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Exercise 29.1-1
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Exercise 29.1-2

One solution is (x1,22,23) = (6,1,0) with objective value 9. Another is
(5,2,0) with objective value 4. A third is (4, 3,0) with objective value -1.

Exercise 29.1-3
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Exercise 29.1-4
maximize — 2x1 — 2xo — TT3+ T4

subject to —x1 + 2 —xy < =7
T —To+ x4 <7
—3$1+3$2—.’E3§—24

T1,T2,T3,T4 Z 0

Exercise 29.1-5

First, we will multiply the second and third inequalities by minus one to
make it so that they are all < inequalities. We will introduce the three new
variables x4, x5, rg, and perform the usual procedure for rewriting in slack form

Ty =T—21 — T2+ 3
T5 = —8+ 3x1 — 22
xG:—x1+2x2+2x3

T1,T2,T3,T4,T5,T6 Z 0

where we are sill trying to maximize 2x; — 6z3. The basic variables are
x4,Ts5, g and the nonbasic variables are x1, x2, 3.

Exercise 29.1-6

By dividing the second constraint by 2 and adding to the first, we have
0 < —3, which is impossible. Therefore there linear program is unfeasible.

Exercise 29.1-7

For any number r > 1, we can set 1 = 2r and xo = r. Then, the restaints
become

—2r+r=-r<-1
—2r —2r = —4r < -2
2r,r >0

All of these inequalities are clearly satisfied because of our initial restriction
in selecting r. Now, we look to the objective function, it is 2r —r = r. So, since



we can select r to be arbitrarily large, and still satisfy all of the constraints, we
can achieve an arbitrarily large value of the objective function.

Exercise 29.1-8

In the worst case, we have to introduce 2 variables for every variable to en-
sure that we have nonnegativity constraints, so the resulting program will have
2n variables. If each constraint is an equality, we would have to double the num-
ber of constraints to create inequalities, resulting in 2m constraints. Changing
minimization to maximization and greater-than signs to less-than signs don’t
affect the number of variables or constraints, so the upper bound is 2n on vari-
ables and 2m on constraints.

Exercise 29.1-9

Consider the linear program where we want to maximize x; — x5 subject to
the constraints 1 —zs < 1 and 21,22 > 0. clearly the objective value can never
be greater than one, and it is easy to achieve the optimal value of 1, by setting
21 = 1 and z2 = 0. Then, this feasible region is unbounded because for any
number r, we could set 1 = x5 = r, and that would be feasible because the
difference of the two would be zero which is < 1.

If we further wanted it so that there was a single solution that achieved the
finite optimal value, we could add the requirements that x; < 1.

Exercise 29.2-1

The objective is already in normal form. However, some of the constraints
are equality constraints instead of < constraints. This means that we need to
rewrite them as a pair of inequality constraints, the overlap of whose solutions
is just the case where we have equality. we also need to deal with the fact that
most of the variables can be negative. To do that, we will introduce variables
for the negative part and positive part, each of which need be positive, and
we’ll just be sure to subtract the negative part. ds need not be changed in this
way since it can never be negative since we are not assuming the existence of
negative weight cycles.

df —d; —df +d,; <w(u,v)for every edge (u,v)
ds <0

all variables are positive

Exercise 29.2-2



maximize d,

subject to dy < ds + 3
dy <di +6
dy <ds+5
dy <dy+2
d, <dy+2
dy <dy+1
dy <dy+4
d, <dy+1
ds <d,+1
de <d.+7
do =0

Exercise 29.2-3

We will follow a similar idea to the way to when we were finding the shortest
path between two particular vertices.

maximize Z dy
veV

subject to d, < d,, + w(u,v)for each edge (u,v)
ds =0

The first type of constraint makes sure that we never say that a vertex is
further away than it would be if we just took the edge corresponding to that
constraint. Also, since we are trying to maximize all of the variables, we will
make it so that there is no slack anywhere, and so all the d, values will corre-
spond to lengths of shortest paths to v. This is because the only thing holding
back the variables is the information about relaxing along the edges, which is
what determines shortest paths.

Exercise 29.2-4



maximize fsy, + fsvo
subject to fs,, < 16
Jov, < 14
Jorvy <12
Joovy <4
Joov, <14
Josvs <9
Sost <20
f'U4'U3 S 7
foit <4
fsvr + fogor = forus
fsva + fogvs = Josvr + foouva
fvlvg + fvws = fvsvg + fv3t
fU2U4 = fv4v3 + fv4t
Suv =0 for u,v € {s,v1,va,v3,v4,t}

Exercise 29.2-5

All we need to do to bring the number of constraints down from O(V?) to
O(V + E) is to replace the way we index the flows. Instead of indexing it by
a pair of vertices, we will index it by an edge. This won’t change anything
about the analysis because between pairs of vertices that don’t have an edge
between them, there definitely won’t be any flow. Also, it brings the number
of constraints of the first and third time down to O(E) and the number of
constraints of the second kind stays at O(V).

