
Chapter 33

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 33.1-1

Suppose first that the cross product is positive. We shall consider the an-
gles that both of the vectors make with the positive x axis. This is given
by tan−1(y/x) for both. Since the cross product is positive, we have that
0 < x1y2 − x2y1, which means that y1

x1
< y2

x2
. however, since arctan is a mono-

tone function, this means that the angle that p2 makes with the positive x axis
is greater than the angle that p1 does, which means that you need to move in a
clockwise direction to get from p2 to p1.

If the cross product is negative, this means that we have y1
x1

> y2
x2

which
means that the angle that p1 makes is greater, which means that we need to go
counter clockwise from p2 to get to p1.

Exercise 33.1-2

If the segment pipj is vertical, then pk could be colinear with pi and pj , but
lie directly below them. Then xi = xj = xk, so if we don’t also check the y
values we won’t catch that pk is not on the segment.

Exercise 33.1-3

The beauty of the fact that our sorting algorithms from earlier in the book
were only comparison based is that if we can implement a comparison operation
between any two elements that operates in constant time, then, we can use the
earlier comparison based sorting algorithms as a black box to work on our data.

So, what we need to do is, given two indices i and j, decide whether the
polar angle of pi with respect to p0 is larger or smaller than the polar angle of
pj with respect to p0. This can be done with a single cross product. That is,
we look at the cross product, (p1 − p0)× (p2 − p0). This is positive if we need
to turn left from p1 to get to p2. That is, if it is positive, then the polar angle
is greater for p2 than from p1. We similarly know that we are in the reverse
situation if we have that this cross product is negative. The only tricky thing is
that we could have two distinct elements pi and pj so that the cross product is
still zero. The problem statement is unclear how to resolve these sorts of ties,
because they have the same polar angle. We could just pick some arbitrary

1

property of the points to resolve ties, such as we pick the point that is farther
away from p0 to be larger. Since we have a total ordering on the points that
can be queried in constant time, we can use it in our O(n lg(n)) algorithms from
earlier on in the book.

Exercise 33.1-4

By Exercise 33.1-3 we can sort n points according to their polar angles with
respect to a given point in O(n lg n) time. If points pi, pj , and pk are colinear,
then at two one of the following is true: (1) pj and pk have the same polar angle
with respect to pi, (2) pi and pk have the same polar angle with respect to pj ,
or (3) pi and pj have the same polar angle with respect to pk. Thus, it will
suffice to do as follows: For each point p, compute the polar angle of all other
points with respect to p. If there are any duplicates, those points are colinear.
Since we must do this for each point, the algorithm has runtime O(n2 lg n).

Exercise 33.1-5

Because, as stated in this definition of convex polynomials, we cannot have
a vertex of a convex polygon be a convex combination of any two points of the
boundary of the polynomial. This means that as we enter a particular vertex,
we cannot have that it is colinear with the next vertex. Professor Amundsen’s
algorithm just rejects if both left and right turns are made. However, it should
also reject if there is ever any vertex where no turn is made, because that vertex
would then be a convex combination of the next and previous vertices.

Exercise 33.1-6

It will suffice to check whether or not the line segments p0p3 and p1p2 inter-
sect, where p3 = (max(x1, x2), y0). We can do this in O(1).

Exercise 33.1-7

Starting from the point p0, pick an arbitrary direction, and consider the ray
coming out in that direction. Instead of just counting the intersections with the
sides of the polygon, we’ll also count all the vertices that the ray intersects. for
each side that it intersects, if it intersects the vertices at both sides, then we
don’t count that edge, because that means that the ray passes along that side.
Lastly, if the ray passes through any vertex where both sides touching that ver-
tex aren’t of the previous type, we flip the parity of the count. Lastly, we say it
is inside if the final count is odd. See the algorithm DETERMINE-INSIDE(P,p).

