
Chapter 12

Michelle Bodnar, Andrew Lohr

May 5, 2017

Exercise 12.1-1

Anytime that a node has a single child, treat it as the right child, with the
left child being NIL

10

4

1 5

17

16 21

10

4

1 5

16

17

21

1



5

1

4

10

16

17

21

4

1 5

10

16

17

21

2



1

4

5

10

16

17

21

Exercise 12.1-2

The binary-search-tree property guarantees that all nodes in the left subtree
are smaller, and all nodes in the right subtree are larger. The min-heap prop-
erty only guarantees the general child-larger-than-parent relation, but doesn’t
distinguish between left and right children. For this reason, the min-heap prop-
erty can’t be used to print out the keys in sorted order in linear time because
we have no way of knowing which subtree contains the next smallest element.

Exercise 12.1-3

Our solution to exercise 10.4-5 solves this problem.

Exercise 12.1-4

We call each algorithm on T.root. See algorithms PREORDER-TREE-
WALK and POSTORDER-TREE-WALK.

Exercise 12.1-5

Suppose to a contradiction that we could build a BST in worst case time
o(n lg(n)). Then, to sort, we would just construct the BST and then read off the

3



Algorithm 1 PREORDER-TREE-WALK(x)

if x 6= NIL then
print x
PREORDER-TREE-WALK(x.left)
PREORDER-TREE-WALK(x.right)

end if
return

Algorithm 2 POSTORDER-TREE-WALK(x)

if x 6= NIL then
POSTORDER-TREE-WALK(x.left)
POSTORDER-TREE-WALK(x.right)
print x

end if
return

elements in an inorder traversal. This second step can be done in time Θ(n) by
Theorem 12.1. Also, an inorder traversal must be in sorted order because the
elements in the left subtree are all those that are smaller than the current ele-
ment, and they all get printed out before the current element, and the elements
of the right subtree are all those elements that are larger and they get printed
out after the current element. This would allow us to sort in time o(n lg(n)) a
contradiction

Exercise 12.2-1

option c could not be the sequence of nodes explored because we take the
left child from the 911 node, and yet somehow manage to get to the 912 node
which cannot belong the left subtree of 911 because it is greater. Option e is
also impossible because we take the right subtree on the 347 node and yet later
come across the 299 node.

Exercise 12.2-2

See algorithms TREE-MINIMUM and TREE-MAXIMUM.

Algorithm 3 TREE-MINIMUM(x)

if x.left 6= NIL then
return TREE −MINIMUM(x.left)

else
return x

end if

4



Algorithm 4 TREE-MAXIMUM(x)

if x.right 6= NIL then
return TREE −MAXIMUM(x.right)

else
return x

end if

Exercise 12.2-3

Algorithm 5 TREE-PREDECESSOR(x)

if x.left 6= NIL then
return TREE-MAXIMUM(x.left)

end if
y = x.p
while y 6= NIL and x == y.left do

x = y
y = y.p

end while
return y

Exercise 12.2-4

Suppose we search for 4 in this tree. Then A = {2}, B = {1, 3, 4} and C = ∅,
and Professor Bunyan’s claim fails since 1 < 2.

1

NIL 3

2 4

Exercise 12.2-5

Suppose the node x has two children. Then it’s successor is the minimum
element of the BST rooted at x.right. If it had a left child then it wouldn’t be
the minimum element. So, it must not have a left child. Similarly, the prede-
cessor must be the maximum element of the left subtree, so cannot have a right
child.

Exercise 12.2-6

5



First we establish that y must be an ancestor of x. If y weren’t an ancestor
of x, then let z denote the first common ancestor of x and y. By the binary-
search-tree property, x < z < y, so y cannot be the successor of x.

Next observe that y.left must be an ancestor of x because if it weren’t, then
y.right would be an ancestor of x, implying that x > y. Finally, suppose that
y is not the lowest ancestor of x whose left child is also an ancestor of x. Let
z denote this lowest ancestor. Then z must be in the left subtree of y, which
implies z < y, contradicting the fact that y is the successor if x.