maximize Z fe— Z fs

edges e coming out of s edges e going into s
subject to f,,) < c(u,v)for each edge (u,v)
Z fo= Z fe for each edge u € V — {s,t}
edges e leaving u edges e entering u
fe > 0 for each edge e

Exercise 29.2-6

Recall from section 26.3 that we can solve the maximum-bipartite-matching
problem by viewing it as a network flow problem, where we append a source s
and sink ¢, each connected to every vertex is L and R respectively by an edge
with capacity 1, and we give every edge already in the bipartite graph capacity



1. The integral maximum flows are in correspondence with maximum bipartite
matchings. In this setup, the linear programming problem to solve is as follows:

maximize E fso

veL
subject to fu, <1 for each u,v € {sfULURU{t} =V

> fou=Y_ fuw foreachue LUR

veV veV
fuw > 0 for each u,v €V

Exercise 29.2-7

As in the minimum cost flow problem, we have constraints for the edge
capacities, for the conservation of flow, and nonegativity. The difference is that
the restraint that before we required exactly d units to flow, now, we require that
for each commodity, the right amount of that commodity flows. the conservation
equalities will be applied to each different type of commodity independently. If
we super script f that will denote the type of commodity the flow is describing,
if we do not superscript it, it will denote the aggregate flow.

We want to minimize

> 0w, 0) fus

u,veV
The capacity constraints are that
Y D i Selww)
i€[k] u,veEV
The conservation constraints are that for every i € [k], for every u € V' \

{si i}
Do fiw=2 Fiu

veV veV

Now, the constraints that correspond to requiring a certain amount of flow
are that for every i € [k].

Z fgi,v - Z fzz;,s.; =d

veV veV

Now, we put in the constraint that makes sure what we called the aggregate
flow is actually the aggregate flow, so, for every u,v € V,

fu,v = Z fvi,'u
i€ k]

Finally, we get to the fact that all flows are nonnegative, for every u,v € V|



fu,v Z 0
Exercise 29.3-1

We subtract equation (29.81) from equation (29.79). This gets us

O=v—2v+ Z(Cj — )
JEN

which can be rearranged to

Z c}xj =@w-2)+ Z CT;

JEN JEN

Then, by applying Lemma 29.3, we get that for every j, we have ¢; = c;- and
also, (v—v")=0,s0v="0".

Exercise 29.3-2

The only time v is updated in PIVOT is line 14, so it will suffice to show
that c.b. > 0. Prior to making the call to PIVOT, we choose an index e such
that ¢, > 0, and this is unchanged in PIVOT. We set l;p in line 3 to be b;/aje.
The loop invariant proved in Lemma 29.2 tells us that b; > 0. The if-condition
of line 6 of SIMPLEX tells us that only the noninfinite §; must have a;. > 0,
and we choose [ to minimize §;, so we must have a;. > 0. Thus, 0636 > 0, which
implies v can never decrease.

Exercise 29.3-3

To show that the two slack forms are equivalent, we will show both that they
have equal objective functions, and their sets of feasible solutions are equal.

First, we’ll check that their sets of feasible solutions are equal. Basically
all we do to the constraints when we pivot is take the non-basic variable, e,
and solve the equation corresponding to the basic variable [ for e. We are then
taking that expression and replacing e in all the constraints with this expression
we got by solving the equation corresponding to [. Since each of these algebraic
operations are valid, the result of the sequence of them is also algebraically
equivalent to the original.

Next, we’ll see that the objective functions are equal. We decrease each c;
by celej, which is to say that we replace the non-basic variable we are making
basic with the expression we got it was equal to once we made it basic.

Since the slack form returned by PIVOT, has the same feasible region and
an equal objective function, it is equivalent to the original slack form passed in.

Exercise 29.3-4



First suppose that the basic solution is feasible. We set each x; = 0 for
1 <i < mn, sowe have z,4; = b; — Z?Zl a;;x; = b; as a satisfied constraint.
Since we also require x,4; > 0 for all 1 < ¢ < m, this implies b; > 0. Now
suppose b; > 0 for all i. In the basic solution we set x; = 0 for 1 < ¢ < n which
satisfies the nonnegativity constraints. We set x,; = b; for 1 < i < m which
satisfies the other constraint equations, and also the nonnegativity constraints
on the basic variables since b; > 0. Thus, every constraint is satisfied, so the
basic solution is feasible.