Exercise 33.1-8

Without loss of generality, assume that the interior of the polygon is to the
right of the first segment p0p1. We will examine segments of the polygon one at a

2

Algorithm 1 DETERMINE-INSIDE(P,p), P is a polygon, and p is a point

Let S be the set of sides that the right horizontal ray intersects
Let T be the set of vertices that the right horizontal ray intersects
Let U be an empty set of sides
count = 0
for s ∈ S do

let p1 and p2 be the vertices at either side of s
if p1 ∈ T and p2 ∈ T then

put s in U
end if
count++

end for
for x ∈ T do

let y and z be the sides that x is touching
if y ∈ U or z ∈ U then

count++
end if

end for
if count is odd then

return inside
else

return outside
end if

3

time. At any point, if we are at segment pipi+1 and if the next segment pi+1pi+2

of the polygon turns right then, then we can compute the are of 4pipi+1pi+2,
and reduce the problem to that of finding the area of the polygon without pi+1,
adding the area just computed. On the other hand, if we turn left then we
need to compute the area of the polygon without pi+1, but we need to subtract
the area of 4pipi+1pi+2. Since we can compute the area of a triangle given
its vertices in constant time, the runtime satisfies T (n) = T (n − 1) + O(1), so
T (n) = O(n).

Exercise 33.2-1

Suppose you split your set of lines into two equal sets, each of size n/2.
Then, we will make half of them horizontal and close together, each above the
next. That is, we’ll put a horizontal line at y = 1

k for k = 1, . . . , n/2 extending
from −1 to 1. For the other half, we’ll put lines along x = 1

k for k = 1, . . . , n/2,
extending from -1 to 1. Then, we’ll have every line from the first set intersect
every line from the second set. Therefore the total number of intersections is
n2

4 , which is Θ(n2).

Exercise 33.2-2

First suppose that a and b do not intersect. Let as, af , bs, bf denote the
left and right endpoints of a and b respectively. Without loss of generality,
let b have the leftmost left endpoint. If bsas is to the right of bsbf , then a
is below b. Otherwise a is above b. Now suppose that a and b intersect. To
decide which segment is on top, we need to determine whether the intersection
occurs to the left or right of x. Assume that each point has x and y attributes.
For example, as = (as.x, as.y). The equation of the line through segment a is
y = m1(x−as.x)+as.y where m1 =

af .y−as.y
af .x−as.x . The equation of the line through

segment b is y = m2(x− bs.x) + bs.y where m2 =
bf .y−bs.y
bf .x−bs.x . Setting these equal

to each other gives

x =
bs.y −m2bs.x− as.y +m1as.x

m1 −m2
.

Let x = x0 be the equation of the sweep line at which we want to test the
relationship between a and b. We need to determine whether or not x < x0, but
without using division. To do this, we’ll need to clear denominators. x < x0 is
equivalent to

bs.y −m2bs.x− as.y +m1as.x < (m1 −m2)x0

which is equivalent to this gross mess, which fortunately requires only addition,
subtraction, multiplication, and comparison, so it is numerically stable:

(af .x− as.x)(bf .x− bs.x)(bs.y − as.y)− (af .x− as.x)(bf .y − bs.y)bs.x+ (bfx− bs.x)(af .y − as.y)as.x

< (bf .x− bs.x)(af .y − as.y)x0 − (af .x− as.x)(bf .y − bs.y)x0.

4

Exercise 33.2-3

It looks like the moral of this book is that the only time that a professor
can be right is when he’s disagreeing with another professor. Professor Dixon
is correct.

It will not necessarily print the leftmost intersection first. The intersection
that it prints first will be the pair of lines such that both lines have their end-
points show up first in the lexicographical ordering on line 2. An example is, sup-
pose we have the lines {{(0, 1000), (2, 2000)}, {(0, 1001), (2, 1001)}, {(0, 0), (1, 2)}, {(0, 2), (1, 0)}}.
Then, the first two lines have the leftmost intersection, but the intersection be-
tween the last two lines will be printed out first.

