
Chapter 27

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 27.1-1

This modification is not going to affect the asymptotic values of the span
work or parallelism. All it will do is add an amount of overhead that wasn’t
there before. This is because as soon as the FIB(n− 2) is spawned the spawn-
ing thread just sits there and waits, it does not accomplish any work while it
is waiting. It will be done waiting at the same time as it would of been before
because the FIB(n− 2) call will take less time, so it will still be limited by the
amount of time that the FIN(n− 1) call takes.

Exercise 27.1-2

The computation dag is given in the image below. The blue numbers by
each strand indicate the time step in which it is executed. The work is 29, span
is 10, and parallelism is 2.9.

Exercise 27.1-3

1



Suppose that there are x incomplete steps in a run of the program. Since
each of these steps causes at least one unit of work to be done, we have that
there is at most (T1 − x) units of work done in the complete steps. Then, we
suppose by contradiction that the number of complete steps is strictly greater
than b(T1−x)/P c. Then, we have that the total amount of work done during the
complete steps is P ·(b(T1−x)/P c+1) = P b(T1−x)/P c+P = (T1−x)−((T1−x)
mod P ) + P > T1 − x. This is a contradiction because there are only (T1 − x)
units of work done during complete steps, which is less than the amount we
would be doing. Notice that since T∞ is abound on the total number of both
kinds of steps, it is a bound on the number of incomplete steps, x , so,

TP ≤ b(T1 − x)/P c+ x ≤ b(T1 − T∞)/P c+ T∞

Where the second inequality comes by noting that the middle expression, as a
function of x is monotonically increasing, and so is bounded by the largest value
of x that is possible, namely T∞.

Exercise 27.1-4

The computation is given in the image below. Let vertex u have degree k,
and assume that there are m vertices in each vertical chain. Assume that this
is executed on k processors. In one execution, each strand from among the k
on the left is executed concurrently, and then the m strands on the right are
executed one at a time. If each strand takes unit time to execute, then the total
computation takes 2m time. On the other hand, suppose that on each time step
of the computation, k− 1 strands from the left (descendants of u) are executed,
and one from the right (a descendant of v), is executed. If each strand take
unit time to executed, the total computation takes m + m/k. Thus, the ratio
of times is 2m/(m + m/k) = 2/(1 + 1/k). As k gets large, this approaches 2 as
desired.

2



Exercise 27.1-5

The information from T10 applied to equation (27.5) give us that

42 ≤ T1 − T∞10 + T∞

which tell us that

420 ≤ T1 + 9T∞

Subtracting these two equations, we have that 100 ≤ 8T∞.
If we apply the span law to T64, we have that 10 ≥ T∞. Applying the work

law to our measurement for T4 gets us that 320 ≥ T1. Now, looking at the result
of applying (27.5) to the value of T10, we get that

420 ≤ T1 + 9T∞ ≤ 320 + 90 = 410

a contradiction. So, one of the three numbers for runtimes must be wrong.
However, computers are complicated things, and its difficult to pin down what
can affect runtime in practice. It is a bit harsh to judge professor Karan too
poorly for something that may of been outside her control (maybe there was just
a garbage collection happening during one of the measurements, throwing it off).

Exercise 27.1-6

We’ll parallelize the for loop of lines 6-7 in a way which won’t incur races.
With the algorithm P −PROD given below, it will be easy to rewrite the code.
For notation, let ai denote the ith row of the matrix A.

Algorithm 1 P-PROD(a,x,j,j’)

1: if j == j′ then
2: return a[j] · x[j]
3: end if
4: mid =

⌊
j+j′

2

⌋
5: a’ = spawn P-PROD(a,x,j,mid)
6: x’ = P-PROD(a,x,mid+1,j’)
7: sync
8: return a’+x’

Exercise 27.1-7

The work is unchanged from the serial programming case. Since it is flipping
Θ(n2) many entries, it does Θ(n2) work. The span of it is Θ(lg(n)) this is be-
cause each of the parallel for loops can have its children spawned in time lg(n),
so the total time to get all of the constant work tasks spawned is 2 lg(n) ∈ Θ(lg).

3



Algorithm 2 MAT-VEC(A,x)

1: n = A.rows
2: let y be a new vector of length n
3: parallel for i = 1 to n do
4: yi = 0
5: end
6: parallel for i = 1 to n do
7: yi = P-PROD(ai, x, 1, n)
8: end
9: return y

Since the work of each task is o(lg(n)), that doesn’t affect the T∞ runtime. The
parallelism is equal to the work over the span, so it is Θ(n2/ lg(n)).

