
Chapter 25

Michelle Bodnar, Andrew Lohr

April 20, 2016

Exercise 25.1-1

First, the slow way:

L(1) =

0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 ∞ ∞
∞ 2 0 ∞ ∞ −8
−4 ∞ ∞ 0 3 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 10 ∞ ∞ 0

L(2) =

0 6 ∞ ∞ −1 ∞
−2 0 ∞ 2 0 ∞
3 −3 0 4 ∞ −8
−4 10 ∞ 0 −5 ∞
8 7 ∞ 9 0 ∞
6 5 10 7 ∞ 0

L(3) =

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−2 −3 0 −1 2 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 5 0

L(4) =

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −3 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

L(5) =

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −6 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

1

Then, since we have reached L(n−1) we can stop since we know that since
there are no negative weight cycles, taking higher powers will not cause the
matrix to change at all. By the fast method, we get that

L(1) =

0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 ∞ ∞
∞ 2 0 ∞ ∞ −8
−4 ∞ ∞ 0 3 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 10 ∞ ∞ 0

L(2) =

0 6 ∞ ∞ −1 ∞
−2 0 ∞ 2 0 ∞
3 −3 0 4 ∞ −8
−4 10 ∞ 0 −5 ∞
8 7 ∞ 9 0 ∞
6 5 10 7 ∞ 0

L(4) =

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −3 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

L(8) =

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −6 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

We stop since 8 ≥ 5 = n− 1.

Exercise 25.1-2

This is consistent with the fact that the shortest path from a vertex to itself
is the empty path of weight 0. If there were another path of weight less than 0
then it must be a negative-weight cycle, since it starts and ends at vi.

Exercise 25.1-3

This matrix corresponds to the identity matrix in normal matrix multiplica-
tion. This is because anytime that we take a min of any number with infinity, we
get that same number back. Another way of seeing this is that we can interpret
this strange version of matrix multipllication as allowing any of our shortest
paths to be a path described by one matrix followed by a path described by the
other. However, the given matrix corresponds to there being no paths between

2

any of the vertices. This means that we won’t change any of the shortest paths
that are described by the matrix we are multiplying it by since we are allowing
nothing more for those paths.

Exercise 25.1-4

To verify associativity, we need to check that (W iW j)W p = W i(W jW p)
for all i, j, p, where we use the matrix multiplication defined by the EXTEND-
SHORTEST-PATHS procedure. Consider entry (a, b) of the left hand side. This
is:

min
1≤k≤n

[W iW j]a,k +W p
k,b = min

1≤k≤n
min

1≤q≤n
W i
a,q +W j

q,k +W p
k,b

= min
1≤q≤n

W i
a,q + min

1≤k≤n
W j
q,k +W p

k,b

= min
1≤q≤n

W i
a,q + [W jW p]q,b

which is precisely entry (a, b) of the right hand side.

Exercise 25.1-5

We can express finding the shortest path from a single vertex with the mod-
ified version of matrix multiplication described in the section. We initially let
v1 be a vector indexed by the vertices of the graph. It is infinity when the
corresponding vertex has no edge going to it from the source vertex, s. It is
the weight of the edge going to it from s if there is one. Lastly, it is zero in
the entry corresponding to s itself. Essentially, we are only taking the row of
the W matrix that corresponds to s. Then, we define vi+1 = viW . Then, we
stop computing vi once we compute vn−1. This vector then contains the correct
shortest distances from the source to each vertex. Since each time we multiply
the vector by the matrix, we only have to consider the entries which are non-
infinite in W . There are only |E| + |V | of these non-finfinite entries. So, we
have that the time required for each time we mutiply the vector by the matrix,
we take time at most O(E). So, the total runtime would be O(EV) just as in
Bellman-Ford. The similarities don’t stop there however. This is because vi
represents the shortest distance to each vector from s using at most i edges,
and each time we multiply by W corresponds to relaxing every edge.