The procedure will not necessarily display all intersections, in particular,
suppose that we have the line segments {{(0, 0), (4, 0)}, {(0, 1), (4,−2)}, {(0, 2), (4,−2)}, {(0, 3), (4,−1)}}.
There are intersections of the first line segment with each of the other line seg-
ments at 1,2, and 3. However, we cannot detect the intersection at 2 because the
line segment from (0, 2) to (4,−2) is not adjacent to the horizontal line segment
in the red-black tree either when we process left endpoints or right endpoints.

Exercise 33.2-4

An n vertex polygon 〈p0, p1, . . . , nn−1〉 is simple if and only if the only in-
tersections of the segments p0p1, p1p2, . . . , pn−1p0 of the boundary are between
consecutive segments pipi+1 and pi+1pi+2 at the point pi+1. We run the usual
ANY-SEGMENTS-INTERSECT algorithm on the segments which make up
the boundary of the polygon, with the modification that if an intersection is
found, we first check if it is an acceptable one. If so, we ignore it and proceed.
Since we can check this in O(1), the runtime is the same as ANY-SEGMENTS-
INTERSECT.

Exercise 33.2-5
Construct the set of line segments which correspond to all the sides of both
polygons, then just use the algorithm from this section to see if any pair of
them intersect. If we are in the fringe case that some segment is vertical, just
rotate the whole picture by some epsilon. This won’t change whether or not
there is an intersection.

Exercise 33.2-6

We can use a modified version of the intersecting-segments algorithm to
solve this problem. We’ll first associate left and right endpoints to each disk.
If disk D has radius r and center (x, y), define its left endpoint to be (x− r, y)
and its right endpoint to be (x + r, y). Begin by ordering the endpoints of the
disks first by left-right position. If two endpoints have the same x-coordinate,
then covertical left endpoints come before right endpoints. Within these, order
by y-coordinates from low to high. We’ll use the same event point schedule as
for the intersecting segments problem. Maintain a sweep-line status that gives

5

the relative order of the segments of the disks, where the segment associated
to each disk is the segment formed by its left and right endpoints. When we
encounter a left endpoint, we add the associated disk to the sweep-line status.
When we encounter a right endpoint, we delete the disk from the sweep-line
status. Consider the first time two disks become consecutive in the ordering.
Let their centers be (x1, y1) and (x2, y2), and their radii be r1 and r2. Check
if (x2 − x1)2 + (y2 − y1)2 ≤ (r1 + r2)2. If yes, then the two circles intersect.
Otherwise they don’t. Since we can check this in O(1), and there are only 2n
points which are added, we make at most 4n checks in total. Sorting the points
takes O(n lg n), so the total runtime is O(n lg n) +O(n) = O(n lg n).

Exercise 33.2-7

We preform a slight modification to what Professor Mason suggested in ex-
ercise 33.2-3. Once we have found an intersection, we then keep considering
elements further and further away in the red black tree until we no longer have
an intersection. Since all the tree operations only take time O(lg(n)), and we
are only doing an additional one on top of the original algorithm for each of the
intersections that we found, we have that the additional runtime is O(k lg(n))
so, the total runtime is O((n+ k) lg(n)).

Exercise 33.2-8

Suppose that at least 3 segments intersect at the same point. It is clear
that if ANY-SEGMENTS-INTERSECT returns true, then it must be correct.
Now we will show that it must return true if there is an intersection, even if
it occurs as an intersection of 3 or more segments. Suppose that there is at
least one intersection, and that p is the leftmost intersection point, breaking
ties by choosing the point with the lowest y-coordinate. Let a1, a2, . . . , ak be
the segments that intersect at p. Since no intersections occur to the left of p,
the order given by T is correct at all points to the left of p. Let z be the first
sweep line at which some pair ai, aj is consecutive in T . Then z must occur at
or to the left of p. Let i be the smallest number such that there exists a j such
that ai and aj are consecutive in T , and assume that we choose the smallest j
possible, and let q be the event point at which ai and aj become consecutive in
the total preorder. If p is on z, then we must have q = p, and at this point the
intersection is detected. As in the proof of correctness given in the section, the
ordering of our endpoints allows us to detect this even if p is the left endpoint
of ai and the right endpoint of aj . If p is not on z then q is to the left of p, and
when we process q no other intersections have occurred, so the ordering in T is
correct, and the algorithm correctly identifies the intersection between ai and aj .