Exercise 27.1-8

The work is Θ(1 +
∑n
j=2 j − 1) = Θ(n2). The span is Θ(n) because in the

worst case when j = n, the for-loop of line 3 will need to execute n times. The
parallelism is Θ(n2)/Θ(n) = Θ(n).

Exercise 27.1-9

We solve for P in the following equation obtained by setting TP = T ′P .

T1

P
+ T∞ =

T ′1
P

+ T ′∞

2048

P
+ 1 =

1024

P
+ 8

1024

P
= 7

1024

7
= P

So we get that there should be approximately 146 processors for them to
have the same runtime.

Exercise 27.2-1

See the computation dag in the image below. Assuming that each strand
takes unnit time, the work is 13, the span is 6, and the parallelism is 13

6

4



Exercise 27.2-2

See the computation dag in the image below. Assuming each strand takes
unit time, the work is 30, the span is 16, and the parallelism is 15

8 .

5



Exercise 27.2-3

We perform a modification of the P-SQUARE-MATRIX-MULTIPLY algo-
rithm. Basically, as hinted in the text, we will parallelize the innermost for loop
in such a way that there aren’t any data races formed. To do this, we will just
define a parallelized dot product procedure. This means that lines 5-7 can be
replaced by a single call to this procedure. P-DOT-PRODUCT computes the
dot dot product of the two lists between the two bounds on indices.

Using this, we can use this to modify P-SQUARE-MATRIX-MULTIPLY
Since the runtime of the inner loop is O(lg(n)), which is the depth of the

recursion. Since the paralel for loops also take O(lg(n)) time. So, since the
runtimes are additive here, the total span of this procedure is Θ(lg(n)). The
total work is still just O(n3) Since all the spawning and recursing call be re-
placed with the normal serial version once there aren’t enough free processors
to handle all of the spawned calls to P-DOT-PRODUCT.

Exercise 27.2-4

6



Algorithm 3 P-DOT-PROD(v,w,low,high)

if low == high then
return v[low] = v[low]

end if
mid =

⌊
low+high

2

⌋
x = spawn P-DOT-PROD(v,w,low,mid)
y = P-DOT-PROD(v,w,mid+1,high)
sync
return x+y

Algorithm 4 MODIFIED-P-SQUARE-MATRIX-MULTIPLY

n = A.rows
let C be a new n× n matrix
parallel for i=1 to n do

parallel for j=1 to n do
ci,j = P-DOT-PROD(Ai,·, B·,j , 1, n)

end
end
return C

Assume that the input is two matrices A and B to be multiplied. For this
algorithm we use the function P-PROD defined in exercise 21.7-6. For notation,
we let Ai denote the ith row of A and A′i denote the ith column of A. Here, C
is assumed to be a p by r matrix. The work of the algorithm is Θ(prq), since
this is the runtime of the serialization. The span is Θ(log(p)+log(r)+log(q)) =
Θ(log(pqr)). Thus, the parallelism is Θ(pqr/ log(pqr), which remains highly
parallel even if any of p, q, or r are 1.

Algorithm 5 MATRIX-MULTIPLY(A,B,C,p,q,r)

1: parallel for i = 1 to p do
2: parallel for j = 1 to r do
3: Cij = P-PROD(Ai, B

′
j , 1, q)

4: end
5: end
6: return C

Exercise 27.2-5

Split up the region into four sections. Then, this amounts to finding the
transpose the upper left and lower right of the two submatrices. In addition to
that, you also need to swap the elements in the upper right with their transpose
position in the lower left. This dealing with the upper right swapping only takes

7



time O(lg(n2)) = O(lg(n)). In addition, there are two subproblems, each of half
the size. This gets us the recursion:

T∞(n) = T∞(n/2) + lg(n)

By the master theorem, we get that the total span of this procedure is
T∞ ∈ O(lg(n). The total work is still the usual O(n2).

