that one is not adjacent to the next, this means that that pair of vertices do
not have any paths going from one to the other. This would clearly imply that

5

there was no Hamiltonian path, because the Hamiltonian path would be going
from one of them to the other.

To see the claim that a pair of vertices u and v that are adjacent in a topo-
logical sort but are not adjacent have no paths going from one to the other,
suppose to a contradiction there were such a path from u to v. If there were any
vertices along this path they would have to be after u since they are descendants
of u and they would have to be before v because they are ancestors of v. This
would contradict the fact that we said u and v were adjacent in a topological
sort. Then the path would have to be a single edge from u to v, but we said
that they weren’t adjacent, and so, we have that there is no such path.

Exercise 34.2-8

Let L′ be the complement of TAUTOLOGY. Then L′ consists of all boolean
formulas φ such that there exists an assignment y1, y2, . . . , yk of 0 and 1 to the
input variables which causes φ to evaluate to 0. A certificate would be such an
assignment. Since we can check what an assignment evaluates to in polynomial
time in the length of the input, we can verify a certificate in polynomial time.
Thus, L′ ∈ NP which implies TAUTOLOGY ∈ co-NP.

Exercise 34.2-9

A language is in coNP if there is a procedure that can verify that an input
is not in the language in polynomial time given some certificate. Suppose that
for that language we a procedure that could compute whether an input was in
the language in polynomial time receiving no certificate. This is exactly what
the case is if we have that the language is in P. Then, we can pick our procedure
to verify that an element is not in the set to be running the polynomial time
procedure and just looking at the result of that, disregarding the certificate that
is given. This then shows that any language that is in P is in coNP , giving us
the inclusion that we wanted.

Exercise 34.2-10

Suppose NP 6= co-NP. Let L ∈ NP \co-NP. Since P ⊂ NP ∩ co-NP, and L /∈
NP ∩ co-NP, we have L /∈ P . Thus, P 6= NP.

Exercise 34.2-11

As the hint suggests, we will perform a proof by induction. For the base
case, we will have 3 vertices, and then, by enumeration, we can see that the
only Hamiltonian graph on three vertices is K3. For any connected graph on
three vertices, the longest the path connecting them can be is 2 edges, and so
we will have G3 = K3, meaning that the graph G was Hamiltonian.

Now, suppose that we want to show that the graph G on n+ 1 vertices has
the property that G3 is Hamiltonian. Since the graph G is connected we know

6

that there is some spanning tree by Chapter 23. Then, let v be any internal
vertex of that tree. Suppose that if we were to remove the vertex v, we would
be splitting up the original graph in the connected components V1, V2, . . . , Vk,
sorted in increasing order of size. Suppose that the first `1 of these components
have a single vertex. Suppose that the first `2 of these components have fewer
than 3 vertices. Then, let vi be the vertex of Vi that is adjacent to v in the
tree. For i > `1, let xi be any vertex of Vi that is distance two from the ver-
tex v. By induction, we have Hamiltonian cycles for each of the components
V`2+1, . . . , Vk. In particular, there is a Hamiltonian path from vi to xi. Then,
for each i and j there is an edge from xj to vi, because there is a path of length
three between them passing through v. This means that we can string together
the Hamiltonian paths from each of the components with i > `1. Lastly, since
V1, . . . , V` all consist of single vertices that are only distance one from v, they
are all adjacent in G3. So, after stringing together the Hamiltonian paths for
i > `1, we just visit all of the single vertices in v1, v2, . . . , v`1 in order, then, go
to v and then to the vertex that we started this path at, since it was selected
to be adjacent to v, this is possible. Since we have constructed a Hamiltonian
cycle, we have completed the proof.

Exercise 34.3-1

The formula in figure 34.8b is

((x1 ∨ x2)∧ (¬(¬x3)))∧ (¬(¬x3)∨ ((x1)∧ (¬x3)∧ (x2)))∧ ((x1)∧ (¬x3)∧ (x2))

We can cancel out the double negation to get that this is the same expression
as

((x1 ∨ x2) ∧ (x3)) ∧ ((x3) ∨ ((x1) ∧ (¬x3) ∧ (x2))) ∧ ((x1) ∧ (¬x3) ∧ (x2))

Then, the first clause can only be true if x3 is true. But the last clause can
only be true if ¬x3 is true. This would be a contradiction, so we cannot have
both the first and last clauses be true, and so the boolean circuit is not satis-
fiable since we would be taking the and of these two quantities which cannot
both be true.

Exercise 34.3-2

Suppose L1 ≤P L2 and let f1 be the polynomial time reduction function
such that x ∈ L1 if and only if f1(x) ∈ L2. Similarly, suppose L2 ≤P L3 and
let f2 be the polynomial time reduction function such that x ∈ L2 if and only
if f2(x) ∈ L3. Then we can compute f2 ◦ f1 in polynomial time, and x ∈ L1 if
and only if f2(f1(x)) ∈ L3. Therefore L1 ≤P L3, so the ≤P relation is transitive.

