
Chapter 30

Michelle Bodnar, Andrew Lohr

April 20, 2016

Exercise 30.1-1

(56)x6 − 8x5 + (8− 42)x4 + (−80 + 6 + 21)x3 + (−3− 6)x2 + (60 + 3)x− 30

which is
56x6 − 8x5 − 34x4 − 53x3 − 9x2 + 63x− 30

Exercise 30.1-2

Let A be the matrix with 1’s on the diagonal, −x0’s on the super diag-
onal, and 0’s everywhere else. Let q be the vector (r, q0, q1, . . . , xn−2). If
a = (a0, a1, . . . , an−1) then we need to solve the matrix equation Aq = a to
compute the remainder and coefficients. Since A is tridiagonal, Problem 28-1
(e) tells us how to solve this equation in linear time.

Exercise 30.1-3

For each pair of points, (p,A(p)), we can compute the pair (1
p , A

rev(1
p)). To

do this, we note that Arev(1
p) =

∑n−1
j=0 an−1−j

(
1
p

)j
=
∑n−1
j=0 aj

(
1
p

)n−1−j
=

p1−n
∑n−1
j=0 ajp

j = p1−nA(p) since we know what A(p) is, we can compute

Arev(1
p) of course, we are using the fact that p 6= 0 because we are dividing

by it. Also, we know that each of these points are distinct, because 1
p = 1

p′ im-

plies that p = p′ by cross multiplication. So, since all the x values were distinct
in the point value representation of A, they will be distinct in this point value
representation of Arev that we have made.

Exercise 30.1-4

Suppose that just n−1 point-value pairs uniquely determine a polynomial P
which satisfies them. Append the point value pair (xn−1, yn−1) to them, and let
P ′ be the unique polynomial which agrees with the n pairs, given by Theorem
30.1. Now append instead (xn−1, y

′
n−1) where yn−1 6= y′n−1, and let P ′′ be the

1

polynomial obtained from these points via Theorem 30.1. Since polynomials
coming from n pairs are unique, P ′ 6= P ′′. However, P ′ and P ′′ agree on the
original n − 1 point-value pairs, contradicting the fact that P was determined
uniquely.

Exercise 30.1-5

First, we show that we can compute the coefficient representation of
∏
j(x−

xj) in time Θ(n2). We will do it by recursion, showing that multiplying
∏
j<k(x−

xj) by (x− xk) only takes time O(n), since this only needs to be done n times,

this gets is total runtime of O(n). Suppose that
∑k−1
i=0 kix

i is a coefficient
representation of

∏
j<k(x − xj). To multiply this by (x − xk), we just set

(k + 1)i = ki−1 − xkki for i = 1, . . . k and (k + 1)0 = −xk · k0. Each of these
coefficients can be computed in constant time, since there are only linearly many
coefficients, then, the time to compute the next partial product is just O(n).

Now that we have a coefficient representation of
∏
j(x − xj), we need to

compute, for each k
∏
j−k(x−xj), each of which can be computed in time θ(n)

by problem 30.1-2. Since the polynomial is defined as a product of things con-
taining the thing we are dividing by, we have that the remainder in each case is
equal to 0. Lets call these polynomials fk. Then, we need only compute the sum∑
k yk

fk(x)
fk(xk)

. That is, we compute f(xk) each in time Θ(n), so all told, only

Θ(n2) time is spent computing all the f(xk) values. For each of the terms in the
sum, dividing the polynomial fk(x) by the number fk(xk) and multiplying by
yk only takes time Θ(n), so total it takes time Θ(n2). Lastly, we are adding up
n polynomials, each of degree bound n−1, so the total time taken there is Θ(n2).

Exercise 30.1-6

If we wish to compute P/Q but Q takes on the value zero at some of these
points, then we can’t carry out the “obvious” method. However, as long as all
point value pairs (xi, yi) we choose for Q are such that yi 6= 0, then the approach
comes out exactly as we would like.

