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Abstract

In this thesis, we shall study fundamental Bessel functions for GL,(IF) arising
from the Voronoi summation formula as well as Bessel functions for GL,(IF)
and GL;3(FF) occurring in the Kuznetsov trace formula, where n is any positive
integer and F = R or C.
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Notations

Denote N = {0,1,2...} and N, = {1,2,3,...}.

The group Z/27 is usually identified with the set {0, 1}.

Denote R, = (0,00), R, =[0,00), R* =R ~\ {0} and C* = C \ {0}.

Denote by U =~ R, x R the universal cover of C \ {0}. Each element z € U is

denoted by z = xe'®, with (x,¢) e R, x R.
For m € 7Z define §(m) € Z/27 by 6(m) = m(mod 2).

Forse Canda € N, let [s], = [[*—y (s — @) and (s)y = [ [*—y (s + @) if @ > 1, and

let [S]() = (S)O = 1.
For s € C let e(s) = e,

For a finite closed interval [a,b] — R define the closed vertical strip S[a,b] = {s €
C : Res € [a,b]}. The open vertical strip S(a, b) for a finite open interval (a, b) is

similarly defined.

For A € C and r > 0, define B,(1) = {s € C: |s — 1| < r} to be the disc of radius r

centered at s = A.

For A = (4, ...,4,) € C" denote |A| = > ;_, A, (this notation works for subsets of C",
for instance, (Z/27Z)" = {0, 1}" and Z").

X1



- Define the hyperplane "' = {Ae C": |A] = };_, 4, = 0}.
- Denote by e" the n-tuple (1, ..., 1).

- Form = (my, ...,m,) € Z" define |m|| = (|m|, ..., |my]).
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Preface

Bessel functions have been extensively studied since the early 19th century and are pre-
sented in various branches of mathematics as well as physics. In number theory, Bessel
functions appear in Voronoi’s summation formula, Petersson’s and Kuznetsov’s trace for-
mula for GL,(R) (in their simplest versions, for PSL,(Z)\PGL,(R)). Therefore, under-
standing the analytic properties of Bessel functions is necessary for understanding arith-
metic objects associated to GL,(R).

Applying his trace formula, Kuznetsov made the first progress in the direction of the
Linnik-Selberg conjecture on averages of Kloosterman sums in [Kuz]. Moreover, both
formulae have been heavily used to the subconvexity problems for Hecke L-functions of
cuspidal modular forms (see the series of papers by Duke, Friedlander and Iwaniec [DFI1],
DFI2, IDFI3| IDFI4]) and Rankin-Selberg L-functions of two cuspidal forms (see [KMV,
Mic, HM]).

In the last decade, several number theorists have worked to generalize the Voronoi
summation formula to high rank as well as to arbitrary number fields (see, for example,
[MS3, MS4, IGL1, IGL2, I'T]), where certain integral transforms, called Hankel transforms
(of high rank), naturally arise. Furthermore, the Kuznetsov trace formula for SL,(C) was
established in [BM, ILG], where the Bessel function associated to a principal series repre-

sentation of SL,(C) was also discovered.
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The author of this thesis has dedicated the last two years to studying the analytic the-
ory of Hankel transforms and, more importantly, fundamental Bessel functions, or kernels,
that occur in the Voronoi summation formula for GL,(F), with F = R or C. The work
has resulted in two articles, [[Q11]] and [Q12], which constitute Chapter Chapter of this
thesis. The motivation of [[Qil]] is the collaboration of the author with his advisor Ro-
man Holowinsky and Ritabrata Munshi on hybrid subconvexity bounds for certain Rankin-
Selberg L-functions on GL3 x GL,; (see [HMQ)J]), during which the author was investigating
the analytic properties of Hankel transforms for GL;(IR) and discovered that their integral
kernels can be represented by certain formal integrals. The inspiration of [[Qi2] is the work
[MS1], which provided the author with ideas on establishing the foundation for Hankel
transforms for GL,,(C) from the perspective of harmonic analysis over C*.

In general, the Kuznetsov trace formula is much deeper than the Voronoi summation
formula, and no instances of the corresponding Bessel functions are known except for
GL,(F). To distinguish, the adjective fundamental is added to the Bessel functions, or
kernels, in the Voronoi summation formula as in the last paragraph. According to [IT], it is
the Rankin-Selberg GL,, x GL,; local functional equations that provide the underlying struc-
ture for fundamental Bessel kernels. The author believes that Rankin-Selberg GL, x GL,,_;
local functional equations should yield relations between Bessel functions for GL, and
GL,_, with the occurrence of the corresponding Rankin-Selberg fundamental Bessel ker-
nel of rank n(n — 1), and hence fundamental Bessel kernels should be the building blocks
of Bessel functions of any rank from an inductive perspective. As a special example, in the
case of GL,(IF), this explains why the Bessel functions occurring in the Kuznetsov trace
formula also arise in the Voronoi summation formula; see Section [3.2] Furthermore, in

attempting to justify his philosophy, the author wrote some notes on formulating Bessel

Xiv



functions for GL3(F) in terms of fundamental Bessel kernels, derived from Rankin-Selberg

GL; x GL, local functional equations; these are included in Section

XV



Chapter 1

Fundamental Bessel Functions

1.1. Introduction

1.1.1. Background

Hankel transforms (of high rank) are introduced as an important constituent of the
Voronot summation formula by Miller and Schmid in [MS1, MS3, MS4]]. This summation
formula is a fundamental analytic tool in number theory and has its roots in representation
theory.

In this chapter, we shall develop the analytic theory of fundamental Bessel functionsﬂ
These Bessel functions constitute the integral kernels of Hankel transforms. Thus, to moti-
vate our study, we shall start with introducing Hankel transforms and their number theoretic
and representation theoretic background.

IThe Bessel functions studied here are called fundamental in order to be distinguished from the Bessel
functions for GL,(R). Throughout this chapter, we shall drop the adjective fundamental for brevity. More-
over, the usual Bessel functions will be referred to as classical Bessel functions.

Some evidences show that fundamental Bessel functions are actually the building blocks of the Bessel
functions for GL, (R).



Two expressions of a Hankel transform

Let n be a positive integer, and let (4,6) = (44, ..., Ay, 01, ..., 6,) € C" x (Z/27Z)".

The first expression of the Hankel transform of rank n associated with (4, 8) is based
on signed Mellin transforms as follows.

Let .7 (R) denote the space of Schwartz functions on R. For 1 € C, j € Nand 5 €
7,/27., et v be a smooth function on R* = R~ {0} such that sgn(x)" (log |x|) ™/ |x| v(x) €

< (R). For 6 € Z/2Z, the signed Mellin transform Mgsv with order 6 of v is defined by

(1.1.1) Msu(s) zf v(x)sgn(x)°|x|*d* x.

RX
Here d*x = |x|~'dx is the standard multiplicative Haar measure on R*. The Mellin inver-

sion formula is

5
v(x) = Z sgn(x) J()M(gv(sﬂx_“ds, o> —ReA,

€227, ami
where the contour of integration (o) is the vertical line from o — ic to o + i0.
Let (R*) denote the space of smooth functions on R* whose derivatives are rapidly
decreasing at both zero and infinity. We associate with v € .%(R*) a function (" on R*

satisfying the following two identities

(1.1.2) MY (s) = (]_[ G 4o(s — /l[)) Msu(l —s), 6€Z/2Z,
=1
where Gs(s) denotes the gamma factor

(ses) |20 Teeos (), ife=0,

C((1=s+08)) | 2i20)T(s)sin (%) . if6=1,

(1.13)  Gsls) = Pn2



where for the second equality we apply the duplication formula and Euler’s reflection for-

mula of the Gamma function,

I(1 - $)[(s) = ——, T(s)C <s+ %) = 2'7%\/aT(25).

sin(7rs)

Y is called the Hankel transform of index (A,8) of bﬂ. According to [MS3] §6], T is
smooth on R* and decays rapidly at infinity, along with all its derivatives. At the origin,
Y has singularities of some very particular type. Indeed, T'(x) € >},_, sgn(x)%|x|~*.(R)
when no two components of A differ by an integer, and in the nongeneric case powers of
log | x| will be included.

By the Mellin inversion,

(1.1.4) Tx) = Y ngﬂ J <HG§,+5 )M(sv(l—s)|x| ds,

6€Z,/27.

for o > max {Re A}.

In [MS4] there is an alternative description of Y’ defined by the Fourier type transform,

in symbolic notion, as follows

X1...Xp

X

1 n
(1.1.5)  T(x) = L v ( ) ( (Sgn(X[)6€|Xg|_A[€(X5))> dx,dx,_;...dx;,
Xn le

with e(x) = ¢*™*. The integral in converges when performed as iterated integral in
the order dx,dx,_...dx;, starting from x,, then x, i, ..., and finally x;, provided Re 4; >
. > Red,; > Red,, and it has meaning for arbitrary values of A € C" by analytic
continuation.
According to [MS4], though less suggestive than (1.1.5)), the expression (I.1.4) of Han-
kel transforms is more useful in applications. Indeed, all the applications of the Voronoi
Note that if v is the f in [MS4] then |x|T((—)"x) is their F(x).

3



summation formula so far are based on (1.1.4)) with exclusive use of Stirling’s asymptotic
formula of the Gamma function. On the other hand, there is no occurrence of the Fourier
type integral transform (1.1.5) in the literatures other than Miller and Schmid’s foundational

work.

Assumption. Subsequently, we shall always assume that the index A satisfies > ,_, Ay =

qﬂ Accordingly, we define the complex hyperplane "' = {1e C": }7,_, 4, = 0}.

Background of Hankel transforms in number theory and representation theory

For n = 1, the number theoretic background lies on the local theory in Tate’s thesis at
the real place. Actually, in view of (1.1.5), the Hankel transform of rank one and index

(4,8) = (0,6) is essentially the (inverse) Fourier transform,

(1.1.6) T(x) = JR v(y)sgn(xy)’e(xy)dy.

The Voronoi summation formula of rank one is the summation formula of Poisson. Recall
that Riemann’s proof of the functional equation of his {-function relies on the Poisson
summation formula, whereas Tate’s thesis reinterprets this using the Poisson summation
formula for the adele ring.