7

Exercise 34.3-3

Suppose first that we had some polynomial time reduction from L to L̄. This
means that for every x there is some f(x) so that x ∈ L iff f(x) ∈ L̄. This means
that x ∈ L̄ iff x 6∈ L iff f(x) 6∈ L̄ iff f(x) ∈ L. So, our poly-time computable
function for the reduction is the same one that we had from L ≤P L̄. We can
do an identical thing for the other direction.

Exercise 34.3-4

We could have instead used as a certificate a satisfying assignment to the
input variables in the proof of Lemma 34.5. We construct the two-input, poly-
nomial time algorithm A to verify CIRCUIT-SAT as follows. The first input is
a standard encoding of a boolean combinatiorial circuit C, and the second is a
satisfying assignment of the input variables. We need to compute the output
of each logic gate until the final one, and then check whether or not the out-
put of the final gate is 1. This is more complicated than the approach taken
in the text, because we can only evaluate the output of a logic gate once we
have successfully determined all input values, so the order in which we examine
the gates matters. However, this can still be computed in polynomial time by
essentially performing a breath-first search on the circuit. Each time we reach
a gate via a wire we check whether or not all of its inputs have been computed.
If yes, evaluate that gate. Otherwise, continue the search to find other gates,
all of whose inputs have been computed.

Exercise 34.3-5
We do not have any loss of generality by this assumption. This is because since
we bounded the amount of time that the program has to run to be polynomial,
there is no way that the program can access more than an polynomial amount
of space. That is, there is no way of moving the head of the turning machine
further than polynomially far in only polynomial time because it can move only
a single cell at a time.

Exercise 34.3-6

Suppose that ∅ is complete for P . Let L = {0, 1}∗. Then L is clearly in
P , and there exists a polynomial time reduction function f such that x ∈ ∅
if and only if f(x) ∈ L. However, it’s never true that x ∈ ∅, so this means
it’s never true that f(x) ∈ L, a contradiction since every input is in L. Now
suppose {0, 1}∗ is complete for P , let L′ = ∅. Then L′ is in P and there ex-
ists a polynomial time reduction function f ′. Then x ∈ {0, 1}∗ if and only if
f ′(x) ∈ L′. However x is always in {0, 1}∗, so this implies f ′(x) ∈ L′ is always
true, a contradiction because no binary input is in L′.

Finally, let L be some language in P which is not ∅ or {0, 1}∗, and let L′

be any other language in P . Let y1 /∈ L′ and y2 ∈ L′. Since L ∈ P , there

8

exists a polynomial time algorithm A which returns 0 if x /∈ L and 1 if x ∈ L.
Define f(x) = y1 if A(x) returns 0 and f(x) = y2 if A(x) returns 1. Then f
is computable in polynomial time and x ∈ L if and only if f(x) ∈ L′. Thus,
L′ ≤P L.

Exercise 34.3-7

Since L is in NP , we have that L̄ ∈ coNP because we could just run our
verification algorithm to verify that a given x is not in the complement of L,
this is the same as verifying that x is in L. Since every coNP language has its
complement in NP, suppose that we let S be any language in coNP and let S̄
be its compliment. Suppose that we have some polynomial time reduction f
from S̄ ∈ NP to L. Then, consider using the same reduction function. We will
have that x ∈ S iff x 6∈ S̄ iff f(x) 6∈ L iff f(x) ∈ L̄. This shows that this choice
of reduction function does work. So, we have shown that the compliment of any
NP complete problem is also NP complete. To see the other direction, we just
negate everything, and the proof goes through identically.

Exercise 34.3-8

To prove that a language L is NP-hard, one need not actually construct the
polynomial time reduction algorithm F to compute the reduction function f for
every L′ ∈ NP . Rather, it is only necessary to prove that such an algorithm
exists. Thus, it doesn’t matter that F doesn’t know A. If L′ is in NP, we
know that A exists. If A exists, dependent on k and that big-oh constant, we
know that F exists and runs in polynomial time, and this is sufficient to prove
CIRCUIT-SAT is NP-hard.

Exercise 34.4-1

Suppose that it is a circuit on two inputs, and then, we have n rounds of two
and gates each, both of which take both of the two wires from the two gates from
the previous round. Since the formulas for each round will consist of two copies
of the formulas from the previous round, it will have an exponential size formula.

Exercise 34.4-2

To make this more readable, we’ll just find the 3-CNF formula for each term
listed in the AND of clauses for φ′ on page 1083, including the auxiliary variables
p and q as necessary.