Exercise 30.1-7

For the set A, we define the polynomial fA to have a coefficient representa-
tion that has ai equal zero if i 6∈ A and equal to 1 if i ∈ A. Similarly define fB .
Then, we claim that looking at fC := fA · fB in coefficient form, we have that
the ith coefficient, ci is exactly equal to the number of times that i is realized as
a sum of elements from A and B. Since we can perform the polynomial multi-
plication in time O(n lg(n)) by the methods of this chapter, we can get the final
answer in time O(n lg(n)). To see that fC has the nice property described, we’ll
look at the ways that we could end up having a term of xi appear. Each con-
tribution to that coefficient must come from there being some k so that ak 6= 0
and bi−k 6= 0, because the powers of x attached to each are additive when we

2

multiply. Since each of these contributions is only ever 1, the final coefficient is
counting the total number of such contributions, therefore counting the number
of k ∈ A such that i−k ∈ B, which is exactly what we claimed fC was counting.

Exercise 30.2-1

ωn/2n =
(
e2πi/n

)n/2
= eπi = −1 = ω2

Exercise 30.2-2

The DFT is (6,−2i− 2,−2, 2i− 2).

Exercise 30.2-3

We want to evaluate both of the functions at the fourth roots of unity, that is,
±1,±i. We have an initial call ofRECURSIV E−FFT ((−10, 1,−1, 7, 0, 0, 0, 0)).
This causes a call of RECURSIV E−FFT ((−10,−1, 0, 0)), which evaluates to
(−11,−10−i,−9,−10+i). It also causes a call ofRECURSIV E−FFT ((1, 7, 0, 0))
which returns (8, 1+7i,−6, 1−7i). Now, in evaluating the original function call,
we have y0 = −11+8 = −3, y4 = −19. Then, we change ω to ω8 = 1+i√

2
, and have

y1 = −10−i+ 1+i√
2

(1+7i) = −10−i−3
√

2+4
√

2i and y5 = −10−i+3
√

2−4
√

2.

At the next value of k, we get y2 = −9−6i and y6 = −9+6i. Lastly, we compute
y3 = −10 + i+ 3

√
2 + 4

√
2i and y7 = −10 + i− 3

√
2− 4

√
2i. So, the vector re-

turned is (−3,−10− i− 3
√

2 + 4
√

2i,−9− 6i,−10 + i+ 3
√

2 + 4
√

2i,−19,−10−
i + 3

√
2 − 4

√
2i,−9 + 6i,−10 + i − 3

√
2 − 4

√
2i). Similarly, if we wanted to

compute the FFT of the other polynomial, we’d get the FFT of B is given by
(5, 3−7

√
2+
√

2i, 3−14i, 3+7
√

2+
√

2i, 1, 3+7
√

2−
√

2i, 3+14i, 3−7
√

2−
√

2i).
Then, we just multiply together these point value representations to get that
the product of A and B has the point value representation of

(− 15,

4 + 62
√

2 + (−65 + 9
√

2)i,

− 111 + 108i,

4− 62
√

2 + (65 + 9
√

2)i,

− 19,

4− 62
√

2 + (−65 +−9
√

2)i,

− 111− 108i,

4 + 62
√

2 + (65− 9
√

2)i)

Interpolating this polynomial using equation (30.11), we get

3

a0 =
1

8

7∑
k=0

yk = −30

a1 =
1

8

7∑
k=0

ykω
−k
8 = 63

a2 =
1

8

7∑
k=0

ykω
−2k
8 = −9

a3 =
1

8

7∑
k=0

ykω
−3k
8 = −53

a4 =
1

8

7∑
k=0

ykω
−4k
8 = −34

a5 =
1

8

7∑
k=0

ykω
−5k
8 = −8

a6 =
1

8

7∑
k=0

ykω
−6k
8 = 56

a7 =
1

8

7∑
k=0

ykω
−7k
8 = 0

Giving us the polynomial

56x6 − 8x5 − 34x4 − 53x3 − 9x2 + 63x− 30

The same as in problem 30.1-1.

Exercise 30.2-4

Exercise 30.2-5

To show that our algorithm for n being a power of 3 works, we will first
prove an analogue of the halving lemma. In particular, for n a power of 3, that
the cube of the nth complex roots of unity are the n/3 complex (n/3)th roots
of unity. First, we note that by the cancellation lemma, (ωkn)3 = ωkn/3.