For n = 2, the Hankel transform associated with a GL,-automorphic form has been
present in the literatures as part of the Voronoi summation formula for GL, for decades.
See, for instance, [HM, Proposition 1] and the references there. According to [HM, Propo-

sition 1] (see also Remark|[1.2.8]), we have

(1.1.7) 10 = [ vty xe®”,

M This condition is just a matter of normalization. Equivalently, the corresponding representations of
GL, (R) are trivial on the positive component of the center. With this condition on A, the associated Bessel
functions can be expressed in a simpler way.



where, if F' is a Maal3 form of eigenvalue % + £* and weight k,

Je(x) = —COS}’: = (Yair(47 /%) + ¥ i (4 /%))

— ( g (2 4m V) = T )
(1.1.8) = ( H) (47 /x) — ”fH§fl>(4n\/})),

4 cosh(m)Kz,-t(471 Vx)

JF(—)C>

- smh( 5 (Li(4m \/x) — I2y(4m /X)), x>0,

for k even,

Jr(x) = — Smh( )(YZ,,(47r\f) Y (41 +/x))

ﬁém) (Jair (4 /x) + J_2i (47 /)
(1.1.9) — i (™ H) (4m/x) + e HY) (4 /)
Jr(—x) =4 sinh(nt)Kzi,(47r Vx)

= (hi(4m Vx) = Lyu(4n /%)), x>0,

cosh(nt)

for k odd m and if F is a holomorphic cusp form of weight k,
(1.1.10) Jr(x) = 2mi* i (4 \/x), Jp(—x) =0, x>0.

Thus the integral kernel Jr has an expression in terms of Bessel functions, where, in stan-
dard notation, J,, Y,, H,El), H, ) , I, and K, are the various Bessel functions (see for instance

[Wat]). Here, the following connection formulae ([Wat, 3.61 (3, 4, 5, 6), 3.7 (6)]) have

been applied in (I.1.8) and (1.1.9)),

W11 v = 2 CO;(:IT(QV)_ Iy =

Jy(x) — J_,(x) cos(nv)
sin(7rv)

b

VFor this case there are two insignificant typos in [HM), Proposition 1].
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e J,(x) — J_,(x)

(14 — Jy(x) —e ™, (x) @) =
(1L.1.12)  H(x) i) H,”(x) i sin ()
ﬂ'(l—v(x) B IV(x)>
(L113)  K,(x) = Tem)

The theory of Bessel functions has been extensively studied since the early 19th century,
and we refer the reader to Watson’s beautiful book [Wat] for an encyclopedic treatment.
For n > 3, Hankel transforms are formulated in Miller and Schmid [MS3l, MS4],
given that (4, ) is a certain parameter of a cuspidal GL,(7Z)-automorphic representation
of GL,(R). It is the archimedean ingredient that relates the weight functions on two sides
of the identity in the Voronoi summation formula for GL,,(Z). For n = 1,2 the Poisson and
the Voronoi summation formula are also interpreted from their perspective in [MS2]].
Using the global theory of GL, x GL;-Rankin-Selberg L-functions, Inchino and Tem-
plier [IT] extend Miller and Schmid’s work and prove the Voronoi summation formula for
any irreducible cuspidal automorphic representation of GL, over an arbitrary number field
for n > 2. According to [IT], the two defining identities (I.1.2)) of the associated Hankel
transform follows from renormalizing the corresponding local functional equations of the

GL, x GL;-Rankin-Selberg zeta integrals over R.

Bessel kernels

In the case n > 3, when applying the Voronoi summation formula, it might have been
realized by many authors that, similar to (I.1.6] [I.1.7)), Hankel transforms of rank »n should

also admit integral kernels, that is,

1) = | vtas o)y

We shall call Ji,4) the (fundamental) Bessel kernel of index (A, 6).



Actually, it will be seen in that an expression of Ji,4)(+x), x € Ry = (0,0),
in terms of certain Mellin-Barnes type integrals involving the Gamma function (see
[1.2.8)) may be easily derived from the first expression (I.1.4) of the Hankel transform of
index (4, §). Moreover, the analytic continuation of J(,5 (+x) from R, onto the Riemann
surface U, the universal cover of C ~\ {0}, can be realized as a Barnes type integral via
modifying the integral contour of a Mellin-Barnes type integral (see Remark[I.7.10). In the
literatures, we have seen applications of the asymptotic expansion of J(,s) (+x) obtained
from applying Stirling’s asymptotic formula of the Gamma function to the Mellin-Barnes
type integral (see Appendix|I.A). There are however two limitations of this method. Firstly,
it is only applicable when A is regarded as fixed constant and hence the dependence on A of
the error term can not be clarified. Secondly, it is not applicable to a Barnes type integral
and therefore the domain of the asymptotic expansion can not be extended from R . In this
direction from (1.1.4)), it seems that we can not proceed any further.

In this chapter, we shall take an approach to Bessel kernels starting from the second
expression of Hankel transforms. This approach is more accessible, at least in
symbolic notions, in view of the simpler form of compared to (I.1.4). Once we can
make sense of the symbolic notions in (I.1.5]), some well-developed methods from analysis
and differential equations may be exploited so that we are able to understand Bessel kernels

to a much greater extent.
1.1.2. Outline of this chapter
Bessel functions and their formal integral representations

First of all, in §1.2.1, we introduce the Bessel function J(x;g, A) of indices A € 1"

and ¢ € {+, —}". It turns out that the Bessel kernel J(,4)(4x) can be formulated as a signed



sum of J (27rx%; S, /l) , x € R,. Our task is therefore understanding each Bessel function
J(x;6,2).

In with some manipulations on the Fourier type expression of the Hankel
transform of index (4, §) in a symbolic manner, we obtain a formal integral representation
of the Bessel function J(x; ¢, A). If we define v = (vy,...,v,_1) € C" ' by v, = Ay — A,

with € = 1,...,n — 1, then the formal integral is given by

n—1
(1.1.14) Jy(x; g‘) = J (1_[ t;f_l) gix<§nt1‘..tnfl+2?;ll Wt;l)dtn_l,,,dtl,
R \ o=l

Justification of this formal integral representation is the main subject of and
For this, we partition the formal integral J,(x; ¢) according to some partition of unity on
R’fl, and then repeatedly apply two kinds of partial integration operators on each resulting
integral. In this way, J,(x; ¢) can be transformed into a finite sum of absolutely convergent
multiple integrals. This sum of integrals is regarded as the rigorous definition of J,(x;¢).
However, the simplicity of the expression (I.1.14) is sacrificed after these technical proce-

dures. Furthermore, it is shown that

(1.1.15) J(x;6,2) = J,(x;6).

Asymptotics via stationary phase

In we either adapt techniques or directly apply results from the method of station-
ary phase to study the asymptotic behaviour of J,(x; ¢) for large argument.

When all the components of ¢ are identically +, we denote J(x;¢, ), respectively
Jy(x;6), by H*(x; 2), respectively H; (x), and call it an H-Bessel functior'} This pair of
H-Bessel functions will be of paramount significance in our treatment.

VIf a statement or a formula includes + or F, then it should be read with + and F simultaneously replaced
by either + and — or — and +.



It is shown that H*(x; 1) = H}(x) admits an analytic continuation from R, onto the

half-plane H* = {z € C \ {0} : 0 < + argz < nr}. We have the asymptotic expansion
H*(z;2) = n (£20) T o7

(1.1.16) Mol -
(Z (£0)™"Bn(A)z™™ 4+ Ow.pn <@2M|Z|7M+ 2 > ,

m=0

for all z € H* such that |z] > €, where € = max {|2,]} + 1, R = max {|Re A}, M > 0,
B,,(Q) is a certain symmetric polynomial in A of degree 2m, with By(4) = 1. In particular,
these two H-Bessel functions oscillate and decay proportionally to x~"T on R,.

All the other Bessel functions are called K-Bessel functions and are shown to be Schwartz

functions at infinity.

Bessel equations

The differential equation, namely Bessel equation, satisfied by the Bessel function

J(x;¢,4) is discovered in

Given A € L', there are exactly two Bessel equations
(1.1.17) D Vi)W 4 (V,0(2) = g(in)"x")w = 0, e {+.~},
j=1

where V,, ;(4) is some explicitly given symmetric polynomial in A of degree n — j. We call
¢ the sign of the Bessel equation (1.1.17). J(x;¢, A) satisfies the Bessel equation of sign
Sals) = H’gzl Se-

The entire is devoted to the study of Bessel equations. Let U denote the Riemann
surface associated with log z, that is, the universal cover of C ~\. {0}. Replacing x by z to
stand for complex variable in the Bessel equation (I.1.17), the domain is extended from
R, to U. According to the theory of linear ordinary differential equations with analytic
coefficients, J(x; ¢, A) admits an analytic continuation onto U.

9



Firstly, since zero is a regular singularity, the Frobenius method may be exploited to
find a solution J;(z; ¢, ) of (I.1.17), for each £ = 1, ..., n, defined by the following series,

o0 (gin)mzn(f/l/+m)

Ji(z:6,4) = Z

Ao T (A= +m+1)

Ji(z;6,4) are called Bessel functions of the first kind, since they generalize the Bessel
functions J,(z) and the modified Bessel functions 7, (z) of the first kind.
It turns out that each J(z; ¢, 1) may be expressed in terms of J, (z; S ,(s), A). This leads

to the following connection formula

.z (s)
(1.1.18) J(z6.1) =e ( Z‘“* >H+ ( i z;/l>,

2
where Li(¢) = {€: ¢, = +} and n4(g) = |L+(g)|. Thus the Bessel function J(z; ¢, 1) is
determined up to a constant by the pair of integers (n. (¢),n_(s)), called the signature of
J(z;6, Q).
Secondly, oo is an irregular singularity of rank one. The formal solutions at infinity
serve as the asymptotic expansions of some actual solutions of Bessel equations.
Let & be an n-th root of ¢1. There exists a unique formal solution T (z; A; &) of the Bessel

equation of sign ¢ in the following form

J(z ;&) = &g ZB (4;6)z

where B, (1;£) is a symmetric polynomial in A of degree 2m, with By(4;&) = 1. The
coefficients of B, (4; &) depend only on m, & and n. There exists a unique solution J(z; A; &)
of the Bessel equation of sign ¢ which possesses T (z; A; &) as its asymptotic expansion on
the sector
- n
Se = {z eU: )argz - arg(zg)) < Z}’
or any of its open subsector.
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The study of the theory of asymptotic expansions for ordinary differential equations can
be traced back to Poincaré. There are abundant references on this topic, for instance, [CL,
Chapter 5], [Was, Chapter III-V] and [Olv, Chapter 7]. However, the author is not aware
of any error analysis in the index aspect in the literatures except for differential equations
of second order in [Olvl]. Nevertheless, with some effort, a very satisfactory error bound is
attainable.

For 0 < ¢ < 37 define the sector
S:(9) = {z eU: ‘argz — arg(ié)‘ <+ g - 19} .
The following asymptotic expansion is established in

M—1
(1.1.19) J(z4:8) = e "7 (Z B(: )27 + O, (¢2M|Z|‘M)>

m=0

for all z € S(&) with [z| >, €.
For a 2n-th root of unity &, J(z; A; £) is called a Bessel function of the second kind. We
have the following formula that relates all the the Bessel functions of the second kind to

either J(z; 4; 1) or J(z; 4; —1) upon rotating the argument by a 2n-th root of unity,

(1.1.20) J(GA:6) = (+6)7 J(+6z 4 +1).

