
Chapter 32

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 32.1-1

We let (i, j) denote that the algorithm checks index i of the text against index
j of the pattern. We’ll let p(s) indicate that the matching algorithm reported
an occurrence with a shift of s. The algorithm has the following execution on
T = 000010001010001 and P = 0001.

s = 0 (0, 0) (1, 1) (2, 2) (3, 3)
s = 1 (1, 0) (2, 1) (3, 2) (4, 3) p(1)
s = 2 (2, 0) (3, 1) (4, 2)
s = 3 (3, 0) (4, 1)
s = 4 (4, 0)
s = 5 (5, 0) (6, 1) (7, 2) (8, 3) p(5)
s = 6 (6, 0) (7, 1) (8, 2)
s = 7 (7, 0) (8, 1)
s = 8 (8, 0)
s = 9 (9, 0) (10, 1)
s = 10 (10, 0)
s = 11 (11, 0) (12, 1) (13, 2) (14, 3) p(11)

Exercise 32.1-2

We know that one occurrence of P in T cannot overlap with another, so
we don’t need to double-check the way the naive algorithm does. If we find an
occurrence of Pk in the text followed by a nonmatch, we can increment s by k
instead of 1. It can be modified in the following way:

Exercise 32.1-3

For any particular value of s, the probability that the ith character will need
to be looked at when doing the string comparison is the probability that the
first i − 1 characters matched, which is 1

di−1 . So, by linearity of expectation,
summing up over all s and i, we have that the expected number of steps is, by
equation (A.5),

1

Algorithm 1 DISTINCT-NAIVE-STRING-MATCHER(T, P)

n = T.length
m = P.length
k = 0
while s ≤ n−m do

i = 1
if T [s] == P [1] then

k = s
i = 0
while T [k + i] == P [i] and i < m do i = i+ 1

if i == m then
Print “Pattern occurs with shift” k

end if
end while

end if
s = s+ i

end while

(n−m+ 1)

m∑
i=1

1

di−1
= (n−m+ 1)

(
(d−m − 1)

(d−1 − 1)

)
= (n−m+ 1)(

1− d−m

1− d−1
)

≤ (n−m+ 1)
1

1− d−1

≤ (n−m+ 1)
1

1− 1
2

= 2(n−m+ 1)

Exercise 32.1-4

We can decompose a pattern with g−1 gap characters into the form a1 �a2 �
· · · � ag. Since we only care whether or not the pattern appears somewhere, it
will suffice to look for the first occurrence of a1, followed by the first occurrence
of a2 which comes anywhere after a1, and so on. If the pattern P has length m
and the text has length n then the runtime of the naive strategy is O(nm).

Exercise 32.2-1

Since the string 26 only appears once in the text, to find the number of
spurious hits, we will find the total number of hits and subtract 1. when we
compute the hash of the pattern we get (20 + 6) mod 11 ≡ 26 mod 11 ≡ 4
mod 11.

2

We get the following hashes of various shift values:

s ts
0 9
1 3
2 8
3 4
4 4
5 4
6 4
7 10
8 9
9 2
10 3
11 1
12 9
13 2
14 5

Since there were 4 hits, three of them must of been spurious.

Exercise 32.2-2

We first tackle the case where each of the k patterns has the same length m.
We first compute the number associated to each pattern in O(m) time, which
contributes O(km) to the runtime. In line 10 we make k checks, one for each
pattern, which contributes O(n −m + 1)km time. Thus, the total runtime is
O(km(n−m+ 1). For patterns of different lengths l1, l2, . . . , lk, keep an array
A such that A[i] holds the number associated to the first li digits of T , mod
q. We’ll have to update each of these each time the outer for-loop is executed,
but it will allow us to immediately compare any of the pattern numbers to the
appropriate text number, as done in line 10.

Exercise 32.2-3

We use the same idea of maintaining a hash of the pattern and computing
running hashes of the text. However, updating the hash at each step can take
time as long as Θ(m) because the number of entries which are both entering
and leaving the hashed window is 2m, and you have to at least look at all of
them as they come in and leave. This would get us a total expected runtime
(occurring not too many spurious hits of (n −m + 1)2 ·m, and still the same
worst case as the trivial algorithm, which is (n−m+ 1)2 ·m2.

In order to compute this hash, we will be giving each entry of the window
a power of d that unique to its position. The entry in row i, column j will be
multiplied by dm

2−mi+j . Then, moving to the right, we multiply the value of
the hash by d, subtract off the scaled entries that were in the left column, and

3

add in the entries that are in the right column, also appropriately scaled by
what row they are in. Similarly for shifting the window up or down. Again, all
of this arithmetic is done mod some large prime.

Exercise 32.2-4

Suppose A(x) = B(x). Then
∑n−1
i=0 (ai − bi)x

i ≡ 0 mod q. Since q is
prime, Exercise 31.4-4 tells us that this equation has at most n − 1 solutions
modulo q. Since each of the q choices for x is equally likely, the probabil-
ity that we pick one of the potential n − 1 which make the equation hold is
(n − 1)/q < (n − 1)/1000n < 1/1000. However, if the files are the same then
ai = bi for all i, so A(x) = B(x).