(ωk+n/3n)3 =ω3k+n
n

=(ωkn)3

Now, we write A(x) =
∑n−1
j=0 ajx

j , and define A[i] =
∑n/3−1
j=0 ai+3jx

j for i =

4

Algorithm 1 RECURSIVE-FFT-INV(y)

1: n = y.length
2: if n == 1 then
3: return y/n
4: end if
5: wn = e2πi/n

6: w = 1/n
7: y[0] = (y0, y2, . . . , yn−2)
8: y[1] = (y1, y3, . . . , yn−1)
9: a[0] = RECURSIVE-FFT-INV(y[0])

10: a[1] = RECURSIVE-FFT-INV(y[1])
11: for k = 0 to n/2− 1 do

12: ak = a
[0]
k + wa

[1]
k

13: ak+(n/2) = a
[0]
k − wa

[1]
k

14: w = wwn
15: end for
16: return a

1, 2, 3. Then, we can see that

A(x) = A[0](x3) + xA[1](x3) + x2A[2](x3)

The recurrence we get is

T (n) = 3T (n/3) + Θ(n)

= Θ(n lg(n))

Exercise 30.2-6

It will suffice to show that each power of omega is distinct and that our new
definition satisfies all the relevant properties of omega that made DFT and in-
verse DFT work in the first place. To start, note that 2t, 22t, . . . , 2nt/2 are all dis-
tinct and even since they are each less than m. Further, for 1 ≤ k < n/2 we have
that 2kt2nt/2 is equivalent to −2kt, which is equivalent to 2nt/2 + 1− 2kt which
is odd, so we conclude that all powers of ω are distinct, ωn = 2nt = (−1)2 = 1,

ωk+n/2 = −ωk. Finally,
∑n−1
i=0 ω

i =
∑n−1
i=0 2ti = (1 − 2tn)/(1 − 2t) = 0. Thus,

our new definition of ω satisfies all the requisite properties to make the DFT
work, and since the values are distinct it is well-defined and behaves identically.

Exercise 30.2-7

We just do a bunch of multiplications. More seriously, let Pi,0(x) = (x−zi−1)
for i = 1, . . . , n. Then, we compute the following products, Pi,k = Pi,k−1 ·
P2i,k−1, for any i ≤ n/(2k). If we ever index outside of the already defined
Pi,k values, we pretend that the value we get is 1. Then, our final answer will

5

Algorithm 2 POW3FFT(a)

n = a.length
if n==1 then

return a
end if
ωn = e2πi/n

ω = 1
a[0] = (a0, a3, a6 . . . , an−3)
a[1] = (a1, a4, a7 . . . , an−2)
a[2] = (a2, a5, a8 . . . , an−1)
y[0] = POW3FFT (a[0])
y[1] = POW3FFT (a[1])
y[2] = POW3FFT (a[2])
for k=0,1. . . n/2-1 do

yk = yk[0] + ωy
[1]
k + ω2y

[2]
k

yk+n/3 = yk[0] + ω3ωy
[1]
k + ω2

3ω
2y

[2]
k

yk+2n/3 = yk[0] + ω2
3ωy

[1]
k + ω3ω

2y
[2]
k

ω = ωωn
end for
return y

be P1,blg(n)c+1. We have that obtaining a polynomial in this way that has the
recurrence where we n represents the time required to do it for a polynomial of
degree bound n that has zeroes at n given points.

T (n) = 2T (n/2) + Θ(n lg(n))

Which, we know by exercise 4.6-2, has a solution of T ∈ Θ(n lg2(n)).

Exercise 30.2-8

Define a polynomial P (x) of degree bound 2n by P (x) =
∑2n−1
j=0 bjx

j where

bj = ajz
j2/2 if j ≤ n − 1 and 0 for j ≥ n. Define Q(x) =

∑2n−1
j=0 cjx

j where

cj = z−j
2

/2. We can compute their product in time O(2n lg 2n) = O(n lg n). If
we let dk be the coefficient on xk in their product, for k ≥ n we have

dk =

k∑
j=0

bjck−j =

n−1∑
j=0

(
ajz

j2/2
)(

z−(k−j)
2

/2
)
.

By setting yk = zk
2/2dk in linear time, we can compute the chirp transform

in O(n lg n).