Connections between J(z; ¢, 1) and J(z; 4; £)

Comparing the asymptotic expansions of H* (z; 2) and J(z; A; +1) in (1.1.16) and (T.1-19),

we obtain the identity
(1.1.21) HE(zA) = n 3 (2270) "7 J(z 4 +1).
It follows from ((1.1.18)) and (1.1.20)) that

@)% (L (= Dnsls) . Teero e R
J 5 5/1 = i — ~ J ( ’ﬂ’ +m—; > .
(5.4 N an 2 Ghe
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Thus (1.1.19) may be applied to improve the error estimate in the asymptotic expansion
(T.1.16)) of the H-Bessel function H*(z; 1) when |z| >, € and also to show the exponen-
tial decay of K-Bessel functions on R .

Connections between J;(z; ¢, 1) and J(z; 4;¢)

The identity (I.1.21) also yields connection formulae between the two kinds of Bessel

functions, in terms of a certain Vandermonde matrix and its inverse.

1.2. Preliminaries on Bessel functions

In §1.2.1{and [1.2.2} we shall introduce the Bessel function J(x;¢, A), with ¢ € {+, —}"

and A € L"~!. Two expressions of J(x; ¢, A) arise from the two formulae (T.T.4) and (T.1.3)
of the Hankel transform of index (4,6). The first is a Mellin-Barnes type contour inte-

gral and the second is a formal multiple integral. In §1.2.3]and [1.2.4] some examples of

J(x; ¢, A) are provided for the purpose of illustration.

Let v € .(R*) be a Schwartz function on R*. Without loss of generality, we assume

v(—y) = (=)(y), withn € Z/27Z.
1.2.1. The definition of the Bessel function J(x; ¢, 1)

We start with reformulating (1.1.3)) as

Gs(s) = (2n)~°T'(s) (e (2) + (=) (—2)) .

Inserting this formula of G, into (1.1.4)), T'(x) then splits as follows

(1.2.1) T(x) = sgn(x)" <H 5””) (Ixl:6),

c€{+ ="

12



with ¢ = (g1, ..., s ), where

(1.2.2) Y(x;¢) = LJ J v(y)y *dy - G(s;6,4)((2n)"x)"*ds, xeR,,
2mi (o) Jo
and
(1.2.3) G(s;6.4) = [ [T(s — A)e <M> :
=1

Since all the derivatives of v rapidly decay at both zero and infinity, repeating partial

integrations yields the bound

Q0
f V(y)y~dy <nesato (|Sms| + 1),
0

for any nonnegative integer M. Hence the iterated double integral in (1.2.2)) is convergent
due to Stirling’s formula.

Choose p < % — % so that >;_, (p — Redp — %) < —1. Without passing through any
pole of G(s; ¢, A), we shift the vertical line (o) to a contour C that starts from p—ioo, ends at
p~+1i00, and remains vertical at infinity. After this contour shift, the double integral in (1.2.2))

becomes absolutely convergent by Stirling’s formula. Changing the order of integration is

therefore legitimate and yields

(1.2.4) T(x;6) = L v(y)J <2n(xy)%;g, /1> dy,
with
(1.2.5) J(x;6,2) G(s;6,)x "ds.

=5 .
For A € L""! and ¢ € {+, —}", the function J(x;¢, A) defined by is called a Bessel
function and the integral in a Mellin-Barnes type integral. We view J (x%; s, A) as
the inverse Mellin transform of G(s; ¢, A).

Suitably choosing the integral contour C, it may be verified that J(x; ¢, 2) is a smooth
function of x and is analytic with respect to A.

13



Remark 1.2.1. The contour of integration (o) does not need modification if the compo-

nents of ¢ are not identical. For further discussions of the integral in the definition (1.2.5)

of J(x;¢,A) see Remark|1.7.10

Remark 1.2.2. We have

(12.6) 10 = [ o)an (o) xe®,

for any v e 7 (R*), where the Bessel kernel J, ) is given by

(1.2.7) J(/l,é) (ix) = % Z Z (H 6{—1—5) Zﬂx%;g‘, /l), X € R.,..

6€Z,/27, ge{+ —} \¢(=1
Moreover,
sgn(x s
(1.2.8) Jas () = > i f (]_[Gaﬁas—ﬂe)w ds.
6€7,/27.

1.2.2. The formal integral representation of J(x; ¢, 1)

In this section, we assume n > 2. Since we shall manipulate the Fourier type integral
transform only in a symbolic manner, the restrictions on the index A that guarantee
the convergence of the iterated integral in will not be imposed here.

With the parity condition on the weight function v, may be written as

- 5 (f]40)

(1.2.9) sty A

f y (x1|.;/:|xn) <H X;A€e<g[x[>> dxndxnfl...dxl.
Z_ (=1

Comparing (T.2.9) with (1.2.1)|""} we arrive at
1
T(x;¢) = ]x| ( ]x| > (H)Q, ‘e(gexr) ) dx,dx,_;...dx;.
Rn

VITo justify our comparison, we use the fact that the associated 2" x 2" matrix is equal to the n-th tensor

1)
power of (i ((_1; ,) +,,) and hence is invertible.
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The change of variables x, = |x[y(x;...x,_1) "', x, = y, ~1 ¢=1,..,n— 1, turns this further

into

n—1
T(x;6) = J v (y) (xy) ™ (]_[y?”“)
(1.2.10) * =1

n—1
e (gnxyyl---yn_l + Z Sey, 1) dydy,—i...dy;.

(=1

Comparing now (1.2.10) with (1.2.4), if one formally changes the order of the integrations,
which is not permissible since the integral is not absolutely convergent, then J(x; ¢, 4) can
be expressed as a symbolic integral as below,
n—1
J(2nx;6,4) = x7" JR § (Hy > e (w”yl---yn_l + ; s*eygl) dyn—1...dy1.

Another change of variables y, = #,x!, along with the assumption Y,,_, 1, = 0, yields

(1.2.11) J(x;¢,A f (Hﬂf ‘ﬂ“) (st + N5 ) g
Rn 1

The above integral is not absolutely convergent and will be referred to as the formal integral

representation of J(x; ¢, ).

Remark 1.2.3. Before realizing its connection with the Fourier type transform (1.1.5), the
formal integral representation of J(x; ¢, A) was derived by the author from (1.1.4) based
on a symbolic application of the product-convolution principle of the Mellin transform

together with the following formula (|[GR. 3.764])

0
(1.2.12) T'(s)e (i%) — f Fd x, 0 <Res < 1.
0

Though not specified, this principle is implicitly suggested in Miller and Schmid’s work,

especially, [MS1, Theorem 4.12, Lemma 6.19] and [MS3, (5.22, 5.26)].
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1.2.3. The classical cases
The casen = 1

Proposition 1.2.4. Suppose n = 1. Choose the contour C as in §1.2.1} C starts from p — ic0

and ends at p + i, with p < —%, and all the nonpositive integers lie on the left side of C.

We have
(1.2.13) et = L [(s)e <i£> x’ds.
2ni Je 4
Therefore
J(x; £,0) = ™"

Proof. Let Rez > 0. For Re s > 0, we have the formula

0¢]
[(s)z* = f e “x'd* x,
0

where the integral is absolutely convergent. The Mellin inversion formula yields

1
e = el [(s)z°x%ds, o >0.
(o)

Shifting the contour of integration from (o) to C, one sees that

1
X _ I‘* - —sd .
¢ 27 Je (s)2"xds

T l / . . .
Choose 7 = e+(7"*é)’, n > € > 0. In view of Stirling’s formula, the convergence of the

integral above is uniform in €. Therefore, we obtain (I.2.13) by letting € — 0. Q.E.D.

Remark 1.2.5. Observe that the integral in (1.2.12) is only conditionally convergent, the
Mellin inversion formula does not apply in the rigorous sense. Nevertheless, (1.2.13))

should be view as the Mellin inversion of (1.2.12)).
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Remark 1.2.6. It follows from the proof of Proposition that the formula

1

(1.2.14) e~ — —f [(s)e(—as)x*ds
e

271

is valid for any a € [—}—P ﬂ

The case n = 2

Proposition 1.2.7. Let A1 € C. Then
J(x+, £,4,—2) = +rier™ H{? (2x),
J(x;+, F, 4, =) = 267Ky, (2x).

2)

Here Hﬁl) and Hﬁ are Bessel functions of the third kind, also known as Hankel functions,

whereas K, is the modified Bessel function of the second kind, occasionally called the K-

Bessel function.

Proof. The following formulae are derived from [GR), 6.561 14-16] along with Euler’s

reflection formula of the Gamma function.

ﬂfo J,(2v/x)x ldx =T <s - g) r (s — g) sin (ﬂ' (s - g))

for —3Rev < Res < 1,

—ﬂfo Y,(24/x)x 'dx =T (s + 12/) r (s - g) cos (n (s - g))

for 3|Rev| < Res < 1, and

2LOO K2 yvx)xdx =T <s 4 g) r (s - g)

for Re s > %|‘Re v|. For Re s in the given ranges, these integrals are absolutely convergent.

It follows immediately from the Mellin inversion formula that

. 1
J(x; £, £, 4, =) = £rie™™ (I (2x) £iY21(2x)), |[Red| < >
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J(x; £, F, 4, —A) = 2e7K,, (2x).

In view of the analyticity in A, the first formula remains valid even if |[Re | > 1 by the

1
4
theory of analytic continuation. Finally, we conclude the proof by recollecting the formula

H (x) = T,(x) + ¥, (x). Q.ED.

Remark 1.2.8. Let 1 = it if F is a Maaf3 form of eigenvalue ‘—1‘ + £ and weight k, and

let A = 5(k— 1) if F is a holomorphic cusp form of weight k. Then F is parametrized

1
2
by (4,6) = (A, —A,k(mod 2),0) and Jr = Jiu4). From the formula (1.2.77) of the Bessel

kernel, we have

Jas) (x) = J2a /x5 4+, 4,4, —2) + () IQ2r/x;—, —, 2, —-2),

Jas) (—x) = J2rv/x +,—, 4, =) + (=) T2n/x; —, +, 4, = ).

Thus, Proposition implies (1.1.8][T.1.9] [T.1.10).

When x > 0 and |Rev| < 1, we have the following integral representations of Bessel

functions ([Wat, 6.21 (10, 11), 6.22 (13)])

2 $lﬂiv o0] )
HE],Z)(X) — € 2 J eizxcoshrcosh(vr)dr’

T 0
1 0
K,(x) = —IJ cos(xsinh ) cosh(vr)dr.
cos (37v) Jo

The change of variables ¢t = ¢” yields
Q0

iﬂ.iei%m’vH‘Elaz) (2)6) _ J tv—leiix(t+t_l)dt’
0

o0
Zei%’”'VKv(Zx) = f P leti=N gy
0

The integrals in these formulae are exactly the formal integrals in (I.2.TT]) in the case n = 2.
They conditionally converge if |Re v| < 1, but diverge if otherwise.
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1.2.4. A prototypical example

According to [Wat, 3.4 (3, 6), 3.71 (13)],

Moreover, [Wat, 3.71 (13)] reads
T\2
Ki(x) = <2_x> e .
Therefore, from the formulae in Proposition we have

J(x £, 4,

FN(I,

, —

ENTN

1 1
T\ 2 IR P T\ 2 1.
+2ix+ i . — 1 1 —2xF g mi
) = (;) e a0 J(x, +, +, Z,_Z) = <;) e +1 .

