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Exercise 3.1-1

Since we are requiring both f and g to be aymptotically non-negative, sup-
pose that we are past some n1 where both are non-negative (take the max of the
two bounds on the n corresponding to both f and g). Let c1 = .5 and c2 = 1.

0 ≤ .5(f(n) + g(n)) ≤ .5(max(f(n), g(n)) + max(f(n), g(n)))

= max(f(n), g(n)) ≤ max(f(n), g(n)) + min(f(n), g(n)) = (f(n) + g(n))

Exercise 3.1-2

Let c = 2b and n0 ≥ 2a. Then for all n ≥ n0 we have (n+ a)b ≤ (2n)b = cnb

so (n+a)b = O(nb). Now let n0 ≥ −a
1−1/21/b and c = 1

2 . Then n ≥ n0 ≥ −a
1−1/21/b

if and only if n − n
21/b

≥ −a if and only if n + a ≥ (1/2)a/bn if and only if

(n+a)b ≥ cnb. Therefore (n+a)b = Ω(nb). By Theorem 3.1, (n+a)b = Θ(nb).

Exercise 3.1-3

There are a ton of different funtions that have growth rate less than or equal
to n2. In particular, functions that are constant or shrink to zero arbitrarily
fast. Saying that you grow more quickly than a function that shrinks to zero
quickly means nothing.

Exercise 3.1-4

2n+1 ≥ 2 · 2n for all n ≥ 0, so 2n+1 = O(2n). However, 22n is not O(2n). If
it were, there would exist n0 and c such that n ≥ n0 implies 2n ·2n = 22n ≤ c2n,
so 2n ≤ c for n ≥ n0 which is clearly impossible since c is a constant.

Exercise 3.1-5
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Suppose f(n) ∈ Θ(g(n)), then ∃c1, c2, n0,∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n), if we just look at these inequalities saparately, we have c1g(n) ≤ f(n)
(f(n) ∈ Ω(g(n))) and f(n) ≤ c2g(n) (f(n) ∈ O(g(n))).

Suppose that we had ∃n1, c1,∀n ≥ n1, c1g(n) ≤ f(n) and ∃n2, c2,∀n ≥
n2, f(n) ≤ c2g(n). Putting these together, and letting n0 = max(n1, n2), we
have ∀n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n).

Exercise 3.1-6

Suppose the running time is Θ(g(n)). By Theorem 3.1, the running time is
O(g(n)), which implies that for any input of size n ≥ n0 the running time is
bounded above by c1g(n) for some c1. This includes the running time on the
worst-case input. Theorem 3.1 also imlpies the running time is Ω(g(n)), which
implies that for any input of size n ≥ n0 the running time is bounded below by
c2g(n) for some c2. This includes the running time of the best-case input.

On the other hand, the running time of any input is bounded above by
the worst-case running time and bounded below by the best-case running time.
If the worst-case and best-case running times are O(g(n)) and Ω(g(n)) respec-
tively, then the running time of any input of size n must be O(g(n)) and Ω(g(n)).
Theorem 3.1 implies that the running time is Θ(g(n)).

Exercise 3.1-7

Suppose we had some f(n) ∈ o(g(n)) ∩ ω(g(n)). Then, we have

0 = lim
n→∞

f(n)

g(n)
=∞

a contradiction.

Exercise 3.1-8

Ω(g(n,m)) = {f(n,m) : there exist positive constants c, n0, and m0 such that f(n,m) ≥ cg(n,m)

for all n ≥ n0 or m ≥ m0}

Θ(g(n,m)) = {f(n,m) : there exist positive constants c1, c2, n0, and m0 such that c1g(n,m) ≤ f(n,m)

≤ c2g(n,m) for all n ≥ n0 or m ≥ m0}

Exercise 3.2-1

Let n1 < n2 be arbitrary. From f and g being monatonic increasing, we
know f(n1) < f(n2) and g(n1) < g(n2). So

f(n1) + g(n1) < f(n2) + g(n1) < f(n2) + g(n2)
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Since g(n1) < g(n2), we have f(g(n1)) < f(g(n2)). Lastly, if both are nonega-
tive, then,

f(n1)g(n1) = f(n2)g(n1) + (f(n2)− f(n1))g(n1)

= f(n2)g(n2) + f(n2)(g(n2)− g(n1)) + (f(n2)− f(n1))g(n1)

Since f(n1) ≥ 0, f(n2) > 0, so, the second term in this expression is greater
than zero. The third term is nonnegative, so, the whole thing is< f(n2)g(n2).

