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Abstract

In this thesis, we shall study fundamental Bessel functions for GLnpFq arising
from the Voronoı̆ summation formula as well as Bessel functions for GL2pFq
and GL3pFq occurring in the Kuznetsov trace formula, where n is any positive
integer and F “ R or C.
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Notations

- Denote N “ t0, 1, 2...u and N` “ t1, 2, 3, ...u.

- The group Z{2Z is usually identified with the set t0, 1u.

- Denote R` “ p0,8q, R` “ r0,8q, Rˆ “ Rr t0u and Cˆ “ Cr t0u.

- Denote by U – R` ˆ R the universal cover of C r t0u. Each element z P U is

denoted by z “ xeiφ, with px, φq P R` ˆ R.

- For m P Z define δpmq P Z{2Z by δpmq “ mpmod 2q.

- For s P C and α P N, let rssα “
śα´1

κ“0 ps´ αq and psqα “
śα´1

κ“0 ps` αq if α ě 1, and

let rss0 “ psq0 “ 1.

- For s P C let epsq “ e2πis.

- For a finite closed interval ra, bs Ă R define the closed vertical strip Sra, bs “ ts P

C : Re s P ra, bsu. The open vertical strip Spa, bq for a finite open interval pa, bq is

similarly defined.

- For λ P C and r ą 0, define Brpλq “ ts P C : |s´ λ| ă ru to be the disc of radius r

centered at s “ λ.

- For λ “ pλ1, ..., λnq P Cn denote |λ| “
řn

`“1 λ` (this notation works for subsets of Cn,

for instance, pZ{2Zqn “ t0, 1un and Zn).
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- Define the hyperplane Ln´1 “ tλ P Cn : |λ| “
řn

`“1 λ` “ 0u.

- Denote by en the n-tuple p1, ..., 1q.

- For m“ pm1, ...,mnq P Zn define }m} “ p|m1|, ..., |mn|q.
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Preface

Bessel functions have been extensively studied since the early 19th century and are pre-

sented in various branches of mathematics as well as physics. In number theory, Bessel

functions appear in Voronoı̆’s summation formula, Petersson’s and Kuznetsov’s trace for-

mula for GL2pRq (in their simplest versions, for PSL2pZqzPGL2pRq). Therefore, under-

standing the analytic properties of Bessel functions is necessary for understanding arith-

metic objects associated to GL2pRq.

Applying his trace formula, Kuznetsov made the first progress in the direction of the

Linnik-Selberg conjecture on averages of Kloosterman sums in [Kuz]. Moreover, both

formulae have been heavily used to the subconvexity problems for Hecke L-functions of

cuspidal modular forms (see the series of papers by Duke, Friedlander and Iwaniec [DFI1,

DFI2, DFI3, DFI4]) and Rankin-Selberg L-functions of two cuspidal forms (see [KMV,

Mic, HM]).

In the last decade, several number theorists have worked to generalize the Voronoı̆

summation formula to high rank as well as to arbitrary number fields (see, for example,

[MS3, MS4, GL1, GL2, IT]), where certain integral transforms, called Hankel transforms

(of high rank), naturally arise. Furthermore, the Kuznetsov trace formula for SL2pCq was

established in [BM, LG], where the Bessel function associated to a principal series repre-

sentation of SL2pCq was also discovered.
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The author of this thesis has dedicated the last two years to studying the analytic the-

ory of Hankel transforms and, more importantly, fundamental Bessel functions, or kernels,

that occur in the Voronoı̆ summation formula for GLnpFq, with F “ R or C. The work

has resulted in two articles, [Qi1] and [Qi2], which constitute Chapter 1, Chapter 2 of this

thesis. The motivation of [Qi1] is the collaboration of the author with his advisor Ro-

man Holowinsky and Ritabrata Munshi on hybrid subconvexity bounds for certain Rankin-

Selberg L-functions on GL3ˆGL2 (see [HMQ]), during which the author was investigating

the analytic properties of Hankel transforms for GL3pRq and discovered that their integral

kernels can be represented by certain formal integrals. The inspiration of [Qi2] is the work

[MS1], which provided the author with ideas on establishing the foundation for Hankel

transforms for GLnpCq from the perspective of harmonic analysis over Cˆ.

In general, the Kuznetsov trace formula is much deeper than the Voronoı̆ summation

formula, and no instances of the corresponding Bessel functions are known except for

GL2pFq. To distinguish, the adjective fundamental is added to the Bessel functions, or

kernels, in the Voronoı̆ summation formula as in the last paragraph. According to [IT], it is

the Rankin-Selberg GLnˆGL1 local functional equations that provide the underlying struc-

ture for fundamental Bessel kernels. The author believes that Rankin-Selberg GLnˆGLn´1

local functional equations should yield relations between Bessel functions for GLn and

GLn´1, with the occurrence of the corresponding Rankin-Selberg fundamental Bessel ker-

nel of rank npn ´ 1q, and hence fundamental Bessel kernels should be the building blocks

of Bessel functions of any rank from an inductive perspective. As a special example, in the

case of GL2pFq, this explains why the Bessel functions occurring in the Kuznetsov trace

formula also arise in the Voronoı̆ summation formula; see Section 3.2. Furthermore, in

attempting to justify his philosophy, the author wrote some notes on formulating Bessel

xiv



functions for GL3pFq in terms of fundamental Bessel kernels, derived from Rankin-Selberg

GL3 ˆ GL2 local functional equations; these are included in Section 3.3.
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Chapter 1

Fundamental Bessel Functions

1.1. Introduction

1.1.1. Background

Hankel transforms (of high rank) are introduced as an important constituent of the

Voronoı̆ summation formula by Miller and Schmid in [MS1, MS3, MS4]. This summation

formula is a fundamental analytic tool in number theory and has its roots in representation

theory.

In this chapter, we shall develop the analytic theory of fundamental Bessel functionsI.

These Bessel functions constitute the integral kernels of Hankel transforms. Thus, to moti-

vate our study, we shall start with introducing Hankel transforms and their number theoretic

and representation theoretic background.

IThe Bessel functions studied here are called fundamental in order to be distinguished from the Bessel
functions for GLnpRq. Throughout this chapter, we shall drop the adjective fundamental for brevity. More-
over, the usual Bessel functions will be referred to as classical Bessel functions.

Some evidences show that fundamental Bessel functions are actually the building blocks of the Bessel
functions for GLnpRq.

1



Two expressions of a Hankel transform

Let n be a positive integer, and let pλ, δq “ pλ1, ..., λn, δ1, ..., δnq P Cn ˆ pZ{2Zqn.

The first expression of the Hankel transform of rank n associated with pλ, δq is based

on signed Mellin transforms as follows.

Let S pRq denote the space of Schwartz functions on R. For λ P C, j P N and η P

Z{2Z, let υ be a smooth function on Rˆ “ Rrt0u such that sgnpxqη plog |x|q´ j
|x|´λυpxq P

S pRq. For δ P Z{2Z, the signed Mellin transform Mδυ with order δ of υ is defined by

(1.1.1) Mδυpsq “
ż

Rˆ
υpxqsgnpxqδ|x|sdˆx.

Here dˆx “ |x|´1dx is the standard multiplicative Haar measure on Rˆ. The Mellin inver-

sion formula is

υpxq “
ÿ

δPZ{2Z

sgnpxqδ

4πi

ż

pσq

Mδυpsq|x|´sds, σ ą ´Re λ,

where the contour of integration pσq is the vertical line from σ´ i8 to σ` i8.

Let S pRˆq denote the space of smooth functions on Rˆ whose derivatives are rapidly

decreasing at both zero and infinity. We associate with υ P S pRˆq a function Υ on Rˆ

satisfying the following two identities

(1.1.2) MδΥpsq “

˜

n
ź

`“1

Gδ``δps´ λ`q

¸

Mδυp1´ sq, δ P Z{2Z,

where Gδpsq denotes the gamma factor

(1.1.3) Gδpsq “ iδπ
1
2´s Γ

`

1
2ps` δq

˘

Γ
`

1
2p1´ s` δq

˘ “

$

’

&

’

%

2p2πq´sΓpsq cos
´πs

2

¯

, if δ “ 0,

2ip2πq´sΓpsq sin
´πs

2

¯

, if δ “ 1,

2



where for the second equality we apply the duplication formula and Euler’s reflection for-

mula of the Gamma function,

Γp1´ sqΓpsq “
π

sinpπsq
, ΓpsqΓ

ˆ

s`
1
2

˙

“ 21´2s?πΓp2sq.

Υ is called the Hankel transform of index pλ, δq of υII. According to [MS3, §6], Υ is

smooth on Rˆ and decays rapidly at infinity, along with all its derivatives. At the origin,

Υ has singularities of some very particular type. Indeed, Υpxq P
řn

`“1 sgnpxqδ` |x|´λ`S pRq

when no two components of λ differ by an integer, and in the nongeneric case powers of

log |x| will be included.

By the Mellin inversion,

(1.1.4) Υpxq “
ÿ

δPZ{2Z

sgnpxqδ

4πi

ż

pσq

˜

n
ź

`“1

Gδ``δps´ λ`q

¸

Mδυp1´ sq|x|´sds,

for σ ą max tRe λ`u.

In [MS4] there is an alternative description of Υ defined by the Fourier type transform,

in symbolic notion, as follows

Υpxq “
1
|x|

ż

Rˆ n
υ
´ x1...xn

x

¯

˜

n
ź

`“1

`

sgnpx`qδ` |x`|´λ`epx`q
˘

¸

dxndxn´1...dx1,(1.1.5)

with epxq “ e2πix. The integral in (1.1.5) converges when performed as iterated integral in

the order dxndxn´1...dx1, starting from xn, then xn´1, ..., and finally x1, provided Re λ1 ą

... ą Re λn´1 ą Re λn, and it has meaning for arbitrary values of λ P Cn by analytic

continuation.

According to [MS4], though less suggestive than (1.1.5), the expression (1.1.4) of Han-

kel transforms is more useful in applications. Indeed, all the applications of the Voronoı̆

IINote that if υ is the f in [MS4] then |x|Υpp´qnxq is their Fpxq.

3



summation formula so far are based on (1.1.4) with exclusive use of Stirling’s asymptotic

formula of the Gamma function. On the other hand, there is no occurrence of the Fourier

type integral transform (1.1.5) in the literatures other than Miller and Schmid’s foundational

work.

Assumption. Subsequently, we shall always assume that the index λ satisfies
řn

`“1 λ` “

0III. Accordingly, we define the complex hyperplane Ln´1 “ tλ P Cn :
řn

`“1 λ` “ 0u.

Background of Hankel transforms in number theory and representation theory

For n “ 1, the number theoretic background lies on the local theory in Tate’s thesis at

the real place. Actually, in view of (1.1.5), the Hankel transform of rank one and index

pλ, δq “ p0, δq is essentially the (inverse) Fourier transform,

(1.1.6) Υpxq “
ż

R
υpyqsgnpxyqδepxyqdy.

The Voronoı̆ summation formula of rank one is the summation formula of Poisson. Recall

that Riemann’s proof of the functional equation of his ζ-function relies on the Poisson

summation formula, whereas Tate’s thesis reinterprets this using the Poisson summation

formula for the adele ring.

For n “ 2, the Hankel transform associated with a GL2-automorphic form has been

present in the literatures as part of the Voronoı̆ summation formula for GL2 for decades.