These formulae admit generalizations to arbitrary rank.

n_(§)=ny (s) )
Put £(g) = ie™ m = T, Suppose A = % (%, ,—”21) Then
n—1
c(¢) (2n\ T |
1.2.15 Jxig, ) = =2 [ = iné(s)x
(12.15) (g = 22 (x) ;

with c(g) = e (TL% L DY 5)'

Proof. Using the multiplication formula of the Gamma function

n—1
(1.2.16) []r (s + S) — (27)"T n* T (ns),

k=0

straightforward calculations yield

G(5:6.4) = e1(s)(2m) T (75T ( ( - ;1)) e (M - ) :
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with ¢(¢) = e < w + 5 Diteri(s) ) Inserting this into the contour integral in

(1.2.5) and making the change of variables from s to i (s + %) , one arrives at

n—1
ci(s)ea(s) (2n) 7 1 ni(¢) —n(s) -
J(x;6,4) = — - I ’ ds,
(x36.4) N x 270 Jpe_nzt (s)e 4n ) (nx)ds
with ¢2(¢) = <¥%1 + %) . (1.2.15) now follows from (I.2.14)) if the contour € is
suitably chosen. Q.E.D.

1.3. The rigorous interpretation of formal integral
representations

We first introduce some new notations. Letd = n — 1, ¢t = (t;,...,1;) € Ri, y =
(Viseesva) € C?and ¢ = (1, .., St Sa1) € {+,—}*"'. Fora > 0 define S¢ = {v € C* :

[Reve| <aforall ¢ =1,..,d}. Forv e C define

Ve =TT = k), (0o =[5 (v +4) ifa =1, o= (v)o= 1.

Denote by p, the power function

d
ve—1
=1 [
=1

let
d
0(£:6) = Suprtrda + Y ety
=1
and define the formal integral
(1.3.1) Jy(x;6) = f py(t)e™S)dt.
Rd

+

One sees that the formal integral representation of J(x; ¢, A) given in (1.2.11)) is equal to

JV(X; 5‘) if Ve = /lg — /ld+1’ = 1, ,d
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For d = 1, it is seen in that J,(x; ¢) is conditionally convergent if and only if
|Rev| < 1 but fails to be absolutely convergent. When d > 2, we are in a worse scenario.
The notion of convergence for multiple integrals is always in the absolute sense. Thus, the
d-dimensional multiple integral in (T.3.T)) alone does not make any sense, since it is clearly
not absolutely convergent.

In the following, we shall address this fundamental convergence issue of the formal
integral J,(x; ¢), relying on its structural simplicity, so that it will be provided with mathe-
matically rigorous meaning Moreover, it will be shown that our rigorous interpretation

of J,(x;¢) is a smooth function of x on R, as well as an analytic function of v on C¥.
1.3.1. Formal partial integration operators

The most crucial observation is that there are fwo kinds of formal partial integrations.

The first kind arises from
0 <e§fixr;1> = —gixt;zeg”x’;l(?tg,
and the second kind from
0 (eg"+‘ix’1""d) = Gua1iXty.. Ly tgeSH 14O,
where 7, means that 7, is omitted from the product.
Definition 1.3.1. Let
T (Ry) = {he CO(Ry) : t"h() <, 1 forall @ € N}.

VIITt turns out that our rigorous interpretation actually coincides with the Hadamard partie finie of the
formal integral.
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v+el+e 4
v—e

Pie: Vé P_e:v
v+ ey J

Index shifts

For h(t) € Q‘ 7 (R.), in the sense that h(t) is a linear combination of functions of the

form TT0_, he(t;), define the integral

Jy(x;6:h) = J h(t)py(t)e™ S)dt.

d
R+

We call J,(x; 3 h) a J-integral of index v. Let us introduce an auxiliary space
Hv(s) = Spang(,— {Jvz(x; s:h):Vev+Zihe® 9(]1&)} .

Here C[x™"] is the ring of polynomials of variable x~' and complex coefficients. Finally, we
define P, ; and P_ ; to be the two C[x~'|-linear operators on the space 7,(s), in symbolic

notion, as follows,

Pre(L(x635h) = §eSa1dyieise, (X563 R)

— i (ve + 1)x Uyie, (3563 h) — srix ™' Iy i, (X363 100ch)

Poe(l(x:63h)) = GeSav1y—ei—e, (X163 h)
+ Sap1i(ve = D)xy_ga (X363 1) + Gasrix ™ Jy_a (x5 63 100ch)
where e; = (0, ...,0,1,0...,0) and e’ = (1,..., 1), and O;h is the abbreviated oh/ot,.
—_——

4

The formulations of P, , and P_, are quite involved at a first glance. However, the

most essential feature of these operators is simply index shift!
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Observation. After the operation of P, ; on a J-integral, all the indices of the three result-
ing J-integrals are nondecreasing and the increment of the {-th index is one greater than
the others. The operator P_ ; has the effect of decreasing all indices by one except possibly

two for the {-th index.

Lemma 1.3.2. Let notations be as above.
(1). Let h(t) = []o_, he(t;). Suppose that the set {1,2, ...,d} splits into two subsets L.

and L_ such that

- hy vanishes at infinity if { € L_, and

- hy vanishes in a neighbourhood of zero if € € L.

If Revy > O forall ¢ € L_ and Rev, < O for all £ € L, then the J-integral J,(x;¢;h)
absolutely converges.

(2). Assume the same conditions in (1). Moreover, suppose that Rev, > 1 forall € € L_
and Rev, < —1 forall € € L. Then, for € € L_, all the three J-integrals in the definition
of P, ¢(J,(x; 63 h)) are absolutely convergent and the operation of P, ¢ on J,(x; ¢; h) is the
actual partial integration of the first kind on the integral over dt,. Similarly, for { € L.,
the operation of P_ , preserves absolute convergence and is the actual partial integration
of the second kind on the integral over dt,.

(3). Py and P_, commute with P, and P_ ;. if € # k.

(3). Py and P_ ; commute with P, ; and P_ ; if | # k.

(4). Let « € N, fP‘jr,l(J,,(x; §; h)) is a linear combination of
Vi = o Xy a0t a0 (X3 63120 R),
and P* (J,(x; 61 h)) is a linear combination of

[Vl - 1]a3xia+al*]v—aed—mez (X; LY t72672h),
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for a; + a, + a3 < a. The coefficients of these linear combinations may be uniformly

bounded by a constant depending only on a.
Proof. (1-3) are obvious. The two statements in (4) follow from calculating
XN (1) py (£)eS ) F T g <

and

. —d —1 .
x_aa? <h<t)pv—aed+ael(t)elxzkzlgktk )€§d+IIXI1"'td.

For the latter, one applies the following formula

() & ala-D! g
i _(_);(a—ﬁ)!ﬁ!(ﬁ—l)!at ¢

aeN,,aeC.

Q.E.D.
1.3.2. Partitioning the integral J,(x; ¢)

Let I be a finite set that includes {+, —} and let
dMh()=1, teRy,
o€l
be a partition of unity on R, such that each £, is a function in .7 (Ry), h_(f) = 1 on
a neighbourhood of zero and /. (t) = 1 for large 7. Put hy(t) = H?Zl hy, (1) for 0 =
(01, .-, 0a4) € I°. We partition the integral J,(x; ¢) into a finite sum of J-integrals

5(x:6) = ) J(x:650),

oeld

with

Jy(x:6:0) = L (x;63hp) = L ho(1)py(£)e™S)dt.

RY
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1.3.3. The definition of J,(x;¢)

Let a > 0 and assume v € S,. Let A > a + 2 be an integer. For o € I denote

We first treat J, (x; ¢; ) in the case when both L, (9) and L_ (@) are nonempty. Define
Pio = [lser_(o) P+ This is well-defined due to commutativity (Lemma (3)). By
Lemmal(1.3.2(4) we find that P?* (J,(x;¢;0)) is a linear combination of

+7Q
1_[ [ve — 1] x_ZAlL—(Q”""Z[eL,(g)al,['
a3z
(1.3.2) teL_ (o)

T (Srer_ oy @0 424 ey e (X; s (H"GL—(Q) tgz’fagu> hQ) ,

with @, + asy + a3, < 2A for each € € L_(p). After this, we choose ¢, € L, (o) and

A+ er (o) Q1

apply P

on the J-integral in (1.3.2). By Lemma|1.3.2((4) we obtain a linear

— 4

combination of

[Vf+ - 1]03 1_[ [V[ - 1]013,f x_A(2|L_(Q)‘+1)+m'
(1.3.3) teL_ (o)

. ) N @20 A2 ¢
Jvae"JrZAZtaeL_(g) e—arer <)C, S, <t[+ag+ HEEL,(Q) t[ a[ ) hg) )

withay + @ +a3 <Dy (0 @1et A. It is easy to verify that the real part of the ¢-th index
of the J-integral in is positive if £ € L_(0) and negative if £ € L, (g). Therefore,
the J-integral in (1.3.3)) is absolutely convergent according to Lemma|[I.3.2](1). We define
J,(x; ¢;0) to be the total linear combination of all the J-integrals obtained after these two
steps of operations.

When L_(0) # @ but L, (0) = @, we define J,(x;6:0) = P} (/y(x:6:0)). Ttisa

linear combination of

| | [Vt’ _ 1] x7A|L*(Q)‘+Z€EL_(g) @i
@
(1.3.4) teL_(0)

a2 ¢ AX2 ¢
t Al

JV+(ZieL,(g) are)e? +A e (o) €t <X; s, <1_[€EL_ (o) “¢ O ) hQ) ’
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with @, ¢ + @2 + @3¢ < A. The J-integral in (1.3.4)) is absolutely convergent.
When L, (0) # @ but L (0) = @, we choose ¢, € L,(0) and define J,(x;¢;0) =

P4 ¢, (Jy(x;:630)). This is a linear combination of

(1.3.5) e, = HaaX ™y pet—aner, (x; Sty @’ihg) ,

with @) + @, + a3 < A. The J-integral in (1.3.5)) is again absolutely convergent.

Finally, when both L_ (@) and L, (o) are empty, we put J,(x; ¢;0) = J,(x;6;0).

Lemma 1.3.3. The definition of J,(x; §;0) is independent on A and the choice of €, €

L. (0).

Proof. We shall treat the case when both L, (0) and L_(0) are nonempty. The other cases
are similar and simpler.