Exercise 30.3-1

6

By calling BIT-REVERSE-COPY, we get that A = (0, 4, 3, 7, 2, 5,−1, 9).
after the first pass of the outermost, loop, when s = 1, we have that the array
is A = (4,−4, 10,−4, 7,−3, 8,−10). The value at the end of the next iteration
of the outermost loop is (14,−3− 3i,−8,−3− 3i, 15, 3 + 4i,−13, 3− 4i). Then,
on the last iteration, we get our final answer of

A = (19,

− 4− 4i+
7√
2
− 13√

2
i,

− 6 + i,

− 4 + 4i− 7√
2
− 13√

2
i,

− 1,

− 4− 4i− 7√
2

+
13√

2
i,

− 6− i,

− 4 + 4i+
7√
2

+
13√

2
i)

Exercise 30.3-2

We can consider ITERATIVE-FFT as working in two steps, the copy step
(line 1) and the iteration step (lines 4 through 14). To implement in inverse
iterative FFT algorithm, we would need to first reverse the iteration step,
then reverse the copy step. We can do this by implementing the INVERSE-
INTERATIVE-FFT algorithm exactly as we did with the FFT algorithm, but
this time creating the iterative version of RECURSIVE-FFT-INV as given in
exercise 30.2-4.

Exercise 30.3-3

It computes a twiddle factor for each iteration of the innermost for loop.
Since there are n/m iterations of the loop on line 6 and, for each m/2 iterations
of the innermost loop, there are a total of n/(2s) · 2s−1 = n/2 twiddle factors.
If we, before line 6 compute all of the powers < m/2 of ωm, we won’t have to
do any computation of them later on. These are the only twiddle factors that
will show up, and so, we only compute m/2 = s2/2 = 2s−1 of them.

Exercise 30.3-4

First observe that if the input to a butterfly operation is all zeros, then
so is the output. Our initial input will be (a0, a1, . . . , an−1) where ai = 0 if
0 ≤ i ≤ n/2 − 1, and i otherwise. By examining the diagram on page 919, we

7

see that the zeros will propogate as half the input to each butterfly operation
in the final stage. Thus, if any of the output values are 0 we know that one of
the yk’s is zero, where k ≥ n/2− 1. If this is the case, then the faulty butterfly
added occurs along the wire connected to yk. If none of the output values are
zero, the faulty butterfly adder must occur as one which only deals with the
first n/2 − 1 wires. In this case, we rerun the test with input such that ai = i
if 0 ≤ i ≤ n/2 − 1 and 0 otherwise. This time, we will know for sure which of
the first n/2− 1 wires touches the faulty butterfly adder. Since only lg n adders
touch a given wire, we have reduced the problem of size n to a problem of size
lg n. Thus, at most 2 lg? n = O(lg? n) tests are required.

Problem 30-1

a. Similar to problem 4.2-7,

(a+ b)(c+ d) = ac+ cb+ ad+ cd

So, we compute that product, we also compute ac and cd. This gets us the
the product of the two polynomials is

acx2 + ((a+ b)(c+ d)− ac− cd)x+ cd

b. Assume that n is a power of two, if it isn’t, then just bump it up to the nearest
power of two, since the degree bound can be higher than the degree of the
polynomials. Suppose that we want to multiply the polynomials A1(x) =∑n−1
j=1 aj,1x

j and A2(x) =
∑n−1
j=1 aj,2x

j .

In the first method, we’ll setHi(x) =
∑n−1
j=n

2
aj,ix

j and Li(x) =
∑n/2−1
j=0 aj,ix

j

for i = 1, 2. Then, we have that Ai(x) = Hi(x)xn/2+Li(x) for i = 1, 2. Then,
by the method of the first part of this problem, we have that

A1(x) ·A2(x) = (H1(x) ·H2(x))xn

+ ((H1(x) + L1(x)) · (H2(x) + L2(x))−H1(x) ·H2(x)− L1(x) · L2(x))xn/2

+ L1(x) · L2(x)

So, the runtime of this procedure for degree bound n is, by the master theo-
rem:

HL(n) = 3HL(n/2) + Θ(n)

= Θ(nlg(3))

8

Now, for the second method, we write Oi(x) =
∑n/2−1
j=0 a2j+1,ix

j and Ei(x) =∑n/2−1
j=0 a2j,ix

j for i = 1, 2. Then, we have that for both values of i, Ai =

xOi(x
2) + Ei(x

2). So,

A1(x) ·A2(x) =x2(O1(x2) ·O2(x2))

+ x((O1(x2) + E1(x2))(O2(x2) + E1(x2))−O1(x2) ·O2(x2)− E1(x2) · E2(x2))

+ E1(x2) · E2(x2)

So, again, we only need to do three multiplies, each with a degree bound of
half. So, the runtime for this, call it OE(n) is

OE(n) = 3OE(n/2) + Θ(n)

= Θ(nlg(n))

c. Suppose that we want to multiply two integers A1 =
∑blg(A1)c
k=0 ak,12k and

A2 =
∑blg(A2)c
k=0 ak,22k. Then, we’ll associate to these polynomials fi =∑blg(Ai)c

k=0 ak,ix
i. Then, we exactly have that fi(2) = Ai. So, to find A1 ·A2,

all we need do is multiply the polynomials f1 and f2 and evaluate their prod-
uct at 2. Since both of their degrees are bounded by n, we can multiply them
in time Θ(nlg(3)) by the previous part. evaluating them also only takes linear
time, so doesn’t change the total runtime.