Exercise 25.1-6

For each source vertex vi we need to compute the shortest-paths tree for vi.
To do this, we need to compute the predecessor for each j 6= i. For fixed i and
j, this is the value of k such that Li,k+w(k, j) = Li,j . Since there are n vertices
whose trees need computing, n vertices for each such tree whose predecessors
need computing, and it takes O(n) to compute this for each one (checking each
possible k), the total time is O(n3).

3

Exercise 25.1-7
To have the procedure compute the predecessor along the shortest path, see
the modified procedures, EXTEND-SHORTEST-PATH-MOD and SLOW-ALL-
PAIRS-SHORTEST-PATHS-MOD

Algorithm 1 EXTEND-SHORTEST-PATH-MOD(Π, L,W)

n= L.rows
Let L′ = (l′ij) be a new n× n matrix.
Π′ = (π′ij) is a new n× n matrix
for i=1 to n do

for j = 1 to n do
l′ij =∞
πij = NIL
for k=1 to n do

if lik + ljk < lij then
lij = lik + ljk
π′ij = πkj

end if
end for

end for
end for
return Π′, L′

Algorithm 2 SLOW-ALL-PAIRS-SHORTEST-PATHS-MOD(W)

n= W.rows
L(1) = W
Π(1) = (π

(1)
ij) where π

(1)
ij = i if there is an edge from i to j, and NIL otherwise.

for m=2 to n-1 do
Π(m), L(m) = EXTEND-SHORTEST-PATH-MOD(Π(m−1), L(m−1),W)

end for
return Π(n−1), L(n−1)

Exercise 25.1-8

We can overwrite matrices as we go. Let A?B denote multiplication defined
by the EXTEND-SHORTEST-PATHS procedure. Then we modify FASTER-
ALL-EXTEND-SHORTEST-PATHS(W). We initially create an n by n matrix
L. Delete line 5 of the algorithm, and change line 6 to L = W ?W , followed by
W = L.

Exercise 25.1-9

For the modification, keep computing for one step more than the original,

that is, we compute all the way up to L(2k+1) where 2k > n − 1. Then, if

4

there aren’t any negative weight cycles, then, we will have that the two matri-
ces should be equal since having no negative weight cycles means that between
any two vertices, there is a path that is tied for shortest and contains at most
n− 1 edges. However, if there is a cycle of negative total weight, we know that
it’s length is at most n, so, since we are allowing paths to be larger by 2k ≥ n
between these two matrices, we have that we would need to have all of the ver-
tices on the cycle have their distance reduce by at least the negative weight of
the cycle. Since we can detect exactly when there is a negative cycle, based on
when these two matrices are different. This algorithm works. It also only takes
time equal to a single matrix multiplication which is littlee oh of the unmodified
algorithm.

Exercise 25.1-10

A negative-weight cycle appears when Wm
i,i < 0 for some m and i. Each time

a new power of W is computed, we simply check whether or not this happens,
at which point the cycle has length m. The runtime is O(n4).

Exercise 25.2-1

5

k Dk

0

0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 ∞ ∞
∞ 2 0 ∞ ∞ −8
−4 ∞ ∞ 0 3 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 10 ∞ ∞ 0

1

0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 0 ∞
∞ 2 0 ∞ ∞ −8
−4 ∞ ∞ 0 −5 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 10 ∞ ∞ 0

2

0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 0 ∞
3 2 0 4 2 −8
−4 ∞ ∞ 0 −5 ∞
8 7 ∞ 9 0 ∞
6 5 10 7 5 0

3

0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 0 ∞
3 2 0 4 2 −8
−4 ∞ ∞ 0 −5 ∞
8 7 ∞ 9 0 ∞
6 5 10 7 5 0

4

0 ∞ ∞ ∞ −1 ∞
−2 0 ∞ 2 −3 ∞
0 2 0 4 −1 −8
−4 ∞ ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

5

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
0 2 0 4 −1 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

6

0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −6 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

Exercise 25.2-2

6

We set wij = 1 if (i, j) is an edge, and wij = 0 otherwise. Then we replace
line 7 of EXTEND-SHORTEST-PATHS(L,W) by l′ij = l′ij ∨ (lik ∧ wkj). Then
run the SLOW-ALL-PAIRS-SHORTEST-PATHS algorithm.