Starting from the J,(x; ¢;0) defined with A, we conduct the following operations in
succession for all £ € L_(g): P, , twice and then P_,, once, twice or three times on each
resulting J-integral so that the increment of the ¢-th index is exactly one. In this way, one
arrives at the J, (x; ¢; 0) defined with A + 1. In view of the assumption A > a + 2, absolute
convergence is maintained at each step due to Lemma|[I.3.2](1). Moreover, in our settings,
the operations P, , and P_,, are actual partial integrations (Lernma (2)), so the value
is preserved in the process. In conclusion, J,(x; ¢;©) is independent on A.

Suppose ¢, ,k, € L, (0). Repeating the process described in the last paragraph A times,
but with ¢, replaced by k., the J, (x; ¢; ©) defined with £, turns into a sum of integrals of an
expression symmetric about £, and k, . Interchanging ¢, and k, throughout the arguments
above, the J,(x; ¢;0) defined with k, is transformed into the same sum of integrals. Thus

we conclude that J,(x; ¢;0) is independent on the choice of £, . Q.E.D.
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Putting these together, we define

I(x6) = Y, I(x6:0),

el

and call J,(x; ¢) the rigorous interpretation of J,(x;¢). The definition of J,(x; ¢) is clearly
independent on the partition of unity {/,},e; on R..

Uniform convergence of the J-integrals in (1.3.3] [1.3.4] [I.3.5)) with respect to v implies

that J,(x; ) is an analytic function of v on S? and hence on the whole C? since a was
arbitrary. Moreover, for any nonnegative integer j, if one chooses A > a + j + 2, differenti-

ating j times under the integral sign for the J-integrals in (1.3.3] [1.3.4] [1.3.5)) is legitimate.

Therefore, J, (x; ¢) is a smooth function of x.
Henceforth, with some ambiguity, we shall write J, (x; ¢) and J, (x; ¢; 0) as J,(x; ) and

Jy(x; §; 0) respectively.
1.4. Equality between J,(x;¢) and J(x; ¢, A)

The goal of this section is to prove that the Bessel function J(x; ¢, 4) is indeed equal to

the rigorous interpretation of its formal integral representation J,(x; ).

Proposition 1.4.1. Suppose that A € .Y and v € C¢ satisfy vi = Ay — g1, € = 1,...,d.

Then
J(x;6,2) = J,(x;6).
To prove this proposition, one first needs to know how the iterated integral '(x; ¢) given
in (I.2.10) is interpreted (compare [MS1, §6] and [MS3], §5]).
Suppose that Re 4; > ... > Red; > Redyyq. Let v e (R,) be a Schwartz function

on R, . Define

(1.4.1) Ti(ai) = | oGl el o)y ve R,
Ry
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and for each £ = 1, ..., d recursively define

(1.4.2) Te(x;6) = J Yoot (36) v e (sexy™ ) dy, xeR,.
Ry

Lemma 1.4.2. Suppose that Re A, > ... > Redy; > Redyy1. Recall the definition of
7 (R.,) given in Definition and define the space T, (R of all functions in 7 (R )
that decay rapidly at infinity, along with all their derivatives. Then Y (x;¢) € T, (R.) for

eacht=1,...,d+ 1.

Proof. Inthe case { = d + 1, Y441(x;¢) is the Fourier transform of a Schwartz function
on R (supported in R, ) and hence is actually a Schwartz function on R. In particular,
Yii1(x:6) € T (R,). One may also prove this directly via performing partial integration
and differentiation under the integral sign on the integral in (T.4.1).

Suppose that T, (x;¢) € (R, ). The condition Re A, > Re A, secures the con-
vergence of the integral in (I.4.2). Partial integration has the effect of dividing ¢ 2mix
and results in an integral of the same type but with the power of y raised by one, so re-
peating this yields the rapid decay of Y, (x;¢). Moreover, differentiation under the in-
tegral sign decreases the power of y by one, so multiple differentiating Y, (x; ) is legit-
imate after repeated partial integrations. From these, it is straightforward to prove that
Y (x;¢) € 7 (R,). Finally, keeping repeating partial integrations yields the rapid decay of

all the derivatives of Y, (x;¢). Q.E.D.

The change of variables from y to xy in (1.4.2)) yields
Te(x:6) = f Yo (xy;6) Xy e (gry7h) dy.
Ry
Some calculations then show that Y| (x;¢) is equal to the iterated integral

d

d
(1.4.3) x" J Y (v) y (H)’f—l> e <S‘d+1x)’)’1...yd + Z gzy;l) dydy,...dy;.
RY =1

t=1
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Comparing (T.4.3) with (1.2.10), one sees that T'(x;¢) = x 17 (x; ).

The (actual) partial integration P, on the integral over dy, is in correspondence with
P, whereas the partial integration P, ; on the integral over dy has the similar effect as
P_ ., of decreasing the powers of all the y, by one. These observations are crucial to our

proof of Proposition [I.4.T]as follows.

Proof of Proposition Suppose that Re A4; > ... > Re Ay > Re A, We first partition
the integral over dy, in (1.4.3)), for each ¢ = 1, ..., d, into a sum of integrals according to a
partition of unity {4 },c; of R, . These partitions result in a partition of the integral (1.4.3)

into the sum

Ty (x:6) = Y, Ti(x6:0),

oel
with

d
=

Ti(x;650) = X" L v (y)y <H hgé(yf)y?_l)
RIH 1
(1.4.4) i

d
e <§d+1xyy1---yd + Z Sey, 1) dydy,...dy;.
(=1

We now conduct the operations in with P, creplaced by Prand P_,, by P4y to each
integral T (x; ; 0) defined in (1.4.4). While preserving the value, these partial integrations
turn the iterated integral ('; (x; ¢; ©) into an absolutely convergent multiple integral. We are
then able to move the innermost integral over dy to the outermost place. The integral over
dy,...dy; now becomes the inner integral. Making the change of variables y, = tg(xy)’ﬁ
to the inner integral over dy,...dy;, each partial integration P, that we did turns into P ,.
By the same arguments in the proof of Lemma showing that J,(x; ¢) is independent

on the choice of ¢, € L, (0), the operations of P, that we conducted at the beginning

may be reversed and substituted by those of P_,, . It follows that the inner integral over
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_L

dyg,...dy; is equal to x'1v(y)J, (27r(xy) 6 Q>, with h,(t) = h <t(xy)_ﬁ>. Summing

over o € 19, we conclude that

T(x;6) = x 1T (x56) = J v(y)Jy <2ﬂ(xy)d*+‘;s‘> dy.
Ry
Therefore, in view of (1.2.4), we have J(x;¢,1) = J,(x;¢). This equality holds true uni-

versally due to the principle of analytic continuation. Q.E.D.

In view of Proposition [1.4.1, we shall subsequently assume that A € L¢ and v € C¢

always satisty the relations v, = A, — 4441, € = 1, ..., d.
1.5. H-Bessel functions and K-Bessel functions

According to Proposition Joa(x; £, %) = J(x; +, +, 4, —A4) is a Hankel function,
and Jp,(x; +,F) = J(x;+,F, 4, —A4) is a K-Bessel function. There is a remarkable dif-
ference between the behaviours of Hankel functions and the K-Bessel function for large
argument. The Hankel functions oscillate and decay proportionally to Lx, whereas the
K-Bessel function exponentially decays. On the other hand, this phenomena also arises in
higher rank for the prototypical example shown in Proposition (1.2.9

In the following, we shall show that such a categorization stands in general for the
Bessel functions J,(x;¢) of an arbitrary index v. For this, we shall analyze each integral
Jy(x; ¢; 0) in the rigorous interpretation of J,(x; ¢) using the method of stationary phase.

First of all, the asymptotic behaviour of J,(x; ¢) for large argument should rely on the
existence of a stationary point of the phase function 6(¢; ¢) on RZ. We have

R _ond
Ql(t; S‘) — (§d+1tl--~[€~-'td — S'é’t[ 2)6:1 :

A stationary point of 6(¢; ¢) exists in ]Ri ifand only if ¢; = ... = ¢; = ¢4 1, iIn which case
itisequalto ty = (1,..., 1).
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Terminology 1.5.1. We write Hf (x) = J,(x; +,...,£), H(x; ) = J(x; %, ..%, ) and
call them H-Bessel functions. If two of the signs G\, ..., S4, Sqav1 are different, then J,(x; ¢),

or J(x;¢, ), is called a K-Bessel function.

Preparations

We shall retain the notations in §I.3] Moreover, for our purpose we choose a partition

of unity {h,} on R, such that h_, hy and &, are functions in .7 (R, ) supported

oe{=0.+}
on K- = (0,1], Ko = [§.4] and K; = [2,0) respectively. Put K, = ]_[?:IKQ, and
ho(t) = T10_, hy,(1;) for 0 € {—,0,+}“. Note that t, is enclosed in the central hypercube

Ky. According to this partition of unity, J,(x; ¢) is partitioned into the sum of 3¢ integrals

Jy(x;6;0). In view of (1.3.3}[1.3.4] [1.3.5), J,(x;;0) is a C[x~!]-linear combination of

absolutely convergent J-integrals of the form

(1.5.1) Jp(xeih) = f h(0)po (£)65) dt.

d
R%

Here h € Q.7 (R, ) is supported in K,, and V' € v + Z satisfies
(1.5.2) Rev, — Rev, > Aif €€ L_(g), andRe v, — Rev, < —Aif €€ L, (o),
with A > max {|Rev,|} + 2.
1.5.1. Estimates for J,(x; ¢; 0) with o # 0
Let
d d ,
(1.5.3) O(t;¢) = Z (tg(?ge(t;g))z = Z (gdﬂtl...td — S’gt;l) .
=1 =1
Lemma 1.5.2. Let o # 0. We have for all t € K,

1
O(t;¢) = —.
(t;6) T
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Proof. Instead, we shall prove

1
max{ ’gd+1t1...td — ggtgl‘ ite Ri N~ Kpand € =1, ...,d} = T

Firstly, if #,...t; < 3, then there exists #/ < 1 and hence |gys1t1..ts — get;'| > 1 — 3 = 1.
Similarly, if #,...t; > I, then there exists 7, > 1 and hence |¢1t1...tq — e, | > T —1 > 1.

Finally, suppose that 3 < feoty < %, then for our choice of ¢ there exists ¢ such that

te ¢ (1.2), and therefore we still have gy 1t1...Lg — set, | = 1. Q.E.D.