Exercise 33.2-9

In the original statement of the problem, we are putting points with lower y-
coordinates first. This means that when we are processing our vertical segment,

6

we want its lower bound to of already been processed by the time we process
any of the left endpoints of other lines that may intersect the given line. Also,
we don’t want to remove the segment until we have already processed all the
right endpoints of the lines that may of intersected it, which means we want
it’s upper bound to be dealt with in the second pass (the right endpoint pass).
Again, since we process lower y-values first, this means that we have it added
to our tree before we process anything it could intersect and have it removed
after processing everything it could intersect.

If one or both of the segments are vertical at x in exercise 33.2-2, then test-
ing whether they intersect is just a matter of looking to see if the other line is
less than the upper bound and more than the lower bound at the given x value.
otherwise we just see if it’s more than the upper bound or less than the lower
bound to see which direction the inequality should go.

Exercise 33.3-1

To see this, note that p1 and pm are the points with the lowest and high-
est polar angle with respect to p0. By symmetry, we may just show it for p1
and we would also have it for pm just by reflecting the set of points across a
vertical line. To a contradiction, suppose we have the convex hull doesn’t con-
tain p1. Then, let p be the point in the convex hull that has the lowest polar
angle with respect to p0. If p is on the line from p0 to p1, we could replace it
with p1 and have a convex hull, meaning we didn’t start with a convex hull. If
we have that it is not on that line, then there is no way that the convex hull
given contains p1, also contradicting the fact that we had selected a convex hull.

Exercise 33.3-2

Let our n numbers be a1, a2, . . . , an and f be a strictly convex function,
such as ex. Let pi = (ai, f(ai)). Compute the convex hull of p1, p2, . . . , pn.
Then every point is in the convex hull. We can recover the numbers them-
selves by looking at the x-coordinates of the points in the order returned by the
convex-hull algorithm, which will necessarily be a cyclic shift of the numbers
in increasing order, so we can recover the proper order in linear time. In an
algorithm such as GRAHAM-SCAN which starts with the point with minimum
y-coordinate, the order returned actually gives the numbers in increasing order.

Exercise 33.3-3

Suppose that p and q are the two furthest apart points. Also, to a con-
tradiction, suppose, without loss of generality that p is on the interior of the
convex hull. Then, construct the circle whose center is q and which has p on
the circle. Then, if we have that there are any vertices of the convex hull that
are outside this circle, we could pick that vertex and q, they would have a
higher distance than between p and q. So, we know that all of the vertices of
the convex hull lie inside the circle. This means that the sides of the convex

7

hull consist of line segments that are contained within the circle. So, the only
way that they could contain p, a point on the circle is if it was a vertex, but
we suppsed that p wasn’t a vertex of the convex hull, giving us our contradiction.

Exercise 33.3-4

We simply run GRAHAM-SCAN but without sorting the points, so the
runtime becomes O(n). To prove this, we’ll prove the following loop invariant:
At the start of each iteration of the for loop of lines 7-10, stack S consists of,
from bottom to top, exactly the vertices of CH(Qi−1). The proof is quite similar
to the proof of correctness. The invariant holds the first time we execute line 7
for the same reasons outline in the section. At the start of the ith iteration, S
contains CH(Qi−1). Let pj be the top point on S after executing the while loop
of lines 8-9, but before pi is pushed, and let pk be the point just below pj on
S. At this point, S contains CH(Qj) in counterclockwise order from bottom to
top. Thus, when we push pi, S contains exactly the vertices of CH(Qj ∪ {pi}).