Exercise 29.3-5

First, we rewrite the linear program into it’s slack form, we want to maximize
181 + 12.5x4, given the constraints

1‘3:20—511‘1—31‘2
Ty =12 — 21
{135:167‘%2

X1,T2,T3,T4,Ts5 2 0

Then, we take the initial basic solution, we get that 1 = x5 = 0 and x3 = 20,
x4 = 12, and x5 = 16, with a value of the objective function of 0. Now, we pick
21 as our non basic variable in the simplex method. Of all of our A values, we
get that the smallest corresponds to x4, so, we pivot to x4 from x1. This gets
us that we want to maximize 216 — 18x4 + 12.5z5 subject to the constraints:

T3 =84+ T4 — o
1‘1:12+1‘4
l‘5:16—l‘2

T1,T2,T3,T4,25 >0

Then, we need to select x2 as our non-basic variable, which gets us that we
should pivot to x3, which gets us that the objective is 316 — 5.524 — 12.5x3 and
the constraints are

To =84 x4 — T3
r1 =124 x4
Ty = 8 — T4+ 23
x1,%2,23,%4,25 > 0
We now stop since no more non-basic variables appear in the objective with

a positive coefficient. Our solution is (12, 8,0, 0,8) and has a value of 316. Going
back to the standard form we started with, we just disregard the values of x3



through z5 and have the solution that £y = 12 and x5 = 8. We can check that
this is both feasible and has the objective achieve 316.

Exercise 29.3-6

The first step is to convert the linear program into slack form. We’ll intro-
duce the slack variables x3 and x4. We have:

z =5xr1 — 312
x3:17x1+x2

$4=2—2:C1—$2.

The nonbasic variables are x; and x5. Of these, only z; has a positive
coefficient in the objective function, so we must choose z. = x1. Both equations
limit z; by 1, so we’ll choose the first one to rewrite x; with. Using x; =
1 — x3 + x2 we obtain the new system

z=05—05bx3+ 229
1 =1—2x3+ 29

T4 = 2x3 — 229.

Now x5 is the only nonbasic variable with positive coefficient in the objective
function, so we set z. = x3. The last equation limits x5 by 0 which is most
restrictive, so we set z2 = r3 — 3. Rewriting, our new system becomes

z2=5—3r3— 14

T4
1'1:].—*
2
L4
x2:$3—?.

Every nonbasic variable now has negative coefficient in the objective func-
tion, so we take the basic solution (z1,z2,2s,24) = (1,0,0,0). The objective
value this achieves is 5.

Exercise 29.3-7

First, we convert this equation to the slack form. Doing so doesn’t change
the objective, but the constraints become



Z=—T1 — Ty — T3
x4 = —10000 + 221 + 7.5z5 + 3x3
x5 = —30000 4 20z + 529 + 10x3

T1,T2,T3,T4,%5 > 0

Also, since the objective is to minimize a given function, we’ll change it over
to maximizing the negative of that function. In particular maximize —x, — xo —
x3. Now, we note that the initial basic solution is not feasible, because it would
leave x4 and x5 being negative. This means that finding an initial solution
requires using the method of section 29.5. The auxiliary linear program in slack
form is

zZ = —X
x4 = —10000 + 221 + 7.529 + 323 + 29
x5 = —30000 4+ 20z + 522 4+ 10x3 + 20
To,T1,T2,X3,T4,T5 > 0
We choose z( as the entering variable and x5 as the leaving variable, since

it is the basic variable whose value in the basic solution is most negative. After
pivoting, we have the slack form

z = —30000 + 20x1 4+ 529 + 1023 — x5
xo = 30000 — 2021 — bxo — 10z3 + x5
x4 = 20000 — 1821 + 2.529 — 723 + 25
To, T1, T2, X3, Ta, 5 > 0
The associated basic solution is feasible, so now we just need to repeatedly

call PIVOT until we obtain an optimal solution to Lg,.. We’ll choose x5 as our
entering variable. This gives

zZ = —Xp
To = 6000 — 4 —2$3+$5/5—1‘0/5
xy = 35000 — 28z — 1223 + (3/2)3&‘5 — 1]0/2

Zo, %1, T2, T3, T4, T5 > 0

This slack form is the final solution to the auxiliary problem. Since this
solution has x¢ = 0, we know that our initial problem was feasible. Furthermore,
since zg = 0, we can just remove it from the set of constraints. We then restore
the original objective function, with appropriate substitutions made to include
only the nonbasic variables. This yields

10



z = —6000 4 321 + x3 — x5/5
22 = 6000 — 4x1 — 223 + 5/5
24 = 35000 — 2821 — 1225 + (3/2)z5
T1,%2,T3, 24,25 > 0

This slack form has a feasible basic solution, and we can return it to SIM-
PLEX. We choose z; as our entering variable. This gives

z=—2250— (2/7)x3 — (3/28)x4 — (11/280)x;
x1 = 1250 — (3/7)xs — (1/28)x4 + (3/56)x5
x9 = 1000 — (2/7)xs + (1/7)xy — (1/70)x5
T1,%2,T3,Tq,T5 > 0.

At this point, all coefficients in the objective function are negative, so the ba-
sic solution is an optimal solution. This solution is (x1, 22, 23) = (1250, 1000, 0).