Using (1.5.3), we rewrite the J-integral J,/(x; ¢; k) in (I.3.1)) as below,

(1.5.4) Zf ) (Sax1Pvreise, () = Sepy (1)) O(t:6) ™" - 0,6(t: )™ St
We now make use of the third kind of partial integrations arising from
0 (ei"e(t;g)) — ix - 0,0(t; §)e™S) oy,

For the ¢-th integral in ( , we apply the corresponding partial integration of the third

kind. In this way, (1.5.4) turns into

d
— (ix)_l ZJ 100ch (Sas 1Dy et — StPv—e;) 0 'e™dt
=1 JRY

d
— (iX>7l Z J]\Rd h (§d+l<vlf + 1)p‘,/+ed — S’g(Vlg — l)pv/fe(») @*leixadt
(=1

+ §d+]2d2(i.x>_l Jd hpv/+3ed®_2€ixedt

RY

d
ZJ , gt’ 1 - 2d)pv’+2ed—e( Sd+1Pv' +ed—2¢, + gfpV/732[)®f2ezx9dt
=1YRY

+ 4(ix)_1 Z Sa+1SSk f ) hpv’Jre”’fe[fek@_zeix"dt’

1<t<k<d +

where © and 6 are the shorthand notations for @(#; ¢) and 6(¢; ¢). Since the shifts of indices
do not exceed 3, it follows from the condition (I.5.2]), combined with Lemmal[l.5.2] that all
the integrals above absolutely converge provided A > 1 + 3.
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Repeating the above manipulations, we obtain the following lemma by a straightfor-

ward inductive argument.

Lemma 1.5.3. Let B be a nonnegative integer, and choose A = |x|+3B+3. Then J,,(x; §; h)
is equal to a linear combination of (%(d2 —d)+7d+ I)B many absolutely convergent

integrals of the following form

(ix)_BP(v’)J t0%h(t) py (£)O(t; ¢) B B2e08) g,
R

d
1
where |@| + B; + B, = B (@ € N%), P is a polynomial of degree B, and integer coefficients
of size Op(1), and V' € v' + Z satisfies |V} — v,| < B+ 2B, forall ¢ = 1,...,d. Recall

that in the multi-index notation || = Y0_, ay, t* = []0_, t," and 0% = 15, 2,

Define ¢ = max {|v,|} + 1 and r = max {|Rev,|}. Suppose that x > ¢. Applying Lemma

1.5.3|and[1.5.2]to the J-integrals in (1.3.3] [T.3.4}[1.3.5)), one obtains the estimate

oM
Jy(X;650) <ema <;> :
for any given nonnegative integer M. Slight modifications of the above arguments yield a

similar estimate for the derivative
%) c\M
(1.5.5) Jy (X; S‘;Q) <M, jd (;) .

Remark 1.5.4. Our proof of (1.5.5) is similar to that of [Hor, Theorem 7.7.1]. Indeed,
O(t; ) plays the same role as | f'|* + Im f in the proof of [Hor, Theorem 7.7.1], where f
is the phase function there. The non-compactness of K, however prohibits the application

of [Hor, Theorem 7.7.1] to the J-integral in (1.5.1) in our case.
1.5.2. Rapid decay of K-Bessel functions

Suppose that there exists k € {1, ...,d} such that ¢; # ¢,41. Then for any ¢ € K,

A

—1 —1
‘ngrltl...td — g‘ktk } > tk =
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Similar to the arguments in repeating the k-th partial integration of the third kind

yields the same bound (1.5.5)) in the case o = 0.
Remark 1.5.5. For this, we may also directly apply [Hor, Theorem 7.7.1].

Theorem 1.5.6. Let ¢ = max {|v,|} + 1 and v = max {|Re v,|}. Let j and M be nonnegative

integers. Suppose that one of the signs g, ..., S, is different from ;. Then
. c\M
Jm(/])(X; S) <M jd (;)

for any x > <. In particular, J,(x;¢) is a Schwartz function at infinity, namely, all deriva-

tives J% (x; ¢) rapidly decay at infinity.

1.5.3. Asymptotic expansions of H-Bessel functions

In the following, we shall adopt the convention (4i)* = etrim g e C,
We first introduce the function W, (x; +), which is closely related to the Whittaker func-

tion of imaginary argument if d = 1 (see [WW, §17.5, 17.6]), defined by

(iZﬂi)_%eg(dH)fo (x).

D=

W,(x;£) = (d+1)
Write H (x;0) = J,(x; &, ..., +; 0) and define

Wy(xs £50) = (d + 1)* (£2m) 27U (3 0).

For ¢ # 0, the bound (1.5.3) for H (x; ) is also valid for W, (x; &;0). Therefore, we are

left with analyzing W, (x; +;0). We have

1

W (x;4:0) = (d + 1)2 (+2ni) 5 (i)

(1.5.6) . .
f (0(t) —d — 1) ho(t) py(t)er OOV gy,
Ko
with
d
(1.5.7) 0(t) = O(t;+, .o +) = tita+ > 17
=1
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Proposition 1.5.7. [Hor, Theorem 7.7.5]. Let K < R? be a compact set, X an open neigh-
bourhood of K and M a nonnegative integer. If u(t) € C™(K), f(t) € C***(X) and
Imf=0inX, Imf(ty) =0, f'(ty) =0, det f"(¢y) # 0and f' # 0in K \ {t,}, then for

x>0

J u(t)e™Odt — &) ((2ri) = det £ (t0))
K

Here the implied constant depends only on M, f, K and d. With

86) = £(0) — flto) — 5 (F"(ao) — to). £ — o)

which vanishes of third order at t,, we have

2m
.—m 1 — m+r ,
Cntt =1 Z(:) 2m+r(m 4+ r)!r! <f”(t0) 'D, D> (g'u) <t0>

This is a differential operator of order 2m acting on u at t,. The coefficients are ra-

tional homogeneous functions of degree —m in f"(ty), ..., f>"+2(t,) with denominator

(det f"(t9))*™. In every term the total number of derivatives of u and of f” is at most 2m.
We now apply Proposition to the integral in (1.5.6)). For this, we let

K=ko=[ha]s x=(49)"

~ _n\d
fl6)=+(0@)—d—1), f(t)=+(n.deta—1,2),_, to=(1,...,1),
21 o 1
flto)=+1. . . .| detf'(to) = () (d+1), g(t)=+G(t),
11 - 2
d -1 1
et - | T
O AL T S
-1 =1 --- d
VITAccording to Hormander, D = —i(dy, ..., 04).
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0=

u(t) = (d + 1) (+2m) "2 (i) (6(t) — d — 1)’ py(t)he(2),

with

Z i — (d + 1)(d+2).

d
(158)  G(t) = ity + Z (7 +d+ D +1,") - >

1<l<k<d

Proposition m yields the following asymptotic expansion of W,Ej ) (x; £:0),
M—1 ,
Z i) By j (V)X 4 Oy (YY), xe Ry,
m=0

with

(=)t Lmt (GT(0 —d — 1)ipy) (1)

(1.5.9) B, j(v) = 2(d + 1)) (m + r)r!

r=0

where £ is the second-order differential operator given by

(1.5.10) L= dZa2 2 > 0o

1<l<k<d

Lemma 1.5.8. We have B,, j(v) = 0 if m < j. Otherwise, B, ;(v) € Q[v] is a symmetric

polynomial of degree 2m — 2j. In particular, By, j(v) < ja "% form = j.

Proof. The symmetry of B, ;(v) is clear from definition. Since # —d — 1 vanishes of second

order at ¢, 2j many differentiations are required to remove the zero of (6 —d — l)j at ¢.

From this, along with the descriptions of the differential operator £,, in Proposition [I.5.7}

one proves the lemma. Q.E.D.

Furthermore, in view of lb the total contribution to W’ (x; +) from all those

W,Ej ) (x; £;0) with @ # 0 is of size O, 4 (Mx~™) and hence may be absorbed into the

error term in the asymptotic expansion of W(] )( ; 1+30).

In conclusion, the following proposition is established.
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Proposition 1.5.9. Let M, j be nonnegative integers such that M > j. Then for x >

M—1
W 4) = 3 () By (05" 4 O (V™).

m=j

Corollary 1.5.10. Let N, j be nonnegative integers such that N > j, and let € > 0.
(1). We have W (x; +) <1 ja ix~ for x > ¢

(2). If x = 7€, then

N—1
—m—d _N—d
2 ()" Buj(v)x™" "% + Ocnjed <52Nx N 2)-

m=j
Proof. On letting M = j, Proposition[I.5.9]implies (1). On choosing M sufficiently large
so that (2 + €) (M — N + ) > 2(M — N), Proposition and Lemma yield

—1

] m —m—4
Wi (2 ) = 3 () "By (v)x "
m=j

M—1
= 2 (&) "B ()X 4 O (PVx M) = Oy jvea (csz—N—g) :
m=N

=

Q.E.D.
Finally, the asymptotic expansion of H* (x; 1)(= H;(x)) is formulated as below.

Theorem 1.5.11. Let € = max {|A/|} + 1 and R = max {|Re A;|}. Let M be a nonnegative
integer.

(1). Define W(x; +,4) = /n(+2ri)~"T e H* (x;A). Let M > j > 0. Then
M—1 .
Z +l = mBmJ ) T + Os}g,MJ,n ((SZMX_M)
m=j

for all x = €. Here B, ;j(d) € Q[A4] is a symmetric polynomial in A of degree 2m, with
Boo(A) = 1. The coefficients of By, ;(A) depends only on m, j and d.

(2). Let B,,(d) = B,,o(Q). Then for x > €

M—1
H*(x;2) = n™ 3 (£2m0) T ey "7 (Z (i) " Bu()x ™" + Om,M,d< X ‘)) .

m=0
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Proof. This theorem is a direct consequence of Proposition [I.5.9] and Lemma It is

only left to verify the symmetry of B,, j(1) = B, ;(v) with respect to A. Indeed, in view of

(1.2.3][1.2.5), H*(x; A) is symmetric with respect to A, so B,, ;(4) must be represented by a

symmetric polynomial in A modulo ?:]1 Ay Q.E.D.