We now show that this is the same set of points as CH(Qi). Let pt be any
point that was popped from S during iteration i and pr be the point just below
pt on stack S at the time pt was popped. Let p be a point in the kernel of P .
Since the angle ∠prptpi makes a nonelft turn and P is star shaped, pt must
be in the interior or on the boundary of the triangle formed by pr, pi, and p.
Thus, pt is not in the convex hull of Qi, so we have CH(Qi − {pt}) = CH(Qi).
Applying this equality repeatedly for each point removed from S in the while
loop of lines 8-9, we have CH(Qj ∪ {pi}) = CH(Qi).

When the loop terminates, the loop invariant implies that S consists of ex-
actly the vertices of CH(Qm) in counterclockwise order, proving correctness.

Exercise 33.3-5

Suppose that we have a convex hull computed from the previous stage
{q0, q1, . . . , qm}, and we want to add a new vertex, p in and keep track of how
we should change the convex hull. First, process the vertices in a clockwise
manner, and look for the first time that we would have to make a non-left to
get to p. This tells us where to start cutting vertices out of the convex hull. To
find out the upper bound on the vertices that we need to cut out, turn around,
start processing vertices in a clockwise manner and see the first time that we
would need to make a non-right. Then, we just remove the vertices that are in
this set of vertices and replace the with p. There is one last case to consider,
which is when we end up passing ourselves when we do our clockwise sweep.
Then we just remove no vertices and add p in in between the two vertices that
we had found in the two sweeps. Since for each vertex we add we are only
considering each point in the previous step’s convex hull twice, the runtime is
O(nh) = O(n2) where h is the number of points in the convex hull.

Exercise 33.3-6

8

Algorithm 2 ONLINE-CONVEX-HULL

let P = {p0, p1, . . . pm} be the convex hull so far listed in counterclockwise
order.
let p be the point we are adding
i=1
while going from pi−1 to pi to p is a left turn and i 6= 0 do

i++
end while
if i==0 then

return P
end if
j=i
while going from pi+1 to pi to p is a right turn and j ≥ i do

j–
end while
if j < i then

insert p between pj and pi
else

replace pi, . . . pj with p.
end if

First sort the points from left to right by x coordinate in O(n lg n), breaking
ties by sorting from lowest to highest. At the ith step of the algorithm we’ll
compute Ci = CH({p1, . . . , pi}) using Ci−1, the convex hull computed in the
previous step. In particular, we know that the rightmost of the first i points will
be in Ci. The point which comes before pi in a clockwise ordering will be the
first point q of Ci−1 such that qpi does not intersect the interior of Ci−1. The
point which comes after pi will be the last point q′ in a clockwise ordering of the
vertices of Ci−1 such that piq′ does not intersect the interior of Ci−1. We can
find each of these points in O(lg n) using a binary search. Here, assume that q
and q′ are given as the positions of the points in the clockwise ordering). This
follows because we’re searching a set of points which already forms a convex
hull, so the segments pjpi will intersect the interior of Ci−1 for the first k1
points, not intersect for the next k2 points, and intersect for the last k3 points,
where any of k1, k2, or k3 could be 0. Once found, we can delete every point
between q and q′. Since a point is deleted at most once and we store things in
a red-black tree, the total runtime of all deletions is O(n lg n). Since we insert
a total of n points, each taking O(lg n), the total runtime is thus O(n lg n). See
the algorithm below:
Exercise 33.4-1

The flaw in his plan is pretty obvious, in particular, when we select line l,
we may be unable perform an even split of the vertices. So, we don’t neccesar-
ily have that both the left set of points and right set of points have fallen to
roughly half. For example, suppose that the points are all arranged on a vertical

9

Algorithm 3 INCREMENTAL-METHOD(p1, p2, . . . , pn)

if n ≤ 3 then
return (p1, . . . , pn)

end if
Use Merge Sort to sort the points by increasing x-coordinate, breaking ties
by requiring increasing y-coordinate
Initialize an red-black tree C of size 3 with entries p1, p2, and p3
for i = 4 to n do

