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Exercise C.1-1

Since a substring is indexed by a pair of integers i, j such that 1 ≤ i ≤ j ≤ n.
Since we want the length of the substring to be k, then, j−i = k−1. Rearranging
this, we can solve for j and plug it into the original set of inequalities to get that
we need 1 ≤ i and i ≤ n−k−1. So, i can be precicely any of {1..n−k+ 1}. So,
there are n−k+1 substrings of length k. To get the total number of substrings,
we can just add this formula over all k. Here we are assuming that a string
needs to be nonempty, a point that was left undeclared in the definition given
in this section.

n∑
k=1

n− k + 1 = n2 − n(n+ 1)

2
+ n

=
n(n+ 1)

2

=

(
n+ 1

2

)

Such a lovely formula deserves a combinatorial explaination instead of just
a bunch of algebraic symbol pushing. And it turns out that we don’t need to
look far. Given a string of length n, and pair of distinct indices in {1..n+1}, we
get a uniques subtring starting at the first index and ending the position before
the second index. Put in other words, pairs of these indices are in bijection
with substrings. Since there are n indices to begin with, there are

(
n+1
2

)
pairs

of indices picked from {1..n+ 1}, and so
(
n+1
2

)
substrings.

Exercise C.1-2

There are 2(2
n) n-input, 1-output boolean functions and (2m)(2

n) n-input,
m-output boolean functions.

Exercise C.1-3
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First seat one of the professors, then there are n − 1 choices for the per-
son sitting immediately to his right. Then, n − 2 choices for the person im-
mediately to that person’s right. Continue this until there is only a single
person left. Multiplying together all of these choices, we get that there are
(n− 1)(n− 2) · · · 1 = (n− 1)! ways.

Exercise C.1-4

The sum of three numbers is even if and only if they are all even, or exactly
two are odd and one is even. For the first case, there are

(
49
3

)
ways to pick them.

For the second case, there are
(
50
2

)(
49
1

)
ways. Thus, the total number of ways to

select 3 distinct numbers so that their sum is even is(
49

3

)
+

(
50

2

)(
49

1

)
.

Exercise C.1-5

We’ll just do an algebraic proof, even though “nicer” combinatorial proofs
do exist

(
n

k

)
=

n!

k!(n− k)!

=
n

k

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!

=
n

k

(
n− 1

k − 1

)
Exercise C.1-6

We can prove this directly:(
n

k

)
=

n!

k!(n− k)!
=

n

n− k
(n− 1)!

k!(n− k − 1)!
=

n

n− k

(
n− 1

k

)
.

Exercise C.1-7

Distinguish one of the objects. In the case that you do select this object,
then you only need to pick k − 1 more objects from the remaining n− 1 items,
which there are

(
n−1
k−1
)

ways of doing. If you do not select the distinguished
object, you still need to pick all k items, and there are only n− 1 items left to
pick from, since you know you can’t pick the distinguished object. This gets
us
(
n−1
k

)
ways. Since these two cases are disjoint and cover all possibilities, we

have that (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
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Exercise C.1-8

The following shows Pascal’s triangle with n increasing down columns and
k increasing across rows.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Exercise C.1-9

There is a simple algebraic proof that can be done by induction based on

the fact that
(
n
2

)
= n2−n

2 . There is a more interesting combinatorial proof as
follows. Suppose that you are picking two items from a set of n+1 items. Then,
spit into n different cases based on what the last item you pick is. Suppose that
you pick position i as your last one. Notice that we must have that i is from 2
to n + 1. Then, for the other thing we pick, we could pick anything occurring
before i, so we have i − 1 choices. From there, we just to a simple change of
variables to get (

n

k

)
=

n+1∑
i=2

i− 1 =

n∑
i=1

i

Exercise C.1-10

Fix n. Then we have

(
n

k

)
=

n!

k!(n− k)!
=
n− k + 1

k

n!

(k − 1)!(n− k + 1)!
=
n− k + 1

k

(
n

k − 1

)
.

Thus, we increase in k if and only if n−k+1
k ≥ 1, which happens only when

n + 1 ≥ 2k, or k ≤ dn/2e. On the other hand, we decrease in k if and only if
n−k+1

k ≤ 1, so k ≥ bn/2c. Thus, the function is maximized precisely when k is
equal to one of these.