Corollary 1.5.12. Let M be a nonnegative integer, and let € > 0. Then for x > €>*¢

M—1
n—1

H*(x;2) = nié(i2m’) et (Z (£0) " Bpn(A)x™ + O pmen ((‘ZWXM)) :

m=0

1.5.4. Concluding remarks
On the analytic continuations of H-Bessel functions

Our observation is that the phase function 8 defined by is always positive on
R‘i. It follows that if one replaces x by z = xe, with x > 0 and 0 < +w < 7, then
the various J-integrals in the rigorous interpretation of H;"(z) remain absolutely conver-
gent, uniformly with respect to z, since |e*/(")| = ¢Fxsinwd®) < 1 Therefore, the re-
sulting integral H (z) gives rise to an analytic continuation of H; (x) onto the half-plane
H* = {ze C~{0}:0< +argz <x}. In view of Proposition one may define
H*(z;1) = H;(z) and regard it as the analytic continuation of H*(x; A) from R, onto
H*. Furthermore, with slight modifications of the arguments above, where the phase func-
tion f is now chosen to be +¢“(§ — d — 1) in the application of Proposition the
domain of validity for the asymptotic expansions in Theorem [[.5.11|may be extended from
R onto H*. For example, we have

n—1

H*(z;2) = nz (£2mi) gt~

1.5.11 - H
| | (Z (£0)™"Bn()z™ + Onpt <@2M|ZI_M+2>> :

m=0

for all z € H* such that |z| > €.
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Obviously, the above method of obtaining the analytic continuation of H; does not
apply to K-Bessel functions.
On the asymptotic of the Bessel kernel J, 4

As in (T.277), Jas (£x) is a combination of J (27rx%;g', A), and hence its asymptotic

follows immediately from Theorem [1.5.6|and [T.5.T1]

Theorem 1.5.13. Let (A,6) € L"! x (Z/27)". Let M = 0. Then, for x > 0, we may write

2e (4 (nx + =L
gy () = S ETCE D) B (),

if n is even, and

Jas) (£X") = —

if nis odd, such that

M—1
W) = 3 B()x ™ + Oy, (62415
m=0

and

E(J—im) (x) = Ogprp (€Yx™M),

n—1

for x > €. With the notations in Theorem|1.5.11} we have W5 (x) = (2rx) = W*(2nx; 2)

and B () = (£27i) "B, ().

On the implied constants of estimates

All the implied constants that occur in this section are of exponential dependence on the
real parts of the indices. If one considers the d-th symmetric lift of a holomorphic Hecke
cusp form of weight k, the estimates are particularly awful in the k aspect.
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In and we shall further explore the theory of Bessel functions from the per-
spective of differential equations. Consequently, if the argument is sufficiently large, then
all the estimates in this section can be improved so that the dependence on the index can be

completely eliminated.

On the coefficients in the asymptotics

One feature of the method of stationary phase is the explicit formula of the coefficients
in the asymptotic expansion in terms of certain partial differential operators. In the present
case of H*(x; 1) = Hf(x), (1.5.9) provides an explicit formula of B,,(1) = B,.o(v). To
compute £ (G"p,) (ty) appearing in (1.5.9), we observe that the function G defined in
does not only vanish of third order at #,. Actually, 0*G(#) vanishes except for
a = (0,..,0,,0...,0), with @« > 3. In the exceptional case we have 0°G(ty) = (—)%al.
However, the resulting expression is considerably complicated. To illustrate, we consider
the case d = 1.

When d = 1, we have £ = (d/dt)*. For2m > r > 1,

(d/d)™™ (G'p,) (1)

2m—r r
_\@ _101
:(2m+2r)!2 {(011,---,01r)22%221’”4'27”—0!,%23}‘%
a!
a=0 g=1
2m—r
2m—a— 1\ (1 —-v),
= (2m + 2r)! _
(2m + 2r) (;)( o > —
Therefore yields

i () (15§ s ).

r=1
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However, this expression of B, o(v) is not in its simplest form. Indeed, we have the asymp-

totic expansions of HSl) and H£2) ([Wat, 7.2 (1, 2)])

HID (x) ~ (i)%eii@—;m—in) (i ()" (5 =v), G+ V)m> ’

X — m!(2ix)"

which are deducible from Hankel’s integral representations ([Wat, 6.12 (3, 4)]). In view of

Proposition [[.2.7]and Theorem [I.5.11] one obtains

B9, (),

Buolv) = 4mm!

Therefore, we have the following combinatoric identity

" G=v), G+, (=)

512 m! B m!

1.5. _r

( ) +§: (—)’(2m+2r)!2mZ: 2m—a— 1\ (1 —v),
4 (m + r)!r! = r—1 al

r=1

It seems however hard to find an elementary proof of this identity.

1.6. Recurrence formulae and differential equations for
Bessel functions

Making use of certain recurrence formulae for J, (x; ¢), we shall derive the differential

equation satisfied by J(x; ¢, ).
1.6.1. The recurrence formulae

Applying the formal partial integrations of either the first or the second kind and the dif-
ferentiation under the integral sign on the formal integral expression of J,(x; ¢) in (1.3.1)),

one obtains the recurrence formulae
(1.6.1) ve(ix) "'y (x5.6) = Sedy—er(%:6) — Sus1Syred (X3 )
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for¢ =1,...,d, and

d

(1.6.2) T(x:6) = Sasiidyea(x:6) +1 ) 6edye (x:6).
=1

Itis easy to verify (1.6.1)) and (1.6.2)) using the rigorous interpretation of J, (x; ¢) established

in §1.3.3] Moreover, using (1.6.1), one may reformulate (1.6.2)) as below,

Z?:l Ve
X

(1.6.3) D (x:6) = capri(d + 1)y ea(x56) + B (x;6).

1.6.2. The differential equations

Lemma 1.6.1. Define ¢! = (1,..,1,0...,0), £ = 1,...,d, and denote €° = e**! = (0, ...,0)
——

¢
for convenience. Let vy = 0.

(1). Fort =1,...,d + 1 we have

Ad_g_,_l(V) +d—C€+1
X

(1.6.4) S ot (66) = spi(d + 1)y o1 (x56) — Jyret(X56),

with
d
An(¥) ==Y v+ (d + Va1, m=0,...d.
k=1

(2). For0 < j <k <d + 1define
1, fj =k,
Upj(v) = { /s

— (AJ(V) +k— 1) kal,j<v) + kal’jfl(V), lfO < ] <k-1,

with the notation Uy, (v) = 0, and
-1

So(s) = +, Sj(g‘) = Hgd_m+1 forj=1,..,d+ 1.

m=0

Then

k
(1.6.5) 10(x:6) = Y8 ,(8)(i(d + 1)V Up j ()51 sei i1 (x:6).
j=0
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Proof. By (1.6.3) and (1.6.1),

. Zd: Vi + €
J:uref(X; S‘) = §d+ll(d + I)Jv+e[+ed(X; S‘) + klf]wre‘(m S‘)
d
+ 1 e+t
= l<d + 1) <_V€ Jv+ef(X; S‘) + g{’JVJre[—'(X; S‘)) + Z:k%]wre‘()ﬁ 5‘)
S vi—d+Dve+t—d—1
= gri(d 4+ 1)1 (x;6) + 2= . Jyret(x56).
This proves (1.6.4).

(1.6.5)) is trivial when k = 0. Suppose that k > 1 and that (I.6.5)) is already proven for

k — 1. The inductive hypothesis and (1.6.4) imply

Z ) Uk L ( )xj—k—H
]=
(- )X it (x5 6)
+§d j+1i<d + I)Jv—i-ed—f(X; 5‘) - (Aj<v) + j)x_ljv+ed—f+l (X; 5‘))
- Z S DY Ui ;0 (A;(0) + k= DTy o (x36)
Z §)sa—j+2(i(d + 1)) Up 1 j 1 (1) i (3 6).
Then (1.6.5) follows from the definitions of Uy ;(v) and S ;(s). Q.E.D.

Lemma (2) may be recapitulated as
(1.6.6) X,(x;6) = D(x)"'U(V)D(x)S (§)Y,(x: 6),

d+1
where X, (x;¢) = <J,(,k) (x; g)) and Y, (x;6) = (Jypea—i1(x; g))‘;:é are column vectors

of functions, S(¢) = diag (S;(¢)(i(d+ 1))/ )d+é and D(x) = diag (xJ)d *, are diagonal
matrices, and U(v) is the lower triangular unipotent (d + 2) x (d + 2) matrix whose (k +
1, j + 1)-th entry is equal to Uy ;(v). The inverse matrix U(v)~! is again a lower triangular
unipotent matrix. Let V; ;(v) denote the (k + 1, j + 1)-th entry of U(v)~'. It is evident that
Vi.j(v) is a polynomial in v of degree k — j and integral coefficients.
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Observe that J,, ar1(x;6) = J, 0(x;6) = Jy(x;¢). Therefore, (1.6.6) implies that
Jy(x; ¢) satisfies the following linear differential equation of order d + 1

d+1
(1.67) > Va0 w0 4 (Vi o0)x™ " = S i () (i(d + 1)) w = 0.

j=1
1.6.3. Calculations of the coefficients in the differential equations

Definition 1.6.2. Let A = {A,,}°_ be a sequence of complex numbers.
(1). For k, j = —1 inductively define a double sequence of polynomials Uy j(A) in A by

the initial conditions

Uoi1(A) =1, Ui(A) =U_1;(A) =0 ifk, j =0,
and the recurrence relation
(1.6.8) Urj(A) = = (Aj+ k= 1) Uiy j(A) + U1 j-1(A), &k, j=0.

(2). For j,m = —1 with (j,m) # (—1, —1) define a double sequence of integers A, by

the initial conditions

ALio=1, A1, =A;,=0ifm=>1,j=>0,
and the recurrence relation
(1.6.9) Ajm = JAjm—1 +Aj_1my Jim=0.

(3). For kym > 0 we define oy,,(A) to be the elementary symmetric polynomial in
Ao, ..., Ay of degree m, with the convention that oy,,(A) = 0 if m > k + 2. Moreover, we

denote

O'_]’()(A) = 1, O'k,_l(A) = 0-—1,m<A) =0 lfk = —1,1’1’1 = 1.
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Observe that, with the above notations as initial conditions, oy,,(A) may also be induc-

tively defined by the recurrence relation

(1610) O'km(A) = AkO'k,mel(A> + O'kfl,m<A), k,m > 0.

4). Fork = 0, j = —1 define

> >k
(1.6.11) Vii(A) = 1 e
k]( ) Z Aj,k_j—mo-k—l,m<A), l‘fk 2 .]

m=0

Lemma 1.6.3. Let notations be as above.

(1). Uxj(A) is a polynomial in Ay, ...,A;. Upj(A) = 0if j > k, and Ugx(A) = 1.
Uio(A) = [—Agx for k = 0.

(2). Ajo=Land A;; = 3j(j+1).

(3). Vi j(A) is a symmetric polynomial in Ay, ..., Ak—1. Vixg(A) = 1. Vi _1(A) = 0 and
Vik—1(A) = o_11(A) + 1k(k — 1) for k = 0.

(4). Vi j(A) satisfies the following recurrence relation
(1.6.12) Vij(A) = (A1 + )Vierj(A) + Vicrja(A), k=1,j=0.

Proof. (1-3) are evident from the definitions.

(4). (1.6.12)) is obvious if j > k. If k > j, then the recurrence relations (1.6.10} [1.6.9)
for oy,»(A) and A ,,, in conjunction with the definition (1.6.11) of V; ;(A), yield

k—j

Vij(A) = Z Ajp jmmTk—1.m(A)

m=0
k—j k—j

= A1 Z Ajk—j-mOk—2m-1(A) + Z Ajk—j-mOk—2.m(A)

m=1 m=0
k—j—1

= Ag_1 Z Ajj—jmm10k—2m(A)

m=0
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k—j—1 k—j

+J Z Ajk—jem-10k—2m(A) + Z Aj k= jmOTk-2m(A)

m=0 m=0
= (Ae—1 + J)Vierj(A) 4+ Vierj-1(A).