See, for instance, [HM, Proposition 1] and the references there. According to [HM, Propo-

sition 1] (see also Remark 1.2.8), we have

(1.1.7) Υpxq “
ż

Rˆ
υpyqJFpxyqdy, x P Rˆ,

IIIThis condition is just a matter of normalization. Equivalently, the corresponding representations of
GLnpRq are trivial on the positive component of the center. With this condition on λ, the associated Bessel
functions can be expressed in a simpler way.
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where, if F is a Maaß form of eigenvalue 1
4 ` t2 and weight k,

JFpxq “ ´
π

coshpπtq

`

Y2itp4π
?

xq ` Y´2itp4π
?

xq
˘

“
πi

sinhpπtq

`

J2itp4π
?

xq ´ J´2itp4π
?

xq
˘

“ πi
´

e´πtHp1q
2it p4π

?
xq ´ eπtHp2q

2it p4π
?

xq
¯

,(1.1.8)

JFp´xq “ 4 coshpπtqK2itp4π
?

xq

“
πi

sinhpπtq

`

I2itp4π
?

xq ´ I´2itp4π
?

xq
˘

, x ą 0,

for k even,

JFpxq “ ´
π

sinhpπtq

`

Y2itp4π
?

xq ´ Y´2itp4π
?

xq
˘

“
πi

coshpπtq

`

J2itp4π
?

xq ` J´2itp4π
?

xq
˘

“ πi
´

e´πtHp1q
2it p4π

?
xq ` eπtHp2q

2it p4π
?

xq
¯

(1.1.9)

JFp´xq “ 4 sinhpπtqK2itp4π
?

xq

“
πi

coshpπtq

`

I2itp4π
?

xq ´ I´2itp4π
?

xq
˘

, x ą 0,

for k odd IV, and if F is a holomorphic cusp form of weight k,

(1.1.10) JFpxq “ 2πikJk´1p4π
?

xq, JFp´xq “ 0, x ą 0.

Thus the integral kernel JF has an expression in terms of Bessel functions, where, in stan-

dard notation, Jν, Yν, Hp1q
ν , Hp2q

ν , Iν and Kν are the various Bessel functions (see for instance

[Wat]). Here, the following connection formulae ([Wat, 3.61 (3, 4, 5, 6), 3.7 (6)]) have

been applied in (1.1.8) and (1.1.9),

Yνpxq “
Jνpxq cospπνq ´ J´νpxq

sinpπνq
, Y´νpxq “

Jνpxq ´ J´νpxq cospπνq
sinpπνq

,(1.1.11)

IVFor this case there are two insignificant typos in [HM, Proposition 1].
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Hp1q
ν pxq “

J´νpxq ´ e´πiνJνpxq
i sinpπνq

, Hp2q
ν pxq “

eπiνJνpxq ´ J´νpxq
i sinpπνq

,(1.1.12)

Kνpxq “
π pI´νpxq ´ Iνpxqq

2 sinpπνq
.(1.1.13)

The theory of Bessel functions has been extensively studied since the early 19th century,

and we refer the reader to Watson’s beautiful book [Wat] for an encyclopedic treatment.

For n ě 3, Hankel transforms are formulated in Miller and Schmid [MS3, MS4],

given that pλ, δq is a certain parameter of a cuspidal GLnpZq-automorphic representation

of GLnpRq. It is the archimedean ingredient that relates the weight functions on two sides

of the identity in the Voronoı̆ summation formula for GLnpZq. For n “ 1, 2 the Poisson and

the Voronoı̆ summation formula are also interpreted from their perspective in [MS2].

Using the global theory of GLn ˆ GL1-Rankin-Selberg L-functions, Inchino and Tem-

plier [IT] extend Miller and Schmid’s work and prove the Voronoı̆ summation formula for

any irreducible cuspidal automorphic representation of GLn over an arbitrary number field

for n ě 2. According to [IT], the two defining identities (1.1.2) of the associated Hankel

transform follows from renormalizing the corresponding local functional equations of the

GLn ˆ GL1-Rankin-Selberg zeta integrals over R.

Bessel kernels

In the case n ě 3, when applying the Voronoı̆ summation formula, it might have been

realized by many authors that, similar to (1.1.6, 1.1.7), Hankel transforms of rank n should

also admit integral kernels, that is,

Υpxq “
ż

Rˆ
υpyqJpλ,δqpxyqdy.

We shall call Jpλ,δq the (fundamental) Bessel kernel of index pλ, δq.
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Actually, it will be seen in §1.2.1 that an expression of Jpλ,δqp˘xq, x P R` “ p0,8q,

in terms of certain Mellin-Barnes type integrals involving the Gamma function (see (1.2.7,

1.2.8)) may be easily derived from the first expression (1.1.4) of the Hankel transform of

index pλ, δq. Moreover, the analytic continuation of Jpλ,δqp˘xq from R` onto the Riemann

surface U, the universal cover of C r t0u, can be realized as a Barnes type integral via

modifying the integral contour of a Mellin-Barnes type integral (see Remark 1.7.10). In the

literatures, we have seen applications of the asymptotic expansion of Jpλ,δqp˘xq obtained

from applying Stirling’s asymptotic formula of the Gamma function to the Mellin-Barnes

type integral (see Appendix 1.A). There are however two limitations of this method. Firstly,

it is only applicable when λ is regarded as fixed constant and hence the dependence on λ of

the error term can not be clarified. Secondly, it is not applicable to a Barnes type integral

and therefore the domain of the asymptotic expansion can not be extended from R`. In this

direction from (1.1.4), it seems that we can not proceed any further.

In this chapter, we shall take an approach to Bessel kernels starting from the second

expression (1.1.5) of Hankel transforms. This approach is more accessible, at least in

symbolic notions, in view of the simpler form of (1.1.5) compared to (1.1.4). Once we can

make sense of the symbolic notions in (1.1.5), some well-developed methods from analysis

and differential equations may be exploited so that we are able to understand Bessel kernels

to a much greater extent.

1.1.2. Outline of this chapter

Bessel functions and their formal integral representations

First of all, in §1.2.1, we introduce the Bessel function Jpx; ς, λq of indices λ P Ln´1

and ς P t`,´un. It turns out that the Bessel kernel Jpλ,δqp˘xq can be formulated as a signed
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sum of J
`

2πx
1
n ; ς, λ

˘

, x P R`. Our task is therefore understanding each Bessel function

Jpx; ς, λq.

In §1.2.2, with some manipulations on the Fourier type expression (1.1.5) of the Hankel

transform of index pλ, δq in a symbolic manner, we obtain a formal integral representation

of the Bessel function Jpx; ς, λq. If we define ν “ pν1, ..., νn´1q P Cn´1 by ν` “ λ` ´ λn,

with ` “ 1, ..., n´ 1, then the formal integral is given by

(1.1.14) Jνpx; ςq “
ż

Rn´1
`

˜

n´1
ź

`“1

tν`´1
`

¸

eixpςnt1...tn´1`
řn´1
`“1 ς`t

´1
` qdtn´1...dt1.

Justification of this formal integral representation is the main subject of §1.3 and §1.4.

For this, we partition the formal integral Jνpx; ςq according to some partition of unity on

Rn´1
` , and then repeatedly apply two kinds of partial integration operators on each resulting

integral. In this way, Jνpx; ςq can be transformed into a finite sum of absolutely convergent

multiple integrals. This sum of integrals is regarded as the rigorous definition of Jνpx; ςq.

However, the simplicity of the expression (1.1.14) is sacrificed after these technical proce-

dures. Furthermore, it is shown that

(1.1.15) Jpx; ς, λq “ Jνpx; ςq.

Asymptotics via stationary phase

In §1.5, we either adapt techniques or directly apply results from the method of station-

ary phase to study the asymptotic behaviour of Jνpx; ςq for large argument.

When all the components of ς are identically ˘, we denote Jpx; ς, λq, respectively

Jνpx; ςq, by H˘px; λq, respectively H˘
ν pxq, and call it an H-Bessel functionV. This pair of

H-Bessel functions will be of paramount significance in our treatment.

VIf a statement or a formula includes˘ or¯, then it should be read with˘ and¯ simultaneously replaced
by either ` and ´ or ´ and `.
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It is shown that H˘px; λq “ H˘
ν pxq admits an analytic continuation from R` onto the

half-plane H˘ “ tz P Cr t0u : 0 ď ˘ arg z ď πu. We have the asymptotic expansion

H˘
pz; λq “ n´

1
2 p˘2πiq

n´1
2 e˘inzz´

n´1
2

˜

M´1
ÿ

m“0

p˘iq´mBmpλqz´m
` OR,M,n

´

C
2M
|z|´M` n´1

2

¯

¸

,
(1.1.16)

for all z P H˘ such that |z| ě C, where C “ max t|λ`|u ` 1, R “ max t|Re λ`|u, M ě 0,

Bmpλq is a certain symmetric polynomial in λ of degree 2m, with B0pλq “ 1. In particular,

these two H-Bessel functions oscillate and decay proportionally to x´
n´1

2 on R`.

All the other Bessel functions are called K-Bessel functions and are shown to be Schwartz

functions at infinity.

Bessel equations

The differential equation, namely Bessel equation, satisfied by the Bessel function

Jpx; ς, λq is discovered in §1.6.

Given λ P Ln´1, there are exactly two Bessel equations

(1.1.17)
n
ÿ

j“1

Vn, jpλqx jwp jq
` pVn,0pλq ´ ςpinqnxnqw “ 0, ς P t`,´u,

where Vn, jpλq is some explicitly given symmetric polynomial in λ of degree n´ j. We call

ς the sign of the Bessel equation (1.1.17). Jpx; ς, λq satisfies the Bessel equation of sign

S npςq “
śn

`“1 ς`.

The entire §1.7 is devoted to the study of Bessel equations. Let U denote the Riemann

surface associated with log z, that is, the universal cover of C r t0u. Replacing x by z to

stand for complex variable in the Bessel equation (1.1.17), the domain is extended from

R` to U. According to the theory of linear ordinary differential equations with analytic

coefficients, Jpx; ς, λq admits an analytic continuation onto U.
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Firstly, since zero is a regular singularity, the Frobenius method may be exploited to

find a solution J`pz; ς, λq of (1.1.17), for each ` “ 1, ..., n, defined by the following series,

J`pz; ς, λq “
8
ÿ

m“0

pςinqmznp´λ``mq

śn
k“1 Γ pλk ´ λ` ` m` 1q

.

J`pz; ς, λq are called Bessel functions of the first kind, since they generalize the Bessel

functions Jνpzq and the modified Bessel functions Iνpzq of the first kind.

It turns out that each Jpz; ς, λq may be expressed in terms of J` pz; S npςq, λq. This leads

to the following connection formula

(1.1.18) Jpz; ς, λq “ e

˜

˘

ř

`PL¯pςq λ`

2

¸

H˘

´

e˘πi
n¯pςq

n z; λ
¯

,

where L˘pςq “ t` : ς` “ ˘u and n˘pςq “ |L˘pςq|. Thus the Bessel function Jpz; ς, λq is

determined up to a constant by the pair of integers pn`pςq, n´pςqq, called the signature of

Jpz; ς, λq.

Secondly, 8 is an irregular singularity of rank one. The formal solutions at infinity

serve as the asymptotic expansions of some actual solutions of Bessel equations.

Let ξ be an n-th root of ς1. There exists a unique formal solution pJpz; λ; ξq of the Bessel

equation of sign ς in the following form

pJpz; λ; ξq “ einξzz´
n´1

2

8
ÿ

m“0

Bmpλ; ξqz´m,

where Bmpλ; ξq is a symmetric polynomial in λ of degree 2m, with B0pλ; ξq “ 1. The

coefficients of Bmpλ; ξq depend only on m, ξ and n. There exists a unique solution Jpz; λ; ξq

of the Bessel equation of sign ς which possesses pJpz; λ; ξq as its asymptotic expansion on

the sector

Sξ “
!

z P U :
ˇ

ˇ

ˇ
arg z´ argpiξq

ˇ

ˇ

ˇ
ă
π

n

)

,

or any of its open subsector.
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The study of the theory of asymptotic expansions for ordinary differential equations can

be traced back to Poincaré. There are abundant references on this topic, for instance, [CL,

Chapter 5], [Was, Chapter III-V] and [Olv, Chapter 7]. However, the author is not aware

of any error analysis in the index aspect in the literatures except for differential equations

of second order in [Olv]. Nevertheless, with some effort, a very satisfactory error bound is

attainable.

For 0 ă ϑ ă 1
2π define the sector

S1ξpϑq “
!

z P U :
ˇ

ˇ

ˇ
arg z´ argpiξq

ˇ

ˇ

ˇ
ă π`

π

n
´ ϑ

)

.

The following asymptotic expansion is established in §1.7.4,

(1.1.19) Jpz; λ; ξq “ einξzz´
n´1

2

˜

M´1
ÿ

m“0

Bmpλ; ξqz´m
` OM,n

`

C
2M
|z|´M

˘

¸

for all z P S1ξpϑq with |z| ÏM,ϑ,n C
2.