Exercise 25.2-3

See the modified version of the Floyd-Warshall algorithm:

Algorithm 3 MOD-FLOYD-WARSHALL(W)

n= W.rows
D0 = W
π0 is a matrix with nil in every entry
for i=1 to n do

for j = 1 to n do
if i 6= j and D0

i,j <∞ then

π0
i,j = i

end if
end for

end for
for k=1 to n do

let Dk be a new n× n matrix.
let πk be a new n× n matrix
for i=1 to n do

for j = 1 to n do
if dk−1ij ≤ dk−1i,k + dk−1k,j then

dki,j = dk−1i,j

πki,j = πk−1i,j

else
dki,j = dk−1i,k + dk−1k,j

πki,j = πk−1k,j

end if
end for

end for
end for

In order to have that π
(k)
ij = l, we need that d

(k)
ij ≥ d

(k)
il + wlj . To see

this fact, we will note that having π
(k)
ij = l means that a shortest path from

i to j last goes through l. A path that last goes through l corresponds to
taking a chepest path from i to l and then following the single edge from l
to j. However, This means that dil ≤ dij − wij , which we can rearrange
to get the desired inequality. We can just continue following this inequality
around, and if we ever get some cycle, i1, i2, . . . ic, then we would have that
dii1 ≤ dii1 + wi1i2 + wi2i3 + · · · + wici1 . So, if we subtract the common term

from both sides, we get that 0 ≤ wici1 +
∑c−1
q=1 wiqiq+1

. So, we have that we

7

would only have a cycle in the precedessor graph if we ahvt that there is a zero
weight cycle in the original graph. However, we would never have to go around
the weight zero cycle since the constructed path of shortest weight favors ones
with a fewer number of edges because of the way that we handle the equality
case in equation (25.7).

Exercise 25.2-4

Suppose we are updating d
(
ijk). To be sure we get the same results from

this algorithm, we need to check what happens to d
(k−1)
ij , d

(k−1)
ik and d

(k−1)
kj .

The d
(k−1)
ij term will be unchanged. On the other hand, the other terms won’t

change because any shorest path from i to k which includes k necessarily in-
cludes it only once (since there are no negative-weight cycles) so it is the length
of a shortest path using only vertices 1 through k − 1. Thus, updating in place
is okay.

Exercise 25.2-5

If we change the way that we handle the equality case, we willl still be gen-
erating a the correct values for the π matrix. This is because updating the π
values to make paths that are longer but still tied for the lowest weight. Mak-
ing πij = πkj means that we are making the shortest path from i to j passes
through k at some point. This has the same cost as just going from i to j, since
dij = dik + dkj .

Exercise 25.2-6

If there was a negative-weight cycle, there would be a negative number oc-
curring on the diagonal upon termination of the Floyd-Warshall algorithm.

Exercise 25.2-7
We can recursively compute the values of φ

(k)
ij by, letting it be φ

(k−1)
ij if d

(k)
ik +

d
(k)
kj ≥ d

(k−1)
ij , and otherwise, let it be k. This works correctly because it per-

fectly captures whether we decided to use vertex k when we were repeatedly
allowing ourselves use of each vertex one at a time. To modify Floyd-Warshall
to compute this, we would just need to stick within the innermost for loop,

something that computes φ
(k)
ij by this recursive rule, this would only be a con-

stant amount of work in this innermost for loop, and so would not cause the
asymptotic runtime to increase. It is similar to the s table in matrix-chain
multiplication because it is computed by a similar recurrence.

If we already have the n3 values in φ
(k)
ij provided, then we can reconstruct

the shortest path from i to j because we know that the largest vertex in the

path from i to j is φ
(n)
ij , call it a1. Then, we know that the largest vertex in

the path before a1 will be φ
(a1−1)
ia1

and the largest after a1 will be φ
(a1−1
a1j

. By

8

continuing to recurse until we get that the largest element showing up at some
point is NIL, we will be able to continue subdividing the path until it is entirely
constructed.