Exercise C.1-11
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(
n

j + k

)
=

n!

(j + k)!(n− j − k)!

=
n!

j!(n− j)!
j!(n− j)!

(j + k)!(n− j − k)!

=

(
n

j

)
j!(n− j)!

(j + k)!(n− j − k)!

=

(
n

j

)
(n− j)!

(j + k)(j + k − 1) · · · (j + 1)(n− j − k)!

≤
(
n

j

)
(n− j)!

k!(n− j − k)!

=

(
n

k

)(
n− j
k

)
For a combinatorial (not algebraic) proof, we can see that if we fisrt pick j

items, and then from the remaining pick k more, we have the quantity on the
right. However, for each of the selections of j + k items on the right, there is at
least one way of picking j then picking k, giving us our inequality.

To see it is not tight, consider when n = 2, and j = k = 1. Then, we have
that the left is

(
2
2

)
= 1. The right, however, is

(
2
1

)(
1
1

)
= 2 which is strictly greater.

Exercise C.1-12

We’ll prove inequality C.6 for k ≤ n/2 by induction on k. For k = 0 we
have

(
n
0

)
= 1 ≤ nn

00(n−0)(n−0) = 1. Now suppose the claim holds for k, and that

k < n/2. Then we have

(
n

k + 1

)
=
n− k
k + 1

(
n

k

)
≤ n− k
k + 1

nn

kk(n− k)(n−k)

=
nn

(k + 1)kk(n− k)(n−k−1)
.

To show that this is bounded from above by nn

(k+1)k+1(n−k−1)(n−k−1) we need

only verify that
(
k+1
k

)k ≤ ( n−k
n−k−1

)n−k−1
. This follows from the fact that the

left hand side, when viewed as a function of k, is increasing, and k < n/2 which
implies that k + 1 ≤ n− k. By induction, the claim holds. Using equation C.3,
we see that the claim extends to all 0 ≤ k ≤ n since the right hand side of the
inequality is symmetric in k and n− k.
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Exercise C.1-13

We start with
(
2n
n

)
= (2n)!

n!n! , then, applying Stirling’s approximation, we get
that this is

√
4πn

(
2n
e

)2n (
1 + Θ

(
1
n

))(√
2πn

(
n
e

)n (
1 + Θ

(
1
n

)))
·
(√

2πn
(
n
e

)n (
1 + Θ

(
1
n

))) =

√
4πn

(
2n
e

)2n (
1 + Θ

(
1
n

))(
2πn

(
n
e

)2n) · ((1 + Θ
(
1
n

)))
=

√
4πn

2πn
22n

(
1 + Θ

(
1

n

))
=

22n√
πn

(
1 + Θ

(
1

n

))
Exercise C.1-14

Differentiating the entropy function and setting it equal to 0 we have

H ′(λ) = lg(1− λ)− lg(λ) = 0,

or equivalently lg(1 − λ) = lg(λ). This happens when λ = 1/2. Moreover,
H ′′(1/2) = −4

ln(2) < 0, so this is a local maximum. We have H(1/2) = 1, and

since H(0) = H(1) = 0, this is in fact a global maximum for H.

Exercise C.1-15

n∑
k=0

(
n

k

)
k =

n∑
k=0

n!

k!(n− k)!
k

=

n∑
k=0

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
n

= n

n∑
k=0

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!

= n

n∑
k=0

(
n− 1

k − 1

)

= n

n−1∑
k=0

(
n− 1

k

)
= n2n−1

Exercise C.2-1

The only way that Rosencrantz could of obtained more heads than Guilden-
stern is if he got a hears and Guildenstern got no heads, so, two tails. This
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event has proscribed outcomes for all three coin flips, and so it happens with
probability 1

23 = 1
8 .

Exercise C.2-2

Let Bi = Ai\(∪i−1k=1Ai). Then B1, B2, . . . are disjoint and A1 ∪ A2 ∪ . . . =
B1 ∪ B2 ∪ . . .. Moreover, Bi ⊆ Ai for each i, so Pr(Bi) ≤ Pr(Ai). By third
axiom of probability we have

Pr(A1 ∪A2 ∪ . . . = Pr(B1 ∪B2 ∪ . . .) =
∑
i≥1

Pr(Bi) ≤
∑
i≥1

Pr(Ai).