Exercise 29.3-8

Consider the simple program

zZ = —T1

.2?2:1—.1‘1.

In this case we have m = n = 1, so (m:{") = (f) = 2, however, since the

only coefficients of the objective function are negative, we can’t make any other
choices for basic variable. We must immediately terminate with the basic solu-
tion (z1,x2) = (0,1), which is optimal.

Exercise 29.4-1

By just transposing A, swapping b and ¢, and switching the maximization
to a minimization, we want to minimize 20y; + 12y2 + 16y3 subject to the
constraints

Y1 +y2 > 18
Y1 +y3 = 12.5
Y1,92,43 > 0

Exercise 29.4-2

11



By working through each aspect of putting a general linear program into
standard form, as outlined on page 852, we can show how to deal with trans-
forming each into the dual individually. If the problem is a minimization instead
of a maximization, replace ¢; by —c; in (29.84). If there is a lack of nonneg-
ativity constraint on x; we duplicate the 4" column of A, which corresponds
to duplicating the j** row of AT. If there is an equality constraint for b;, we
convert it to two inequalities by duplicating then negating the i*"* column of AT,
duplicating then negating the i** entry of b, and adding an extra y; variable.
We handle the greater-than-or-equal-to sign >, a;;z; > b; by negating '
column of AT and negating b;. Then we solve the dual problem of minimizing
bTy subject to ATy > c and y > 0.

Exercise 29.4-3

First, we’ll convert the linear program for maximum flow described in equa-
tion (29.47)-(29.50) into standard form. The objective function says that c is a
vector indexed by a pair of vertices, and it is positive one if s is the first index
and negative one if s is the second index (zero if it is both). Next, we’ll modify
the constraints by switching the equalities over into inequalities to get

Juw < c(u,v) for each u,v € V
vau < quv for each v € V — {s,t}
ucV ueV
Zf'uu 2 quv for each v € V — {s,t}
ueV ucV

Juw =0 for each u,v € V

Then, we’ll convert all but the last set of the inequalities to be < by multi-
plying the third line by —1.

fuw < c(u,v) for each u,v € V

S fou <) fu for each v € V — {s,t}
ueVv ueV

Z*fvug Z*fuv for eachvEVf{s,t}
ueV ueV

fuw =20 for each u,v € V

Finally, we’ll bring all the variables over to the left to get

12



Juw < c(u,v) for each u,v € V

quu*quUS() for each v € V — {s,t}
ueV ueV
Z—fvu—Z—fung for each v € V — {s,t}
ueV ueV
fuw >0 for each u,v € V

Now, we can finally write down our 4 and b. A will be a |[V|2 x|V |?+2|V|—4
matrix built from smaller matrices A; and A which correspond to the three
types of constraints that we have (of course, not counting the non-negativity
constraints). We will let g(u, v) be any bijective mapping from V x V' to [|V|2]
We'll also let h be any bijection from V — {s,t} to [|V] — 2]

Ay
A= Ay
—A,

Where A; is defined as having its row g(u,v) be all zeroes except for having
the value 1 at at the g(u, v)th entry. We define Az to have it’s row h(u) be equal
to 1 at all columns j for which j = g(v,u) for some v and equal to —1 at all
columns j for which j = g(u,v) for some v. Lastly, we mention that b is defined
as having it’s jth entry be equal to c(u,v) if j = g(u,v) and zero if j > |[V|?.

Now that we have placed the linear program in standard form, we can take
its dual. We want to minimize ZLZTHM_Z b;y; given the constraints that all
the y values are non-negative, and ATy > c.

Exercise 29.4-4

First we need to put the linear programming problem into standard form,
as follows:

13



maximize Z —a(u,v) fup

(u,v)EE

subject to fu, < c¢(u,v) for each u,v € V

vau_quv <0 for each u € V — {s,t}

veV veV
quv - wa <0 for each u € V — {s,t}
veV veV
Zfsv - qus S d
veV veV
vas_ZfsvS_d
veV veV
f’U/U 2 0'
We now formulate the dual problem. Let the vertices be denoted vy, vo, ..., v,, S, t

and the edges be e, ea,...,ex. Then we have b; = ¢(e;) for 1 <1 <k, b; = 0 for
k+1<i<k+2n, bpront1 = d, and bgyo,12 = —d. We also have ¢; = —a(e;)
for 1 < i < k. For notation, let j.left denote the tail of edge e; and j.right
denote the head. Let xs(e;) =1 if e; enters s, set it equal to -1 if e; leaves s,
and set it equal to 0 if e; is not incident with s. The dual problem is:

k
minimize Z c(ei)yi + dyrton+1 — AYk+2n+2

=1
SubjeCt to Yj + yk+e]~.right — Yk+j.left — yk+n+ej.m'ght + yk+n+ej.left
- Xs(ej)yk+2n+1 + Xs(€5)Uks2ant2 > —ale))

where j runs between 1 and k. There is one constraint equation for each edge e;.
Exercise 29.4-5

Suppose that our original linear program is in standard form for some A, b, c.
Then, the dual of this is to minimize >\, b;y; subject to ATy > ¢ This can be
rewritten as wanting to maximize Y ;- (—b;)y; subject to (—A)”y < —c. Since
this is a standard form, we can take its dual easily, it is minimize Z?Zl(—cj)xj
subject to (—A)x > —b. This is the same as minimizing Z;;l c;x; subject to
Az < b, which was the original linear program.