Let q be the result of binary searching for the first point of Ci−1 such that
qpi doesn’t intersect the interior of Ci−1

Let q′ be the result of binary searching for the last point of Ci−1 such that
q′pi doesn’t intersect the interior of Ci−1

Delete q + 1, q + 2, . . . , q′ − 1 from C
Insert pi into C

end for

line, then, when we recurse on the the left set of points, we haven’t reduced the
problem size AT ALL, let alone by a factor of two. There is also the issue in
this setup that you may end up asking about a set of size less than two when
looking at the right set of points.

Exercise 33.4-2

Since we only care about the shortest distance, the distance δ′ must be
strictly less than δ. The picture in Figure 33.11(b) only illustrates the case of a
nonstrict inequality. If we exclude the possibility of points whose x coordinate
differs by exactly δ from l, then it is only possible to place at most 6 points in
the δ× 2δ rectangle, so it suffices to check on the points in the 5 array positions
following each point in the array Y ′.

Exercise 33.4-3

In the analysis of the algorithm, most of it goes through just based on the
triangle inequality. The only main point of difference is in looking at the num-
ber of points that can be fit into a δ × 2δ rectangle. In particular, we can cram
in two more points than the eight shown into the rectangle by placing points at
the centers of the two squares that the rectangle breaks into. This means that
we need to consider points up to 9 away in Y ′ instead of 7 away. This has no
impact on the asymptotics of the algorithm and it is the only correction to the
algorithm that is needed if we switch from L2 to L1.

Exercise 33.4-4

We can simply run the divide and conquer algorithm described in the sec-

10

tion, modifying the brute force search for |P | ≤ 3 and the check against the
next 7 points in Y ′ to use the L∞ distance. Since the L∞ distance between two
points is always less than the euclidean distance, there can be at most 8 points
in the δ×2δ rectangle which we need to examine in order to determine whether
the closest pair is in that box. Thus, the modified algorithm is still correct and
has the same runtime.

Exercise 33.4-5

We select the line l so that it is roughly equal, and then, we won’t run into
any issue if we just pick an arbitrary subset of the vertices that are on the line
to go to one side or the other. Since the analysis of the algorithm allowed for
both elements from PL and PR to be on the line, we still have correctness if we
do this. To determine what values of Y belong to which of the set can be made
easier if we select our set going to PL to be the lowest however many points
are needed, and the PR to be the higher points. Then, just knowing the index
of Y that we are looking at, we know whether that point belonged to PL or to PR.

Exercise 33.4-6

In addition to returning the distance of the closest pair, the modify the al-
gorithm to also return the points passed to it, sorted by y-coordinate, as Y . To
do this, merge YL and YR returned by each of its recursive calls. If we are at
the base case, when n ≤ 3, simply use insertion sort to sort the elements by
y-coordinate directly. Since each merge takes linear time, this doesn’t affect the
recursive equation for the runtime.

Problem 33-1

a. We need just iteratively apply Jarvis march. The first march takes time
O(n|CH(Q1)|), the next time O(nCH(Q2)), and so on. So, since each point
in Q appears in exactly one convex hull, as we take off successive layers, we
have ∑

i

O(n|CH(Qi)|) = O(n
∑
i

|CH(Qi)|) = O(n2)

b. Suppose that the elements r1, r2, r3, . . . r` are the points that we are asked
to sort. We will construct an instance of the convex layers problem, whose
solution will tell us what the sorted order of {ri} is. Since we can’t com-
parison sort quickly, and this would provide a solution of sorting based on a
convex layers algorithm, it would mean that we cannot find a convex layers
algorithm that takes time less than Ω(n lg(n)).