Exercise C.2-3

It is a 1/6 likelyhood. Here are two ways that you can show this fact. The
first kind of messy, the second much more elegant.

This first is a direct counting argument. There are 10 · 9 · 8 = 720 differerent
sequences of cards picked, since we can at each step pick any card that is left.
To count the number of sequences that are in increasing order, we choose the
first card(call its value i), then any number larger than that for the second(say
j) and any number larger than the second for the third(say k). This can be
expressed by the summation:

10∑
i=1

10∑
j=i+1

10∑
k=j+1

1 =

10∑
i=1

10∑
j=i+1

10− j =

10∑
i=1

10(10− i)− 10 · 11

2
+

(i)(i+ 1)

2
=

10∑
i=1

45− 9.5i+ i2/2 =

450− 9.5 · 10 · 11

2
+

10 · 11 · 21

2 · 6
=

450− 522.5 + 192.5 =

120

Where we have arrived at this count only using the formula for sum of kth
powers. Then this gives us our final probability of 120/720 = 1/6. Note also that
it is unimportant to rule out the cases i=9, 10 and j=10. They are impossible
cases, but if they occur then the sum will come out to be equal to zero anyways,
I just figured that having it all go to 10 was more aesthetically pleasing.

The second way to show this probability is to first fix the three elements
that you happened to pick and use symmetry. The set of values that are among
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the cards has no bearing on whether the cards are in order. Since the numerical
value on these cards is independent of the random the selection process, all
possible orders for those three elements are equally likely. There are six different
orderings on three elements, so the likelyhood they are ordered numerically is
1/6.

Thank you to Eric Richardson for pointing out that the originally posted
solution for this exercise was misinterpreting the question.
Exercise C.2-4

We can verify this directly from the definition of conditional probability as
follows:

Pr(A|B) + Pr(A|B) =
Pr(A ∩B)

Pr(B)
+
Pr(A ∩B)

Pr(B)
=
Pr(B)

Pr(B)
= 1.

Exercise C.2-5

We will proceed by induction on n. If n = 2, this is equation (C.16). Suppose
that n > 2. Let C = ∩i = 1n−1Ai. Then, we will use equation (C.16) followed
by the inductive hypothesis to get

Pr(A1 ∩A2 ∩ · · · ∩An) = Pr(C ∩An)

= Pr(An|C) Pr(C)

= Pr(An|A1 ∩A2 ∩ · · · ∩An−1) Pr(A1 ∩A2 ∩ · · · ∩An−1)

= Pr(An|A1 ∩A2 ∩ · · · ∩An−1) · · ·Pr(A3|A1 ∩A2) Pr(A2|A1) Pr(A1)

Exercise C.2-6

Let .a1a2a3 . . . be the binary representation of a/b. Flip the fair coin repeat-
edly, associating 1 with heads and 0 with tails, until the first time that the value
of the ith flip differs from ai. If the value is greater than ai, output tails. If the
value is less than ai, output heads. Every number between 0 and .99999 . . . = 1
has the possibility to be represented, and is created by randomly choosing its
binary representation. The probability that we output tails is the probability
that our number is less than a/b, which is just a/b. The expected number of
flips is

∑∞
i=1 i2

−i = 2 = O(1).

Exercise C.2-7

Select n random colinear points. Seeing any one of them, you know nothing
new about the distribution of the others. However, given two of them, you know
the line that the third point would need to lie on.
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Exercise C.2-8

Suppose we have a biased coin which always comes up heads, and a fair
coin. We pick one at random and flip it twice. Let A be the event that the
first coin is heads, B be the event that the second coin is heads, and C be the
event that the fair coin is the one chosen. Then we have Pr(A ∩B) = 5/8 and
Pr(A) = Pr(B) = 3/4 so Pr(A ∩ B) 6= Pr(A)Pr(B). Thus, A and B are not
independent. However,

Pr(A ∩B|C) =
Pr(A ∩B ∩ C)

Pr(C)
=

(1/2)(1/2)(1/2)

1/2
= 1/4

and

Pr(A|C) · Pr(B|C) =
Pr(A ∩ C)

Pr(C)

Pr(B ∩ C)

Pr(C)
=

1/4

1/2

1/4

1/2
= 1/4.