Exercise 3.2-2

alogb(c) = a
loga(c)
loga(b) = c

1
loga(b) = clogb(a).

Exercise 3.2-3

As the hint suggests, we will apply stirling’s approximation

lg(n!) = lg

(√
(2πn

(n
e

)n(
1 + Θ

(
1

n

)))
=

1

2
lg(2πn) + n lg(n)− n lg(e) + lg

(
Θ

(
n+ 1

n

))
Note that this last term is O(lg(n)) if we just add the two expression we get
when we break up the lg instead of subtract them. So, the whole expression is
dominated by n lg(n). So, we have that lg(n!) = Θ(n lg(n)).

lim
n→∞

2n

n!
= lim
n→∞

1√
2πn(1 + Θ( 1

n ))

(
2e

n

)n
≤ lim
n→∞

(
2e

n

)n
If we restrict to n > 4e, then this is

≤ lim
n→∞

1

2n
= 0

lim
n→∞

nn

n!
= lim
n→∞

1√
2πn(1 + Θ( 1

n ))
en = lim

n→∞
O(n−.5)en ≥ lim

n→∞

en

c1
√
n

≥ lim
n→∞

en

c1n
= lim
n→∞

en

c1
=∞

Exercise 3.2-4

The function dlog ne! is not polynomially bounded. If it were, there would
exist constants c, a, and n0 such that for all n ≥ n0 the inequality dlog ne! ≤
cna would hold. In particular, it would hold when n = 2k for k ∈ N. Then
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this becomes k! ≤ c(2a)k, a contradiction since the factorial function is not
exponentially bounded.

We’ll show that dlog log ne! ≤ n. Without loss of generality assume n = 22
k

.

Then this becomes equivalent to showing k! ≤ 22
k

, or 1 · 2 · · · (k − 1) · k ≤
4 · 16 · 28 · · · 22k , which is clearly true for k ≥ 1. Therefore it is polynomially
bounded.
Exercise 3.2-5

Note that lg∗(2n) = 1 + lg∗(n), so,

lim
n→∞

lg(lg∗(n))

lg∗(lg(n))
= lim
n→∞

lg(lg∗(2n))

lg∗(lg(2n))

= lim
n→∞

lg(1 + lg∗(n))

lg∗(n)

= lim
n→∞

lg(1 + n)

n

= lim
n→∞

1

1 + n

= 0

So, we have that lg∗(lg(n)) grows more quickly

Exercise 3.2-6

φ2 =

(
1 +
√

5

2

)2

=
6 + 2

√
5

4
= 1 +

1 +
√

5

2
= 1 + φ

φ̂2 =

(
1−
√

5

2

)2

=
6− 2

√
5

4
= 1 +

1−
√

5

2
= 1 + φ̂

Exercise 3.2-7

First, we show that 1 + φ = 6+2
√
5

4 = φ2. So, for every i, φi−1 + φi−2 =

φi−2(φ+ 1) = φi. Similarly for φ̂.

For i = 0, φ
0−φ̂0

√
5

= 0. For i = 1,
1+
√

5
2 − 1−

√
5

2√
5

=
√
5√
5

= 1. Then, by induction,

Fi = Fi−1 + Fi−2 = φi−1+φi−2−(φ̂i−1+φ̂i−2)√
5

= φi−φ̂i

√
5

.