Exercise 32.3-1

The states will be {0, 1, 2, 3, 4, 5, 6} and having a transition function given
by

state a b
0 1 0
1 2 0
2 2 3
3 4 0
4 2 5
5 1 0

The sequence of states for T is 0, 1, 2, 2, 3, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 1, 2, 3, and
so finds two occurrences of the pattern, one at s = 1 and another at s = 9.
Exercise 32.3-2

See picture below for the 22 state automaton.

4

Exercise 32.3-3

The state transition function looks like a straight line, with all other edges
going back to either the initial vertex (if it is not the first letter of the patter) or
the second vertex (if it is the first letter of the pattern). If it were to go back to
any later state, that would mean that some suffix of what we had constructed
so far(which was a prefix of P) was a prefix of the copy of P that we are next
trying to find.

Exercise 32.3-4

We can construct the automaton as follows: Let Pk be the longest prefix
which both P and P ′ have in common. Create the automaton F for Pk as usual.
Add an arrow labeled P [k+1] from state k to a chain of states k+1, k+2, . . . , |P |,
and draw the appropriate arrows, so that δ(q, a) = σ(Pqa). Next, add an arrow
labeled P ′[k + 1] from state k to a chain of states (k + 1)′, (k + 2)′, . . . , |P ′|′.
Draw the appropriate arrows so that δ(q, a) = σ(P ′qa).

Exercise 32.3-5

To create a DFA that worked with gap characters, construct the DFA so that
it has |P | + 1 states. let m be the number of gap characters Suppose that the
positions of all the gap characters within the pattern p are given by gi, and let
g0 = 0, gm = |P |+ 1. Let the segment of pattern occurring after gap character
i but before the i+ 1 gap character be called Pi. Then, we will imagine that we
are trying to match each of these patterns in sequence, but if we have trouble
matching some particular pattern, then we can not undo the success we enjoyed
in matching earlier patterns.

More concretely, suppose that we have (Qi, qi,0, Ai,Σi, δi) is the DFA corre-

5

sponding to the pattern Pi. Then, we will construct our DFA so that Q = tiQi,
q0 = q0,0, A = Am+1, Σ = ∪iΣi, and δ is described below. If we are at state
q ∈ Qi and see character a, if q 6∈ Ai, we just go to the state proscribed by
δi(q, a). If, however, we have that q ∈ Ai, then, δ(q, a) = δi+1(qi+1,0, a). This
construction achieves the description given in English above.

Exercise 32.4-1

The prefix function is:

i π(i)
1 0
2 0
3 1
4 2
5 0
6 1
7 2
8 0
9 1
10 2
11 0
12 1
13 2
14 3
15 4
16 5
17 6
18 7
19 8

Exercise 32.4-2

The largest π∗[q] can be is q− 1. This is tight because if P consists of a the
letter a repeated m times, the π∗[q] = q − 1 for all q.

Exercise 32.4-3

Suppose that at position i, you have the value of the prefix function is π[i].
Then, if i− π[i] ≥ |P |, this means that there is an occurrence of |P | starting at
position i− π[i].

A simpler way to achieve a similar result is to expand the alphabet by one,
making it so that some character c does not occur in either P or T , then com-
pute the prefix array of PcT , then, the prefix function is bounded by |P | and
any time that it reaches that bound, we have that there is an occurrence of
the pattern, since we know that any prefix containing the c cannot be a proper

6

suffix of any other prefix.

Exercise 32.4-4

To show that the running time of KMP-MATCHER is O(n), we’ll show that
the total number of executions of the while loop of line 6 is O(n). Observe that
for each iteration for the for loop of line 5, q increases by at most 1, in line 9.
This is because π(q) < q. On the other hand, the while loop decreases q. Since
q can never be negative, we must decrease q fewer than n times in total, so the
while loop executes at most n− 1 times. Thus, the total runtime is O(n).

Exercise 32.4-5

Basically, each time that we have to execute line 7, we have that we are
decreasing q by at least 1. Since the only place that we ever increase the value
of q is on line 9, and then we are only increasing it by 1, each of these runs of
line 5 are paid for by the times we ran 9.

Using this as our motivation, we let the potential function be proportional
to the value of q. This means that when we execute line 9, we pay a constant
amount to raise up the potential function. And when we run line 7, we decrease
the potential function which reduces the ammortized cost of an iteration of the
while loop on line 6 to a zero amortized cost. The only other time that we
change the value of q is on line 12, which only gets run once per execution of
the outer for loop anyways and the amortization is in our favor there.

Since the ammortized cost under this potential function of each iteration of
the outermost for loop is constant, and that loop runs n times, the total cost of
the algorithm is Θ(n).