Exercise C.2-9

This problem has many explanations. I’ll give a concise one, as there are
versions online that really hold your hand through the whole thing.

First, supposing that you don’t switch, then the likelyhood of winning will
just be 1

3 , since the original decision was made before any additional information
leaked in by way of lifting a curtain, so it must just be uniformly random.

Now, suppose that you do switch, your likelyhood of winning will increase to
2
3 . To see this, we split into two cases. Suppose you guessed correctly initially,
which happens with probability 1

3 , then you will fail. However, if you picked
incorrectly originally, which happens with probability 2

3 , you will then win by
switching. Therefore, you will win with probability 2

3 .
So, your chances of winning double by adopting the switching strategy in-

stead of the staying strategy.

Exercise C.2-10

His chances are still 1/3, because at least one of Y or Z would be executed,
so hearing which one changes nothing about his own situation. However, the
probability that Z is going free is now 2/3. To see this, note that the probability
that the free prisoner is among Y and Z is 2/3. Since we are told that it is not
Y , the 2/3 probability must apply exclusively to Z.

Exercise C.3-1

The expectation of a single dice roll is 1
6 (1 + 2 + 3 + 4 + 5 + 6) = 21

6 = 3.5.
So, by linearity of expectation, the expectation of their sum is 7.

We have that the probability that the maximum of the two dice results is
≤ i is the probability that both dice results lie in the range 1, 2, .., i. This

happens with probability i2

36 . Then, to get the probability that a particular
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value of the maximum occurs, we take the difference of successive values of this
cumulative density function. This gets us that the probability of a max of i is
i2−(i−1)2

36 = 2i−1
36 . So, the expected value of this max is

1

36
(1 + 6 + 15 + 28 + 45 + 66) =

161

36
≈ 4.47

Exercise C.3-2

The probability that the maximum or minimum element is in a particular
spot is 1/n since the ordering is random. Thus, the expected index of the
maximum and minimum are the same, and given by:

E[X] =

n∑
i=1

i(1/n) =
1

n

n(n+ 1)

2
=
n+ 1

2
.

Exercise C.3-3

The probability that you loose your dollar is (5/6)3 = 125
216 . The probability

you gain exactly one dollar is
(
3
1

)
(1/6)(5/6)2 = 75

216 . The probability you gain

exactly two dollars is
(
3
2

)
(1/6)2(5/6) = 15

216 . The probability that you win 3
dollars is (1/6)3 1

216 . putting it all together, the payoff is

3

216
+

30

216
+

75

216
− 125

216
= − 17

216

So, you are expected to loose 17
216 of a dollar.

Exercise C.3-4

Let X and Y be nonnegative random variables. Let Z = X+Y . Then Z is a
random variable, and since X and Y are nonnegative, we have Z ≥ max(X,Y )
for any outcome. Thus, E[max(X,Y )] ≤ E[Z] = E[X] + E[Y ].

Exercise C.3-5

the value of f(X) is only a function of X, and, so it may only leak infor-
mation about the state of X. Similarly g(Y ) can only depend on and leak
information about the state of Y . Since the states of X and Y don’t affect each
other, knowing the value of functions of the two random varaibles also will not
affect each other.

Exercise C.3-6

We can verify directly from the definition of expectation:
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E[X] =

∞∑
i=0

i · Pr(X = i)

≥
∞∑
i=t

i · Pr(X = i)

≥ t
∞∑
i=t

Pr(X = i)

= t · Pr(X ≥ t).

Dividing both sides by t gives the result.

Exercise C.3-7

Let S′ ⊆ S be the states of the sample space for whcih X ′ takes a value that
is ≥ t. For any of these states, we will also have that X takes a value that is at
least t. This gets us that the set of states for which X is at least t is a superset
of S′. Then, by monotonicity of probability, we have the desired inequality on
the probabilities.