Exercise 25.2-8

Create an n by n matrix A filled with 0’s. We are done if we can determine
the vertices reachable from a particular vertex in O(E) time, since we can just
compute this for each v ∈ V . To do this, assign each edge weight 1. Then we
have δ(v, u) ≤ |E| for all u ∈ V . By Problem 24-4 (a) we can compute δ(v, u)
in O(E) for all u ∈ V . If δ(v, u) <∞, set Aij = 1. Otherwise, leave it as 0.

Exercise 25.2-9

First, compute the strongly connected components of the directed graph, and
look at it’s component graph. This component graph is going to be acyclic and
have at most as many vertices and at most as many edges as the original graph.
Since it is acyclic, we can run our transitive closure algorithm on it. Then,
for every edge (S1, S2) that shows up in the transitive closure of the compo-
nent graph, we add an edge from each vertex in S1 to a vertex in S2. This takes
time equal to O(V +E∗). So, the total time required is ≤ f(|V |, |E|)+O(V +E).

Exercise 25.3-1

v h(v)
1 −5
2 −3
3 0
4 −1
5 −6
6 −8

9

u v ŵ(u, v)
1 2 NIL
1 3 NIL
1 4 NIL
1 5 0
1 6 NIL
2 1 3
2 3 NIL
2 4 0
2 5 NIL
2 6 NIL
3 1 NIL
3 2 5
3 4 NIL
3 5 NIL
3 6 0
4 1 0
4 2 NIL
4 3 NIL
4 5 8
4 6 NIL
5 1 NIL
5 2 4
5 3 NIL
5 4 NIL
5 6 NIL
6 1 NIL
6 2 0
6 3 18
6 4 NIL
6 5 NIL

So, the di,j values that we get are
0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −6 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0

Exercise 25.3-2

This is only important when there are negative-weight cycles in the graph.
Using a dummy vertex gets us around the problem of trying to compute −∞+∞
to find ŵ. Moreover, if we had instead used a vertex v in the graph instead of

10

the new vertex s, then we run into trouble if a vertex fails to be reachable from v.

Exercise 25.3-3

If all the edge weights are nonnegative, then the values computed as the
shortest distances when running Bellman-Ford will be all zero. This is because
when constructing G′ on the first line of Johnson’s algorithm, we place an edge
of weight zero from s to every other vertex. Since any path within the graph
has no negative edges, its cost cannot be negative, and so, cannot beat the
trivial path that goes straight from s to any given vertex. Since we have that
h(u) = h(v) for every u and v, the reweighting that occurs only adds and sub-
tracts 0, and so we have that w(u, v) = ŵ(u, v)

Exercise 25.3-4

This doesn’t preserve shortest paths. Suppose we have a graph with vertices
a, b, c, d, e, and f and edges (a, b), (b, c), (c, d), (d, e), (a, e), (a, f) with weights -1,
-1, -1, -1, -1, 1, and -2. Professor Greenstreet would add 2 to every edge weight
in the graph. Originally, the shortest path from a to e went through vertices b,
c, and d. With the added weight, the new shortest path goes directly from a to
e. Thus, property 1 of ŵ is violated.

Exercise 25.3-5

By lemma 25.1, we have that the total weight of any cycles is unchanged as
a result of the reweighting procedure. This can be seen in a way similar to how
the last claim of lemma 25.1 was proven. Namely, we consider the cycle c as
a path that has the same starting and ending vertices, so, by the first half od
lemma 25.1, we have that

ŵ(c) = w(c) + h(v0)− h(vk) = w(c) = 0

This means that in the reweighted graph, we still have that the same cycle as
before had a total weight of zero. Since there are no longer any negative weight
edges after we reweight, this is precicely the second property of the reweighting
procedure shown in the section. Since we have that the sum of all the edge
weights in c is still equal to zero, but each of them individually has a non-
negative weight, it must be the case that each of them individually is equal to
0.