For a 2n-th root of unity ξ, Jpz; λ; ξq is called a Bessel function of the second kind. We

have the following formula that relates all the the Bessel functions of the second kind to

either Jpz; λ; 1q or Jpz; λ;´1q upon rotating the argument by a 2n-th root of unity,

(1.1.20) Jpz; λ; ξq “ p˘ξq
n´1

2 Jp˘ξz; λ;˘1q.

Connections between Jpz; ς, λq and Jpz; λ; ξq

Comparing the asymptotic expansions of H˘pz; λq and Jpz; λ;˘1q in (1.1.16) and (1.1.19),

we obtain the identity

(1.1.21) H˘
pz; λq “ n´

1
2 p˘2πiq

n´1
2 Jpz; λ;˘1q.

It follows from (1.1.18) and (1.1.20) that

Jpz; ς, λq “
p¯2πiq

n´1
2

?
n

e

˜

˘
pn´ 1qn˘pςq

4n
¯

ř

`PL˘pςq λ`

2

¸

J
´

z; λ;¯e¯πi
n˘pςq

n

¯

.
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Thus (1.1.19) may be applied to improve the error estimate in the asymptotic expansion

(1.1.16) of the H-Bessel function H˘pz; λq when |z| ÏM,n C
2 and also to show the exponen-

tial decay of K-Bessel functions on R`.

Connections between J`pz; ς, λq and Jpz; λ; ξq

The identity (1.1.21) also yields connection formulae between the two kinds of Bessel

functions, in terms of a certain Vandermonde matrix and its inverse.

1.2. Preliminaries on Bessel functions

In §1.2.1 and 1.2.2, we shall introduce the Bessel function Jpx; ς, λq, with ς P t`,´un

and λ P Ln´1. Two expressions of Jpx; ς, λq arise from the two formulae (1.1.4) and (1.1.5)

of the Hankel transform of index pλ, δq. The first is a Mellin-Barnes type contour inte-

gral and the second is a formal multiple integral. In §1.2.3 and 1.2.4, some examples of

Jpx; ς, λq are provided for the purpose of illustration.

Let υ P S pRˆq be a Schwartz function on Rˆ. Without loss of generality, we assume

υp´yq “ p´qηυpyq, with η P Z{2Z.

1.2.1. The definition of the Bessel function Jpx; ς, λq

We start with reformulating (1.1.3) as

Gδpsq “ p2πq´sΓpsq
´

e
´ s

4

¯

` p´q
δe
´

´
s
4

¯¯

.

Inserting this formula of Gδ into (1.1.4), Υpxq then splits as follows

(1.2.1) Υpxq “ sgnpxqη
ÿ

ςPt`,´un

˜

n
ź

`“1

ς
δ``η
`

¸

Υp|x|; ςq,
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with ς “ pς1, ..., ςnq, where

(1.2.2) Υpx; ςq “
1

2πi

ż

pσq

ż 8

0
υpyqy´sdy ¨Gps; ς, λqpp2πqnxq´sds, x P R`,

and

(1.2.3) Gps; ς, λq “
n
ź

`“1

Γps´ λ`qe
ˆ

ς`ps´ λ`q

4

˙

.

Since all the derivatives of υ rapidly decay at both zero and infinity, repeating partial

integrations yields the bound
ż 8

0
υpyqy´sdy ÎRe s,M,υ p|Im s| ` 1q´M,

for any nonnegative integer M. Hence the iterated double integral in (1.2.2) is convergent

due to Stirling’s formula.

Choose ρ ă 1
2 ´

1
n so that

řn
`“1

`

ρ´ Re λ` ´
1
2

˘

ă ´1. Without passing through any

pole of Gps; ς, λq, we shift the vertical line pσq to a contour C that starts from ρ´i8, ends at

ρ`i8, and remains vertical at infinity. After this contour shift, the double integral in (1.2.2)

becomes absolutely convergent by Stirling’s formula. Changing the order of integration is

therefore legitimate and yields

(1.2.4) Υpx; ςq “
ż 8

0
υpyqJ

´

2πpxyq
1
n ; ς, λ

¯

dy,

with

(1.2.5) Jpx; ς, λq “
1

2πi

ż

C

Gps; ς, λqx´nsds.

For λ P Ln´1 and ς P t`,´un, the function Jpx; ς, λq defined by (1.2.5) is called a Bessel

function and the integral in (1.2.5) a Mellin-Barnes type integral. We view J
`

x
1
n ; ς, λ

˘

as

the inverse Mellin transform of Gps; ς, λq.

Suitably choosing the integral contour C, it may be verified that Jpx; ς, λq is a smooth

function of x and is analytic with respect to λ.
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Remark 1.2.1. The contour of integration pσq does not need modification if the compo-

nents of ς are not identical. For further discussions of the integral in the definition (1.2.5)

of Jpx; ς, λq see Remark 1.7.10.

Remark 1.2.2. We have

(1.2.6) Υpxq “
ż

Rˆ
υpyqJpλ,δqpxyqdy, x P Rˆ,

for any υ P S pRˆq, where the Bessel kernel Jpλ,δq is given by

(1.2.7) Jpλ,δq p˘xq “
1
2

ÿ

δPZ{2Z

p˘q
δ

ÿ

ςPt`,´un

˜

n
ź

`“1

ςδ``δ`

¸

J
`

2πx
1
n ; ς, λ

˘

, x P R`.

Moreover,

(1.2.8) Jpλ,δq pxq “
ÿ

δPZ{2Z

sgnpxqδ

4πi

ż

C

˜

n
ź

`“1

Gδ``δps´ λ`q

¸

|x|´sds.

1.2.2. The formal integral representation of Jpx; ς, λq

In this section, we assume n ě 2. Since we shall manipulate the Fourier type integral

transform (1.1.5) only in a symbolic manner, the restrictions on the index λ that guarantee

the convergence of the iterated integral in (1.1.5) will not be imposed here.

With the parity condition on the weight function υ, (1.1.5) may be written as

Υpxq “
sgnpxqη

|x|

ÿ

ςPt`,´un

˜

n
ź

`“1

ς
δ``η
`

¸

ż

Rn
`

υ

ˆ

x1...xn

|x|

˙

˜

n
ź

`“1

x´λ`` epς`x`q

¸

dxndxn´1...dx1.

(1.2.9)

Comparing (1.2.9) with (1.2.1)VI, we arrive at

Υpx; ςq “
1
|x|

ż

Rn
`

υ

ˆ

x1...xn

|x|

˙

˜

n
ź

`“1

x´λ`` epς`x`q

¸

dxndxn´1...dx1.

VITo justify our comparison, we use the fact that the associated 2n ˆ 2n matrix is equal to the n-th tensor

power of
ˆ

1 p´1qη

1 p´1q1`η

˙

and hence is invertible.
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The change of variables xn “ |x|ypx1...xn´1q
´1, x` “ y´1

` , ` “ 1, ..., n´ 1, turns this further

into

Υpx; ςq “
ż

Rn
`

υ pyq pxyq´λn

˜

n´1
ź

`“1

yλ`´λn´1
`

¸

e

˜

ςnxyy1...yn´1 `

n´1
ÿ

`“1

ς`y´1
`

¸

dydyn´1...dy1.

(1.2.10)

Comparing now (1.2.10) with (1.2.4), if one formally changes the order of the integrations,

which is not permissible since the integral is not absolutely convergent, then Jpx; ς, λq can

be expressed as a symbolic integral as below,

Jp2πx; ς, λq “ x´nλn

ż

Rn´1
`

˜

n´1
ź

`“1

yλ`´λn´1
`

¸

e

˜

ςnxny1...yn´1 `

n´1
ÿ

`“1

ς`y´1
`

¸

dyn´1...dy1.

Another change of variables y` “ t`x´1, along with the assumption
řn

`“1 λ` “ 0, yields

(1.2.11) Jpx; ς, λq “
ż

Rn´1
`

˜

n´1
ź

`“1

tλ`´λn´1
`

¸

eixpςnt1...tn´1`
řn´1
`“1 ς`t

´1
` qdtn´1...dt1.

The above integral is not absolutely convergent and will be referred to as the formal integral

representation of Jpx; ς, λq.

Remark 1.2.3. Before realizing its connection with the Fourier type transform (1.1.5), the

formal integral representation of Jpx; ς, λq was derived by the author from (1.1.4) based

on a symbolic application of the product-convolution principle of the Mellin transform

together with the following formula ([GR, 3.764])

(1.2.12) Γpsqe
´

˘
s
4

¯

“

ż 8

0
e˘ixxsdˆx, 0 ă Re s ă 1.

Though not specified, this principle is implicitly suggested in Miller and Schmid’s work,

especially, [MS1, Theorem 4.12, Lemma 6.19] and [MS3, (5.22, 5.26)].
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1.2.3. The classical cases

The case n “ 1

Proposition 1.2.4. Suppose n “ 1. Choose the contour C as in §1.2.1; C starts from ρ´ i8

and ends at ρ ` i8, with ρ ă ´ 1
2 , and all the nonpositive integers lie on the left side of C.

We have

(1.2.13) e˘ix
“

1
2πi

ż

C

Γpsqe
´

˘
s
4

¯

x´sds.

Therefore

Jpx;˘, 0q “ e˘ix.

Proof. Let Re z ą 0. For Re s ą 0, we have the formula

Γpsqz´s
“

ż 8

0
e´zxxsdˆx,

where the integral is absolutely convergent. The Mellin inversion formula yields

e´zx
“

1
2πi

ż

pσq

Γpsqz´sx´sds, σ ą 0.

Shifting the contour of integration from pσq to C, one sees that

e´zx
“

1
2πi

ż

C

Γpsqz´sx´sds.

Choose z “ e¯p
1
2π´εqi, π ą ε ą 0. In view of Stirling’s formula, the convergence of the

integral above is uniform in ε. Therefore, we obtain (1.2.13) by letting ε Ñ 0. Q.E.D.

Remark 1.2.5. Observe that the integral in (1.2.12) is only conditionally convergent, the

Mellin inversion formula does not apply in the rigorous sense. Nevertheless, (1.2.13)

should be view as the Mellin inversion of (1.2.12).
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Remark 1.2.6. It follows from the proof of Proposition 1.2.4 that the formula

(1.2.14) e´epaqx
“

1
2πi

ż

C

Γpsqe p´asq x´sds

is valid for any a P
“

´1
4 ,

1
4

‰

.

The case n “ 2

Proposition 1.2.7. Let λ P C. Then

Jpx;˘,˘, λ,´λq “ ˘πie˘πiλHp1,2q
2λ p2xq,

Jpx;˘,¯, λ,´λq “ 2e¯πiλK2λp2xq.

Here Hp1q
ν and Hp2q

ν are Bessel functions of the third kind, also known as Hankel functions,

whereas Kν is the modified Bessel function of the second kind, occasionally called the K-

Bessel function.

Proof. The following formulae are derived from [GR, 6.561 14-16] along with Euler’s

reflection formula of the Gamma function.

π

ż 8

0
Jνp2

?
xqxs´1dx “ Γ

´

s`
ν

2

¯

Γ

´

s´
ν

2

¯

sin
´

π
´

s´
ν

2

¯¯

for ´1
2Re ν ă Re s ă 1

4 ,

´π

ż 8

0
Yνp2

?
xqxs´1dx “ Γ

´

s`
ν

2

¯

Γ

´

s´
ν

2

¯

cos
´

π
´

s´
ν

2

¯¯

for 1
2 |Re ν| ă Re s ă 1

4 , and

2
ż 8

0
Kνp2

?
xqxs´1dx “ Γ

´

s`
ν

2

¯

Γ

´

s´
ν

2

¯

for Re s ą 1
2 |Re ν|. For Re s in the given ranges, these integrals are absolutely convergent.

It follows immediately from the Mellin inversion formula that

Jpx;˘,˘, λ,´λq “ ˘πie˘πiλ
pJ2λp2xq ˘ iY2λp2xqq, |Re λ| ă

1
4
,
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Jpx;˘,¯, λ,´λq “ 2e¯πiλK2λp2xq.