Exercise 29.4-6

Corollary 26.5 from Chapter 26 can be interpreted as weak duality.

14



Exercise 29.5-1

For line 5, first let (N, B, A, b, ¢, v) be the result of calling PIVOT on Ly,
using x( as the entering variable. Then repeatedly call PIVOT until an optimal
solution to Lg,, is obtained, and return this to (N, B, A,b,c,v). To remove
zo from the constraints, set a; o = 0 for all i € B, and set N = N\{0}. To
restore the original objective function of L, for each j € N and each i € B, set
Cj = Cj — CiQyj.-

Exercise 29.5-2

In order to enter line 10 of INITTALIZE-SIMPLEX and begin iterating the
main loop of SIMPLEX, we must have recovered a basic solution which is fea-
sible for Lgy,. Since xg > 0 and the objective function is —zq, the objective
value associated to this solution (or any solution) must be negative. Since the
goal is to aximize, we have an upper bound of 0 on the objective value. By
Lemma 29.2, SIMPLEX correctly determines whether or not the input linear
program is unbounded. Since L, is not unbounded, this can never be returned
by SIMPLEX.

Exercise 29.5-3

Since it is in standard form, the objective function has no constant term, it
is entirely given by Y ", ¢;x;, which is going to be zero for any basic solution.
The same thing goes for its dual. Since there is some solution which has the
objective function achieve the same value both for the dual and the primal,
by the corollary to the weak duality theorem, that common value must be the
optimal value of the objective function.

Exercise 29.5-4

Consider the linear program in which we wish to maximize x; subject to the
constraint z; < 1 and z; > 0. This has no optimal solution, but it is clearly
bounded and has feasible solutions. Thus, the Fundamental theorem of linear
programming does not hold in the case of strict inequalities.

Exercise 29.5-5

The initial basic solution isn’t feasible, so we will need to form the auxiliary
linear program:

15



maximize — xg

subject to 1 — 12 — g < 8
—x1—To —x9 < =3
—x1+4ry — 19 <2

x1,T2,T0 > 0.

Then we write this linear program in slack form:

z=—x0

r3 =8 — 1+ X2+ To

Ty =-3+x1+ 22+ 20
5 =2+ x1 — 410 + T

X1,%2, X3, T4, Ts5,To > 0.

Next we make one call to PIVOT where zq is the entering variable and x4
is the leaving variable. This gives:

z=-3+x1+x2— 24
To=3—2x1 — X2+ x4
r3 =11 —2x1 + 24
T =5 —dxo + 14
T1,%2,T3, T4, L5, To > 0.
The basic solution is feasible, so we repeatedly call PIVOT to get the optimal

solution to Lgq,. We'll choose z1 to be our entering variable and zy to be the
leaving variable. This gives

zZ = —X

T1=3—2x0— X2+ x4

T3 =54 2xy + 2x9 — x4

T5 =95 —Dbrg + 14
T1,%2,T3, T4, x5, T > 0.

The basic solution is now optimal for L., so we return this slack form to
SIMPLEX, set x¢p = 0, and update the objective function which yields

16



z2=342x9 4+ 24
1 =3— 22+ x4
xr3 =54 229 — 14
Ts5 =5 —dxo + 14

Z1,X2,T3,T4,Ts5,T0 2 0.

We’ll choose x4 as our entering variable, which makes x5 our leaving variable.
PIVOT then gives

T1,X2,T3,T4,Ts5, L0 Z 0.

We’ll choose x4 as our entering variable, which makes z3 our leaving variable.
PIVOT then gives

z=(64/3) = (7/3)zs — (4/3)xs
zy = (35/3) — (5/3)x3 — (2/3)zs
2o = (10/3) — (1/3)z3 — (1/3)z5
o1 = (34/3) — (4/3)z3 — (1/3)25

T1,T2,T3,T4,Ts5,T0 > 0.
Now all coeflicients in the objective function are negative, so the basic solu-
tion is the optimal solution. It is (z1,x2) = (34/3,10/3).
Exercise 29.5-6

The initial basic solution isn’t feasible, so we will need to form the auxiliary
linear program:

maximize — xg

subject to x1 + 2xo —xg < 4
—2x1 — 629 —x9 < —12
To —xg <1

x1,T2,709 > 0.