Suppose that all the {ri} are positive. If they aren’t, we can in linear time
find the one with the smallest value and subtract that value minus one from

11

each of them. We will select our 4` points to be

P = {(ri, 0)} ∪ {(0,±i)|i = 1, 2, . . . `} ∪ {(−i, 0)|i = 1, 2, . . . `}

Note that all of the points in this set are on the coordinate axes. So, every
layer will contain one point that lies on each of the four half axes coming out
of the origin. Looking at the points that lie on the positive x axis, they will
correspond to the original points that we wanted to sort. Also, by looking at
the outermost layer and going inwards, we are reading off the points {ri} in
order of decreasing value. Since we have only increased the size of the problem
by a constant factor, we haven’t changed the asymptotics. In particular, if
we had some magic algorithm for convex layers that was o(n lg(n)), we would
then have an algorithm that was o(n lg(n)).

See also the solution to 33.3-2

Problem 33-2

a. Suppose that yi ≤ yi+1 for some i. Let pi be the point associated to yi.
In layer i, pi is the leftmost point, so the x-coordinate of every other point
in layer i is greater than the x-coordinate of pi. Moreover, no other point
in layer i can have y coordinate greater than pi, since that would imply it
dominates pi. Let qi+1 be the point of layer i+ 1 with y-coordinate yi+1. If
qi+1 is to the left of pi, then qi+1 cannot be dominated by any point in Li
since every point in Li is to the right of and below pi. Moreover, if qi+1 is
to the right of pi then qi+1 dominates pi, which can’t happen. Thus, qi+1

cannot be weakly to the left or right of pi, a contradiction. Thus yi > yi+1.

b. First suppose j ≤ k. Then for 1 ≤ i ≤ j− 1 we have that (x, y) is dominated
by the point in layer i with y-coordinate yi, so (x, y) is not in any of these
layers. Since (x, y) is the leftmost point and yj < y, and all other points
in layer j have lower y coordinate, no point in layer j dominates (x, y).
Moreover, since it is leftmost, no other point can be dominated by (x, y).
Thus, (x, y) is in Lj , as well as all other points previously in Lj . The other
layers are unaffected since we no longer consider (x, y) when computing them.
Thus the layers of Q′ are identical to the maximal layers of Q, except that
Lj = Lj ∪ (x, y).

Now suppose j = k + 1. Then (x, y) is dominated by each point in layer i
with y-coordinate yi, so it can’t be in any of the first k layers. This implies
that it is in a layer of its own, Lk+1 = {(x, y)}.

c. First sort the points by x coordinate, with the highest coordinate first. Pro-
cess the points one at a time. For each point, find the layer in which it
belongs as described in part b, creating a new layer if necessary. We can
maintain lists of the layers in sorted order by y coordinate of the leftmost
element of each list. In doing so, we can decide which list each new point
belongs to in O(lg n) time. Since there are n points to process, the runtime

12

after sorting is O(n lg n). The initial sorting takes O(n lg n), so the total
runtime is O(n lg n).

d. We’ll have to modify our approach to deal with points having the same x-
or y-coordinate. In particular, if two points have the same x-coordinate then
when we go to place the second one, the old algorithm would have us put
it in the same layer as the first one. We’ll compensate for this as follows.
Suppose we wish to add the point (x, y). Let j be the minimum index such
that yj < y. If the x-coordinate of the leftmost point of Lj is equal to x,
then we need to create a new list L′ which lives between Lj−1 and Lj . Using
red-black trees we can update the information in O(lg n) time. Otherwise,
we add (x, y) to Lj as usual. If j = k + 1, then create a new layer Lk+1.
Two points having the same y-coordinate doesn’t actually cause any difficulty
because of the strict inequality required for the check described in part b.

Problem 33-3

a. Take a convex hull of the set of all the ghostbusters and the ghosts. If the
convex hull doesn’t consist of either all ghosts or all busters, we can just
pick an edge of the convex hull that joins a buster and a ghost, Since all of
the other points lie on the same side of that line, the number of ghosts and
busters will be n-1 and so will be equal.