In view of the analyticity in λ, the first formula remains valid even if |Re λ| ě 1
4 by the

theory of analytic continuation. Finally, we conclude the proof by recollecting the formula

Hp1,2q
ν pxq “ Jνpxq ˘ iYνpxq. Q.E.D.

Remark 1.2.8. Let λ “ it if F is a Maaß form of eigenvalue 1
4 ` t2 and weight k, and

let λ “ 1
2pk ´ 1q if F is a holomorphic cusp form of weight k. Then F is parametrized

by pλ, δq “ pλ,´λ, kpmod 2q, 0q and JF “ Jpλ,δq. From the formula (1.2.7) of the Bessel

kernel, we have

Jpλ,δq pxq “ Jp2π
?

x;`,`, λ,´λq ` p´qkJp2π
?

x;´,´, λ,´λq,

Jpλ,δq p´xq “ Jp2π
?

x;`,´, λ,´λq ` p´qkJp2π
?

x;´,`, λ,´λq.

Thus, Proposition 1.2.7 implies (1.1.8, 1.1.9, 1.1.10).

When x ą 0 and |Re ν| ă 1, we have the following integral representations of Bessel

functions ([Wat, 6.21 (10, 11), 6.22 (13)])

Hp1,2q
ν pxq “ ˘

2e¯
1
2πiν

πi

ż 8

0
e˘ix cosh r coshpνrqdr,

Kνpxq “
1

cos
`

1
2πν

˘

ż 8

0
cospx sinh rq coshpνrqdr.

The change of variables t “ er yields

˘πie˘
1
2πiνHp1,2q

ν p2xq “
ż 8

0
tν´1e˘ixpt`t´1qdt,

2e˘
1
2πiνKνp2xq “

ż 8

0
tν´1e˘ixpt´t´1qdt.

The integrals in these formulae are exactly the formal integrals in (1.2.11) in the case n “ 2.

They conditionally converge if |Re ν| ă 1, but diverge if otherwise.
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1.2.4. A prototypical example

According to [Wat, 3.4 (3, 6), 3.71 (13)],

J 1
2
pxq “

ˆ

2
πx

˙
1
2

sin x, J´ 1
2
pxq “

ˆ

2
πx

˙
1
2

cos x.

The connection formulae in (1.1.12) ([Wat, 3.61 (5, 6)]) then imply that

Hp1q
1
2
pxq “ ´i

ˆ

2
πx

˙
1
2

eix, Hp2q
1
2
pxq “ i

ˆ

2
πx

˙
1
2

e´ix.

Moreover, [Wat, 3.71 (13)] reads

K 1
2
pxq “

´ π

2x

¯
1
2

e´x.

Therefore, from the formulae in Proposition 1.2.7 we have

J
`

x;˘,˘, 1
4 ,´

1
4

˘

“

´π

x

¯
1
2

e˘2ix˘ 1
4πi, J

`

x;˘,¯, 1
4 ,´

1
4

˘

“

´π

x

¯
1
2

e´2x¯ 1
4πi.

These formulae admit generalizations to arbitrary rank.

Proposition 1.2.9. For ς P t`,´un we define L˘pςq “ t` : ς` “ ˘u and n˘pςq “ |L˘pςq|.

Put ξpςq “ ieπi
n´pςq´n`pςq

2n “ ¯e¯πi
n˘pςq

n . Suppose λ “ 1
n

`

n´1
2 , ...,´n´1

2

˘

. Then

(1.2.15) Jpx; ς, λq “
cpςq
?

n

ˆ

2π
x

˙
n´1

2

einξpςqx,

with cpςq “ e
´

¯n´1
8 ¯

n˘pςq
2n ˘ 1

2n

ř

`PL˘pςq `
¯

.

Proof. Using the multiplication formula of the Gamma function

(1.2.16)
n´1
ź

k“0

Γ

ˆ

s`
k
n

˙

“ p2πq
n´1

2 n
1
2´nsΓpnsq,

straightforward calculations yield

Gps; ς, λq “ c1pςqp2πq
n´1

2 n
1
2´nps´ n´1

2n qΓ

ˆ

n
ˆ

s´
n´ 1

2n

˙˙

e
ˆ

n`pςq ´ n´pςq
4

¨ s
˙

,
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with c1pςq “ e
´

¯
pn`1qn˘pςq

4n ˘ 1
2n

ř

`PL˘pςq `
¯

. Inserting this into the contour integral in

(1.2.5) and making the change of variables from s to 1
n

`

s` n´1
2

˘

, one arrives at

Jpx; ς, λq “
c1pςqc2pςq

?
n

ˆ

2π
x

˙
n´1

2 1
2πi

ż

nC´ n´1
2

Γpsqe
ˆ

n`pςq ´ n´pςq
4n

¨ s
˙

pnxq´sds,

with c2pςq “ e
´

¯n´1
8 ˘

pn´1qn˘pςq
4n

¯

. (1.2.15) now follows from (1.2.14) if the contour C is

suitably chosen. Q.E.D.

1.3. The rigorous interpretation of formal integral
representations

We first introduce some new notations. Let d “ n ´ 1, t “ pt1, ..., tdq P Rd
`, ν “

pν1, ..., νdq P Cd and ς “ pς1, ..., ςd, ςd`1q P t`,´u
d`1. For a ą 0 define Sd

a “
 

ν P Cd :

|Re ν`| ă a for all ` “ 1, ..., d
(

. For ν P C define

rνsα “
śα´1

k“0 pν´ kq, pνqα “
śα´1

k“0 pν` kq if α ě 1, rνs0 “ pνq0 “ 1.

Denote by pν the power function

pνptq “
d
ź

`“1

tν`´1
` ,

let

θpt; ςq “ ςd`1t1...td `

d
ÿ

`“1

ς`t´1
` ,

and define the formal integral

(1.3.1) Jνpx; ςq “
ż

Rd
`

pνptqeixθpt;ςqd t.

One sees that the formal integral representation of Jpx; ς, λq given in (1.2.11) is equal to

Jνpx; ςq if ν` “ λ` ´ λd`1, ` “ 1, ..., d.
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For d “ 1, it is seen in §1.2.3 that Jνpx; ςq is conditionally convergent if and only if

|Re ν| ă 1 but fails to be absolutely convergent. When d ě 2, we are in a worse scenario.

The notion of convergence for multiple integrals is always in the absolute sense. Thus, the

d-dimensional multiple integral in (1.3.1) alone does not make any sense, since it is clearly

not absolutely convergent.

In the following, we shall address this fundamental convergence issue of the formal

integral Jνpx; ςq, relying on its structural simplicity, so that it will be provided with mathe-

matically rigorous meaningsVII. Moreover, it will be shown that our rigorous interpretation

of Jνpx; ςq is a smooth function of x on R` as well as an analytic function of ν on Cd.

1.3.1. Formal partial integration operators

The most crucial observation is that there are two kinds of formal partial integrations.

The first kind arises from

B

´

eς`ixt´1
`

¯

“ ´ς`ixt´2
` eς`ixt´1

` Bt`,

and the second kind from

B
`

eςd`1ixt1...td
˘

“ ςd`1ixt1...pt`...tdeςd`1ixt1...tdBt`,

where pt` means that t` is omitted from the product.

Definition 1.3.1. Let

T pR`q “
 

h P C8pR`q : tαhpαqptq Îα 1 for all α P N
(

.

VIIIt turns out that our rigorous interpretation actually coincides with the Hadamard partie finie of the
formal integral.
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ν
ν` ed ` e`

ν` e`
P`,` : ν

ν´ ed

ν´ ed ´ e`
P´,` :

Index shifts

For hptq P
Âd T pR`q, in the sense that hptq is a linear combination of functions of the

form
śd

`“1 h`pt`q, define the integral

Jνpx; ς; hq “
ż

Rd
`

hptqpνptqeixθpt;ςqd t.

We call Jνpx; ς; hq a J-integral of index ν. Let us introduce an auxiliary space

Jνpςq “ SpanCrx´1s

!

Jν1px; ς; hq : ν1 P ν` Zd, h P
Âd T pR`q

)

.

Here Crx´1s is the ring of polynomials of variable x´1 and complex coefficients. Finally, we

define P`,` and P´,` to be the two Crx´1s-linear operators on the space Jνpςq, in symbolic

notion, as follows,

P`,`pJνpx; ς; hqq “ ς`ςd`1Jν`ed`e` px; ς; hq

´ ς`ipν` ` 1qx´1Jν`e` px; ς; hq ´ ς`ix´1Jν`e` px; ς; t`B`hq ,

P´,`pJνpx; ς; hqq “ ς`ςd`1Jν´ed´e` px; ς; hq

` ςd`1ipν` ´ 1qx´1Jν´ed px; ς; hq ` ςd`1ix´1Jν´ed px; ς; t`B`hq ,

where e` “ p0, ..., 0, 1
looomooon

`

, 0..., 0q and ed “ p1, ..., 1q, and B`h is the abbreviated Bh{Bt`.

The formulations of P`,` and P´,` are quite involved at a first glance. However, the

most essential feature of these operators is simply index shift!
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Observation. After the operation of P`,` on a J-integral, all the indices of the three result-

ing J-integrals are nondecreasing and the increment of the `-th index is one greater than

the others. The operator P´,` has the effect of decreasing all indices by one except possibly

two for the `-th index.

Lemma 1.3.2. Let notations be as above.

(1). Let hptq “
śd

`“1 h`pt`q. Suppose that the set t1, 2, ..., du splits into two subsets L`

and L´ such that

- h` vanishes at infinity if ` P L´, and

- h` vanishes in a neighbourhood of zero if ` P L`.

If Re ν` ą 0 for all ` P L´ and Re ν` ă 0 for all ` P L`, then the J-integral Jνpx; ς; hq

absolutely converges.

(2). Assume the same conditions in (1). Moreover, suppose that Re ν` ą 1 for all ` P L´

and Re ν` ă ´1 for all ` P L`. Then, for ` P L´, all the three J-integrals in the definition

of P`,`pJνpx; ς; hqq are absolutely convergent and the operation of P`,` on Jνpx; ς; hq is the

actual partial integration of the first kind on the integral over dt`. Similarly, for ` P L`,

the operation of P´,` preserves absolute convergence and is the actual partial integration

of the second kind on the integral over dt`.

(3). P`,` and P´,` commute with P`,k and P´,k if ` ‰ k.

(3). P`, l and P´, l commute with P`, k and P´, k if l ‰ k.

(4). Let α P N. Pα
`, lpJνpx; ς; hqq is a linear combination of

rνl ´ 1sα3 x´α`α1 Jν`α1ed`αelpx; ς; tα2
l B

α2
l hq,

and Pα
´, lpJνpx; ς; hqq is a linear combination of

rνl ´ 1sα3 x´α`α1 Jν´αed´α1elpx; ς; tα2
l B

α2
l hq,
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for α1 ` α2 ` α3 ď α. The coefficients of these linear combinations may be uniformly

bounded by a constant depending only on α.

Proof. (1-3) are obvious. The two statements in (4) follow from calculating

x´αtα`α0
l B

α0
l

`

hptqpνptqeςd`1ixt1...td
˘

eix
řd

k“1 ςkt´1
k , α0 ď α,

and

x´αBαl
´

hptqpν´αed`αelptqe
ix
řd

k“1 ςkt´1
k

¯

eςd`1ixt1...td .

For the latter, one applies the following formula

dα
`

eat´1˘

dtα
“ p´q

α
α
ÿ

β“1

α!pα´ 1q!
pα´ βq!β!pβ´ 1q!

aβt´α´βeat´1
, α P N`, a P C.

Q.E.D.

1.3.2. Partitioning the integral Jνpx; ςq

Let I be a finite set that includes t`,´u and let

ÿ

%PI

h%ptq ” 1, t P R`,

be a partition of unity on R` such that each h% is a function in T pR`q, h´ptq ” 1 on

a neighbourhood of zero and h`ptq ” 1 for large t. Put h%ptq “
śd

`“1 h%`pt`q for % “

p%1, ..., %dq P Id. We partition the integral Jνpx; ςq into a finite sum of J-integrals

Jνpx; ςq “
ÿ

%PId

Jνpx; ς; %q,

with

Jνpx; ς; %q “ Jνpx; ς; h%q “
ż

Rd
`

h%ptqpνptqeixθpt;ςqd t.
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1.3.3. The definition of Jνpx; ςq

Let a ą 0 and assume ν P Sa. Let A ě a ` 2 be an integer. For % P Id denote

L˘p%q “ t` : %` “ ˘u.