Exercise 27.2-6

Since Dk cannot be computed without Dk−1 we cannot parallelize the for
loop of line 3 of Floyd-Warshall. However, the other two loops can be paral-
lelized. The work is Θ(n2), as in the serial case. The span is Θ(n lg n). Thus,
the parallelism is Θ(n/ lg n). The algorithm is as follows:

Algorithm 6 P-FLOYD-WARSHALL(W)

1: n = W.rows
2: D(0) = W
3: for k = 1 to n do
4: let D(k) = (d

(k)
ij ) be a new n× n matrix

5: parallel for i = 1 to n do
6: parallel for j = 1 to n do

7: d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

8: end
9: end

10: end for
11: return D(n)

Exercise 27.3-1

To coarsen the base case of P-MERGE, just replace the condition on line 2
with a check that n < k for some base case size k. And instead of just copying
over the particular element of A to the right spot in B, you would call a serial
sort on the remaining segment of A and copy the result of that over into the
right spots in B.

Exercise 27.3-2

By a slight modification of exercise 9.3-8 we can find we can find the median
of all elements in two sorted arrays of total length n in O(lg n) time. We’ll
modify P-MERGE to use this fact. Let MEDIAN(T, p1, r1, p2, r2) be the func-
tion which returns a pair, q, where q.pos is the position of the median of all the
elements T which lie between positions p1 and r1, and between positions p2 and
r2, and q.arr is 1 if the position is between p1 and r1, and 2 otherwise. The
first 8 lines of code are identical to those in P-MERGE given on page 800, so

8



we omit them here.

Algorithm 7 P-MEDIAN-MERGE(T, p1, r1, p2, r2, A, p3)

1: Run lines 1 through 8 of P-MERGE
2: q = MEDIAN(T, p1, r1, p2, r2)
3: if q.arr == 1 then
4: q2 = BINARY-SEARCH(T [q.pos]), T, p2, r2)
5: q3 = p3 + q.pos− p1 + q2 − p2
6: A[q3] = T [q.pos]
7: spawn P-MEDIAN-MERGE(T, p1, q.pos− 1, p2, q2 − 1, A, p3)
8: P-MEDIAN-MERGE(T, q.pos + 1, r1, q2 + 1, r2, A, p3)
9: sync

10: else
11: q2 = BINARY-SEARCH(T [q.pos], T, p1, r1)
12: q3 = p3 + q.pos− p2 + q2 − p1
13: A[q3] = T [q.pos]
14: spawn P-MEDIAN-MERGE(T, p1, q2 − 1, p2, q.pos− 1, A, p3)
15: P-MEDIAN-MERGE(T, q2 + 1, r1, q.pos + 1, r2, A, p3)
16: sync
17: end if

The work is characterized by the recurrence T1(n) = O(lg n) + 2T1(n/2),
whose solution tells us that T1(n) = O(n). The work is at least Ω(n) since we
need to examine each element, so the work is Θ(n). The span satisfies the recur-
rence T∞(n) = O(lg n) +O(lg n/2) +T∞(n/2) = O(lg n) +T∞(n/2) = Θ(lg2 n),
by exercise 4.6-2.

Exercise 27.3-3

Suppose that there are c different processors, and the array has length n
and you are going to use its last element as a pivot. Then, look at each chunk
of size dnc e of entries before the last element, give one to each processor. Then,
each counts the number of elements that are less than the pivot. Then, we com-
pute all the running sums of these values that are returned. This can be done
easily by considering all of the subarrays placed along the leaves of a binary
tree, and then summing up adjacent pairs. This computation can be done in
time lg(min{c, n}) since it’s the log of the number of leaves. From there, we can
compute all the running sums for each of the subarrays also in logarithmic time.
This is by keeping track of the sum of all more left cousins of each internal node,
which is found by adding the left sibling’s sum vale to the left cousin value of
the parent, with the root’s left cousin value initiated to 0. This also just takes
time the depth of the tree, so is lg(min{c, n}). Once all of these values are
computed at the root, it is the index that the subarray’s elements less than the
pivot should be put. To find the position where the subarray’s elements larger

9



than the root should be put, just put it at twice the sum value of the root minus
the left cousin value for that subarray. Then, the time taken is just O(nc ). By
doing this procedure, the total work is just O(n), and the span is O(lg(n)), and
so has parallelization of O( n

lg(n) ). This whole process is split across the several

algoithms appearing here.