So, assume that the convex hull does not contain one of both types. Since
there is symmetry between ghosts and ghostbusters, suppose the convex hull
is entirely made of ghostbusters. Pick an arbitrary ghostbuster on the convex
hull, and that he’s facing somewhere inside the convex hull. Have him/her
initially pointing his proton pack just to the left the person furthest to his
right and have him slowly start turning left. We know that initially there
are more ghostbusters than ghosts to his right. We also know that by the
time he is just to the right of the person furthest to his left there are more
ghosts to his right than ghostbusters. This means at some point he must of
gone from having more ghostbusters to his right to having more ghosts to
his right. In order to have this happen he had to of just passed a ghost. So,
he is then paired up with that ghost.

b. We just keep iterating the first part of this procedure, applying it separately
to all the ghosts and ghostbusters to each of the sides of the line. We have
that no beam will cross because the beams for each stays entirely on that
side of the line. This gives us, for some n ≤ k > 0, the recurrence

T (n) = T (n− k) + T (k − 1) + n lg(n)

This has the worst case when either k is really tiny or really close to n.
Therefore, the worst case solution to this recurrence is O(n2 lg(n)).

Problem 33-4

13

a. Let a be given by endpoints (ax, ay, az) and (a′x, a
′
y, a
′
z) and b be given by

endpoints (bx, by, bz) and (b′x, b
′
y, b
′
z). Compute, using cross products, whether

or not segments (ax, ay)(a′xa
′
y) and (bx, by)(b′x, b

′
y) intersect in constant time,

as described earlier in the chapter. If they do, then either a or b is above the
other one. If not, then they are unrelated. If they are related, we need to
determine which of a and b are on top. In this case, there exist λ1 and λ2
such that

ax + λ1(a′x − ax) = bx + λ2(b′x − bx)

and
ay + λ1(a′y − ay) = by + λ2(b′y − by).

In other words, we get intersection when we project to the xy-plane. We
can solve for λ1 and λ2. This requires division at first blush, but we shall
see in a moment that this isn’t necessary. In particular, a is above b if and
only if az + λ1(a′z − az) ≥ bz + λ1(b′z − bz). By multiplying both sides by
(a′x − ax)(b′y − by − (a′y − ay)(b′x − bx)) we clear all denominators, so we
need only perform addition, subtraction, multiplication, and comparison to
determine whether a is on top. Moreover, we can do this in constant time.

b. Make a graph whose vertices are each of the n points. Find each pair of
overlapping sticks. If a is above b, then draw a directed edge from a to b.
Then perform a topological sort to determine an ordering of picking up the
sticks. If such an ordering exists, then we use it. Otherwise there is no legal
way to pick up the sticks. Since there could be as many as O(n2) instances
of a point a being above a point b, there could be Θ(n2) edges in the graph,
so the runtime is O(n2).

Problem 33-5

a. Pick one point on one of the convex hulls, and look at the point on the other
that has the lowest polar angle. Then, start marching counter clockwise
around the first hull until it would require a non-right turn to go to the
point selected before. Do the same thing, picking a point and looking at the
point on the second polygon with highest polar angle, and keep marching
in a clockwise direction until getting to the particular point would require
a non-right. Cut out all the vertices between these two places we stopped
inclusive. In their place put the vertices of the other convex polygon that
are between to two selected vertices of it, inclusive.

b. Let P1 be the first dn/2e points, and let P2 be the second bn/2c points. Since
the original set of points were selected independently from the sparse distri-
bution, both the sets P1 and P2 were selected from a sparse distribution.
This means that we have that |CH(P1)| ∈ O(n1−ε) and also, |CH(P2)| ∈
O(n1−ε). Then, by applying the procedure from part a, we have the re-
currence T (n) ≤ 2T (n/2) + |CH(P1)| + |CH(P2)| = 2T (n/2) + O(n1−ε).

14

By applying the master theorem, we see that this recurrence has solution
T (n) ∈ O(n).

15