Then we write this linear program in slack form:

17



zZ ==X
r3=4—1x1 — 219 + X0
Ty = —124 221 + 6225 + 2

1—!172-’-%0.

Ts5

Next we make one call to PIVOT where x is the entering variable and x4
is the leaving variable. This gives:

z=—12+4 221 + 629 — T4
r3 =16 — 311 — 8xy + x4
o =124 x4 — 221 — 622

Ty = 1372561 78932 + x4.

The basic solution is (zg, z1, T2, 23, T4, x5) = (12,0,0, 16,0, 13) which is fea-
sible for the auxiliary program. Now we need to run SIMPLEX to find the
optimal objective value to Lg,,. Let 1 be our next entering variable. It is
most constrained by x3, which will be our leaving variable. After PIVOT, the
new linear program is

z=—4/34(2/3)xe — (2/3)x3 — (1/3)x4
1 = 16/3 — (8/3)zs — (1/3)as + (1/3)4
To = 4/3 - (2/3)%2 + (2/3)LL‘3 + (1/3)1‘4
25 = T/3 — (8/3)as + (2/3)25 + (1/3)24.

Every coefficient in the objective function is negative, so we take the basic
solution (zg,x1,x2, T3, 24, 25) = (4/3,16/3,0,0,0,7/3) which is also optimal.
Since xg # 0, the original linear program must be unfeasible.

Exercise 29.5-7

The initial basic solution isn’t feasible, so we will need to form the auxiliary
linear program:
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maximize — xg

subject to —x1 +z2 —xg < —1
—x1—To—x9 < =3
— 21+ 4y — 29 <2

x1,T2,T0 > 0.

Then we write this linear program in slack form:

z=—x0
x3=—14+x1 — 29+ 29
Ty =-3+x1+ 22+ 20
5 =2+ x1 — 410 + T

X1,%2, T3, T4, Ts5,To > 0.

Next we make one call to PIVOT where zq is the entering variable and x4
is the leaving variable. This gives:

z2==-34+x1+x2— 24
To=3—2x1 — X2+ x4
xr3 =2 — 229+ 14

x5 =5 — dx9 + 14

L1,X2,23,T4,Ts5,T0 2 0.

Let 1 be our entering variable. Then zq is our leaving variable, and we
have

z = —x0
T1=3—2x9g—To+ x4
x3 =2 — 229 + 14
Tr5 =5 —brg + 14

T1,T2,T3,T4,T5,TQ 2 0.

The basic solution is feasible, and optimal for L., so we return this and
run SIMPLEX. Updating the objective function and setting xy = 0 gives
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z2=342x9+ 24
1 =3— 22+ x4
T3 =2—2x9 + 14
T5 =95 —Dbrg + 14

T1,T2,X3,L4,T5,TQ > 0.

We'll choose 2 as our entering variable, which makes x3 our leaving variable.
This gives

z=5—x34+ 214
xo =1—(1/2)xs + (1/2)x4
z1 =2+ (1/2)23 4 (1/2)a4
x5 = (5/2)xsz — (3/2)xy
T1,%2,T3, T4, L5, To > 0.

Next we use x4 as our entering variable, which makes x5 our leaving variable.
This gives

z2="5+ (7/3)xs — (4/3)xs
24 = (5/3)a3 — (2/3)zs
xo =14 (1/3)zs — (1/3)x5
x1 =2+ (4/3)xz — (1/3)xs
T1,%2,T3,Tq, L5, Lo > 0.

Finally, we would like to choose x3 as our entering variable, but every co-
efficient on x3 is positive, so SIMPLEX returns that the linear program is un-
bounded.

Exercise 29.5-8
We first put the linear program in standard form:
maximize x1 + 9 + 3 + 24
subject to 2z — 8xy — 10x4 < —50
- 5$1 — 23?2 S —100

— 3(E1 + 5%2 — 101’3 + 21’4 S —25

L1,T2, T3, T4 Z 0.
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The initial basic solution isn’t feasible, so we will need to form the auxiliary
linear program. It is given below in slack form:

z=—x
x5 = —b0 — 2z1 + 8z + 1024 + 9

x¢ = —100 4 51 + 222 + 29

r7 = =25+ 3x1 — bxo + 10x3 — 224 + x0.

The index of the minimum b; is 2, so we take xy to be our entering variable
and x¢ to be our leaving variable. The call to PIVOT on line 8 yields

z = —100 4+ bz + 229 — ¢
x5 = 50 — Txy + 8xo + 1024 + x4
xo = 100 — 51 — 229 + ¢
xr7 =75 —2x1 — Txo + 1023 — 224 + T6.