We first treat Jνpx; ς; %q in the case when both L`p%q and L´p%q are nonempty. Define

P`,% “
ś

`PL´p%q P`,`. This is well-defined due to commutativity (Lemma 1.3.2 (3)). By

Lemma 1.3.2 (4) we find that P2A
`,%pJνpx; ς; %qq is a linear combination of

¨

˝

ź

`PL´p%q

rν` ´ 1sα3,`

˛

‚x´2A|L´p%q|`
ř

`PL´p%q
α1,`
¨

Jν`př`PL´p%q
α1,`qed`2A

ř

`PL´p%q
e`

´

x; ς;
´

ś

`PL´p%q tα2,`
` B

α2,`
`

¯

h%
¯

,

(1.3.2)

with α1,` ` α2,` ` α3,` ď 2A for each ` P L´p%q. After this, we choose `` P L`p%q and

apply P
A`

ř

`PL´p%q
α1,`

´,``
on the J-integral in (1.3.2). By Lemma 1.3.2 (4) we obtain a linear

combination of

rν`` ´ 1sα3

¨

˝

ź

`PL´p%q

rν` ´ 1sα3,`

˛

‚x´Ap2|L´p%q|`1q`α1 ¨

Jν´Aed`2A
ř

`PL´p%q
e`´α1e``

´

x; ς;
´

tα2
``
B
α2
``

ś

`PL´p%q tα2,`
` B

α2,`
`

¯

h%
¯

,

(1.3.3)

with α1`α2`α3 ď
ř

`PL´p%q α1,``A. It is easy to verify that the real part of the `-th index

of the J-integral in (1.3.3) is positive if ` P L´p%q and negative if ` P L`p%q. Therefore,

the J-integral in (1.3.3) is absolutely convergent according to Lemma 1.3.2 (1). We define

Jνpx; ς; %q to be the total linear combination of all the J-integrals obtained after these two

steps of operations.

When L´p%q ‰ Ø but L`p%q “ Ø, we define Jνpx; ς; %q “ PA
`,%pJνpx; ς; %qq. It is a

linear combination of
¨

˝

ź

`PL´p%q

rν` ´ 1sα3,`

˛

‚x´A|L´p%q|`
ř

`PL´p%q
α1,`
¨

Jν`př`PL´p%q
α1,`qed`A

ř

`PL´p%q
e`

´

x; ς;
´

ś

`PL´p%q tα2,`
` B

α2,`
`

¯

h%
¯

,

(1.3.4)
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with α1,` ` α2,` ` α3,` ď A. The J-integral in (1.3.4) is absolutely convergent.

When L`p%q ‰ Ø but L´p%q “ Ø, we choose `` P L`p%q and define Jνpx; ς; %q “

PA
´,``

pJνpx; ς; %qq. This is a linear combination of

rν`` ´ 1sα3 x´A`α1 Jν´Aed´α1e``

´

x; ς; tα2
``
B
α2
``

h%
¯

,(1.3.5)

with α1 ` α2 ` α3 ď A. The J-integral in (1.3.5) is again absolutely convergent.

Finally, when both L´p%q and L`p%q are empty, we put Jνpx; ς; %q “ Jνpx; ς; %q.

Lemma 1.3.3. The definition of Jνpx; ς; %q is independent on A and the choice of `` P

L`p%q.

Proof. We shall treat the case when both L`p%q and L´p%q are nonempty. The other cases

are similar and simpler.

Starting from the Jνpx; ς; %q defined with A, we conduct the following operations in

succession for all ` P L´p%q: P`,` twice and then P´,`` once, twice or three times on each

resulting J-integral so that the increment of the `-th index is exactly one. In this way, one

arrives at the Jνpx; ς; %q defined with A` 1. In view of the assumption A ě a` 2, absolute

convergence is maintained at each step due to Lemma 1.3.2 (1). Moreover, in our settings,

the operations P`,` and P´,`` are actual partial integrations (Lemma 1.3.2 (2)), so the value

is preserved in the process. In conclusion, Jνpx; ς; %q is independent on A.

Suppose ``, k` P L`p%q. Repeating the process described in the last paragraph A times,

but with `` replaced by k`, the Jνpx; ς; %q defined with `` turns into a sum of integrals of an

expression symmetric about `` and k`. Interchanging `` and k` throughout the arguments

above, the Jνpx; ς; %q defined with k` is transformed into the same sum of integrals. Thus

we conclude that Jνpx; ς; %q is independent on the choice of ``. Q.E.D.
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Putting these together, we define

Jνpx; ςq “
ÿ

%PId

Jνpx; ς; %q,

and call Jνpx; ςq the rigorous interpretation of Jνpx; ςq. The definition of Jνpx; ςq is clearly

independent on the partition of unity th%u%PI on R`.

Uniform convergence of the J-integrals in (1.3.3, 1.3.4, 1.3.5) with respect to ν implies

that Jνpx; ςq is an analytic function of ν on Sd
a and hence on the whole Cd since a was

arbitrary. Moreover, for any nonnegative integer j, if one chooses A ě a` j`2, differenti-

ating j times under the integral sign for the J-integrals in (1.3.3, 1.3.4, 1.3.5) is legitimate.

Therefore, Jνpx; ςq is a smooth function of x.

Henceforth, with some ambiguity, we shall write Jνpx; ςq and Jνpx; ς; %q as Jνpx; ςq and

Jνpx; ς; %q respectively.

1.4. Equality between Jνpx; ςq and Jpx; ς, λq

The goal of this section is to prove that the Bessel function Jpx; ς, λq is indeed equal to

the rigorous interpretation of its formal integral representation Jνpx; ςq.

Proposition 1.4.1. Suppose that λ P Ld and ν P Cd satisfy ν` “ λ` ´ λd`1, ` “ 1, ..., d.

Then

Jpx; ς, λq “ Jνpx; ςq.

To prove this proposition, one first needs to know how the iterated integral Υpx; ςq given

in (1.2.10) is interpreted (compare [MS1, §6] and [MS3, §5]).

Suppose that Re λ1 ą ... ą Re λd ą Re λd`1. Let υ P S pR`q be a Schwartz function

on R`. Define

(1.4.1) Υd`1px; ςq “
ż

R`
υpyqy´λd`1epςd`1xyqdy, x P R`,
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and for each ` “ 1, ..., d recursively define

Υ` px; ςq “
ż

R`
Υ``1 py; ςq yλ`´λ``1´1e

`

ς`xy´1
˘

dy, x P R`.(1.4.2)

Lemma 1.4.2. Suppose that Re λ1 ą ... ą Re λd ą Re λd`1. Recall the definition of

T pR`q given in Definition 1.3.1, and define the space T8pR`q of all functions in T pR`q

that decay rapidly at infinity, along with all their derivatives. Then Υ` px; ςq P T8pR`q for

each ` “ 1, ..., d ` 1.

Proof. In the case ` “ d ` 1, Υd`1px; ςq is the Fourier transform of a Schwartz function

on R (supported in R`) and hence is actually a Schwartz function on R. In particular,

Υd`1px; ςq P T8pR`q. One may also prove this directly via performing partial integration

and differentiation under the integral sign on the integral in (1.4.1).

Suppose that Υ``1 px; ςq P T8pR`q. The condition Re λ` ą Re λ``1 secures the con-

vergence of the integral in (1.4.2). Partial integration has the effect of dividing ς`2πix

and results in an integral of the same type but with the power of y raised by one, so re-

peating this yields the rapid decay of Υ` px; ςq. Moreover, differentiation under the in-

tegral sign decreases the power of y by one, so multiple differentiating Υ` px; ςq is legit-

imate after repeated partial integrations. From these, it is straightforward to prove that

Υ`px; ςq P T pR`q. Finally, keeping repeating partial integrations yields the rapid decay of

all the derivatives of Υ` px; ςq. Q.E.D.

The change of variables from y to xy in (1.4.2) yields

Υ` px; ςq “
ż

R`
Υ``1 pxy; ςq xλ`´λ``1yλ`´λ``1´1e

`

ς`y´1
˘

dy.

Some calculations then show that Υ1 px; ςq is equal to the iterated integral

xν1

ż

Rd`1
`

υ pyq y´λd`1

˜

d
ź

`“1

yν`´1
`

¸

e

˜

ςd`1xyy1...yd `

d
ÿ

`“1

ς`y´1
`

¸

dydyd...dy1.(1.4.3)
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Comparing (1.4.3) with (1.2.10), one sees that Υpx; ςq “ x´λ1Υ1px; ςq.

The (actual) partial integration P` on the integral over dy` is in correspondence with

P`,`, whereas the partial integration Pd`1 on the integral over dy has the similar effect as

P´,`` of decreasing the powers of all the y` by one. These observations are crucial to our

proof of Proposition 1.4.1 as follows.

Proof of Proposition 1.4.1. Suppose that Re λ1 ą ... ą Re λd ą Re λd`1. We first partition

the integral over dy` in (1.4.3), for each ` “ 1, ..., d, into a sum of integrals according to a

partition of unity tho
%u%PI of R`. These partitions result in a partition of the integral (1.4.3)

into the sum

Υ1 px; ςq “
ÿ

%PId

Υ1px; ς; %q,

with

Υ1px; ς; %q “ xν1

ż

Rd`1
`

υ pyq y´λd`1

˜

d
ź

`“1

ho
%`
py`qy

ν`´1
`

¸

e

˜

ςd`1xyy1...yd `

d
ÿ

`“1

ς`y´1
`

¸

dydyd...dy1.

(1.4.4)

We now conduct the operations in §1.3.3 with P`,` replaced by P` and P´,`` by Pd`1 to each

integral Υ1px; ς; %q defined in (1.4.4). While preserving the value, these partial integrations

turn the iterated integral Υ1px; ς; %q into an absolutely convergent multiple integral. We are

then able to move the innermost integral over dy to the outermost place. The integral over

dyd...dy1 now becomes the inner integral. Making the change of variables y` “ t`pxyq´
1

d`1

to the inner integral over dyd...dy1, each partial integration P` that we did turns into P`,`.

By the same arguments in the proof of Lemma 1.3.3 showing that Jνpx; ςq is independent

on the choice of `` P L`p%q, the operations of Pd`1 that we conducted at the beginning

may be reversed and substituted by those of P´,`` . It follows that the inner integral over
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dyd...dy1 is equal to xλ1υpyqJν
´

2πpxyq
1

d`1 ; ς; %
¯

, with h%ptq “ ho
%

´

tpxyq´
1

d`1

¯

. Summing

over % P Id, we conclude that

Υpx; ςq “ x´λ1Υ1px; ςq “
ż

R`
υpyqJν

´

2πpxyq
1

d`1 ; ς
¯

dy.

Therefore, in view of (1.2.4), we have Jpx; ς, λq “ Jνpx; ςq. This equality holds true uni-

versally due to the principle of analytic continuation. Q.E.D.

In view of Proposition 1.4.1, we shall subsequently assume that λ P Ld and ν P Cd

always satisfy the relations ν` “ λ` ´ λd`1, ` “ 1, ..., d.

1.5. H-Bessel functions and K-Bessel functions

According to Proposition 1.2.7, J2λpx;˘,˘q “ Jpx;˘,˘, λ,´λq is a Hankel function,

and J2λpx;˘,¯q “ Jpx;˘,¯, λ,´λq is a K-Bessel function. There is a remarkable dif-

ference between the behaviours of Hankel functions and the K-Bessel function for large

argument. The Hankel functions oscillate and decay proportionally to 1?
x , whereas the

K-Bessel function exponentially decays. On the other hand, this phenomena also arises in

higher rank for the prototypical example shown in Proposition 1.2.9.

In the following, we shall show that such a categorization stands in general for the

Bessel functions Jνpx; ςq of an arbitrary index ν. For this, we shall analyze each integral

Jνpx; ς; %q in the rigorous interpretation of Jνpx; ςq using the method of stationary phase.