Exercise 3.2-8

Let c1 and c2 be such that c1n ≤ k ln k ≤ c2n. Then we have ln c1 + lnn =
ln(c1n) ≤ ln(k ln k) = ln k + ln(ln k) so lnn = O(ln k). Let c3 be such that
lnn ≤ c3 ln k. Then

n

lnn
≥ n

c3 ln k
≥ k

c2c3
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so that n
lnn = Ω(k). Similarly, we have ln k + ln(ln k) = ln(k ln k) ≤ ln(c2n) =

ln(c2) + ln(n) so ln(n) = Ω(ln k). Let c4 be such that lnn ≥ c4 ln k. Then

n

lnn
≤ n

c4 ln k
≤ k

c1c4

so that n
lnn = O(k). By Theorem 3.1 this implies n

lnn = Θ(k). By symmetry,
k = Θ

(
n

lnn

)
.

Problem 3-1

a. If we pick any c > 0, then, the end behavior of cnk−p(n) is going to infinity,
in particular, there is an n0 so that for every n ≥ n0, it is positive, so, we
can add p(n) to both sides to get p(n) < cnk.

b. If we pick any c > 0, then, the end behavior of p(n)− cnk is going to infinity,
in particular, there is an n0 so that for every n ≥ n0, it is positive, so, we
can add cnk to both sides to get p(n) > cnk.

c. We have by the previous parts that p(n) = O(nk) and p(n) = Ω(nk). So, by
Theorem 3.1, we have that p(n) = Θ(nk).

d.

lim
n→∞

p(n)

nk
= lim
n→∞

nd(ad + o(1))

nk
< lim
n→∞

2adn
d

nk
= 2ad lim

n→∞
nd−k = 0

e.

lim
n→∞

nk

p(n)
= lim
n→∞

nk

ndO(1)
< lim
n→∞

nk

nd
= lim
n→∞

nk−d = 0

Problem 3-2

A B O o Ω ω Θ

lgk n nε yes yes no no no
nk cn yes yes no no no√
n nsinn no no no no no

2n 2n/2 no no yes yes no
nlog c clogn yes no yes no yes

log(n!) log(nn) yes no yes no yes

Problem 3-3
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a.

22
n+1

22
n

(n+ 1)!
n!
n2n

en

2n(
3
2

)n
(lg(n))!
nlg(lg(n)) lg(n)lg(n)

n3

n2 4lg(n)

n lg(n) lg(n!)
2lg(n) n

(
√

2)lg(n)

2
√

2 lg(n)

lg2(n)
ln(n)√
lg(n)

ln(ln(n))

2lg
∗(n)

lg∗(n) lg∗(lg(n))
lg(lg∗(n)

1 n1/ lg(n)

The terms are in decreasing growth rate by row. Functions in the same row
are Θ of each other.

b. If we define the function

f(n) =

{
g1(n)! n mod 2 = 0

1
n n mod 2 = 1

Note that f(n) meets the asymptotically positive requirement that this chap-
ter puts on the functions analyzed.

Then, for even n, we have

lim
n→∞

f(2n)

gi(2n)
≥ lim
n→∞

f(2n)

g1(2n)

= lim
n→∞

(g1(2n)− 1)!

=∞

And for odd n, we have
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lim
n→∞

f(2n+ 1)

gi(2n+ 1)
≤ lim
n→∞

f(2n+ 1)

1

= lim
n→∞

1

2n+ 1

= 0

By looking at the even n we have that f(n) is not O(gi(n)) for any n. By
looking at the odd n, we have that f(n) is not Ω(gi(n)) for any n.

Problem 3-4

a. False. Counterexample: n = O(n2) but n2 6= O(n).

b. False. Counterexample: n+ n2 6= Θ(n).

c. True. Since f(n) = O(g(n)) there exist c and n0 such that n ≥ n0 implies
f(n) ≤ cg(n) and f(n) ≥ 1. This means that log(f(n)) ≤ log(cg(n)) =
log(c) + log(g(n)). Note that the inequality is preserved after taking logs
because f(n) ≥ 1. Now we need to find d such that log(f(n)) ≤ d log(g(n)).
It will suffice to make log(c) + log(g(n)) ≤ d log(g(n)), which is achieved by
taking d = log(c) + 1, since log(g(n)) ≥ 1.