Problem 30-2

a. The sum of two Toeplitz matrices is Toeplitz, but the product is not.

b. Let A be a Toeplitz matrix. We can use a vector of length 2n−1 to represent
it, given by: (c0, . . . , c2n−2) = (an,1, an−1,1, . . . , a2,1, a1,1, a1,2, . . . , aa,n). To
add two Toeplitz matrices, simply add their associated vectors.

c. We can interpret this as the multiplication of two polynomials. Specifically,
let P (x) = c0 + c1x + . . . + c2n−1x

2n−2. Let (b0, b1, . . . , bn−1) be the vector
of length n by which we wish to multiply, and let yk denote the kth entry
of the vector which results from the multiplication. Let Q(x) = b0x

n−1 +
b1x

n−2+. . .+bn−1. Then the coefficient on xn−k+n−1 in P (x)Q(x) is given by∑n−1
i=0 cn−k+ibi =

∑n−1
i=0 ak,ibi = yk. Since we can multiply the polynomials

in O(n lg n) and the needed results are just some of the coefficients, we can
multiply a Toeplitz matrix by an n-vector in O(n lg n).

d. We can view matrix multiplication as simply multiplication by an n vector
carried out n times. If bj is the jth column of the second matrix, then Abj
is the jth column of the resulting matrix. By part c, this can be done in
O(n2 lg n) time, which is asymptotically faster than even Strassen’s algo-
rithm.

9

Problem 30-3

a.

yk1,...,kd =

n1−1∑
j1=0

· · ·
nd−1∑
jd=0

aj1,...jdω
j1k1
n1
· · ·ωjdkdnd

=

nd−1∑
jd=0

· · ·
n1−1∑
j1=0

aj1,...jdω
j1k1
n1
· · ·ωjdkdnd

=

nd−1∑
jd=0

· · ·
n2−1∑
j2=0

n1−1∑
j1=0

aj1,...jdω
j1k1
n1

ωj2k2n2
· · ·ωjdkdnd

So, the thing inside the parentheses is a one dimensional Fourier transform
that must be computed for every possible term of the outer sums, that is,
must be computed n2n3 · · ·nd = n/n1 times because in each term the a
values might be different. Once that is computed we’ve decreased the number
of sums by 1. This means that by keeping on applying this, we can keep
decreasing the number of dimensions until the problem is solved. We are
actually only needing to do n/(

∏
i≤k ni) of the DFT’s along dimension k

instead of the larger number stated in the problem of n/ni.

b. We can exchange the order of summation however we please because none of
the indices of summation ever appear in the bounds for a different summation
sign.

c. The time to do each DFT along the kth dimension is O(nk lg(nk)), since we
only need to do it at most n/(

∏
j≤k nj) times, the runtime of all of them

in dimension k is at most O(n/(
∏
j<k nj) lg(nk)). Also, note that we may

assume that all of the nk values are at least two, because otherwise doing
that DFT would be trivial. So, the total time is on the order of

d∑
k=1

n/

∏
j<k

nj

 lg(nk) ≤ lg(n)

d∑
k=1

n/

∏
j<k

nj

≤ lg(n)

d∑
k=1

n/2k−1

< n lg(n)

Which is independent of d.

Problem 30-4

10

a. It is straightforward to check that A(t)(x0) = t!bt. Since A(t+1)(x0) = (t +
1)A(t)(x0)bt+1/bt, we can compute each next term in constant time from the
previous, so computing A(t)(x0) for t = 0, 1, . . . , n− 1 takes O(n) time.

b. We just need to perform an inverse FFT procedure on the n point-value pairs
A(x0 + wkn) =

∑n−1
j=0 bjw

kj
n . This takes O(n lg n).

c. Let χ(x) = 1 if x ≥ 0 and 0 otherwise. Using the binomial theorem we have

A(x0 + wkn) =

n−1∑
j=0

aj

j∑
r=0

(
j

r

)
wkrn x

j−r
0

=
n−1∑
j=0

aj

n−1∑
r=0

j!

r!(j − r)!
wkrn x

j−r
0 χ(j − r)

=

n−1∑
r=0

wkrn
r!

n−1∑
j=0

ajj!
xj−r0 χ(j − r)

(j − r)!