Algorithm 8 PPartition(L)

c = min{c, n}
pivot = L[n]
let Count be an array of length c
let r1, . . . rc+1 be roughly evenly spaced indices to L with r1 = 1 and rc+1 = n
for i=1 . . . c do

Count[i] = spawn countnum(L[ri, ri+1 − 1],pivot)
end for
sync
let T be a nearly complete binary tree whose leaves are the elements of Count
whose vertices have the attributes sum and lc
for all the leaves, let their sum value be the corresponding entry in Count
ComputeSums(T.root)
T.root.lc = 0
ComputeCousins(T.root)
Let Target be an array of length n that the elements will be copied into
for i=1 . . . c do

let cousin be the lc value of the node in T that corresponds to i
spawn CopyElts(L,Target, cousin,ri, ri+1 − 1)

end for
Target[n] = Target[T.root.sum]
Target[T.root.sum] = L[n]
return Target

Algorithm 9 CountNum(L,x)

ret = 0
for i=1 . . . L.length do

if L[i] < x then
ret++

end if
end for
return ret

Exercise 27.3-4

See the algorithm P-RECURSIVE-FFT. it parallelized over the two recursive
calls, having a parallel for works because each of the iterations of the for loop

10



Algorithm 10 ComputeSums(v)

if v is an internal node then
x = spawn ComputeSums(v.left)
y = ComputeSums(v.right)
sync
v.sum = x+y

end if
return v.sum

Algorithm 11 ComputeCousins(v)

if v 6= NIL then
v.lc = v.p.lv
if v = v.p.right then

v.lc += c.p.left.sum
end if
spawn ComputeCousins(v.left)
ComputeCousins(v.right)
sync

end if

Algorithm 12 CopyElts(L1, L2, lc,lb,ub)

counter1 = lc+1
counter2 = lb
for i=lb . . . ub do

if L1[i] < x then
L2[counter1++] = L1[i]

else
L2[counter2++] = L1[i]

end if
end for

11



touch independent sets of variables. The span of the procedure is only Θ(lg(n))
giving it a parallelization of Θ(n)

Algorithm 13 P-RECURSIVE-FFT(a)

n = a.length
if n == 1 then

return a
end if
ωn = e2πi/n

ω = 1
a[0] = (a0, a2, . . . , an−2)
a[1] = (a1, a3, . . . , an−1)
y[0] = spawn P-RECURSIVE-FFT(a[0])
y[1] = P-RECURSIVE-FFT(a[1])
sync
parallel for k = 0, . . . , n/2− 1 do

yk = y
[0]
k + ωy

[1]
k

yk+(n/2) = y
[0]
k − ωy

[1]
k

ω = ωωn
end
return y

Exercise 27.3-5

Randomly pick a pivot element, swap it with the last element, so that it
is in the correct format for running the procedure described in 27.3-3. Run
partition from problem 27.3−3. As an intermediate step, in that procedure, we
compute the number of elements less than the pivot (T.root.sum), so keep track
of that value after the end of PPartition. Then, if we have that it is less than k,
recurse on the subarray that was greater than or equal to the pivot, decreasing
the order statistic of the element to be selected by T.root.sum. If it is larger
than the order statistic of the element to be selected, then leave it unchanged
and recurse on the subarray that was formed to be less than the pivot. A lot
of the analysis in section 9.2 still applies, except replacing the timer needed for
partitioning with the runtime of the algorithm in problem 27.3-3. The work is
unchanged from the serial case because when c = 1, the algorithm reduces to
the serial algorithm for partitioning. For span, the O(n) term in the equation
half way down page 218 can be replaced with an O(lg(n)) term. It can be seen
with the substitution method that the solution to this is logarithmic

E[T (n)] ≤ 2

n

n−1∑
k=bn/2c

C lg(k) + O(lg(n)) ≤ O(lg(n))

So, the total span of this algorithm will still just be O(lg(n)).

12



Exercise 27.3-6

Let MEDIAN(A) denote a brute force method which returns the median
element of the array A. We will only use this to find the median of small arrays,
in particular, those of size at most 5, so it will always run in constant time. We
also let A[i..j] denote the array whose elements are A[i], A[i + 1], . . . , A[j]. The
function P-PARTITION(A, x) is a multithreaded function which partitions A
around the input element x and returns the number of elements in A which are
less than or equal to x. Using a parallel for-loop, its span is logarithmic in the
number of elements in A. The work is the same as the serialization, which is Θ(n)
according to section 9.3. The span satisfies the recurrence T∞(n) = Θ(lg n/5)+
T∞(n/5)+Θ(lg n)+T∞(7n/10+6) ≤ Θ(lg n)+T∞(n/5)+T∞(7n/10+6). Using
the substitution method we can show that T∞(n) = O(nε) for some ε < 1. In
particular, ε = .9 works. This gives a parallelization of Ω(n.1).