9

y = (y ∨ p ∨ q) ∧ (y ∨ p ∨ ¬q) ∧ (y ∨ ¬p ∨ q) ∧ (y ∨ ¬p ∨ ¬q)
(y1 ↔ (y2 ∧ ¬x2)) = (¬y1 ∨ ¬y2 ∨ ¬x2) ∧ (¬y1 ∨ y2 ∨ ¬x2) ∧ (¬y1 ∨ y2 ∨ x2) ∧ (y1 ∨ ¬y2 ∨ x2)

(y2 ↔ (y3 ∨ y4)) = (¬y2 ∨ y3 ∨ y4) ∧ (y2 ∨ ¬y3 ∨ ¬y4) ∧ (y2 ∨ ¬y3 ∨ y4) ∧ (y2 ∨ y3 ∨ ¬y4)

(y3 ↔ (x1 → x2)) = (¬y3 ∨ ¬x2 ∨ x2) ∧ (y3 ∨ ¬x1 ∨ ¬x2) ∧ (y1 ∨ x1 ∨ ¬x2) ∧ (y3 ∨ x1 ∨ x2)

(y4 ↔ ¬y5) = (¬x4 ∨ ¬y5 ∨ q) ∧ (¬x4 ∨ ¬y5 ∨ ¬p) ∧ (x4 ∨ y5 ∨ p) ∧ (x4 ∨ y5 ∨ ¬p)
(y5 ↔ (y6 ∨ x4)) = (¬y5 ∨ y6 ∨ x4) ∧ (y5 ∨ ¬y6 ∨ ¬x4) ∧ (y5 ∨ ¬y6 ∨ x4) ∧ (y5 ∨ y6 ∨ ¬x4)

(y6 ↔ (¬x1 ↔ x3)) = (¬y6 ∨ ¬x1 ∨ ¬x3) ∧ (¬y6 ∨ x1 ∨ x3) ∧ (y6 ∨ ¬x1 ∨ x3) ∧ (y6 ∨ x1 ∨ ¬x3).

Exercise 34.4-3

The formula could have Ω(n) free variables, then, the truth table corre-
sponding to this formula would a number of rows that is Ω(2n) since it needs to
consider every possible assignment to all the variables. This then means that
the reduction as described is going to incrase the size of the problem exponen-
tially.

Exercise 34.4-4

To show that the language L = TAUTOLOGY is complete for co-NP, it will
suffice to show that L is NP-complete, where L is the set of all boolean formu-
las for which there exists an assignment of input variables which makes it false.
We showed in Exercise 34.2-8 that TAUTOLOGY ∈ co-NP, which implies L ∈
NP. Thus, we need only show that L is NP-hard. We’ll give a polynomial time
reduction from the problem of determining satisfiability of boolean formulas to
determining whether or not a boolean formula fails to be a tautology. In partic-
ular, given a boolean formula φ, the negation of φ has a satisfying assignment
if and only if φ has an assignment which causes it to evaluate to 0. Thus, our
function will simply negate the input formula. Since this can be done in poly-
nomial time in the length of the input, boolean satisfiability is polynomial time
reducible to L. Therefore L is NP-complete. By Exercise 34.3-7, this implies
TAUTOLOGY is complete for co-NP.

Exercise 34.4-5

Since the problem is in disjunctive normal form, we can write it as ∨iφi
where each φi looks like the and of a bunch of variables and their negations.
Then, we know that the formula is satisfiable if and only if any one if the φi are
satisfiable. If a φi contains both a variable and its negation, then it is clearly not
satisfiable, as one of the two must be false. However, if each variable showing
up doesn’t have its negation showing up, then we can just pick the appropriate
value to assign to each variable. This is a property that can be checked in linear
time, by just keeping two bit vectors of length equal to the number of variables,
one representing if the variable has shown up negated and one for if the variable

10

has shown up without having been negated.

Exercise 34.4-6

Let A denote the polynomial time algorithm which returns 1 if input x is
a satisfiable formula, and 0 otherwise. We’ll define an algorithm A′ to give a
satisfying assignment. Let x1, x2, . . . , xm be the input variables. In polynomial
time, A′ computes the boolean formula x′ which results from replacing x1 with
true. Then, A′ runs A on this formula. If it is satisfiable, then we have re-
duced the problem to finding a satisfying assignment for x′ with input variables
x2, . . . , xm, so A′ recursively calls itself. If x′ is not satisfiable, then we set x1
to false, and need to find a satisfying assignment for the formula x′ obtained
by replacing x1 in x by false. Again, A′ recursively calls itself to do this. If
m = 1, A′ takes a polynomial-time brute force approach by evaluating the for-
mula when xm is true, and when xm is false. Let T (n) denote the runtime of
A′ on a formula whose encoding is of length n. Note that we must have m ≤ n.
Then we have T (n) = O(nk)+T (n′) for some k and n′ = |x′|, and T (1) = O(1).
Since we make a recursive call once for each input variable there are m recursive
calls, and the input size strictly decreases each time, so the overall runtime is
still polynomial.

Exercise 34.4-7
Suppose that the original formula was ∧i(xi ∨ yi), and the set of variables were
{ai}. Then, consider the directed graph which has a vertex corresponding both
to each variable, and each negation of a variable. Then, for each of the clauses
x∨y, we will place an edge going from ¬x to y, and an edge from ¬y to x. Then,
anytime that there is an edge in the directed graph, that means if the vertex
the edge is coming from is true, the vertex the edge is going to has to be true.
Then, what we would need to see in order to say that the formula is satisfiable
is a path from a vertex to the negation of that vertex, or vice versa. The naive
way of doing this would be to run all pairs shortest path, and see if there is a
path from a vertex to its negation. This however takes time O(n2 lg(n)), and
we were charged with making the algorithm as efficient as possible. First, run
the procedure for detecting strongly connected components, which takes linear
time. For every pair of variable and negation, make sure that they are not in
the same strongly connected component. Since our construction was symmet-
ric with respect to taking negations, if there were a path from a variable to
its negation, there would be a path going from its negation to itself as well.
This means that we would detect any path from a variable to its negation, just
by checking to see if they are contained in the same connected component or not.