First of all, the asymptotic behaviour of Jνpx; ςq for large argument should rely on the

existence of a stationary point of the phase function θpt; ςq on Rd
`. We have

θ1pt; ςq “
`

ςd`1t1...pt`...td ´ ς`t´2
`

˘d
`“1 .

A stationary point of θpt; ςq exists in Rd
` if and only if ς1 “ ... “ ςd “ ςd`1, in which case

it is equal to t0 “ p1, ..., 1q.
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Terminology 1.5.1. We write H˘
ν pxq “ Jνpx;˘, ...,˘q, H˘px; λq “ Jpx;˘, ...˘, λq and

call them H-Bessel functions. If two of the signs ς1, ..., ςd, ςd`1 are different, then Jνpx; ςq,

or Jpx; ς, λq, is called a K-Bessel function.

Preparations

We shall retain the notations in §1.3. Moreover, for our purpose we choose a partition

of unity th%u%Pt´,0,`u on R` such that h´, h0 and h` are functions in T pR`q supported

on K´ “
`

0, 1
2

‰

, K0 “
“

1
4 , 4

‰

and K` “ r2,8q respectively. Put K% “
śd

`“1 K%` and

h%ptq “
śd

`“1 h%`pt`q for % P t´, 0,`ud. Note that t0 is enclosed in the central hypercube

K0. According to this partition of unity, Jνpx; ςq is partitioned into the sum of 3d integrals

Jνpx; ς; %q. In view of (1.3.3, 1.3.4, 1.3.5), Jνpx; ς; %q is a Crx´1s-linear combination of

absolutely convergent J-integrals of the form

(1.5.1) Jν1px; ς; hq “
ż

Rd
`

hptqpν1ptqeixθpt;ςqd t.

Here h P
Âd T pR`q is supported in K%, and ν1 P ν` Zd satisfies

(1.5.2) Re ν1` ´ Re ν` ě A if ` P L´p%q, and Re ν1` ´ Re ν` ď ´A if ` P L`p%q,

with A ą max t|Re ν`|u ` 2.

1.5.1. Estimates for Jνpx; ς; %q with % ‰ 0

Let

(1.5.3) Θpt; ςq “
d
ÿ

`“1

pt`B`θpt; ςqq
2
“

d
ÿ

`“1

`

ςd`1t1...td ´ ς`t´1
`

˘2
.

Lemma 1.5.2. Let % ‰ 0. We have for all t P K%

Θpt; ςq ě
1

16
.
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Proof. Instead, we shall prove

max
!

ˇ

ˇςd`1t1...td ´ ς`t´1
`

ˇ

ˇ : t P Rd
` r K0 and ` “ 1, ..., d

)

ě
1
4
.

Firstly, if t1...td ă
3
4 , then there exists t` ă 1 and hence

ˇ

ˇςd`1t1...td ´ ς`t´1
`

ˇ

ˇ ą 1 ´ 3
4 “

1
4 .

Similarly, if t1...td ą
7
4 , then there exists t` ą 1 and hence

ˇ

ˇςd`1t1...td ´ ς`t´1
`

ˇ

ˇ ą 7
4 ´ 1 ą 1

4 .

Finally, suppose that 3
4 ď t1...td ď

7
4 , then for our choice of t there exists ` such that

t` R
`

1
2 , 2

˘

, and therefore we still have
ˇ

ˇςd`1t1...td ´ ς`t´1
`

ˇ

ˇ ě 1
4 . Q.E.D.

Using (1.5.3), we rewrite the J-integral Jν1px; ς; hq in (1.5.1) as below,

d
ÿ

`“1

ż

Rd
`

hptq pςd`1 pν1`ed`e`ptq ´ ς`pν1ptqqΘpt; ςq´1
¨ B`θpt; ςqeixθpt;ςqd t.(1.5.4)

We now make use of the third kind of partial integrations arising from

B
`

eixθpt;ςq˘
“ ix ¨ B`θpt; ςqeixθpt;ςq

Bt`.

For the `-th integral in (1.5.4), we apply the corresponding partial integration of the third

kind. In this way, (1.5.4) turns into

´ pixq´1
d
ÿ

`“1

ż

Rd
`

t`B`h pςd`1 pν1`ed ´ ς`pν1´e`qΘ´1eixθd t

´ pixq´1
d
ÿ

`“1

ż

Rd
`

h pςd`1pν
1
` ` 1qpν1`ed ´ ς`pν

1
` ´ 1qpν1´e`qΘ´1eixθd t

` ςd`12d2
pixq´1

ż

Rd
`

hpν1`3edΘ´2eixθd t

` 2pixq´1
d
ÿ

`“1

ż

Rd
`

h
`

ς`p1´ 2dqpν1`2ed´e` ´ ςd`1 pν1`ed´2e` ` ς`pν1´3e`

˘

Θ´2eixθd t

` 4pixq´1
ÿ

1ď`ăkďd

ςd`1ς`ςk

ż

Rd
`

hpν1`ed´e`´ekΘ
´2eixθd t,

where Θ and θ are the shorthand notations for Θpt; ςq and θpt; ςq. Since the shifts of indices

do not exceed 3, it follows from the condition (1.5.2), combined with Lemma 1.5.2, that all

the integrals above absolutely converge provided A ą r` 3.
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Repeating the above manipulations, we obtain the following lemma by a straightfor-

ward inductive argument.

Lemma 1.5.3. Let B be a nonnegative integer, and choose A “ tru`3B`3. Then Jν1px; ς; hq

is equal to a linear combination of
`

1
2pd

2 ´ dq ` 7d ` 1
˘B

many absolutely convergent

integrals of the following form

pixq´BPpν1q
ż

Rd
`

tαBαhptqpν2ptqΘpt; ςq´B´B2eixθpt;ςqd t,

where |α| ` B1 ` B2 “ B (α P Nd), P is a polynomial of degree B1 and integer coefficients

of size OB,dp1q, and ν2 P ν1 ` Zd satisfies |ν2` ´ ν1`| ď B ` 2B2 for all ` “ 1, ..., d. Recall

that in the multi-index notation |α| “
řd

`“1 α`, tα “
śd

`“1 tα`` and Bα “
śd

`“1 B
α`
` .

Define c “ max t|ν`|u`1 and r “ max t|Re ν`|u. Suppose that x ě c. Applying Lemma

1.5.3 and 1.5.2 to the J-integrals in (1.3.3, 1.3.4, 1.3.5), one obtains the estimate

Jνpx; ς; %q Îr,M,d

´

c

x

¯M
,

for any given nonnegative integer M. Slight modifications of the above arguments yield a

similar estimate for the derivative

(1.5.5) Jp jq
ν px; ς; %q Îr,M, j,d

´

c

x

¯M
.

Remark 1.5.4. Our proof of (1.5.5) is similar to that of [Hör, Theorem 7.7.1]. Indeed,

Θpt; ςq plays the same role as | f 1|2 ` Im f in the proof of [Hör, Theorem 7.7.1], where f

is the phase function there. The non-compactness of K% however prohibits the application

of [Hör, Theorem 7.7.1] to the J-integral in (1.5.1) in our case.

1.5.2. Rapid decay of K-Bessel functions

Suppose that there exists k P t1, ..., du such that ςk ‰ ςd`1. Then for any t P K0

ˇ

ˇςd`1t1...td ´ ςkt´1
k

ˇ

ˇ ą t´1
k ě

1
4
.
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Similar to the arguments in §1.5.1, repeating the k-th partial integration of the third kind

yields the same bound (1.5.5) in the case % “ 0.

Remark 1.5.5. For this, we may also directly apply [Hör, Theorem 7.7.1].

Theorem 1.5.6. Let c “ max t|ν`|u`1 and r “ max t|Re ν`|u. Let j and M be nonnegative

integers. Suppose that one of the signs ς1, ..., ςd is different from ςd`1. Then

Jp jq
ν px; ςq Îr,M, j,d

´

c

x

¯M

for any x ě c. In particular, Jνpx; ςq is a Schwartz function at infinity, namely, all deriva-

tives Jp jq
ν px; ςq rapidly decay at infinity.

1.5.3. Asymptotic expansions of H-Bessel functions

In the following, we shall adopt the convention p˘iqa “ e˘
1
2 iπa, a P C.

We first introduce the function Wνpx;˘q, which is closely related to the Whittaker func-

tion of imaginary argument if d “ 1 (see [WW, §17.5, 17.6]), defined by

Wνpx;˘q “ pd ` 1q
1
2 p˘2πiq´

d
2 e¯ipd`1qxH˘

ν pxq.

Write H˘
ν px; %q “ Jνpx;˘, ...,˘; %q and define

Wνpx;˘; %q “ pd ` 1q
1
2 p˘2πiq´

d
2 e¯ipd`1qxH˘

ν px; %q.

For % ‰ 0, the bound (1.5.5) for H˘
ν px; %q is also valid for Wνpx;˘; %q. Therefore, we are

left with analyzing Wνpx;˘; 0q. We have

Wp jq
ν px;˘; 0q “ pd ` 1q

1
2 p˘2πiq´

d
2 p˘iq j

ż

K0

pθptq ´ d ´ 1q j h0ptqpνptqe˘ixpθptq´d´1qd t,
(1.5.6)

with

(1.5.7) θptq “ θpt;`, ...,`q “ t1...td `

d
ÿ

`“1

t´1
` .
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Proposition 1.5.7. [Hör, Theorem 7.7.5]. Let K Ă Rd be a compact set, X an open neigh-

bourhood of K and M a nonnegative integer. If uptq P C2M
0 pKq, f ptq P C3M`1pXq and

Im f ě 0 in X, Im f pt0q “ 0, f 1pt0q “ 0, det f 2pt0q ‰ 0 and f 1 ‰ 0 in K r tt0u, then for

x ą 0
ˇ

ˇ

ˇ

ˇ

ˇ

ż

K
uptqeix f ptqd t ´ eix f pt0q

`

p2πiq´d det f 2pt0q
˘´ 1

2

M´1
ÿ

m“0

x´m´ d
2Lmu

ˇ

ˇ

ˇ

ˇ

ˇ

Î x´M
ÿ

|α|ď2M

sup |Dαu| .

Here the implied constant depends only on M, f , K and d. With

gptq “ f ptq ´ f pt0q ´
1
2
x f 2pt0qpt ´ t0q, t ´ t0y

which vanishes of third order at t0, we have

Lmu “ i´m
2m
ÿ

r“0

1
2m`rpm` rq!r!

@

f 2pt0q
´1D,D

Dm`r
pgruq pt0q.

VIII

This is a differential operator of order 2m acting on u at t0. The coefficients are ra-

tional homogeneous functions of degree ´m in f 2pt0q, ..., f p2m`2qpt0q with denominator

pdet f 2pt0qq
3m. In every term the total number of derivatives of u and of f 2 is at most 2m.

We now apply Proposition 1.5.7 to the integral in (1.5.6). For this, we let

K “ K0 “
“

1
4 , 4

‰d
, X “

`

1
5 , 5

˘d
,

f ptq “ ˘ pθptq ´ d ´ 1q , f 1ptq “ ˘
`

t1...pt`...td ´ t´2
`

˘d
`“1 , t0 “ p1, ..., 1q,

f 2pt0q “ ˘

¨

˚

˚

˚

˝

2 1 ¨ ¨ ¨ 1
1 2 ¨ ¨ ¨ 1
...

...
. . .

...
1 1 ¨ ¨ ¨ 2

˛

‹

‹

‹

‚

, det f 2pt0q “ p˘q
d
pd ` 1q, gptq “ ˘Gptq,

f 2pt0q
´1
“ ˘

1
d ` 1

¨

˚

˚

˚

˝

d ´1 ¨ ¨ ¨ ´1
´1 d ¨ ¨ ¨ ´1
...

...
. . .