Exercise C.3-8

The expectation of the square of a random variable is larger. To see this,
note that by (C.27) we have E[X2] − E2[X] = E[(X − E[X])2] ≥ 0 since the
square of a random variable is a nonnegative random variable, so its expectation
must be nonnegative.

Exercise C.3-9

Since X only takes the values 0 and 1, we will always have that X2 = X.
Then, the probability that X takes the value of 1 is equal to the expected value
of X. So,

V ar[X] = E[X2]− (E[X])2

= E[X]− (E[X])2

= E[X](1− E[X])

= E[X](E[1]− E[X])

= E[X](E[1−X])

Exercise C.3-10

Proceeding from (C.27) we have
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V ar[aX] = E[(aX)2]− E2[aX]

= E[a2X2]− a2E2[X]

= a2E[X2]− a2E2[X]

= a2(E[X2]− E2[X])

= a2V ar[X].

Exercise C.4-1

Axiom 2 states that the probability of the entire space should be one. This
is saying that if we add up the probabilities of each i occurring over all i, we
should get one. This is easy to see because

∞∑
i=1

(1− p)i−1p =
p

1− (1− p)
=
p

p
= 1

Exercise C.4-2

Let X be the number of times we must flip 6 coins before we obtain 3 heads
and 3 tails. The probability that we obtain 3 heads and 3 tails is

(
6
3

)
(1/2)6 =

5/16, so the probability that we don’t is 11/16. Moreover, X has a geometric
distribution, so by (C.32) we have

E[X] = 1/p = 16/5.

Exercise C.4-3

To go from the first line to the second, we use the fact that picking k items
is identical to selecting the n− k items you aren’t picking.

b(k;n, p) =

(
n

k

)
pk(1− p)n−k

=

(
n

n− k

)
pk(1− p)n−k

= b(n− k;n, 1− p)

Exercise C.4-4

Using Stirling’s approximation we have b(k;n, p) ≈
√
nnn

√
2π
√
k(n−k)kk(n−k)n−k

pkqn−k.

The binomial distribution is maximized at its expectation. Plugging in k = np
gives

b(np;n, p) ≈
√
nnnpnp(1− p)n−np√

np(n− np)(np)np(n− np)n−np
=

1√
2πnpq

.
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Exercise C.4-5

The probability that there will be no successes is equal to

lim
n→∞

b(0;n, 1/n) = lim
n→∞

(
n

0

)
1

n

0

(1− 1

n
)n−0

= lim
n→∞

(1− 1

n
)n

= lim
n→∞

((1 +
1

−n
)−n)−1

= e−1 =
1

e

Similarly, the probability of one success is equal to

lim
n→∞

b(1;n, 1/n) = lim
n→∞

(
n

1

)
1

n

1

(1− 1

n
)n−1

= lim
n→∞

n

n(1− 1
n )

(1− 1

n
)n

=

(
lim
n→∞

n

n(1− 1
n )

)
·
(

lim
n→∞

(1− 1

n
)n
)

= 1 · 1

e
=

1

e

Exercise C.4-6

There are 2n total coin flips amongst the two professors. They get the same
number of heads if Professor Guildenstern flips k heads and Professor Rosen-
crantz flips n− k tails. If we imagine flipping a head as a success for Professor
Rosencrantz and flipping a tail as a success for Professor Guildenstern, then
the professors get the same number of heads if and only if the total number of
successes achieved by the professors is n. There are

(
2n
n

)
ways to select which

coins will be a successes for their flipper. Since the outcomes are equally likely,
and there are 22n = 4n possible flip sequences, the probability is

(
2n
n

)
/4n.

To verify the identity, we can imagine counting successes in two ways. The
right hand side counts via our earlier method. For the left hand side, we can
imagine first choosing k successes for Professor Guildenstern, then choosing the
remaining n− k successes for Professor Rosencrantz. We sum over all k to get
the total number of possibilities. Since the two sides of the equation count the
same thing they must be equal.