Exercise 34.5-1

To do this, first, notice that it is in NP, where the certificate is just the
injection from G1 into G2 so that G1 is isomorphic to its image.

Now, to see that it is NP complete, we will do a reduction to clique. That

11

is, to detect if a graph has a clique of size k, just let G1 be a complete graph
on k vertices and let G2 be the original graph. If we could solve the subgraph
isomorphism problem quickly, this would allow us to solve the clique problem
quickly.

Exercise 34.5-2

A certificate would be the n-vector x, and we can verify in polynomial time
that Ax ≤ b, so 0-1 integer linear programming (01LP) is in NP. To prove that
01LP is NP-hard, we show that 3-CNF-SAT ≤P 01LP. Let φ be 3-CNF formula
with n input variables and k clauses. We construct an instance of 01LP as
follows. Let A be a k + 2n by 2n matrix. For 1 ≤ i ≤ k, set entry A(i, j) to -1
if 1 ≤ j ≤ n and clause Ci contains the literal xj . Otherwise set it to 0. For
n+1 ≤ j ≤ 2n, set entry A(i, j) to -1 if clause Ci contains the literal ¬xj−n, and
0 otherwise. When k+1 ≤ i ≤ k+n, set A(i, j) = 1 if i−k = j or i−k = j−n,
and 0 otherwise. When k+n+ 1 ≤ i ≤ k+ 2n, set A(i, j) = −1 if i− k−n = j
or i − k − n = j − n, and 0 otherwise. Let b be a k + 2n-vector. Set the first
k entries to -1, the next n entries to 1, and the last n entries to -1. It is clear
that we can construct A and b in polynomial time.

We now show that φ has a satisfying assignment if and only if there exists
a 0-1 vector x such that Ax ≤ b. First, suppose φ has a satisfying assignment.
For 1 ≤ i ≤ n, f xi is true, make x[i] = 1 and x[n + i] = 0. If xi is false, set
x[i] = 0 and x[n + i] = 1. Since clause Ci is satisfied, there must exist some
literal in it which makes it true. If it is xj , then x[j] = 1 and A(i, j) = −1, so we
get a contribution of -1 to the ith row of b. Since every entry in the upper k by
2n submatrix of A is nonpositive and every entry of x is nonnegative, there can
be no positive contributions to the ith row of b. Thus, we are guaranteed that
the ith row of Ax is at most -1. The same argument applies if the literal ¬xj
makes clause i true. For 1 ≤ m ≤ n, at most one of xm and ¬xm can be true,
so at most one of x[m] and x[m+n] can be true. When we multiply row k+m
by x, we get the number of 1’s among x[m] and x[m+ n]. Thus, the (k +m)th

row of b is at most 1, as required. Finally, when we multiply row k + n+m of
A by x, we get negative 1 times the number of 1’s among x[m] and x[m + n].
Since this is at least 1, the (k + n + m)th row of b is at most -1. Therefore all
inequalities are satisfied, so x is a 0-1 solution to Ax = b.

Next we must show that any 0-1 solution to Ax = b provides a satisfying
assignment. Let x be such a 0-1 solution. The inequalities ensured by the last
2n rows of b guarantee that exactly one of x[m] and x[n + m] is set equal to 1
for 1 ≤ m ≤ n. In particular, this means that each xi is either true or false, but
not both. Let this be our candidate satisfying assignment. By the construction
of A, we get a contribution of -1 to row i of Ax every time a literal in Ci is true,
based on our candidate assignment, and a 0 contribution every time a literal is
false. Since row i of b is -1, this guarantees at least one literal which is true
per our assignment in each clause. Since this holds for each of the k clauses,
the candidate assignment is in fact a satisfying assignment. Therefore 01LP is
NP-complete.

12

Exercise 34.5-3

We will try to show a reduction to the 0-1 integer programming problem.
To see this, we will take our A from the 0-1 integer programming problem, and
tack on a copy of the n × n identity matrix to its bottom, and tack on n ones
to the end of b from teh 0-1 integer programming problem. This has the effect
of adding the restrictions that every entry of x must be at most 1. However,
since, for every i, we needed xi to be an integer anyways, this only leaves the
option that xi = 0 or xi = 1. This means that by adding these restrictions,
we have that any solution to this system will be a solution to the 0-1 integer
programming problem given by A and b.