Exercise 12.2-7

To show this bound on the runtime, we will show that using this procedure,
we traverse each edge twice. This will suffice because the number of edges in a
tree is one less than the number of vertices.

Consider a vertex of a BST, say x. Then, we have that the edge between
x.p and x gets used when successor is called on x.p and gets used again when it
is called on the largest element in the subtree rooted at x. Since these are the
only two times that that edge can be used, apart from the initial finding of tree
minimum. We have that the runtime is O(n). We trivially get the runtime is
Ω(n) because that is the size of the output.

Exercise 12.2-8

Let x be the node on which we have called TREE-SUCCESSOR and y be the
kth successor of x. Let z be the lowest common ancestor of x and y. Successive
calls will never traverse a single edge more than twice since TREE-SUCCESSOR
acts like a tree traversal, so we will never examine a single vertex more than
three times. Moreover, any vertex whose key value isn’t between x and y will
be examined at most once, and it will occur on a simple path from x to z or y
to z. Since the lengths of these paths are bounded by h, the running time can
be bounded by 3k + 2h = O(k + h).

Exercise 12.2-9

If x = y.left then calling successor on x will result in no iterations of the
while loop, and so will return y. Similarly, if x = y.right, the while loop for call-
ing predecessor(see exercise 3) will be run no times, and so y will be returned.
Then, it is just a matter of recognizing what the problem asks to show is exactly
that y is either predecessor(x) or successor(x).

Exercise 12.3-1

The initial call to TREE-INSERT-REC should be NIL,T.root,z
Exercise 12.3-2

6



Algorithm 6 TREE-INSERT-REC(y,x,z)

if x 6= NIL then
if z.key < x.key then

TREE-INSERT-REC(x,x.left,z)
else

TREE-INSERT-REC(x,x,right,z)
end if

end if
z.p = y
if y == NIL then

T.root = z
else if z.key < y.key then

y.left = z
else

y.right = z
end if

The nodes examined in the while loop of TREE-INSERT are the same as
those examined in TREE-SEARCH. In lines 9 through 13 of TREE-INSERT,
only one additional node is examined.

Exercise 12.3-3

The worst case is that the tree formed has height n because we were inserting
them in already sorted order. This will result in a runtime of Θ(n2). In the best
case, the tree formed is approximately balanced. This will mean that the height
doesn’t exceed O(lg(n)). Note that it can’t have a smaller height, because a
complete binary tree of height h only has Θ(2h) elements. This will result in a
rutime of O(n lg(n). We showed Ω(n lg(n)) in exercise 12.1-5.
Exercise 12.3-4

Deletion is not commutative. In the following tree, deleting 1 then 2 yields
a different from the one obtained by deleting 2 then 1.

2

1 4

3 NIL

Exercise 12.3-5

7



Our insertion procedure follows closely our solution to 12.3-1, the difference
being that once it finds the position to insert the given node, it updates the
succ fields appropriately instead of the p field of z.

Algorithm 7 TREE-INSERT’(y,x,z)

if x 6= NIL then
if z.key < x.key then

TREE-INSERT’(x,x.left,z)
else

TREE-INSERT’(x,x,right,z)
end if

end if
if y == NIL then

T.root = y
else if z.key < y.key then

y.left = z
x.succ = y

else
y.right = z
z.succ = y.succ
y.succ = z

end if

Our Search procedure is unchanged from the version given in the previous
section

We will assume for the deletion procedure that all the keys are distinct, as
that has been a frequent assumption throughout this chapter. This will however
depend on it. Our deletion procedure first calls search until we are one step away
from the node we are looking for, that is, it calls TREE-PRED(T.root,z.key)

Algorithm 8 TREE-PRED(x,k)

if k < x.key then
y = x.left

else
y = x.right

end if
if y == NIL then

throw error
else if y.key = k then

return x
else

return TREE-PRED(y,k)
end if

It can use this TREE-PRED procedure to compute u.p and v.p in the

8



TRANSPLANT procedure. Since TREE-DELETE only calls TRANSPLANT
a constant number of times, increasing the runtime of TRANSPLANT to O(h)
in this way causes the runtime of the new TREE-DELETE procedure to be O(h).