Algorithm 14 P-SELECT(A,i)

1: if n == 1 then
2: return A[1]
3: end if
4: Initialize a new array T of length bn/5c
5: parallel for i = 0 to bn/5c − 1 do
6: T [i + 1] = MEDIAN(A[ibn/5c..ibn/5c+ 4])
7: end
8: if n/5 is not an integer then
9: T [bn/5c] = MEDIAN(A[5bn/5c..n)

10: end if
11: x = P-SELECT(T, dn/5e)
12: k = P-PARTITION(A, x)
13: if k == i then
14: return x
15: else if i < k then
16: P-SELECT(A[1..k − 1], i)
17: else
18: P-SELECT(A[k + 1..n], i− k)
19: end if

Problem 27-1

a. See the algorithm Sum-Arrays(A,B,C). The parallelism is O(n) since it’s work
is n lg(n) and the span is lg(n).

b. If grainsize is 1, this means that each call of Add-Subarray just sums a single
pair of numbers. This means that since the for loop on line 4 will run n
times, both the span and work will be O(n). So, the parallelism is just O(1).

13



Algorithm 15 Sum-Arrays(A,B,C)

n =
⌊
A.length

2

⌋
if n=0 then

C[1] = A[1]+B[1]
else

spawn Sum-Arrays(A[1. . . n], B[1. . . n], C[1. . . n])
Sum-Arrays(A[n+1 . . . A.length],B[n+1 . . . A.length],C[n+1 . . . A.length])
sync

end if

c. Let g be the grainsize. The runtime of the function that spawns all the other

functions is
⌈
n
g

⌉
. The runtime of any particular spawned task is g. So, we

want to minimize
n

g
+ g

To do this we pull out our freshman calculus hat and take a derivative, we
get

0 = 1− n

g2

So, to solve this, we set g =
√
n. This minimizes the quantity and makes the

span O(n/g + g) = O(
√
n). Resulting in a parallelism of O(

√
(n)).

Problem 27-2

a. Our algorithm P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C,A,B) mul-
tiplies A and B, and adds their product to the matrix C. It is assumed that
C contains all zeros when the function is first called.

b. The work is the same as the serialization, which is Θ(n3). It can also be found
by solving the recurrence T1(n) = Θ(n2) + 8T (n/2) where T1(1) = 1. By
the mater theorem, T1(n) = Θ(n3). The span is T∞(n) = Θ(1) + T∞(n/2) +
T∞(n/2) with T∞(1) = Θ(1). By the master theorem, T∞(n) = Θ(n).

c. The parallelism is Θ(n2). Ignoring the constants in the Θ-notation, the
parallelism of the algorithm on 1000× 1000 matrices is 1,000,000. Using P-
MATRIX-MULTIPLY-RECURSIVE, the parallelism is 10,000,000, which is
only about 10 times larger.

Problem 27-3

14



Algorithm 16 P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C,A,B)

1: n = A.rows
2: if n = 1 then
3: c11 = c11 + a11b11
4: else
5: Partition A, B, and C into n/2× n/2 submatrices
6: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C11, A11, B11)
7: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C12, A11, B12)
8: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C21, A21, B11)
9: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C22, A21, B12)

10: sync
11: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C11, A12, B21)
12: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C12, A12, B22)
13: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C21, A22, B21)
14: spawn P-MATRIX-MULTIPLY-RECURSIVE-SPACE(C22, A22, B22)
15: sync
16: end if

a. For the algorithm LU-DECOMPOSITION(A) on page 821, the inner for
loops can be parallelized, since they never update values that are read on later
runs of those loops. However, the outermost for loop cannot be parallelized
because across iterations of it the changes to the matrices from previous runs
are used to affect the next. This means that the span will be Θ(n lg(n)), work

will still be Θ(n3) and, so, the parallelization will be Θ( n3

n lg(n) ) = Θ( n2

lg(n) ).

b. The for loop on lines 7-10 is taking the max of a set of things, while recording
the index that that max occurs. This for loop can therefor be replaced with
a lg(n) span parallelized procedure in which we arrange the n elements into
the leaves of an almost balanced binary tree, and we let each internal node
be the max of its two children. Then, the span will just be the depth of this
tree. This procedure can gracefully scale with the number of processors to
make the span be linear, though even if it is Θ(n lg(n)) it will be less than
the Θ(n2) work later. The for loop on line 14-15 and the implicit for loop
on line 15 have no concurrent editing, and so, can be made parallel to have
a span of lg(n). While the for loop on lines 18-19 can be made parallel, the
one containing it cannot without creating data races. Therefore, the total
span of the naive parallelized algorithm will be Θ(n2 lg(n)), with a work of
Θ(n3). So, the parallelization will be Θ( n

lg(n) ). Not as parallized as part (a),

but still a significant improvement.

c. We can parallelize the computing of the sums on lines 4 and 6, but cannot
also parallize the for loops containing them without creating an issue of
concurrently modifying data that we are reading. This means that the span
will be Θ(n lg(n)), work will still be Θ(n2), and so the parallelization will be
Θ( n

lg(n) ).