Next we’ll take x5 to be our entering variable and x5 to be our leaving
variable. The call to PIVOT yields

z=—225/24 (27/4)x1 — (10/4)zs + (1/4) x5 — (5/4)x¢
2o = —50/8 + (7/8)a1 — (10/8)x4 + (1/8)a5 — (1/8)z6
xo =225/2 — (27/4)x1 + (10/4)x4 — (1/4)z5 + (5/4) 26
w7 = A75/4 — (65/8)x1 + 1035 + (54/8)4 — (7/8)a5 + (15/8) 6.

The work gets rather messy, but INITIALIZE-SIMPLEX does eventually
give a feasible solution to the linear program, and after running the simplex
method we find that (1,2, x3,24) = (175/11,225/22,125/44,0) is an optimal
solution to the original linear programming problem.

Exercise 29.5-9

1. One option is that » =0, s > 0 and ¢ < 0. Suppose that » > 0, then, if we
have that s is non-negative and t is non-positive, it will be as we want.

2. We will split into two cases based on r. If r = 0, then this is exactly when
t is non-positive and s is non-negative. The other possible case is that r
is negative, and t is positive. In which case, because r is negative, we can
always get rx as small as we want so s doesn’t matter, however, we can never
make rzx positive so it can never be > t.
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3. Again, we split into two possible cases for r. If r = 0, then it is when ¢ is non-
negative and s is non-positive. The other possible case is that r is positive,
and s is negative. Since r is positive, rz will always be non-negative, so it
cannot be < s. But since r is positive, we have that we can always make rx
as big as we want, in particular, greater than t.

4. If we have that » = 0 and ¢ is positive and s is negative. If r is nonzero,
then we can always either make rz really big or really small depending on
the sign of r, meaning that either the primal or the dual would be feasable.

Problem 29-1

a. We just let the linear inequalities that we need to satisfy be our set of con-
straints in the linear program. We let our function to maximize just be a
constant. The solver for linear programs would fail to detect any feasible
solution if the linear constraints were not feasible. If the linear programming
solver returns any solution at all, we know that the linear constraints are
feasible.

b. Suppose that we are trying to solve the linear program in standard form with
some particular A, b, c. That is, we want to maximize Z;L:1 cjr; subject to
Az < b and all entries of the x vector are non-negative. Now, consider the
dual program, that is, we want to minimize Z:’;l b;y; subject to ATy > c and
all the entries in the y vector are nonzero. We know by Corollary 29.9, if x
and y are feasible solutions to their respective problems, then, if we have that
their objective functions are equal, then, they are both optimal solutions.

We can force their objective functions to be equal. To do this, let ¢ be
some nonzero entry in the ¢ vector. If there are no nonzero entries, then
the function we are trying to optimize is just the zero function, and it is

exactly a feasibility question, so we we would be done. Then, we add two
linear inequalities to require x; = é (Z:’;l biy; — E;’:l cjxj). This will
require that whatever values the variables take, their objective functions will
be equal. Lastly, we just throw these in with the inequalities we already had.

So, the constraints will be:

Ax <b
ATy >c
1 m n
zp < a z:biyz Zc]x7
i=1 j=1
1 m n
Tp > a Zbiyi — chxj
i=1 j=1
T1,T9y s TryY1,Y2s -« - Ym > 0
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We have a number of variables equal to n 4+ m and a number of constraints
equal to 24+2n+2m, so both are polynomial in n and m. Also, any assignment
of variables which satisfy all of these constraints will be a feasible solution to
both the problem and its dual that cause the respective objective functions to
take the same value, and so, must be an optimal solution to both the original
problem and its dual. This of course assumes that the linear inequality
feasibility solver doesn’t merely say that the inequalities are satisfiable, but
actually returns a satisfying assignment.

Lastly, it is necessary to note that if there is some optimal solution x, then,
we can obtain an optimal solution for the dual that makes the objective
functions equal by theorem 29.10. This ensures that the two constraints we
added to force the objectives of the primal and the dual to be equal don’t
cause us to change the optimal solution to the linear program.

Problem 29-2

a. An optimal solution to the LP program given in (29.53) - (29.57) is (21, 2, ©3)
(8,4,0). An optimal solution to the dual is (y1,y2,y3) = (0,1/6,2/3). It is
then straightforward to verify that the equations hold.

b. First suppose that complementary slackness holds. Then the optimal objec-
tive value of the primal problem is, if it exists,

n n m
E CkTE = E E ik Yi Lk
k=1

k=1 1i=1

ik TEYi

.
M=

s
Il
N
o~
Il

=1

|
.MS

©
Il
<

biyi

which is precisely the optimal objective value of the dual problem. If any z;
is 0, then those terms drop out of them sum, so we can safely replace ¢ by
whatever we like in those terms. Since the objective values are equal, they
must be optimal. An identical argument shows that if an optimal solution
exists for the dual problem then any feasible solution for the primal problem
which satisfies the second equality of complementary slackness must also be
optimal.