Exercise 34.5-4

We can solve the problem using dynamic programming. Suppose there are n
integers in S. Create a t by n table to solve the problem just as in the solution
to the 0-1 knapsack problem described in Exercise 16.2-2. This has runtime
O(tn lg t), since without loss of generality we may assume that every integer in
S is less than or equal to t, otherwise we know it won’t be included in the solu-
tion, and we can check for this in polynomial time. The extra lg t term comes
from the fact that each addition takes O(lg t) time. Moreover, we can assume
that S contains at most t2 integers. If t is expressed in unary then the length of
the problem is at most O(t+ t2 lg t) = O(t3), since we express the integers in S
in binary. The time to solve it is O(t4). Thus, the time to compute the solution
is polynomial in the length of the input.

Exercise 34.5-5

We will be performing a reduction from the subset sum problem. Suppose
that S and t are our set and target from our subset sum problem. Let x be
equal to

∑
s∈S s. Then, we will add the elements x + t, 2x − t. Once we have

added the elements, note that the sum of all of the elements in the new set S′

will be 4x. We also know that we cannot have both of the new elements that
we added be on same side of the partition, because they add up to 3x which is
three times all the other elements combined. Now, this set of elements will be
what we pass into our set partition solver. Note that since the total is 4x, each
side will add up to 2x. This means that if we look at the elements that on the
same side as, but not equal to 2x − t, they must add up to t. Since they were
also members of the original set S, this means that they are a subset with the
desired sum, solving the original instance of subset sum. Since it was proved in
the section that subset sum is NP-complete, this proves that the set-partition
problem is NP hard.

To see that it is in NP, just let the certificate be the set of elements of S
that forms one side of the partition. It is linear time to add them up and make
sure that they are exactly half the sum of all the elements in S.

13

Exercise 34.5-6

We’ll show that the hamiltonian-path problem HAM-PATH is NP-complete.
First, a certificate would be a list {v1, v2, . . . , vn} of the vertices of the path, in
order. We can check in polynomial time whether or not {vi, vi+1} is an edge for
1 ≤ i ≤ n− 1. Thus, HAM-PATH is in NP.

Next, we’ll show that HAM-PATH is NP-complete by showing that HAM-
CYCLE ≤P HAM-PATH. Let G = (V,E) be any graph. We’ll construct a graph
G′ as follows. For each edge ei ∈ E, let Gei denote the graph with vertex set
V and edge set E − ei. Let ei have the form {ui, vi}. Now, G′ will contain one
copy of Gei for each ei ∈ E. Additionally, G′ will contain a vertex x connected
to u1, an edge from vi to ui+1 for 1 ≤ i ≤ |E|− 1, and a vertex y and edge from
v|E| to y. It is clear that we can construct G′ from G in time polyomial in the
size of G.

If G has a Hamiltonian cycle, then Gei has a Hamiltonian path starting at
ui and ending at vi for each i. Thus, G′ has a Hamiltonian cycle from x to y,
obtained by taking each of these paths one after another. On the other hand,
suppose G fails to have a Hamiltonian cycle. Since x and y have degree 1, the
only way G′ can have a Hamiltonian path is if it starts at x and ends at y.
Moreover, since {v1, u2} is a cut edge, it must be in the Hamiltonian path if it
exists. Since we can not traverse this edge a second time, any Hamiltonian path
must start with a Hamiltonian path from x to v1. However, this means there is
a Hamiltonian path from u1 to v1. Since {u1, v1} is an edge in G, this implies
there is a Hamiltonian cycle in G, a contradiction. Thus, G has a Hamiltonian
cycle if and only if G′ has a Hamiltonian path. Therefore HAM-PATH is NP-
hard, so HAM-PATH is in fact NP-complete.

Exercise 34.5-7

The related decision problem is to, given a graph G and integer k decide
if there is a simple cycle of length at least k in the graph G. To see that this
problem is in NP , just let the certificate be the cycle itself. It is really easy just
to walk along this cycle, keeping track of what vertices you’ve already seen, and
making sure they don’t get repeated.

To see that it is NP-hard, we will be doing a reduction to Hamilton cycle.
Suppose we have a graph G and want to know if it is Hamilton. We then create
an instance of the decision problem asking if the graph has a simply cycle of
length at least |V | vertices. If it does then there is a Hamiltonian cycle. If there
is not, then there cannot be any Hamiltonian cycle.

Exercise 34.5-8

A certificate would be an assignment to input variables which causes exactly
half the clauses to evaluate to 1, and the other half to evaluate to 0. Since
we can check this in polynomial time, half 3-CNF is in NP. To prove that it’s

14

NP-hard, we’ll show that 3-CNF-SAT ≤p HALF-3-CNF. Let φ be any 3-CNF
formula with m clauses and input variables x1, x2, . . . , xn. Let T be the formula
(y∨y∨¬y), and let F be the formula (y∨y∨y). Let φ′ = φ∧T∧. . .∧T∧F∧. . .∧F
where there are m copies of T and 2m copies of F . Then φ′ has 4m clauses and
can be constructed from φ in polynomial time. Suppose that φ has a satisfying
assignment. Then by setting y = 0 and the xi’s to the satisfying assignment,
we satisfy the m clauses of φ and the m T clauses, but none of the F clauses.
Thus, φ′ has an assignment which satisfies exactly half of its clauses. On the
other hand, suppose there is no satisfying assignment to φ. The m T clauses
are always satisfied. If we set y = 0 then the total number of clauses satisfies
in φ′ is strictly less than 2m, since each of the 2m F clauses is false, and at
least one of the φ clauses is false. If we set y = 1, then strictly more than half
the clauses of φ′ are satisfied, since the 3m T and F clauses are all satisfied.
Thus, φ has a satisfying assignment if and only if φ′ has an assignment which
satisfies exactly half of its clauses. We conclude that HALF-3-CNF is NP-hard,
and hence NP-complete.