15



d. The recurrence governing the amount of work of implementing this procedure
is given by

I(n) ≤ 2I(n/2) + 4M(n/2) + O(n2)

However, the two inversions that we need to do are independent, and the
span of parallelized matrix multiply is just O(lg(n)). Also, the n2 work of
having to take a transpose and subtract and add matrices has a span of only
O(lg(n)). Therefore, the span satisfies the recurrence

I∞(n) ≤ I∞(n/2) + O(lg(n))

This recurrence has the solution I∞(n) ∈ Θ(lg2(n)) by exercise 4.6-2. There-
fore, the span of the inversion algorithm obtained by looking at the pro-
cedure detailed on page 830. This makes the parallelization of it equal to
Θ(M(n)/ lg2(n)) where M(n) is the time to compute matrix products.

Problem 27-4

a. The algorithm below has Θ(n) work because its serialization satisfies the re-
currence T1(n) = 2T (n/2) + Θ(1) and T (1) = Θ(1). It has span T∞(n) =
Θ(lg n) because it satisfies the recurrence T∞(n) = T∞(n/2) + Θ(1) and
T∞(1) = Θ(1).

Algorithm 17 P-REDUCE(x,i,j)

1: if i == j then
2: return x[i]
3: else
4: mid = b(i + j)/2c
5: x =spawn P-REDUCE(x, i,mid)
6: y = P-REDUCE(x,mid + 1, j)
7: sync
8: return x⊗ y
9: end if

b. The work of P-SCAN-1 is T1(n) = Θ(n2). The span is T∞(n) = Θ(n). The
parallelism is Θ(n).

c. We’ll prove correctness by induction on the number of recursive calls made to
P-SCAN-2-AUX. If a single call is made then n = 1, and the algorithm sets
y[1] = x[1] which is correct. Now suppose we have an array which requires
n+1 recursive calls. The elements in the first half of the array are accurately

16



computed since they require one fewer recursive calls. For the second half of
the array,

y[i] = x[1]⊗x[2]⊗. . .⊗x[i] = (x[1]⊗. . .⊗x[k])⊗(x[k+1]⊗. . .⊗x[i]) = y[k]⊗(x[k+1]⊗. . .⊗x[i]).

Since we have correctly computed the parenthesized term with P-SCAN-2-
AUX, line 8 ensures that we have correctly computed y[i].

The work is T1(n) = Θ(n lg n) by the master theorem. The span is T∞(n) =
Θ(lg2 n) by exercise 4.6-2. The parallelism is Θ(n/ lg n).

d. Line 8 of P-SCAN-UP should be filled in by right ⊗ t[k]. Lines 5 and 6 of
P-SCAN-DOWN should be filled in by v and v ⊗ t[k] respectively. Now we
prove correctness. First I claim that if line 5 is accessed after l recursive calls,
then

t[k] = x[k]⊗ x[k − 1]⊗ . . .⊗ x[k − bn/2lc+ 1]

and
right = x[k + 1]⊗ x[k + 2]⊗ . . . x[k + bn/2lc].

If n = 2 we make a single call, but no recursive calls, so we start our base case
at n = 3. In this case, we set t[2] = x[2], and 2−b3/2c+1 = 2. We also have
right = x[3] = x[2 + 1], so the claim holds. In general, on the lth recursive
call we set t[k] = P-SCAN-UP(x, t, i, k), which is t[b(i + k)/2c] ⊗ right. By
our induction hypothesis, t[k] = x[(i + k)/2]⊗ x[(i + k)/2− 1]⊗ . . .⊗ x[(i +
k)/2− bn/2l+1c+ 1]⊗ x[(i + k)/2 + 1⊗ . . .⊗ x[(i + k)/2 + bn/2l+1c]. This
is equivalent to our claim since (k − i)/2 = bn/2l+1c. A similar proof shows
the result for right.