d. False. Counterexample: 2n = O(n) but 22n 6= 2n as shown in exercise 3.1-4.

e. False. Counterexample: Let f(n) = 1
n . Suppose that c is such that 1

n ≤ c
1
n2

for n ≥ n0. Choose k such that kc ≥ n0 and k > 1. Then this implies
1
kc ≤

c
k2c2 = 1

k2c , a contradiction.

f. True. Since f(n) = O(g(n)) there exist c and n0 such that n ≥ n0 implies
f(n) ≤ cg(n). Thus g(n) ≥ 1

cf(n), so g(n) = Ω(f(n)).

g. False. Counterexample: Let f(n) = 22n. By exercise 3.1-4, 22n 6= O(2n).

h. True. Let g be any function such that g(n) = o(f(n)). Since g is asymp-
totically positive let n0 be such that n ≥ n0 implies g(n) ≥ 0. Then
f(n) + g(n) ≥ f(n) so f(n) + o(f(n)) = Ω(f(n)). Next, choose n1 such
that n ≥ n1 implies g(n) ≤ f(n). Then f(n) + g(n) ≤ f(n) + f(n) = 2f(n)
so f(n) +o(f(n)) = O(f(n)). By Theorem 3.1, this implies f(n) +o(f(n)) =
Θ(f(n)).
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Problem 3-5

a. Suppose that we do not have that f = O(g(n)). This means that ∀c >
0, n0,∃n ≥ n0, f(n) > cg(n). Since this holds for every c, we can let it be
arbitrary, say 1. Initially, we set n0 = 1, then, the resulting n we will call
a1. Then, in general, let n0 = ai + 1 and let ai+1 be the resulting value
of n. Then, on the infinite set {a1, a2, . . .}, we have f(n) > g(n), and so,

f =
∞
Ω(g(n))

This is not the case for the usual definition of Ω. Suppose we had f(n) = n2(n
mod 2) and g(n) = n. On all the even values, g(n) is larger, but on all the
odd values, f(n) grows more quickly.

b. The advantage is that you get the result of part a which is a nice property. A
disadvantage is that the infinite set of points on which you are making claims
of the behavior could be very sparse. Also, there is nothing said about the
behavior when outside of this infinite set, it can do whatever it wants.

c. A function f can only be in Θ(g(n)) if f(n) has an infinite tail that is non–
negative. In this case, the definition of O(g(n)) agrees with O′(g(n)). Simi-
larly, for a function to be in Ω(g(n)), we need that f(n) is non-negative for
some infinite tail, on which O(g(n)) is identical to O′(g(n)). So, we have that
in both directions, changing O to O′ does not change anything.

d. Suppose f(n) ∈
∼
Θ(g(n)), then ∃c1, c2, k1, k2, n0,∀n ≥ n0, 0 ≤ c1g(n)

lgk1 (n)
≤

f(n) ≤ c2g(n) lgk2(n), if we just look at these inequalities separately, we have
c1g(n)

lgk1 (n)
≤ f(n) (f(n) ∈

∼
Ω(g(n))) and f(n) ≤ c2g(n) lgk2(n) (f(n) ∈

∼
O(g(n))).

Now for the other direction. Suppose that we had ∃n1, c1, k1∀n ≥ n1, c1g(n)lgk1 (n)
≤

f(n) and ∃n2, c2, k2,∀n ≥ n2, f(n) ≤ c2g(n) lgk2(n). Putting these to-

gether, and letting n0 = max(n1, n2), we have ∀n ≥ n0,
c1g(n)

lgk1 (n)
≤ f(n) ≤

c2g(n) lgk2(n).

Problem 3-6

f(n) c f∗c (n)
n− 1 0 dne
log n 1 log∗ n
n/2 1 dlog(n)e
n/2 2 dlog(n)e − 1√
n 2 log log n√
n 1 undefined

n1/3 2 log3 log2(n)

n/ log n 2 Ω
(

logn
log(logn)

)
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