Now suppose that z and y are optimal solutions, but that complementary
slackness fails. In other words, there exists some j such that x; # 0 but
>ity aijyi > ¢j, or there exists some i such that y; # 0 but Y27 aijz; < bi.
In the first case we have
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n n m
E CrT < E E QikYi Tk
k=1 k

=11:=1

m n

:E E ik TEYq
i=1 k=1
m

= Zbiyi-
=1

This implies that the optimal objective value of the primal solution is strictly
less than the optimal value of the dual solution, a contradiction. The argu-
ment for the second case is identical. Thus, z and y are optimal solutions if
and only if complementary slackness holds.

c. This follows immediately from part b. If z is feasible and y satisfies conditions
1, 2, and 3, then complementary slackness holds, so z and y are optimal. On
the other hand, if x is optimal, then the dual linear program must have an
optimal solution y as well, according to Theorem 29.10. Optimal solutions
are feasible, and by part b z and y satisfy complementary slackness. Thus,
conditions 1, 2, and 3 hold.

Problem 29-3

a. The proof for weak duality goes through identically. Nowhere in it does it
use the integrality of the solutions.

b. Consider the linear program given in standard form by A = (1), b = (%) and
¢ = (2). The highest we can get this is 0 since that’s that only value that x
can be. Now, consider the dual to this, that is, we are trying to minimize
subject to the constraint that x > 2. This will be minimized when x = 2, so,
the smallest solution we can get is 1.

Since we have just exhibited an example of a linear program that has a
different optimal solution as it’s dual, the duality theorem does not hold for
integer linear program.

c. The first inequality comes from looking at the fact that by adding the re-
striction that the solution must be integer valued, we obtain a set of feasible
solutions that is a subset of the feasible solutions of the original primal linear
program. Since, to get I P, we are taking the max over a subset of the things
we are taking a max over to get P, we must get a number that is no larger.
The third inequality is similar, except since we are taking min over a subset,
the inequality goes the other way.

The middle equality is given by Theorem 29.10.
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Problem 29-4

Suppose that both systems are solvable, let x denote a solution to the first
system, and y denote a solution to the second. Taking transposes we have
zTAT < 07. Right multiplying by y gives 27¢c = 27 ATy < 07, which is a
contradiction to the fact that ¢Zx > 0. Thus, both systems cannot be simul-
taneously solved. Now suppose that the second system fails. Consider the
following linear program:

maximize 0z subject to ATy =cand y >0

and its corresponding dual program

minimize — ¢’z subject to Az < 0.

Since the second system fails, the primal is infeasible. However, the dual
is always feasible by taking x = 0. If there were a finite solution to the dual,
then duality says there would also be a finite solution to the primal. Thus, the
dual must be unbounded. Thus, there must exist a vector & which makes —c’x
arbitrarily small, implying that there exist vectors = for which ¢’z is strictly

greater than 0. Thus, there is always at least one solution.

Problem 29-5

a. This is exactly the linear program given in equations (29.51) - (29.52) except
that the equation on the third line of the constraints should be removed, and
for the equation on the second line of the constraints, u should be selected
from all of V instead of from V' \ {s,¢}.

b. If a(u,v) > 0 for every pair of vertices, then, there is no point in sending any
flow at all. So, an optimal solution is just to have no flow. This obviously
satisfies the capacity constraints, it also satisfies the conservation constraints
because the flow into and out of each vertex is zero.

c. We assume that the edge (¢, s) is not in E because that would be a silly edge
to have for a maximum flow from s to . If it is there, remove it and it won’t
decrease the maximum flow. Let V' =V and E' = E U {(t,s)}. For the
edges of E’ that are in F, let the capacity be as it is in E and let the cost be
0. For the other edge, we set ¢(t,s) = co and a(t,s) = —1. Then, if we have
any circulation in G’, it will be trying to get as much flow to go across the
edge (t, s) in order to drive the objective function lower, the other flows will
have no affect on the objective function. Then, by Kirchhoff’s current law
(a.k.a. common sense), the amount going across the edge (¢, s) is the same
as the total flow in the rest of the network from s to ¢. This means that
maximizing the flow across the edge (¢, s) is also maximizing the flow from
s to t. So, all we need to do to recover the maximum flow for the original
network is to keep the same flow values, but throw away the edge (¢, s).
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d. Suppose that s is the vertex that we are computing shortest distance from.
Then, we make the circulation network by first starting with the original
graph, giving each edge a cost of whatever it was before and infinite capacity.
Then, we place an edge going from every vertex that isn’t s to s that has a
capacity of 1 and a cost of —|E| times the largest cost appearing among all
the edge costs already in the graph. Giving it such a negative cost ensures
that placing other flow through the network in order to get a unit of flow
across it will cause the total cost to decrease. Then, to recover the shortest
path for any vertex, start at that vertex and then go to any vertex that is
sending a unit of flow to it. Repeat this until you’ve reached s.
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