Problem 34-1

a) The related decision problem should be to, given a graph and a number k
decide whether or not there is some independent set of size at least k. If we
take the compliment of the given graph, then it will have a clique of size at
least k if and only if the original graph has an independent set of size at least
k. This is because if we take any set of vertices in the original graph, then
it will be an independent set if and only if there are no edges between those
vertices. However, in the compliment graph, this means that between every
one of those vertices, there is an edge, which means they form a clique. So,
to decide independent set, just decide clique in the compliment.

b) We know that since all independent sets are subsets of the set of vertices,
then the size of the largest independent set will be an integer in the range
1..|V |. Then, we will perform a binary search on this space of valid sizes
of the largest independent set. That is, we pick the middle element, ask if
there is an independent set of that size, if there is, we know we are in the
upper half of this range of values for the size of the largest independent set,
if not, then we are in the lower half. The total runtime of this procedure to
find the size of the largest independent set will only be a factor of lg(|V ||)
higher than the solution to the decision problem. Call the size of the largest
independent set k.

Now, for every pair of vertices, try adding an edge, and check if the proce-
dure from before determines that the size of the largest independent set has
decreased. If it hasn’t that means that that pair of vertices doesn’t prevent
us from attaining an independent set of the given size. That is, we aren’t in
the case that there is only one maximal set of the given size and that pair of
vertices belongs to it. So, add that edge to the graph, and continue in this

15

fashion for every pair of vertices. Once we are done, the size of the largest
independent set will be the same, and we will have that every edge is filled
in except for those going between an independent set of the given size. So,
we just list off all the vertices whose degree is less than |V | − 1 as being
members of our independent set.

c) Since every vertex has degree 2, and so self edges are allowed, the graph must
look like a number of disjoint cycles. We can then consider the independent
set problem separately for each of the cycles. If we have an even cycle, the
largest independent set possible is half the vertices, by selecting them to be
alternating. If it is an odd cycle, then we can do half rounded down, since
when we get back to the start, we are in the awkward place where there are
two unselected vertices between two selected vertices. It’s easy to see that
these are tight, because there is so little freedom in selecting an independent
set in a cycle. So, to calculate the size of the smallest independent set, look
at the sizes of each cycle ci, then, the largest independent set will have size
b ci2 c.

d) First, find a maximal matching. This can be done in time O(V E) by
the methods of section 26.3. let f(x) be defined for all vertices that were
matched, and let it evaluate to the point that is paired with x in the maxi-
mal matching. Then, we do the following procedure. Let S1 be the unpaired
points, Let S2 = f(N(S1))\S1, where we extend f to sets of vertices by just
letting it be the set containing all the pairs of the given points. Similarly,
define Si+1 = f(N(Si)) \

(
∪ij=1Sj

)
. First, we need to show that this is well

defined. That means that we want to make sure that we always have that
every neighbor of Si is paired with something. Since we could get from an
unpaired point to something in Si by taking a path that is alternating from
being an edge in the matching and an edge not in the matching, starting
with one that was not, if we could get to an unpaired point from Si, that
last edge could be tacked onto this path, and it would become an augmenting
path, contradicting maximality of the original matching. Next, we can note
that we never have an element in some Si adjacent to an element in some Sj .
Suppose there were, then we could take the path from an unpaired vertex
to a vertex in Si, add the edge to the element in Sj and then take the path
from there to an unpaired vertex. This forms an augmenting path, which
would again contradict maximality. The process of computing the {Si} must
eventually terminate by becoming ∅ because they are selected to be disjoint
and there are only finitely many vertices. Any vertices that are neither in an
Si or adjacent to one consist entirely of a perfect matching, that has no edges
going to picked vertices. This means that the best we can do is to just pick
everything from one side of the remaining vertices. This whole procedure of
picking vertices takes time at most O(E), since we consider going along each
edge only twice. This brings the total runtime to O(V E).

Thanks to John Chiarelli, a fellow graduate student at Rutgers, for helpful
discussion of this part of the problem.