Exercise C.4-7
We apply (C.7) with λ = k

n , then,
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b(k;n, 1/2) =

(
n

k

)
(1/2)k(1− 1/2)n−k

=

(
n

k

)
2−n

≤ 2nH(k/n)2−n

= 2nH(k/n)−n

Exercise C.4-8

Let a1, a2, . . . , an be uniformly chosen from [0, 1]. Let Xi be the indicator
random variable that ai ≤ pi and Yi be the indicator random variable that
ai ≤ p. Let X ′ =

∑n
i=1Xi and Y ′ =

∑n
i=1 Yi. Then for any event we have

X ′ ≤ Y ′, which implies P (X ′ < k) ≥ P (Y ′ < k). Let Y be the number of suc-
cesses in n trials if each trial is successful with probability p. Then X has the
same distribution as X ′ and Y has the same distribution of Y ′, so we conclude
that P (X < k) ≥ P (Y < k).

Exercise C.4-9

Consider having the underlying state space be n copies of the unit interval.
Then, a particular state will be a sequence of n numbers in [0, 1]. Then, X ′ will
be the number of times the ith coordinate is less than or equal to pi. Similarly,
X is the number of times that the ith coordinate is less than or equal to p′i.
Since pi ≤ p′i, we have that for any particular state, X ≤ X ′. Then we can
directly apply the results of C.3-7 to get the desired result.

Exercise C.5-1

Which one is less likely depends on the value of n.
The probability that you obtain no head when flipping n times is just 2−n,

straight from the definition of the binomial distribution.
The probability P that we will have fewer than n heads from 4n flips is

exactly

P = Pr{X < n} =

k=n−1∑
k=0

b(k, 4n, 1/2) = 2−4n
k=n−1∑
k=0

(
4n

k

)
In particular, since all the terms in the sum are positive, the probability is at
least the value of the largest term, so

P ≥
(

4n

n− 1

)
2−4n
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So, if we can just show that the quantity
(

4n
n−1
)
2−3n > 1, then we have that

P is greater than the probability that we have no head when flipping n times.
This is in fact not true in general, but we will show it is true for n ≥ 20.

We can then show by explicit computation what happens for n = 1 . . . 19. As
in inductive step, we can confirm that

(
80
19

)
2−60 ≈ 1.005 > 1.

Now, suppose that we have
(

4n
n−1
)
2−3n > 1.

(
4n+ 4

n

)
2−3n−3 =

(4n+ 4)!

8(n)!(3n+ 4)!
2−3n

=
(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

8n(3n+ 4)(3n+ 3)(3n+ 2)

(4n)!

(n− 1)!((3n+ 1)!
2−3n

=
(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

8n(3n+ 4)(3n+ 3)(3n+ 2)

(
4n

n− 1

)
2−3n

>
(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

8n(3n+ 4)(3n+ 3)(3n+ 2)

=
32

27

(n+ 1)(n+ 3/4)(n+ 1/2)(n+ 1/4)

8n(n+ 4/3)(n+ 1)(n+ 2/3)

Using elementary calculus, we can see that the limit of this rational expression
in n is equal to 32

27 , so, there is some n so that for all n past there, it will be

greater than 1, so, we will have
(
4n+4
n

)
2−3n−3 > 1.

More concretely, we can show that the rational function is an increasing
function on n for n > 0 by taking it’s derivative:

−24− 108n− 93n2 + 116n3 + 144n4

3n2(2 + 3n)2(4 + 3n)2

and noticing it is positive for n ≥ 1 because the numerator has real roots at
≈ −.368 and ≈ .937 and end behavor of +∞ as n → ∞. Then, since n = 3
causes the original rational expression to be 35

33 , we have that it is greater than
1 for all n ≥ 3. Since we are only considering n ≥ 20 here, we definitly have
that the expression is > 1.