...
´1 ´1 ¨ ¨ ¨ d

˛

‹

‹

‹

‚

,

VIIIAccording to Hörmander, D “ ´ipB1, ..., Bdq.
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uptq “ pd ` 1q
1
2 p˘2πiq´

d
2 p˘iq j pθptq ´ d ´ 1q j pνptqh0ptq,

with

Gptq “ t1...td `

d
ÿ

`“1

`

´t2
` ` pd ` 1qt` ` t´1

`

˘

´
ÿ

1ď`ăkďd

t`tk ´
pd ` 1qpd ` 2q

2
.(1.5.8)

Proposition 1.5.7 yields the following asymptotic expansion of Wp jq
ν px;˘; 0q,

Wp jq
ν px;˘; 0q “

M´1
ÿ

m“0

p˘iq j´mBm, jpνqx´m´ d
2 ` Or,M, j,d

`

c
2M x´M

˘

, x P R`,

with

(1.5.9) Bm, jpνq “
2m
ÿ

r“0

p´qm`rLm`r pGrpθ ´ d ´ 1q j pνq pt0q

p2pd ` 1qqm`rpm` rq!r!
,

where L is the second-order differential operator given by

(1.5.10) L “ d
d
ÿ

`“1

B
2
` ´ 2

ÿ

1ď`ăkďd

B`Bk.

Lemma 1.5.8. We have Bm, jpνq “ 0 if m ă j. Otherwise, Bm, jpνq P Qrνs is a symmetric

polynomial of degree 2m´ 2 j. In particular, Bm, jpνq Îm, j,d c
2m´2 j for m ě j.

Proof. The symmetry of Bm, jpνq is clear from definition. Since θ´d´1 vanishes of second

order at t0, 2 j many differentiations are required to remove the zero of pθ ´ d ´ 1q j at t0.

From this, along with the descriptions of the differential operator Lm in Proposition 1.5.7,

one proves the lemma. Q.E.D.

Furthermore, in view of (1.5.5), the total contribution to Wp jq
ν px;˘q from all those

Wp jq
ν px;˘; %q with % ‰ 0 is of size Or,M, j,d pc

M x´Mq and hence may be absorbed into the

error term in the asymptotic expansion of Wp jq
ν px;˘; 0q.

In conclusion, the following proposition is established.
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Proposition 1.5.9. Let M, j be nonnegative integers such that M ě j. Then for x ě c

Wp jq
ν px;˘q “

M´1
ÿ

m“ j

p˘iq j´mBm, jpνqx´m´ d
2 ` Or,M, j,d

`

c
2M x´M

˘

.

Corollary 1.5.10. Let N, j be nonnegative integers such that N ě j, and let ε ą 0.

(1). We have Wp jq
ν px;˘q Îr, j,d c

2 jx´ j for x ě c.

(2). If x ě c2`ε , then

Wp jq
ν px;˘q “

N´1
ÿ

m“ j

p˘iq j´mBm, jpνqx´m´ d
2 ` Or,N, j,ε,d

´

c
2N x´N´ d

2

¯

.

Proof. On letting M “ j, Proposition 1.5.9 implies (1). On choosing M sufficiently large

so that p2` εq
`

M ´ N ` d
2

˘

ě 2pM ´ Nq, Proposition 1.5.9 and Lemma 1.5.8 yield

Wp jq
ν px;˘q ´

N´1
ÿ

m“ j

p˘iq j´mBm, jpνqx´m´ d
2

“

M´1
ÿ

m“N

p˘iq j´mBm, jpνqx´m´ d
2 ` Or, j,M,d

`

c
2M x´M

˘

“ Or, j,N,ε,d

´

c
2N x´N´ d

2

¯

.

Q.E.D.

Finally, the asymptotic expansion of H˘px; λq(“ H˘
ν pxq) is formulated as below.

Theorem 1.5.11. Let C “ max t|λ`|u ` 1 and R “ max t|Re λ`|u. Let M be a nonnegative

integer.

(1). Define Wpx;˘, λq “
?

np˘2πiq´
n´1

2 e¯inxH˘px; λq. Let M ě j ě 0. Then

Wp jq
px;˘, λq “

M´1
ÿ

m“ j

p˘iq j´mBm, jpλqx´m´ n´1
2 ` OR,M, j,n

`

C
2M x´M

˘

for all x ě C. Here Bm, jpλq P Qrλs is a symmetric polynomial in λ of degree 2m, with

B0,0pλq “ 1. The coefficients of Bm, jpλq depends only on m, j and d.

(2). Let Bmpλq “ Bm,0pλq. Then for x ě C

H˘
px; λq “ n´

1
2 p˘2πiq

n´1
2 e˘inxx´

n´1
2

˜

M´1
ÿ

m“0

p˘iq´mBmpλqx´m
` OR,M,d

´

C
2M x´M` n´1

2

¯

¸

.
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Proof. This theorem is a direct consequence of Proposition 1.5.9 and Lemma 1.5.8. It is

only left to verify the symmetry of Bm, jpλq “ Bm, jpνq with respect to λ. Indeed, in view of

(1.2.3, 1.2.5), H˘px; λq is symmetric with respect to λ, so Bm, jpλq must be represented by a

symmetric polynomial in λ modulo
řd`1

`“1 λ`. Q.E.D.

Corollary 1.5.12. Let M be a nonnegative integer, and let ε ą 0. Then for x ě C2`ε

H˘
px; λq “ n´

1
2 p˘2πiq

n´1
2 e˘inxx´

n´1
2

˜

M´1
ÿ

m“0

p˘iq´mBmpλqx´m
` OR,M,ε,n

`

C
2M x´M

˘

¸

.

1.5.4. Concluding remarks

On the analytic continuations of H-Bessel functions

Our observation is that the phase function θ defined by (1.5.7) is always positive on

Rd
`. It follows that if one replaces x by z “ xeiω, with x ą 0 and 0 ď ˘ω ď π, then

the various J-integrals in the rigorous interpretation of H˘
ν pzq remain absolutely conver-

gent, uniformly with respect to z, since
ˇ

ˇe˘izθptq
ˇ

ˇ “ e¯x sinωθptq ď 1. Therefore, the re-

sulting integral H˘
ν pzq gives rise to an analytic continuation of H˘

ν pxq onto the half-plane

H˘ “ tz P Cr t0u : 0 ď ˘ arg z ď πu. In view of Proposition 1.4.1, one may define

H˘pz; λq “ H˘
ν pzq and regard it as the analytic continuation of H˘px; λq from R` onto

H˘. Furthermore, with slight modifications of the arguments above, where the phase func-

tion f is now chosen to be ˘eiωpθ ´ d ´ 1q in the application of Proposition 1.5.7, the

domain of validity for the asymptotic expansions in Theorem 1.5.11 may be extended from

R` onto H˘. For example, we have

H˘
pz; λq “ n´

1
2 p˘2πiq

n´1
2 e˘inzz´

n´1
2

˜

M´1
ÿ

m“0

p˘iq´mBmpλqz´m
` OR,M,n

´

C
2M
|z|´M` n´1

2

¯

¸

,
(1.5.11)

for all z P H˘ such that |z| ě C.
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Obviously, the above method of obtaining the analytic continuation of H˘
ν does not

apply to K-Bessel functions.

On the asymptotic of the Bessel kernel Jpλ,δq

As in (1.2.7), Jpλ,δqp˘xq is a combination of J
`

2πx
1
n ; ς, λ

˘

, and hence its asymptotic

follows immediately from Theorem 1.5.6 and 1.5.11.

Theorem 1.5.13. Let pλ, δq P Ln´1 ˆ pZ{2Zqn. Let M ě 0. Then, for x ą 0, we may write

Jpλ,δq pxnq “
ÿ

˘

p˘q
ř

δle
`

˘
`

nx` n´1
8

˘˘

n
1
2 x

n´1
2

W˘

λ pxq ` E`
pλ,δq
pxq,

Jpλ,δq p´xnq “ E´
pλ,δq
pxq,

if n is even, and

Jpλ,δq p˘xnq “
p˘q

ř

δle
`

˘
`

nx` n´1
8

˘˘

n
1
2 x

n´1
2

W˘

λ pxq ` E˘
pλ,δq
pxq,

if n is odd, such that

W˘

λ pxq “
M´1
ÿ

m“0

B˘mpλqx
´m
` OR,M,n

´

C
2M x´M` n´1

2

¯

,

and

E˘
pλ,δq

pxq “ OR,M,n
`

C
M x´M

˘

,

for x ě C. With the notations in Theorem 1.5.11, we have W˘

λ pxq “ p2πxq
n´1

2 W˘p2πx; λq

and B˘mpλq “ p˘2πiq´mBmpλq.

On the implied constants of estimates

All the implied constants that occur in this section are of exponential dependence on the

real parts of the indices. If one considers the d-th symmetric lift of a holomorphic Hecke

cusp form of weight k, the estimates are particularly awful in the k aspect.

39



In §1.6 and §1.7, we shall further explore the theory of Bessel functions from the per-

spective of differential equations. Consequently, if the argument is sufficiently large, then

all the estimates in this section can be improved so that the dependence on the index can be

completely eliminated.

On the coefficients in the asymptotics

One feature of the method of stationary phase is the explicit formula of the coefficients

in the asymptotic expansion in terms of certain partial differential operators. In the present

case of H˘px; λq “ H˘
ν pxq, (1.5.9) provides an explicit formula of Bmpλq “ Bm,0pνq. To

compute Lm`r pGr pνq pt0q appearing in (1.5.9), we observe that the function G defined in

(1.5.8) does not only vanish of third order at t0. Actually, BαGpt0q vanishes except for

α “ p0, ..., 0, α, 0..., 0q, with α ě 3. In the exceptional case we have BαGpt0q “ p´q
αα!.

However, the resulting expression is considerably complicated. To illustrate, we consider

the case d “ 1.

When d “ 1, we have L “ pd{dtq2. For 2m ě r ě 1,

pd{dtq2m`2r
pGr pνq p1q

“ p2m` 2rq!
2m´r
ÿ

α“0

ˇ

ˇ

ˇ

ˇ

ˇ

#

pα1, ..., αrq :
r
ÿ

q“1

αq “ 2m` 2r ´ α, αq ě 3

+ˇ

ˇ

ˇ

ˇ

ˇ

p´qαrν´ 1sα
α!

“p2m` 2rq!
2m´r
ÿ

α“0

ˆ

2m´ α´ 1
r ´ 1

˙

p1´ νqα

α!
.

Therefore (1.5.9) yields

Bm,0pνq “

ˆ

´
1
4

˙m
˜

p1´ νq2m

m!
`

2m
ÿ

r“1

p´qrp2m` 2rq!
4rpm` rq!r!

2m´r
ÿ

α“0

ˆ

2m´ α´ 1
r ´ 1

˙

p1´ νqα

α!

¸

.
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However, this expression of Bm,0pνq is not in its simplest form. Indeed, we have the asymp-

totic expansions of Hp1q
ν and Hp2q

ν ([Wat, 7.2 (1, 2)])

Hp1,2q
ν pxq „

ˆ

2
πx

˙
1
2

e˘ipx´ 1
2 νπ´

1
4πq

˜

8
ÿ

m“0

p˘qm
`

1
2 ´ ν

˘

m

`

1
2 ` ν

˘

m

m!p2ixqm

¸

,

which are deducible from Hankel’s integral representations ([Wat, 6.12 (3, 4)]). In view of

Proposition 1.2.7 and Theorem 1.5.11, one obtains

Bm,0pνq “

`

1
2 ´ ν

˘

m

`

1
2 ` ν

˘

m

4mm!
.

Therefore, we have the following combinatoric identity

p´qm
`

1
2 ´ ν

˘

m

`

1
2 ` ν

˘

m

m!
“
p1´ νq2m

m!

`

2m
ÿ

r“1

p´qrp2m` 2rq!
4rpm` rq!r!

2m´r
ÿ

α“0

ˆ

2m´ α´ 1
r ´ 1

˙

p1´ νqα

α!
.

(1.5.12)

It seems however hard to find an elementary proof of this identity.

1.6. Recurrence formulae and differential equations for
Bessel functions

Making use of certain recurrence formulae for Jνpx; ςq, we shall derive the differential

equation satisfied by Jpx; ς, λq.