16

Problem 34-2

a. We can solve this problem in polynomial time as follows. Let a denote the
number of coins of denomination x and b denote the number of coins of
denomination y. Then we must have a + b = n. In order to divide the
money exactly evenly, we need to know if there is a way to make (ax+ by)/2
out of the coins. In other words, we need to determine whether there exist
nonnegative integers c and d less than or equal to a and b respectively such
that cx+ dy = (ax+ by)/2. There are (a+ 1)(b+ 1) ≤ (n+ 1)2 many such
linear combinations. We can compute each one in time polynomial in the
length of the input numbers, and there are polynomially many combinations
to compute, so we can just check all combinations to see if we find one that
works.

b. We can solve this problem in polynomial time as follows. Start by arranging
the coins from largest to smallest. If there are an even number of the current
largest coin, distribute them evenly to Bonnie and Clyde. Otherwise, give the
extra one to Bonnie and then only give coins to Clyde until the difference
has been resolved. This clearly runs in polynomial time, so we just need
to show that this will always yield an even division if such a division is
possible. Suppose that for some input of coins which can be divided evenly,
the algorithm fails. Then there must exist a last time at which there were an
odd number of a denomination 2i, so that Bonnie got ahead and had 2i more
dollars than Clyde. At this point, we start giving coins only to Clyde. Since
every denomination decrease cuts the amount in half, it will never be the
case that Clyde had strictly less than Bonnie, was given an additional coin,
and then had an amount strictly greater than Bonnie. Thus, the sum of all
coins of size less than 2i must not exceed 2i. Since we assumed the coins can
be divided evenly, there exists b0, b1, . . . and c0, c1, . . . such that we assign
Bonnie bi coins of value 2i and Clyde ci coins of value 2i, and both receive
an equal amount. Now remove all coins of value smaller than 2i. Bonnie
now has

∑∞
k=i bk2k dollars and Clyde has

∑∞
k=i ck2k dollars. Moreover, we

know that there is an uneven distribution of wealth at this point, and since
every coin has value at least 2i, the difference is at least 2i. Since the sum
of the smaller coins is strictly less than 2i, there is no way to distribute the
smaller coins to fix the difference, a contradiction since we started with an
even split! Thus, the proposed algorithm is correct.

c. This problem is NP-complete. First, an assignment of each check to either
Bonnie or Clyde represents a certificate which can be checked in polynomial
time by adding up the amounts on each of Bonnies checks, and ensuring
that it is equal to the sum of the amounts on each of Clyde’s checks. Next
we’ll show this problem, SPLIT-CHECKS is NP-hard by showing that SET-
PARTITION ≤P SPLIT-CHECKS. Let S be a set of numbers. We can think
of each one as giving the value of a check. If there exists a set A ⊂ S such
that

∑
x∈A x =

∑
x∈(S−A) x, then we can assign each check in A to Bonnie

17

and each check in S − A to Clyde to get an equal division. On the other
hand, if there is a way to evenly assign checks then we may just take A to be
the set of checks given to Bonnie, so by contrapositive, if we can’t find a set
partition which evenly splits the set then we can’t evenly divide the checks.
Thus, the problem is NP-hard, so it is NP-complete.

d. An assignment of each check to either Bonnie or Clyde represents a certificate,
and we can check in polynomial time whether or not the total amounts given
to Bonnie and Clyde differ by at most 100. Thus, the problem is in NP. Next,
we’ll show it’s NP-hard by showing SET-PARTITION ≤P SPLIT-CHECKS-
100. Let S = {s1, s2, . . . , sn} be a set, and let xS = {xs1, xs2, . . . , xsn}.
Choose x = 101

mini,j si−sj . Then the difference between any two elements in xS

is more than 100. If there exists A ⊂ S such that
∑
s∈A s =

∑
s∈S−A s, then

we give Bonnie all the checks in xA and Clyde all the checks in x(S−A), for
a perfectly even split of the money, which means the difference is less than
100. On the other hand, suppose there exists no such A. Then for any way of
splitting the elements of S into two sets, their sums will differ by at least the
minimum difference of elements in S. Thus, any way of splitting the checks
in xS will result in a difference of at least 101, so there is no way to split
them so that the difference is at most 100. Therefore SET-PARTITION ≤P
SPLIT-CHECKS-100, so the problem is NP-hard. Since we showed it is in
NP, it is also NP-complete.

Problem 34-3

a) To two color a graph, we will do it a connected component at a time, so,
suppose that the graph is a single component. Pick a vertex and color arbi-
trarily, and color that vertex that color. Then, we repeatedly find a vertex
that has a colored neighbor and color it the other color. If we are ever in
the case that a vertex has neighbors of both colors, then the graph is not
2-colorable. This procedure is able to 2-color if the graph is 2-colorable,
since the only point where our hand isn’t forced is at the beginning when
we pick a vertex and a color, but this choice is only a false one because of
the symmetry of the two colors. If it finds it is 2-colorable, it also outputs a
valid 2-coloring.

b) The equivalent decision problem is to, given a graph G and an integer k
say if there is a coloring that uses at most k colors. The easy direction
is showing that if the original problem is solvable in poly thime, then the
decision problem is solvable in poly time. To do this, just compute the
minimum number of colors needed and output true if this is ≤ k.