With this in hand, we can verify that the value v passed to P-SCAN-DOWN(v, x, t, y, i, j)
satisfies v = x[1] ⊗ x[2] ⊗ . . . ⊗ x[i − 1]. For the base case, if a single recur-
sive call is made then i = j = 2, and we have v = x[1]. In general, for
the call on line 5 there is nothing to prove because i doesn’t change. For
the call on line 6, we replace v by v ⊗ t[k]. By our induction hypothesis,
v = x[1] ⊗ . . . ⊗ x[i − 1]. By the previous paragraph, if we are on the lth

recursive call, t[k] = x[i] ⊗ . . . ⊗ x[k − bn/2lc + 1] = x[i] since on the lth

recursive call, k and i must differ by bn/2lc. Thus, the claim holds. Since
we set y[i] = v ⊗ x[i], the algorithm yields the correct result.

e. The work of P-SCAN-UP satisfies T1(n) = 2T (n/2) + Θ(1) = Θ(n). The
work of P-SCAN-DOWN is the same. Thus, the work of P-SCAN-3 satisfies
T1(n) = Θ(n). The span of P-SCAN-UP is T∞(n) = T∞(n/2) + O(1) =
Θ(lg n), and similarly for P-SCAN-DOWN. Thus, the span of P-SCAN-3 is
T∞(n) = Θ(lg n). The parallelism is Θ(n/ lg n).

Problem 27-5

17



a. Note that in this algorithm, the first call will be SIMPLE-STENCIL(A,A),
and when there are ranges indexed into a matrix, what is gotten back is a
view of the original matrix, not a copy. That is, changed made to the view
will show up in the original. We can set up a recurrence for the work, which

Algorithm 18 SIMPLE − STENCIL(A,A2)

let n1 × n2 be the size of A2.
let mi =

⌊
ni

2

⌋
for i = 1, 2.

if m1 == 0 then
if m2 == 0 then

compute the value for the only position in A2 based on the current
values in A.

else
SIMPLE − STENCIL(A,A2[1, 1 . . .m2])
SIMPLE − STENCIL(A,A2[1,m2 + 1 . . . n3])

end if
else

if m2 == 0 then
SIMPLE − STENCIL(A,A2[1 . . .m1, 1])
SIMPLE − STENCIL(A,A2[m1 + 1 . . . n1, 1])

else
SIMPLE − STENCIL(A,A2[1 . . .m1, 1 . . .m2])
spawn SIMPLE − STENCIL(A,A2[m1 + 1 . . . n1, 1 . . .m2])
SIMPLE − STENCIL(A,A2[1 . . .m1,m2 + 1 . . . n2])
sync
SIMPLE − STENCIL(A,A2[m1 + 1 . . . n1,m2 + 1 . . . n2])

end if
end if

is just
W (n) = 4W (n/2) + Θ(1)

which we can see by the master theorem has a solution which is Θ(n2). For
the span, the two middle subproblems are running at the same time, so,

S(n) = 3S(n/2) + Θ(1)

Which has a solution that is Θ(nlg(3)), also by the master theorem.

b. Just use the implementation for the third part with b = 3The work has the
same solution of n2 because it has the recurrence

W (n) = 9W (n/3) + Θ(1)

The span has recurrence

S(n) = 5S(n/3) + Θ(1)

Which has the solution Θ(nlog3(5))

18



Algorithm 19 GEN-SIMPLE-STENCIL(A,A2,b)

c. let n×m be the size of A2.
if (n 6= 0)&&(m 6= 0) then

if (n == 1)&&(m == 1) then
compute the value at the only position in A2

else
let ni =

⌊
in
b

⌋
for i = 1, . . . , b− 1

let mi =
⌊
im
b

⌋
for i = 1, . . . , b− 1

let n0 = m0 = 1
for k=2, . . . b+1 do

for i=1, . . . k-2 do
spawn GEN−SIMPLE−STENCIL(A,A2[ni−1 . . . ni,mk−i−1 . . .mk−i], b)

end for
GEN−SIMPLE−STENCIL(A,A2[ni−1 . . . ni,mk−i−1 . . .mk−i], b)
sync

end for
for k=b+2, . . . , 2b do

for i=1,. . . ,2b-k do
spawn GEN−SIMPLE−STENCIL(A,A2[nb−k+i−1 . . . nb−k+i,mb−i−1 . . .mb−i], b)

end for
GEN−SIMPLE−STENCIL(A,A2[n3b−2k . . . n3b−2k+1i,m2k−2b . . .m2k−2b+1], b)
sync

end for
end if

end if

19



The recurrences we get are

W (n) = b2W (n/b) + Θ(1)