Exercise 25.3-6

Let G have vertices a, b, and c, and edge (b, c) with weight 1, and let s = a.
When we try to compute ŵ(b, c), it is undefined because h(c) = h(b) =∞. Now
suppose that G is strongly connected, and further that there are no negative-
weight cycles. Since every vertex is reachable from every other, h is well-defined

11

for any choice of source vertex. We need only check that ŵ satisfies properties
1 and 2. For the first property, let p = 〈u = v0, v1, . . . , vk = v〉 be a shortest
path from u to v using the weight function w. Then we have

ŵ(p) =

k∑
i=1

ŵ(vi−1, vi)

=

k∑
i=1

w(vi−1, vi) + h(vi−1)− h(vi)

=

(
k∑
i=1

w(vi−1, vi)

)
+ h(u)− h(v)

= w(p) + h(u)− h(v).

Since h(u) and h(v) are independent of p, we must have that w minimizes
w(p) if and only if ŵ minimizes ŵ(p). For the second property, the triangle in-
equality tells us that for any vertices v, u ∈ V we have δ(v, u) ≤ δ(v, z)+w(z, u).
Thus, if we define h(u) = δ(v, u) then we have ŵ(z, u) = w(z, u)+h(z)−h(u) ≥
0.

Problem 25-1

a. We can update the transitive closure in time O(V 2) as follows. Suppose that
we add the edge (x1, x2). Then, we will consider every pair of vertices (u, v).
In order to of created a path between them, we would need some part of that
path that goes from u to x1 and some second part of that path that goes from
x2 to v. This means that we add the edge (u, v) to the transitive closure if
and only if the transitive closure contains the edges (u, x1) and (x2, v). Since
we only had to consider every pair of vertices once, the runtime of this update
is only O(V 2).

b. Suppose that we currently have two strongly connected components, each
of size |V |/2 with no edges between them. Then their transitive closures
computed so far will consist of two complete directed graphs on |V |/2 vertices
each. So, there will be a total of |V |2/2 edges adding the number of edges in
each together.

Then, we add a single edge from one component to the other. This will
mean that every vertex in the component the edge is coming from will have
an edge going to every vertex in the component that the edge is going to.
So, the total number of edges after this operation will be |V |/2 + |V |/4. So,
the number of edges increased by |V |/4. Since each time we add an edge, we
need to use at least constant time, since there is no cheap way to add many
edges at once, the total amount of time needed is Ω(|V |2).

c. We will have each vertex maintain a tree of vertices that have a path to it and
a tree of vertices that it has a path to. The second of which is the transitive

12

closure at each step. Then, upon inserting an edge, (u,v), we will look at
successive ancestors of u, and add v to their successor tree, just past u. If we
ever don’t insert an edge when doing this, we can stop exploring that branch
of the ancestor tree. Similarly, we keep doing this for all of the ancestors of
v. Since we are able to short circuit if we ever notice that we have already
added an edge, we know that we will only ever reconsider the same edge at
most n times, and, since the number of edges is O(n2), the total runtime is
O(n3).

Problem 25-2

a. As in problem 6-2, the runtimes for a d-ary min heap are the same as
for a d-ary max heap. The runtimes of INSERT, EXTRACT-MIN, and
DECREASE-KEY are O(logd n), O(d logd n), and O(logd n) respectively. If
d = Θ(nα) these become O(1/α), O(nα/α), and O(1/α) respectively. The
amortized costs for these operations in a FIbonacci heap are O(1), O(lg n),
and O(1) respectively.

b. Choose d = nε. Then implement Dijkstra’s algorithm using a d-ary min-
heap. The analysis from part (a) tells us that the runtime will be O(n/ε +
2n1+ε/ε) = O(n1+ε) = O(E).

c. Run the algorithm from part (b) once for each vertex of the graph.

d. Using the methods from section 25.3, create the graphG′ with all nonnegative
edge weights using the weight function ŵ, proceed as in part (c), then convert
back to the original weight function.

13