The other direction is a bit harder. Suppose that we can solve the decision
problem in polynomial time, then, we will try to show how we can actually
compute the minimum number of colors needed. A trivial bound on the
number of colors needed is the number of vertices, because if each vertex has
it’s own color, then the coloring has to be valid. So, we perform a binary

18

search on the number of colors, starting with the range 1..|V |, halving it
each time until we are down to a single possible number of colors needed in
order to color the graph. This will only add a log factor to the runtime of
the decision problem, and so will run in polynomial time.

c) For this problem, we need to show that if we can solve the decision problem
quickly, then we can decide the language 3-COLOR quickly. This is just
a matter of running the decision procedure with the same graph and with
k = 3. This gets us the reduction we need to show that 3-COLOR being
NP-complete implies the decision problem is NP-hard. The decision problem
is in NP because we can just have the certificate explicitly be the coloring
of the vertices of the graph.

d) When we restrict the graph to the vertices xi,¬xi, RED, then we will obtain
a K3 because of the literal edges. This means that all three colors must
show up in it. Since there is already c(RED), then the other two must be
c(TRUE) and c(FALSE). No matter whether we choose xi or ¬xi to be
c(TRUE), we can just select the other one to be c(FALSE), this gets us
that, if we only care about the literal edges, we always have a 3 coloring
regardless of whether we want each xi to be true or false.

e) For convenience, we will call the vertices a, b, c, d, e from the figure, where
we are reading from top to bottom and left to right for vertices that are
horizontal from one another. Since we are trying to check that it is 3 colorable
if and only if at least one of x, y, z are c(TRUE), we can negate the only
if direction. That is, we suppose they are all colored c(FALSE) and show
that the graph is not 3 colorable.

Suppose c(x) = c(y) = c(z) = c(FALSE). Then, we have that the only
possibility for vertex e is to be c(RED). This means the only possibility for
c is to be c(FALSE). However, this means that c(a) 6= c(x) = c(FALSE),
c(d) 6= c(y) = c(FALSE), and c(b) 6= c(c) = c(FALSE). So, we have a
contradiction because any K3 must have one of each color, and none of the
vertices in this K3 can be c(FALSE). This shows that the graph is not
3-colorable.

For the other direction, we do not negate. So, we assume there is a vertex
colored c(TRUE) and we show that the graph is 3-colorable. We will split
into the following cases. Note that because x and y play a symmetric role,
we can reduce the number of cases from 7 to 5

x y z a b c d e

c(TRUE) c(TRUE) c(TRUE) c(FALSE) c(TRUE) c(FALSE) c(RED) c(RED)
c(FALSE) c(TRUE) c(TRUE) c(RED) c(TRUE) c(FALSE) c(FALSE) c(RED)
c(FALSE) c(FALSE) c(TRUE) c(RED) c(FALSE) c(RED) c(TRUE) c(FALSE)
c(TRUE) c(TRUE) c(FALSE) c(FALSE) c(TRUE) c(FALSE) c(RED) c(RED)
c(FALSE) c(TRUE) c(FALSE) c(TRUE) c(RED) c(FALSE) c(FALSE) c(RED)

19

Then, in every case where at least one of the inputs is true, there is an
assignment of colors to the other vertices that produces a valid 3-coloring.

f) Suppose we are given any instance of 3-CNF-SAT, we will be using exactly
the same construction as described in the problem for the reduction. First,
we note that each of the vertices corresponding to a variable and its negation
must only have the colors c(TRUE) and c(FALSE), and exactly one can be
c(TRUE) because of the literal edges. This means that each of the clause
vertices will only be colorable if we assign a color of true to one of the variable
vertices that are in the clause. This means that if we set each variable that
has c(xi) = c(TRUE) true and each variable that has c(¬xi) = c(TRUE)
to be false, we will of obtained an assignment that makes at least one of the
entries in each clause true, and so, is a satisfying assignment of the formula.
Since 3-CNF-SAT is NP-complete, this means that 3-COLOR is NP-hard.

To see that it is in NP, just let the certificate be the coloring. Checking the
coloring can be done in linear time.

Problem 34-4

a. For fixed k, does there exist a permutation σ ∈ Sn such that if we run the
tasks in the order aσ(1), . . . , aσ(n), the total profit is at least k?

b. It is clear that the decision problem is in NP because we can view a certificate
as a permutation of the tasks. We then check the tasks in that order to see
if they have finished by their deadlines and what profit we incur, finally
comparing this to k.

c. Suppose that a particular task ai is the first to be performed. Then we solve
the subproblem of deciding whether there exists a solution to the problem
with tasks a1, . . . , ai−1, ai+1, . . . , an, each with their respective profits and
times, deadlines such that dj = dj − ti, and with total profit at least k − pi.
To find this out, we make a lookup table which keeps track of the optimal
schedule computed bottom-up.

d. There are 2n possible profits that could be made, based on whether or not
we finish each task by its deadline. We can binary search these for the
one with maximum profit which satisfies the decision problem, which we can
determine in polynomial time by part c. Since binary search takes lg(2n) = n,
we need only run the polynomial time algorithm of part c. n times before we
find the maximal k which solves the decision problem, and thus solves the
optimization problem.

20