Exercise 12.3-6

Update line 5 so that y is set equal to TREE-MAXIMUM(z.left). To imple-
ment the fair strategy, we could randomly decide each time TREE-DELETE is
called whether or not to use the predecessor or successor.

Exercise 12.4-1

Consider all the possible positions of the largest element of the subset of
n + 3 of size 4. Suppose it were in position i + 4 for some i ≤ n− 1. Then, we
have that there are i+ 3 positions from which we can select the remaining three
elements of the subset. Since every subset with different largest element is dif-
ferent, we get the total by just adding them all up (inclusion exclusion principle).

Exercise 12.4-2

To keep the average depth low but maximize height, the desired tree will be
a complete binary search tree, but with a chain of length c(n) hanging down
from one of the leaf nodes. Let k = log(n− c(n)) be the height of the complete
binary search tree. Then the average height is approximately given by

1

n

n−c(n)∑
i=1

lg(i) + (k + 1) + (k + 2) + . . . + (k + c(n))

 ≈ lg(n− c(n)) +
c(n)2

2n
.

The upper bound is given by the largest c(n) such that lg(n−c(n))+ c(n)2

2n =
Θ(lg n) and c(n) = ω(lg n). One function which works is

√
n.

Exercise 12.4-3

Suppose we have the elements {1, 2, 3}. Then, if we construct a tree by a
random ordering, then, we get trees which appear with probabilities some mul-
tiple of 1

6 . However, if we consider all the valid binary search trees on the key
set of {1, 2, 3}. Then, we will have only five different possibilities. So, each will
occur with probability 1

5 , which is a different probability distribution.

Exercise 12.4-4

The second derivative is 2x ln2(2) which is always positive, so the function
is convex.

9



Exercise 12.4-5

Suppose that when quicksort always selects it’s elements to be in the middle
n1−k/2 of the elements each time. Then, the size of the problem shrinks by a
power of at least (1−k/2) each time. So, the greatest depth of recursion d will be

so that n(1−k/2)d ≤ 2, solving for d, we get (1− k/2)d ≤ logn(2) = lg(2)/ lg(n),
so, d ≤ log1−k/2(lg(2))−log1−k/2(lg(n) = log1−k/2(lg(2))−lg(lg(n))/ lg(1−k/2).

Let A(n) denote the probability that when quicksorting a list of length n,
some pivot is selected to not be in the middle n1−k/2 of the numbers. This
doesn’t happen with probability 1

nk/2 . Then, we have that the two subproblems

are of sizen1, n2 with n1 + n2 = n − 1 and max{n1, n2} ≤ n1−k/2. So, A(n) ≤
1

nk/2 + T (n1) + T (n2) So, since we bounded the depth by O(1/ lg(n)) let {ai,j}i
be all the subproblem sizes left at depth j. So, A(n) ≤ 1

nk/2

∑
j

∑
i
1
a

Problem 12-1

a. Each insertion will add the element to the right of the rightmost leaf because
the inequality on line 11 will always evaluate to false. This will result in the
runtime being

∑n
i=1 i ∈ Θ(n2)

b. This strategy will result in each of the two children subtrees having a differ-
ence in size at most one. This means that the height will be Θ(lg(n)). So,
the total runtime will be

∑n
i=1 lg(n) ∈ Θ(n lg(n))

c. This will only take linear time since the tree itself will be height 0, and a
single insertion into a list can be done in constant time.

d. The worst case performance is that every random choice is to the right (or
all to the left) this will result in the same behavior as in the first part of this
problem, Θ(n2)

To compute the expected runtime informally, just notice that when randomly
choosing, we will pick left roughly half the time, so, the tree will be roughly
balanced, so, we have that the depth is roughly lg(n), so the expected runtime
will be n lg(n).

Problem 12-2

The word at the root of the tree is necessarily before any word in its left or
right subtree because it is both shorter, and the prefix of, every word in each of
these trees. Moreover, every word in the left subtree comes before every word
in the right subtree, so we need only perform a preorder traversal. This can be
done recursively, as shown in exercise 12.1-4.