=

n−1∑
r=0

wkrn
r!

n−1∑
j=0

f(j)g(r − j).

d. Let s(r) =
∑n−1
j=0 f(j)g(r − j) in O(n) time. Letting bj = s(r)

r! . Then we
need only compute the DFT of the coefficient vector (b0, b1, . . . , bn−1), which
can be done in O(n lg n). By part b, once we have these evaluations we can
compute the derivatives in O(n lg n) time as well.

Problem 30-5

a. First, note that because the degree of x − z is one, A(x)mod(x − z) will be
a constant. By the definition of modular arithmetic for polynomials(or any
Euclidean Domain), there is some polynomial f(x) so that A(x) = f(x)(x−
z) + (A(x) mod (x − z)). So, if we evaluate this expression at z, the first
term goes to zero, and we have that A(z) = A(x) mod (x− z).

b. Pkk(x) = (x − xk) so, by the previous part, Qkk = A(xk). The degree of
P0,n−1 is equal to n which is higher than the degree of A. Therefore modding
out by it doesn’t change the value value of A(x) at all. That is, if we were to
write A(x) = f(x)P0,n−1 +Q0,n−1, the only acceptable value of f(x) is zero,
otherwise there would be a too high degree term on the right.

c. Suppose we write A(x) = f1(x)Pij(x) + Qij(x). Then, we take Qij =
f2(x)Pik + (Qij(x) mod Pik). Since we have that Pik is a product over a

smaller set of irreducible factors than Pij , we can writeA(x) = (f1(x)
∏j
`=k+1(x−

x`) + f2)Pik + (Qij(x) mod Pik). Since we can write it as a remainder of A

11

after dividing by Pik, we have that A mod Pik = Qij(x) mod Pik, which is
to say, Qik = Qij(x) mod Pik.

We basically do the same thing to show the other equality. Suppose that
Qij = f3Pkj+(Qij(x) mod Pkj), then A(x) = (f1

∏`=k−1
`=i (x−x`)+f3)Pkj+

(Qij(x) mod Pkj) and so, Qkj = A mod Pkj = (Qij(x) mod Pkj).

d. Initially, we know what the value of Q0,n−1 is, since it is just A(x). Suppose
that n is a power of 2, since it makes the analysis easier to do, if it is not
a power of two, then bump up the degree bound to the nearest value of 2,
since we have that (2n) + lg2(2n) ∈ O(n lg2(n)), doing this increase of the
degree bound will not change the asymptotics of the algorithm. Since we
have that the number of points we are evaluating at is equal to the degree
bound, just pick arbitrary points to pad the original set of points with and
then disregard their values once they are computed. The idea is to cut in half
0, . . . , n − 1, by computing Q0,n/2−1 and Qn/2,n−1 using the rule from the
previous part until you arrive at having to compute Qii for some i, which by
part b is equal to A(xi). Since the computing of each of the Q values before
the end is only a matter of computing two polynomial remainders, the time
to do this is given by the recurrence

T (n) = 2T (n/2) + Θ(n lg(n))

Even though the master theorem doesn’t apply to this recurrence, exercise
4.6-2 tells us that T ∈ Θ(n lg2(n)).

Problem 30-6

a. By the prime number theorem, the number of primes between 1 and N
is approximately 1

ln(N) . This means that between 1 and n lg(n), we can

expect that a random number will be prime with probability 1
lg(n lg(n)) =

1
lg(n)+lg(lg(n)) ≈

1
lg(n) . Also, we are considering lg(n) numbers between 1 and

n lg(n) + 1 that are one more than a multiple of n, so, the expected number
of prime numbers of that form with k ≤ lg(n) is one, so, by the poisson
paradigm, we would think that with probability at least about 1

e , there is a
prime number of that form with k ≤ lg(n).

Sine the value of p is expected to be about n lg(n), it has a length of about
lg(n lg(n)) = lg(n) + lg(lg(n)).

b.

c.

d.

12