Lastly, we turn our attention to the finitely many values of n that we left
out before. Since we only need to consider n = 1 . . . 19, we can just perform
the explicit computation for P as

∑k=n−1
k=0 b(k, 4n, 1/2) at each value of n and

compare it to 2−n.
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n P 2−n

1 1/16 1/2
2 9/256 1/4
3 79/4096 1/8
4 697/65536 1/16
5 1549/262144 1/32
6 55455/16777216 1/64
7 249589/134217728 1/128
8 4514873/4294967296 1/256
9 10249879/17179869184 1/512
10 93396401/274877906944 1/1024
11 3414035527/17592186044416 1/2048
12 31278197839/281474976710656 1/4096
13 71797952431/1125899906842624 1/8192
14 1321035185597/36028797018963968 1/16384
15 6086999773681/288230376151711744 1/32768
16 224723513577529/18446744073709551616 1/65536
17 519244699305955/73786976294838206464 1/131072
18 4805026093205835/1180591620717411303424 1/262144
19 44515314355630363/18889465931478580854784 1/524288

We can stop the table here since our inductive proof that P was larger was
starting at a base case of n = 20. So, by looking at the numerical values in the
table, we can see that if n < 18, then it is more unlikely that you have fewer
than n heads out of 4n flips and if n ≥ 18, then it more unlikely to have no
heads after flipping n times.

Exercise C.5-2

For Corollary C.6 we have b(i;n, p)/b(i− 1;n, p) ≤ (n−k)p
kq . Let x = (n−k)p

kq .
Note that x < 1, so the infinite series below converges. Then we have

15



Pr(X > k) =

n∑
i=k+1

b(i;n, p)

≤
n∑

i=k+1

xi−kb(k;n, p)

= b(k;n, p)

n−k∑
i=1

xi

≤ b(k;n, p)

∞∑
i=1

xi

= b(k;n, p)
x

1− x

= b(k;n, p)
(n− k)p

k − np
.

For Corollary C.7, we use Corollary C.6 and the fact that x < 1 as follows:

Pr(X > k)

Pr(X > k − 1)
=

Pr(X > k)

Pr(X > k) + Pr(X = k − 1)
≤ xb(k;n, p)

xb(k;n, p) + b(k;n, p)
<

1

2
.

Exercise C.5-3

Divide both sides of the expression through by (a + 1)n. Since a > 0, this
quantity is > 1, so the inequalities remain the way they are. This means that
it is equivalent to show that

k−1∑
i=0

(
n

i

)
ai(a+ 1)−n <

kb(k;n, a/(a+ 1))

na− k(a+ 1)

So, we do some algebra, and apply Theorem C.4.

16



k−1∑
i=0

(
n

i

)
ai(a+ 1)−n =

k−1∑
i=0

(
n

i

)(
a

a+ 1

)i(
1

a+ 1

)n−i

=

k−1∑
i=0

(
n

i

)(
a

a+ 1

)i(
1− a

a+ 1

)n−i

=

k−1∑
i=0

b(i;n,
a

a+ 1
)

<
k
(

1− a
a+1

)
n a
a+1 − k

b(k;n,
a

a+ 1
)

=
k
(

1
a+1

)
n a
a+1 − k

b(k;n,
a

a+ 1
)

=
k

na− k(a+ 1)
b(k;n,

a

a+ 1
)

completing the proof.

Exercise C.5-4

Using Lemma C.1 and Corollary C.4 we have

k−1∑
i=0

piqn−i ≤
k−1∑
i=0

(
n

i

)
piqn−i

=

k−1∑
i=0

b(i;n, p)

≤ kq

np− k
b(k;n, p)

≤ kq

np− k

(np
k

)k ( nq

n− k

)n−k
.

Exercise C.5-5

(note that this problem had extensive bugs prior to the third printing of the
third edition, see errata.)

Since the values of pi and qi appear nowhere in this expression, we can swap
the two. This has the effect of changing the mean to n − µ. This means that
the condition r > µ becomes r > n − µ which we have. Then, the right hand
side becomes Pr{(n −X)(b − µ) ≥ r} = Pr{µ −X ≥ r}. Then, just replacing

17



the µ occurring in the left, we obtain that

Pr{µ−X} ≤
(

(n− µ)e

r

)r
Similarly, we can apply corollary C.9 to this distribution counting the num-

ber of failures (swapping p and q). This has the result of making

Pr{np−X} = Pr{n−X − n(1− p)} = Pr{X − nq ≥ r} ≤
(nqe
r

)r
again, the restriction on r changes exactly into what we are given.