Problem 12-3

a. Since we are averaging over all nodes x the value of d(x, T ), it is 1
n

∑
x∈T d(x, T ),

but by definition, this is 1
nP (T ).

10



b. Every non-root node has a contribution of one coming from the first edge from
the root on its way to that node, every other edge in this path is counted
by looking at the edges within the two subtrees rooted at the child of the
original root. Since there are n− 1 non-root nodes, we have

P (T ) =
∑
x∈T

d(x, T ) =
∑
x∈TL

d(x, T ) +
∑
x∈TR

d(x, T ) =

∑
x∈TL

(d(x, TL)+1)+
∑
x∈TR

(d(x, TR)+1) =
∑
x∈TL

d(x, TL)+
∑
x∈TR

d(x, TR)+n−1 =

P (TL) + P (TR) + n− 1

c. When we are randomly building our tree on n keys, we have n possibilities
for the first element that we add to the tree, the key that will belong to
the eventual root. Suppose that it had order statistic i + 1 for some i in
{0, . . . n − 1}. Then, we have that all the smaller elements will be to the
left and all the larger elements will be in the subree to the right. However,
they will all be in random order relative to each other, so, we will have
P (i) = E[P (TL)] and P (n− i−1) = E[P (TR)]. So, we have have the desired
inequality by averaging over the order statistic of the first term put into the
BST.

d.

1

n

n−1∑
i=0

P (i)+P (n−i−1)+n−1 =
1

n

(
n−1∑
i=0

P (i) +

n−1∑
i=0

P (n− i− 1) +

n−1∑
i=0

(n− 1)

)

Then, we do the substitution j = n−i−1 and do the simple thing of summing
a constant for the third sum to get

=
1

n

n−1∑
i=0

P (i) +

n−1∑
j=0

P (j) + n(n− 1)

 =
2

n

n−1∑
i=0

P (i) + n− 1

e. Our recurrence from the previous part is exactly the same as eq (7.6) which
we showed in problem 7-3.e to have solution Θ(n lg(n))

f. Let the first pivot selected be the first element added to the binary tree. Since
every element is compared to the root, and every element is compared to the
first pivot, we have what we want. Then, let the next pivot for the left (resp.
right) subarrays be the first element that is less than (resp. greater than)
the root. Then, we have that the two subtrees form the same partition of the
remaining elements as the two subarrays left form. We can than continue to
recurse in this way. Since if holds at the first element, and the problems have
the same recursive structure, we have that it holds at every element.

11



Problem 12-4

a. There is a single binary tree on one vertex consisting of just a root, so b0 = 1.
To count the number of binary trees with n nodes, we first choose a root from
among the n vertices. If the root node we have chosen is the ith smallest
element, the left subtree will have i − 1 vertices, and the right subtree will
have n−i vertices. The number of such left and right subtrees are counted by
bi−1 and bn−i respectively. Summing over all possibly choices of root vertex
gives:

bn =

n∑
k=1

bk−1bn−k =

n−1∑
k=0

bkbn−k−1.

b.

B(x) =

∞∑
n=0

bnx
n

= 1 +

∞∑
n=1

bnx
n

= 1 +

∞∑
n=1

n−1∑
k=0

bkbn−k−1x
n

= 1 + x

∞∑
n=1

n−1∑
k=0

bkx
kbn−k−1x

n−k−1

= 1 + x

∞∑
n=0

n∑
k=0

bkx
kbn−kx

n−k

= 1 + xB(x)2.

Applying the quadratic formula and noting that the minus sign is to be taken
so that B(0) = 0 proves the result.

12



c. Using the Taylor expansion of
√

1− 4x we have:

B(x) =
1

2x

(
1−

∞∑
n=0

1

1− 2n

(
2n

n

)
xn

)

=
−1

2x

∞∑
n=1

1

1− 2n

(
2n

n

)
xn

=
1

2

∞∑
n=1

1

2n− 1

(
2n

n

)
xn−1

=
1

2

∞∑
n=0

1

2n + 1

(
2n + 2

n + 1

)
xn.

Extracting the coefficient from xn and simplifying yields the result.

d. The asymptotic follows from applying Sirling’s formula to bn.

13