S(n) = (2b− 1)W (n/b) + Θ(1)

So, the work is Θ(n2), and the span is Θ(nlgb(2b−1)). This means that the
parallelization is Θ(n2−lgb(2b−1)). So, to show the desired claim, we only need
to show that 2− logb(2b− 1) < 1

2− logb(2b− 1) < 1

logb(2b)− logb(2b− 1) < 1

logb

(
2b

2b− 1

)
< 1

2b

2b− 1
< b

2b < 2b2 − b

0 < 2b2 − 3b

0 < (2b− 3)b

This is clearly true because b is an integer greater than 2 and this right hand
side only has zeroes at 0 and 3

2 and is positive for larger b.

Algorithm 20 BETTER-STENCIL(A)

d. for k=2,. . . , n+1 do
for i=1, . . . k-2 do

spawn compute and update the entry at A[i,k-i]
end for
compute and update the entry at A[k-1,1]
sync

end for
for k=n+2,. . . 2n do

for i=1, . . . 2n-k do
spawn compute and update the entries along the diagonal which have

indices summing to k
end for
sync

end for

This procedure has span only equal to the length of the longest diago-
nal with is O(n) with a factor of lg(n) thrown in. So, the parallelism is
O(n2/(n lg(n))) = O(n/ lg(n)).

Problem 27-6

20



a. The work law becomes E[TP ] ≥ E[T1]/P . The span law becomes E[TP ] ≥
E[T∞]. The greedy scheduler bound becomes E[TP ] ≤ E[T1]/P + E[T∞].

b. We’ll compute each.

E[T1]/E[TP ] =
100 + 109 · .99

.01 + 109 · .99
≈ 1

E[T1/Tp] = 100 + .99 = 100.99.

Since the algorithm almost always runs in the same amount of time, regard-
less of the increase in number of processors, and the speedup tells us how
many times faster something runs on P processors than on 1, the expected
speedup should be approximately 1. Thus, E[T1]/E[TP ] is the better defini-
tion.

c. As P → ∞ the speedup should approach the parallelism, so it makes sense
to use a definition which agrees with part b in the limit.

d. Assume that PARTITION is implemented as described in exercise 27.3-3,
with work Θ(n) and span Θ(lg n). However, we will not modify anything
else about RANDOMIZED-PARTITION.

Algorithm 21 P-RANDOMIZED-QUICKSORT(A,p,r)

1: if p < r then
2: q = RANDOMIZED-PARTITION(A, p, r)
3: spawn P-RANDOMIZED-QUICKSORT(a, P,Q− 1)
4: RANDOMIZED-QUICKSORT(A, q + 1, r)
5: end if

e. The work is just the runtime of the serialization, which we know to have
expected time O(n lg n). For the span, our analysis will be similar to that of
RANDOMIZED-SELECT from page 216. Let Xk be the indicator random
variable which is equal to 1 if A[p..q] has exactly k elements and 0 otherwise.
Then we have

T∞(n) ≤
n∑
k=1

Xk · T∞(max(k − 1, n− k)) + Θ(lg n).

By linearity of expectation this implies that

E[T∞(n)] ≤
n∑
k=1

1

n
E[T∞(max(k − 1, n− k))] + Θ(lg n).

Since each even term appears twice we can write this as

E[T∞(n)] ≤ 2

n

n−1∑
k=bn/2c

E[T∞(k)] + Θ(lg n).

21



We’ll show that E[T∞(n)] = O(n1−ε) for ε such that 2−2ε−1

2−ε < 1 by the

substitution method. Suppose that E[T∞(n)] ≤ c1n
1−ε. Then we have

E[T∞(n)] ≤ 2c1
n

n−1∑
k=bn/2c

k1−ε + Θ(lg n)

≤ 2c1
n

∫ n

k=bn/2c
x1−εdx + Θ(lg n)

=
2c1
n

x2−ε

2− ε

∣∣∣∣n
k=bn/2c

+ Θ(lg n)

= c1n
1−ε

(
2− 2ε−1

2− ε

)
+ Θ(lg n).

Since the dominating term is strictly less than c1n
1−ε, we can overcome the

Θ(lg n) term. Thus, E[T∞(n)] = O(n1−ε), so we achieve sublinear expected
time. The expected parallelization Ω(n lg n/n1−ε) = Ω(nε lg n).

22