Exercise C.5-6

As in the proof of Theorem C.8, we’ll bound E[eα(X−µ) and substitute a
suitable value for α. First we’ll prove (with a fair bit of work) that if q = 1− p
then f(α) = eα

2/2 − peαq − qe−αp ≥ 0 for α ≥ 0. First observe that f(0) = 0.
Next we’ll show f ′(α) > 0 for α > 0. To do this, we’ll show that f ′(0) = 0 and
f ′′(α) > 0. We have

f ′(α) = αeα
2/2 − pqeαq + pqe−αp

so f ′(0) = 0. Moreover

f ′′(α) = α2eα
2/2 + eα

2/2 − pq(qeαq + pe−αp).

Since α2eα
2/2 > 0 it will suffice to show that eα

2/2 ≥ pq(qeαq + pe−αp).
Indeed, we have

pq(qeαq + pe−αp) ≤ (1/4)(qeαq + pe−αp ≤ (1/4)e−αp(eα + 1) ≤ (1/4)(eα + 1)

so we need to show 4eα
2/2 ≥ eα + 1. Since eα

2/2 > 1, it is enough to show
3eα

2/2 ≥ eα. Taking logs on both sides, we need α2/2 − α + ln(3) ≥ 0. By
taking a derivative we see that this function is minimized when α = 1, where it
attains the value ln(3)− 1/2 > 0. Thus, the original inequality holds. Now can
proceed with the rest of the proof. As in the proof of Theorem C.8, E[eα(X−µ) =∏n
i=1E[eα(Xi−pi)]. Using the inequality we just proved we have

E[eα(Xi−pi)] = pie
αqi + qie

−αpi ≤ eα
2/2.

Thus, E[eα(X−µ)] ≤
∏n
i=1 e

α2/2 = enα
2/2. By this and (C.43) and (C.44) we

have

Pr(X − µ ≥ r) ≤ E[eα(X−µ)]e−αr ≤ enα
2/2−αr.

Finally, taking α = r/n gives the desired result.
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Exercise C.5-7

We put on our freshman calculus hats. With them securely affixed, we take a
derivative of the expression with respect to α. This gets us (µeα− r) exp(µeα−
αr). Since a minima of the original expression will occur when the derivative
is zero, and the end behavior of the expression is increasing without bound, we
set this derivative equal to zero. The second factor is an exponential and so
can never be zero. So, we are trying to solve µeα − r = 0. This means that
α = ln(r/µ). at the minimum.

Problem C-1

a. For each of the n balls, we can make one of b different decisions about where
to place it. Since this number of possible decisions is independent of the
previous choices, the total number of possibilities is just bn.

b. First, we pretend that we can distingush the sticks. This means that we want
to arrange a total of n balls and b− 1 sticks, that is, n+ b− 1 total things.
There are exactly (b + n − 1)! ways of doing this. Then, we realize that a
bunch of these are the same, in particular, no matter how we permute the
b−1 sticks in some arrangement, we end up with the same answer. Therefore,
we can arrange n distinguishable balls and b − 1 indistinguishable sticks in
(n+b−1)!
(b−1)! many ways.

Once we have such an arrangement, we can relate it back to the original
statement, where we imagine the sticks as being the dividing lines between
bins, and the ordered balls between them being the ordered balls in each bin.

c. Taking the result from before, we notice that any of the n permutations of the
balls will result in the same configuration, so, we must divide our count from

the previous part by n!. This means that we are left with (n+b−1)!
n!(b−1)! =

(
n+b−1
n

)
.

d. Since each bin can either contain a bin or not, we are selecting a set of bins
to contain balls in the part. The number of non-empty bins must be equal
to the number of balls, so we are selecting n bins. That is, we are selecting
a subset of size n of the bins from the set of all bins, which there are n of.
This is then exactly the combinatorial definition of

(
b
n

)
defined in terms of

selecting subsets.

e. Since no bin may be left empty, this means that we need to put one ball
into each bin. This means that we have n− b balls left, and, since each bin
now contains at least one, we can put them into the bins with no further
restriction. This means we are in the case of part c. The only difference is
that the number of balls that we have to distribute it n−b not n. This means
that the answer is(

(n− b) + b− 1

n− b

)
=

(
n− 1

n− b

)
=

(
n− 1

(n− 1)− (n− b)

)
=

(
n− 1

b− 1

)
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