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Exercise A.1-1

n∑
k=1

(2k − 1) = 2

n∑
k=1

k −
n∑

k=1

1 = n(n + 1)− n = n2

Exercise A.1-2

Using the harmonic series formula we have that

n∑
k=1

1

(2k − 1)
≤ 1 +

n∑
k=1

1

2k
= 1 + ln(

√
n) + O(1) = ln(

√
n) + O(1).

Exercise A.1-3
First, we recall equation (A.8)

∞∑
k=0

kxk =
x

(1− x)2

for |x| < 1. Then, we take a derivative of each side, taking the derivative of the
left hand side term by term

∞∑
k=0

k · kxk−1 =
(1− x)2 + 2x(1− x)

(1− x)4
=

(1− x) + 2x

(1− x)3
=

(1 + x)

(1− x)3

Lastly, since we have a xk−1 instead of the xk that we’d like, we’ll multiply both
sides of the equation by x to get the desired equality.

∞∑
k=0

k2xk =
x(1 + x)

(1− x)3

Exercise A.1-4

Using formula A.8 we have
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∞∑
k=0

k − 1

2k
= −1 +

1

2

∞∑
k=0

k

(
1

2

)k

= −1 +
1

2
· 1/2

1/4

= −1 + 1

= 0.

Exercise A.1-5

First, we’ll start with the equation

∞∑
k=1

yk =
y

1− y

So long as |y| < 1. Then, we’ll let y = x2 to get

∞∑
k=1

(x2)k =
x2

1− x2

∞∑
k=1

xx2k =
x3

1− x2

∞∑
k=1

x2k+1 =
x3

1− x2

∞∑
k=1

(2k + 1)x2k =
3x2(1− x2) + 2x4

(1− x2)2

∞∑
k=1

(2k + 1)x2k =
3x2 − x4

(1− x2)2

so long as |x| < 1.

Exercise A.1-6

Let g1, g2, . . . , gn be any functions such that gk(i) = O(fk(i)). By the defi-
nition of big-oh there exist constant c1, c2, . . . , cn such that gk(i) ≤ ckfk(i). Let
c = max1≤k≤n ck. Then we have

n∑
k=1

gk(i) ≤
n∑

k=1

ckfk(i) ≤ c

n∑
k=1

fk(i) = O

(
n∑

k=1

fk(i)

)
.

Exercise A.1-7
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lg

(
n∏

k=1

2 · 4k
)

=

n∑
k=1

lg(2 · 4k)

=

n∑
k=1

lg(2) + k lg(4)

=

(
lg(2)

n∑
k=1

1

)
+

(
lg(4)

n∑
k=1

k

)

= n + 2
n(n + 1)

2
= n(n + 2)

This means that we need to raise 2 to this quantity to get the desired product,
so out final answer is

2n(n+2) = 2n
2

· 4n

Exercise A.1-8

We expand the product and cancel as follows:

n∏
k=2

1− 1/k2 =

n∏
k=2

(k − 1)(k + 1)

k2

=
1 · 3
2 · 2

· 2 · 4
3 · 3

· 3 · 5
4 · 4

· · · (n− 1) · (n + 1)

n · n

=
n + 1

2n
.

Exercise A.2-1
Define a function f1 = d 1

x2 e and f2 = 1 + 1
x2 . Note that we always have that

f1 ≤ f2. Then we have that the desired summation is exactly equal to
∫∞
1

f1
because the graph of f1 is a bunch of rectangles of width 1 and height equal to
each of the terms in the sum. By monotonicity of integrals, we have that this
is ≤

∫∞
1

f2 = 2.

Exercise A.2-2

When n = 2m the sum becomes n + n/2 + n/4 + . . . + 1 = 2n − 1 = O(n).
There always exists a power of 2 which lies between n and 2n for any choice of
n, so let n′ denote the smallest power of 2 which is greater than or equal to n.
Then we have
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blgnc∑
k=0

dn/2ke ≤
blgn′c∑
k=0

dn′/2ke = 2n′ − 1 ≤ 4n− 1 = O(n).

Exercise A.2-3
Similar to the derivation of (A.10), we split up the interval [n] into blg(n)c − 1
pieces, with the ith starting at 1/2i and going to 1/2i+1. So, we have

n∑
k=1

1

k
≥

lg(n)−1∑
i=0

2i−1∑
j=0

1

2i + j

≥
lg(n)−1∑

i=0

1

2i+1

=

lg(n)−1∑
i=0

1

2

=
1

2
lg(n)

Which gets us that the nth harmonic number is Ω(lg(n)).

Exercise A.2-4

Since k3 is monotonically increasing we use bound A.11. For the upper
bound we have

n∑
k=1

k3 ≤
∫ n+1

1

x3dx

=
x4

4

∣∣∣∣n+1

1

=
(n + 1)4 − 1

4
.

For the lower bound we have

n∑
k=1

k3 ≥
∫ n

0

x3dx

=
x4

4

∣∣∣∣n
0

=
n4

4
.
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Exercise A.2-5
If we were to apply the integral approximation given in (A.12) directly to the
sum, then we would be trying to evaluate the integral∫ n

0

dx

x

Which is an improper integral that doesn’t have a finite value.

Problem A-1

a. Applying the integral approximation to this, we get that∫ n

0

xrdx ≤
n∑

k=1

kr ≤
∫ n+1

1

xrdx

nr+1

r + 1
≤

n∑
k=1

kr ≤ (n + 1)r+1 − 1

r + 1

So, the given sum is nr+1( 1
r+1 + o(1)).

b. We will first show that we can approximate the integral well by g(x) =
x ln(x)s( 1

ln(2)s + f(x)) where f(x) is O(1/ ln(x)). The derivative of the RHS

is ln(x)s( 1
ln(2)s + f(x)) + ln(x)r−1( 1

ln(2)s + f(x)) + x ln(x)sf ′(x). Since f(x)

is going to zero at least as fast as 1
ln(x) , we have that f ′(x) ∈ O( 1

x ln(x)2 ), this

means that d
dxg(x) = lg(x)s(1 + O(1/ ln(x))). So, since the integral of the

derivative is the original function,

g(x) =

∫ x

1

lg(x)s(1 + O(1/ ln(x)))dx

=

∫ x

1

lg(x)sdx +

∫ x

1

O(ln(x)r−1))dx

=

∫ x

1

lg(x)sdx + O(x ln(x)r−1))

but this second term is insignificant enough to be absorbed into our f(x) in
how we defined g(x). Then, since we can bound the sum above and below by
the integral, just with shifted endpoints, and the derivative of the main term
of the integral is small enough to fit in the remainder term, shifting it by one
will not cause it’s value to change asymptotically. So, we have that the sum
is n ln(n)s( 1

ln(2)s + O( 1
ln(n) )) = n lg(n)s(1 + O( 1

ln(n) ) which is asymptotically

tight.
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c. For this problem we show that the integral is well approximated by g(n) =
nr+1/(r + 1) lg(n)s(1 + O( 1

ln(n) )). Then, we have g′(x) = nr lg(n)s(1 +

O( 1
ln(n) )) + nr/(r + 1) lg(n)s−1( 1

ln(2) + O( 1
ln(n) )) + nr lg(n)sO( 1

n ln(n)2 )) =

nr lg(n)s + O(nr lg(n)s−1). So, the exact same approximation goes through
as in the previous problem. So, we get that the sum is asymptotically equal
to

nr+1 lg(n)s

n + 1

(
1 + O

(
1

ln(n)

))
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