Lemma 1.6.4. For k > 0 and j > —1 such that k > j, we have

(1.6.13) Z Ure(M)Vii(A) = 6y

where 0y j denotes Kronecker’s delta symbol. Consequently,

(1.6.14) ZVH YU(A) = 6.

Q.ED.

Proof. (1.6.13) is obvious if either k = jor j = —1. In the proof we may therefore assume

that k — 1 > j > 0 and that (1.6.13) is already proven for smaller values of k — j as well as

for smaller values of j and the same k — ;.

By the recurrence relations (1.6.8] [1.6.12)) for Uy ;(A) and Vj ;(A) and the induction

hypothesis,

ZUH Ve (A

k—1

:—Z<k—1+A[)Uk_1[ V[] +2Uk 1,6— 1 Vé’,j(A)

Py
k=1

=— (k= 1)0k_1,; — ZAé’Uk—lf We (A Z A1 U1 (A) Ve j(A)
t=j t=j+1

k
+J Z Ur—1,-1(A) Vo1 j(A +ZU/< L1 (M) Ve -1 (A)

t=j+1
= — (k — 1)5/{_1,1' +0+ ]5k—1,j + 51(_1,1'_1 =0.

This completes the proof of (1.6.13).

Finally, we have the following explicit formulae for Aj,,.
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Lemma 1.6.5. We have Agyg = 1, Ag,y = 0ifm > 1, and

J Jfr’,.m+j
(1.6.15) Z T ifj=1,m=>0.
r

r=1
Proof. It is easily seen that Agp = 1 and Ay, = Oifm > 1.

It is straightforward to verify that the sequence given by satisfies the recurrence
relation ( , so it is left to show that (1.6.15]) holds true for m = 0. Initially, A;o = 1,
and hence one must verify

I
orti-n

This however follows from considering all the identities obtained by differentiating the

following binomial identity up to j times and then evaluating at x = 1,

(x— 1)) — (=1} = Z _ i

_] — }"
Q.E.D.

1.6.4. Conclusion

We first observe that, when 0 < j < k < d + 1, both U, ;(A) and V, ;(A) are polynomi-
als in Ay, ..., A4 according to Lemma (1, 3). If one puts A,, = A, (v) form =0, ...,d,
then Uy ;(v) = Uy ;(A). It follows from Lemma|1.6.4|that V; ;(v) = V, ;(A). Moreover, the

relations v, = A, — A4+1, £ = 1,...,d, along with the assumption Z?:ll A¢ = 0, yields
Am(V) = (d + l)ﬂd—m-i-l'
Now we can reformulate in the following theorem.

Theorem 1.6.6. The Bessel function J(x;¢, ) satisfies the following linear differential

equation of order d + 1

d+1

(1.6.16) Z Vi j (D)W + (Va1 0(A) = Sapa(s)(i(d + 1)) x Y w =0,
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where

d+1 d—j+1
Sari(s) = HS‘& Vai1,j(4) = Z Aja-jmi1(d + 1)"0(4),
=1 m=0

0 m(A) denotes the elementary symmetric polynomial in A of degree m, with o () = 0, and
Aj,, is recurrently defined in Definition (3) and explicitly given in Lemma We
shall call the equation a Bessel equation of index A, or simply a Bessel equation if

the index Ais given.

For a given index A, (1.6.16) only provides two Bessel equations. The sign S.(¢)

determines which one of the two Bessel equations a Bessel function J(x; ¢, A) satisfies.

Definition 1.6.7. We call S ;.1(s) = 1—[?:11 ¢ the sign of the Bessel function J(x;¢,A) as

well as the Bessel equation satisfied by J(x; g, ).

Finally, we collect some simple facts on V. ;(4) in the following lemma, which will

play important roles later in the study of Bessel equations. See (I.6.14) in Lemma [[.6.4]

and Lemma[1.6.3](3).

Lemma 1.6.8. We have

(1) X550 Vas1 j()[=(d + 1) Ag1]; = 0.

). Vipra(d) = 3d(d +1).
Remark 1.6.9. If we define
J(x;6,0) =J((d+ 1) "'x6,(d+1)7'2),

then this normalized Bessel function satisfies a differential equation with coefficients free

of powers of (d + 1), that is,

d+1

Z Vd+1j x] ) (Vd+10</1) Sd+1(§)id+1xd+l) w =0,
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with
d—j+1

Vi) = Y A jomiion(d).

m=0

In particular, if d = 1, 1 = (A, —A), then the two normalized Bessel equations are

These are exactly the Bessel equation and the modified Bessel equation of index A.

1.7. Bessel equations

The theory of linear ordinary differential equations with analytic coefﬁcientﬁI_X] will be
employed in this section to study Bessel equations.
Subsequently, we shall use z instead of x to indicate complex variable. For ¢ € {+, —}

and A € L"!, we introduce the Bessel differential operator

C jdj s \n_n
(1.7.1) Vea= ;1 Vi ()2 + Vo) = o(in)'2"
The Bessel equation of index A and sign ¢ may be written as
(1.7.2) Vea(w) = 0.

We shall study Bessel equations on the Riemann surface U associated with log z, that
is, the universal cover of C . {0}. Each element in U is represented by a pair (x, w) with
modulus x € R, and argument w € R, and will be denoted by z = xe® = €'°2*+ with
some ambiguity. Conventionally, define z! = e!'°¢% for z € U,1 € C, 7 = e °¢%, and
moreover let 1 = ¢°, —1 = ¢™ and +i = e*3™,

First of all, since Bessel equations are nonsingular on U, all the solutions of Bessel

equations are analytic on U.

X[CLL Chapter 4, 5] and [Was, Chapter II-V] are the main references that we follow, and the reader is
referred to these books for terminologies and definitions.
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Each Bessel equation has only two singularities at z = 0 and z = c0. According to the
classification of singularities, O is a regular singularity, so the Frobenius method gives rise
to solutions of Bessel equations developed in series of ascending powers of z, or possibly
logarithmic sums of this kind of series, whereas oo 1s an irregular singularity of rank one,
and therefore one may find certain formal solutions that are the asymptotic expansions of
some actual solutions of Bessel equations.

When studying the asymptotic expansions for the Bessel equation (1.7.2), it is more

convenient to consider its corresponding system of differential equations,

(1.7.3) w' = B(z;6, )w,
with
0 1 0 0
0 0 1 0
B(z;6,4) = : : . . :
0 0 cee 1
—Vn,o(/l)Z_n + S'(ll’l)n — n,l(/l)Z_n-H s s — n,n,l(/l)z_l

A simple but important observation is as follows.

Lemma 1.7.1. Let ¢ € {+,—} and a be an integer. If ¢(2) is a solution of the Bessel

equation of sign ¢, then ¢ (e”i%z) satisfies the Bessel equation of sign (—)“s.

Variants of Lemmall.7.1, Lemma([1.7.3} [1.7.9)and [1.7.21] will play important roles later

in when we study the connection formulae for various kinds of Bessel functions.
1.7.1. Bessel functions of the first kind

The indicial equation associated with V., is given as below,

Z[p]jVn,,-(/l) = 0.
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Let P,(p) denote the polynomial on the left of this equation. Lemma (1) along with

the symmetry of V,, ;(1) yields the following identity,

n

Y[V, () = 0,

j=0

for each £ = 1, ..., n. Therefore,

P p) = ﬁ(p%—nh)

Consider the formal series
o0

Z CmZerm,

m=0

where the index p and the coefficients c,,, with ¢y # 0, are to be determined. It is easy to

see that

0
g/l Z CmZ p+m Z CmP/l o _|_m p+m _ Z p+m+n

m=0

If the following equations are satisfied

cmPilp+m) =0, n>m=>1,
(1.7.4)
cnPa(p +m) —¢(in)"cpn =0, m=n,

then

0
Vaa Z cn? ™" = coPa(p)?
m=0

Given ¢ € {1,...,n}. Choose p = —nd;and letco = [ [[_, T (A4 — A, + 1)_1. Suppose, for
the moment, that no two components of nA differ by an integer. Then P,(—nd, + m) # 0
for any m > 1 and ¢y # 0, and hence the system of equations is uniquely solvable.
It follows that

% (ginymzn(—Actm)

(1.7.5) .
n;o i D — A+ m+ 1)

is a formal solution of the differential equation (1.7.2).
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Now suppose that A € IL"! is unrestricted. The series in (1.7.5) is absolutely conver-
gent, locally uniformly convergent with respect to A, and hence gives rise to an analytic
function of z on the Riemann surface U, as well as an analytic function of 4. We denote by
J¢(z; 6, A) the analytic function given by the series and call it a Bessel function of

the first kind. It is evident that J;(z; ¢, ) is an actual solution of (1.7.2).

Definition 1.7.2. Let D"~ ! denote the set of A € "' such that no two components of A

differ by an integer. We call an index A generic if 1 € D"\,

When A € D*!, all the Je(z; 6, A) constitute a fundamental set of solutions, since the
leading term in the expression of J,(z;5,A) does not vanish. However, this is no
longer the case if A ¢ D"!'. Indeed, if A, — A is an integer, k # £, then Je(z36,2) =
(gi")*~%Ji(z; 5, A). There are other solutions arising as certain logarithmic sums of series
of ascending powers of z. Roughly speaking, powers of log z may occur in some solutions.

For more details the reader may consult [CL, §4.8].
Lemma 1.7.3. Let a be an integer. We have
Je (€7 z6,) = e ™ (7 (—)“s, A).

Remark 1.7.4. If n = 2, then we have the following formulae according to [Wat, 3.1 (8),
3.7

Ji(zs+,4, =) = J_0(22), Sz +,4,—A) = J(2z2),

Ji(zs— A, =) = 12,(22), J2(z;—, 4, =) = L(22).
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1.7.2. The analytic continuation of J(x;¢, A)

For any given A € L""!, since J(x; ¢, A) satisfies the Bessel equation of sign S ,(¢), it

admits a unique analytic continuation J(z; ¢, 4) onto U. Recall the definition

1
J(x;6,4) = 21 e G(s;6,A)x"™ds, xeR,,

where G(s;6,4) = [ [;_; T(s — &)e (3sk(s — A)) and C is a suitable contour.
Let ¢ = S,(¢). For the moment, let us assume that A is generic. For ¢ = 1,...,n and

m=0,1,2,..., G(s;¢,A) has a simple pole at A, — m with residue

()" Lo (Z" ‘g"w >]_[r Ao — Ay —m) =

|
m: k#€

Y (_ZZ—;Q/&) . <ZZ—;S‘/«1€) <H " (ﬂ(/llf ~ ik))) - I‘(/lk(gjnzz +m+1)

k#t

Here we have used Euler’s reflection formula for the Gamma function. Applying Cauchy’s
residue theorem, J(x; 