Exercise 32.4-6

We’ll prove this by induction on the number of recursive calls to π′. The
behavior is identical to π if we are in the first or third cases (base cases) of
the definition of π′, so the behavior is correct for a single call. Otherwise,
π′[q] = π′[π[q]]. The conditions of case 2 imply that the while loop of line 6
will execute an additional time after the update of line 7, so it is equivalent to
setting q = π[π[q]], and then continuing with the while loop as usual. Since
π′ recurses on π[q] one fewer times than on q, its behavior is correct on π[q],
proving that the modified algorithm is correct. KMP-MATCHER already runs
asymptotically as fast as possible, so this doesn’t constitute a runtime improve-
ment in the worst case. However, every time a recursive call to π′ is made, we
circumvent having to check P [q + 1] against T [i].

Exercise 32.4-7

If the lengths to T and T ′ are different, they are obviously not cyclic rotations
of each other, so suppose that |T | = T ′. Let our text be TT and our pattern

7

be T ′. If and only if T ′ occurs in TT , then the two given strings are cyclic
rotations of each other. This can be done in linear time by the Knuth Morris
Pratt algorithm.

To see that being cyclic rotations means that T ′ occurs in TT , suppose that
T ′ is obtained from T by cyclically shifting the right character to the left s
times. This means that the |T | − s prefix of T is a suffix of T ′, and the s suffix
of T is a prefix of T ′. This means that T ′ occurs in TT with a shift of |T | − s.

Now, suppose that T ′ occurs in TT with a shift of s. This means that the s
suffix of T is a prefix of T ′, it also means that the |T | − s characters left over in
T ′ are a prefix of T . So, they are cyclic rotations of each other.

Exercise 32.4-8

We have δ(q, a) = σ(Pqa), which is the length of the longest prefix of P
which is a suffix of Pqa. Let this be k. Then P [1] = P [q − k + 2], P [2] = P [q −
k+ 3], . . . , P [k− 1] = P [q], P [k] = a. On the other hand, δ(π[q], a) = σ(Pπ[q]a).
It is clear that σ(Pqa) ≥ σ(Pπ[q]a). However, π[q] ≥ k − 1 and since P [k] = a,
we must have σ(Pπ[q]a) ≥ k. Thus, they are equal. If q 6= m and P [q + 1] = a
then δ(q, a) = q+ 1. We can now compute the transition function δ in O(m|Σ|)
in the algorithm TRANSITION-FUNCTION, given below.

Algorithm 2 TRANSITION-FUNCTION(P,Σ)

π = COMPUTE-PREFIX-FUNCTION(P)
for a ∈ Σ do

δ(0, a) = 0
end for
δ(0, P [1]) = 1
for a ∈ Σ do

for q = 1 to m do
if q == m or P [q + 1] 6= a then

δ(q, a) = δ(π[q], a)
else

δ(q, a) = q + 1
end if

end for
end for

Problem 32-1

a. First, compute the prefix array for the given pattern in linear time using the
method of section 32.4. Then, Suppose that π[i] = i−k. If k|i, we know that
k is the length of the primitive root, so, the word has a repetition factor of i

k .
We also know that there is no smaller repetition factor in this case because
otherwise we could include one more power of that root.

8

Now, suppose that we have k not dividing i. We will show that we can
only have the trivial repetition factor of 1. Suppose we had some repetition
yr = Pi. Then, we know that π[i] ≥ yr−1. however, if we have it strictly
greater than this, this means that we can write the y’s themselves as powers
because we have them aligning with themselves.

Since the only difficult step of this was finding the prefix function, which
takes linear time, the runtime of this procedure is linear.

b. To determine the probability that there is a repetition factor of r, we assign
whatever we want to the first i

r letters, and after that, all of the other letters
are determined. This means that position i has a repetition factor of r with
probability 1

2i
(r−1)

r

for every r dividing i. By applying a union bound to this,

we have that the probability that Pi has a repetition factor of more than r
is bounded by

∑
r′>r,r′|i

1

2i
(r′−1)

r′
=

1

2i

∑
r′>r,r′|i

2i/r
′

=
1

2i

b i/rc∑
j=1

2j

≤ 2i/r

2i−1

= 2i/r−i+1

Then, applying the union bound over all values of i, we have the probability
that a repetition factor of at least r is bounded by

m∑
i=0

2i/r−i+1 = 2

m∑
i=1

2(
1
r−1)

i

= 2
1− 2

m+1
r −m−1

1− 2(
1
r−1)

≤ 2
1

2(
1
r−1)

This shrinks quickly enough in r, that the expected value is finite, and since
there is no m in the expression, we have the expected value is bounded by a
constant.

c. This algorithm correctly finds the occurrences of the pattern P for reasons
similar to the Knuth Morris Pratt algorithm. That is, we know that we
will only increase q ρ∗(P) many times before we have to bite the bullet and

9

increase s, and s can only be increased at most n −m many times. It will
definitely find every possible occurrence of the pattern because it searches
for every time that the primitive root of P occurs, and it must occur for P
to occur.

10