1.6.1. The recurrence formulae

Applying the formal partial integrations of either the first or the second kind and the dif-

ferentiation under the integral sign on the formal integral expression of Jνpx; ςq in (1.3.1),

one obtains the recurrence formulae

(1.6.1) ν`pixq´1Jνpx; ςq “ ς`Jν´e`px; ςq ´ ςd`1Jν`edpx; ςq
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for ` “ 1, ..., d, and

(1.6.2) J1νpx; ςq “ ςd`1iJν`edpx; ςq ` i
d
ÿ

`“1

ς`Jν´e`px; ςq.

It is easy to verify (1.6.1) and (1.6.2) using the rigorous interpretation of Jνpx; ςq established

in §1.3.3. Moreover, using (1.6.1), one may reformulate (1.6.2) as below,

(1.6.3) J1νpx; ςq “ ςd`1ipd ` 1qJν`edpx; ςq `
řd

`“1 ν`

x
Jνpx; ςq.

1.6.2. The differential equations

Lemma 1.6.1. Define e` “ p1, ..., 1
loomoon

`

, 0..., 0q, ` “ 1, ..., d, and denote e0 “ ed`1 “ p0, ..., 0q

for convenience. Let νd`1 “ 0.

(1). For ` “ 1, ..., d ` 1 we have

(1.6.4) J1
ν`e`px; ςq “ ς`ipd ` 1qJν`e`´1px; ςq ´

Λd´``1pνq ` d ´ ` ` 1
x

Jν`e`px; ςq,

with

Λmpνq “ ´
d
ÿ

k“1

νk ` pd ` 1qνd´m`1, m “ 0, ..., d.

(2). For 0 ď j ď k ď d ` 1 define

Uk, jpνq “

#

1, if j “ k,
´pΛ jpνq ` k ´ 1qUk´1, jpνq ` Uk´1, j´1pνq, if 0 ď j ď k ´ 1,

with the notation Uk,´1pνq “ 0, and

S 0pςq “ `, S jpςq “
j´1
ź

m“0

ςd´m`1 for j “ 1, ..., d ` 1.

Then

(1.6.5) Jpkqν px; ςq “
k
ÿ

j“0

S jpςqpipd ` 1qq jUk, jpνqx j´kJν`ed´ j`1px; ςq.
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Proof. By (1.6.3) and (1.6.1),

J1
ν`e`px; ςq “ ςd`1ipd ` 1qJν`e``edpx; ςq `

řd
k“1 νk ` `

x
Jν`e`px; ςq

“ ipd ` 1q
ˆ

´
ν` ` 1

ix
Jν`e`px; ςq ` ς`Jν`e`´1px; ςq

˙

`

řd
k“1 νk ` `

x
Jν`e`px; ςq

“ ς`ipd ` 1qJν`e`´1px; ςq `
řd

k“1 νk ´ pd ` 1qν` ` ` ´ d ´ 1
x

Jν`e`px; ςq.

This proves (1.6.4).

(1.6.5) is trivial when k “ 0. Suppose that k ě 1 and that (1.6.5) is already proven for

k ´ 1. The inductive hypothesis and (1.6.4) imply

Jpkqν px; ςq “
k´1
ÿ

j“0

S jpςqpipd ` 1qq jUk´1, jpνqx j´k`1

`

p j´ k ` 1qx´1Jν`ed´ j`1px; ςq

`ςd´ j`1ipd ` 1qJν`ed´ jpx; ςq ´ pΛ jpνq ` jqx´1Jν`ed´ j`1px; ςq
˘

“´

k´1
ÿ

j“0

S jpςqpipd ` 1qq jUk´1, jpνqpΛ jpνq ` k ´ 1qx j´kJν`ed´ j`1px; ςq

`

k
ÿ

j“1

S j´1pςqςd´ j`2pipd ` 1qq jUk´1, j´1pνqx j´kJν`ed´ j`1px; ςq.

Then (1.6.5) follows from the definitions of Uk, jpνq and S jpςq. Q.E.D.

Lemma 1.6.1 (2) may be recapitulated as

(1.6.6) Xνpx; ςq “ Dpxq´1UpνqDpxqS pςqYνpx; ςq,

where Xνpx; ςq “
´

Jpkqν px; ςq
¯d`1

k“0
and Yνpx; ςq “ pJν`ed´ j`1px; ςqqd`1

j“0 are column vectors

of functions, S pςq “ diag pS jpςqpipd ` 1qq jq
d`1
j“0 and Dpxq “ diag px jq

d`1
j“0 are diagonal

matrices, and Upνq is the lower triangular unipotent pd ` 2q ˆ pd ` 2q matrix whose pk `

1, j` 1q-th entry is equal to Uk, jpνq. The inverse matrix Upνq´1 is again a lower triangular

unipotent matrix. Let Vk, jpνq denote the pk` 1, j` 1q-th entry of Upνq´1. It is evident that

Vk, jpνq is a polynomial in ν of degree k ´ j and integral coefficients.
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Observe that Jν`ed`1px; ςq “ Jν`e0px; ςq “ Jνpx; ςq. Therefore, (1.6.6) implies that

Jνpx; ςq satisfies the following linear differential equation of order d ` 1

d`1
ÿ

j“1

Vd`1, jpνqx j´d´1wp jq
`
`

Vd`1,0pνqx´d´1
´ S d`1pςqpipd ` 1qqd`1

˘

w “ 0.(1.6.7)

1.6.3. Calculations of the coefficients in the differential equations

Definition 1.6.2. Let Λ “ tΛmu
8
m“0 be a sequence of complex numbers.

(1). For k, j ě ´1 inductively define a double sequence of polynomials Uk, jpΛq in Λ by

the initial conditions

U´1,´1pΛq “ 1, Uk,´1pΛq “ U´1, jpΛq “ 0 if k, j ě 0,

and the recurrence relation

(1.6.8) Uk, jpΛq “ ´ pΛ j ` k ´ 1qUk´1, jpΛq ` Uk´1, j´1pΛq, k, j ě 0.

(2). For j,m ě ´1 with p j,mq ‰ p´1,´1q define a double sequence of integers A j,m by

the initial conditions

A´1,0 “ 1, A´1,m “ A j,´1 “ 0 if m ě 1, j ě 0,

and the recurrence relation

(1.6.9) A j,m “ jA j,m´1 ` A j´1,m, j,m ě 0.

(3). For k,m ě 0 we define σk,mpΛq to be the elementary symmetric polynomial in

Λ0, ..., Λk of degree m, with the convention that σk,mpΛq “ 0 if m ě k ` 2. Moreover, we

denote

σ´1,0pΛq “ 1, σk,´1pΛq “ σ´1,mpΛq “ 0 if k ě ´1,m ě 1.
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Observe that, with the above notations as initial conditions, σk,mpΛq may also be induc-

tively defined by the recurrence relation

(1.6.10) σk,mpΛq “ Λkσk´1,m´1pΛq ` σk´1,mpΛq, k,m ě 0.

(4). For k ě 0, j ě ´1 define

(1.6.11) Vk, jpΛq “

$

’

&

’

%

0, if j ą k,
k´ j
ÿ

m“0

A j,k´ j´mσk´1,mpΛq, if k ě j.

Lemma 1.6.3. Let notations be as above.

(1). Uk, jpΛq is a polynomial in Λ0, ..., Λ j. Uk, jpΛq “ 0 if j ą k, and Uk,kpΛq “ 1.

Uk,0pΛq “ r´Λ0sk for k ě 0.

(2). A j,0 “ 1, and A j,1 “
1
2 jp j` 1q.

(3). Vk, jpΛq is a symmetric polynomial in Λ0, ..., Λk´1. Vk,kpΛq “ 1. Vk,´1pΛq “ 0 and

Vk,k´1pΛq “ σk´1,1pΛq `
1
2kpk ´ 1q for k ě 0.

(4). Vk, jpΛq satisfies the following recurrence relation

(1.6.12) Vk, jpΛq “ pΛk´1 ` jqVk´1, jpΛq ` Vk´1, j´1pΛq, k ě 1, j ě 0.

Proof. (1-3) are evident from the definitions.

(4). (1.6.12) is obvious if j ě k. If k ą j, then the recurrence relations (1.6.10, 1.6.9)

for σk,mpΛq and A j,m, in conjunction with the definition (1.6.11) of Vk, jpΛq, yield

Vk, jpΛq “

k´ j
ÿ

m“0

A j,k´ j´mσk´1,mpΛq

“Λk´1

k´ j
ÿ

m“1

A j,k´ j´mσk´2,m´1pΛq `

k´ j
ÿ

m“0

A j,k´ j´mσk´2,mpΛq

“Λk´1

k´ j´1
ÿ

m“0

A j,k´ j´m´1σk´2,mpΛq
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` j
k´ j´1
ÿ

m“0

A j,k´ j´m´1σk´2,mpΛq `

k´ j
ÿ

m“0

A j´1,k´ j´mσk´2,mpΛq

“ pΛk´1 ` jqVk´1, jpΛq ` Vk´1, j´1pΛq.

Q.E.D.

Lemma 1.6.4. For k ě 0 and j ě ´1 such that k ě j, we have

(1.6.13)
k
ÿ

`“ j

Uk,`pΛqV`, jpΛq “ δk, j,

where δk, j denotes Kronecker’s delta symbol. Consequently,

(1.6.14)
k
ÿ

`“ j

Vk,`pΛqU`, jpΛq “ δk, j.

Proof. (1.6.13) is obvious if either k “ j or j “ ´1. In the proof we may therefore assume

that k´ 1 ě j ě 0 and that (1.6.13) is already proven for smaller values of k´ j as well as

for smaller values of j and the same k ´ j.

By the recurrence relations (1.6.8, 1.6.12) for Uk, jpΛq and Vk, jpΛq and the induction

hypothesis,

k
ÿ

`“ j

Uk,`pΛqV`, jpΛq

“ ´

k´1
ÿ

`“ j

pk ´ 1` Λ`qUk´1,`pΛqV`, jpΛq `

k
ÿ

`“ j

Uk´1,`´1pΛqV`, jpΛq

“ ´ pk ´ 1qδk´1, j ´

k´1
ÿ

`“ j

Λ`Uk´1,`pΛqV`, jpΛq `

k
ÿ

`“ j`1

Λ`´1Uk´1,`´1pΛqV`´1, jpΛq

` j
k
ÿ

`“ j`1

Uk´1,`´1pΛqV`´1, jpΛq `

k
ÿ

`“ j

Uk´1,`´1pΛqV`´1, j´1pΛq

“ ´ pk ´ 1qδk´1, j ` 0` jδk´1, j ` δk´1, j´1 “ 0.

This completes the proof of (1.6.13). Q.E.D.

Finally, we have the following explicit formulae for A j,m.

46



Lemma 1.6.5. We have A0,0 “ 1, A0,m “ 0 if m ě 1, and

(1.6.15) A j,m “

j
ÿ

r“1

p´q j´rrm` j

r!p j´ rq!
if j ě 1,m ě 0.

Proof. It is easily seen that A0,0 “ 1 and A0,m “ 0 if m ě 1.

It is straightforward to verify that the sequence given by (1.6.15) satisfies the recurrence

relation (1.6.9), so it is left to show that (1.6.15) holds true for m “ 0. Initially, A j,0 “ 1,

and hence one must verify
j
ÿ

r“1

p´q j´rr j

r!p j´ rq!
“ 1.

This however follows from considering all the identities obtained by differentiating the

following binomial identity up to j times and then evaluating at x “ 1,

px´ 1q j
´ p´1q j

“ j!
j
ÿ

r“1

p´1q j´r

r!p j´ rq!
xr.

Q.E.D.

1.6.4. Conclusion

We first observe that, when 0 ď j ď k ď d` 1, both Uk, jpΛq and Vk, jpΛq are polynomi-

als in Λ0, ..., Λd according to Lemma 1.6.3 (1, 3). If one puts Λm “ Λmpνq for m “ 0, ..., d,

then Uk, jpνq “ Uk, jpΛq. It follows from Lemma 1.6.4 that Vk, jpνq “ Vk, jpΛq. Moreover, the

relations ν` “ λ` ´ λd`1, ` “ 1, ..., d, along with the assumption
řd`1

`“1 λ` “ 0, yields

Λmpνq “ pd ` 1qλd´m`1.

Now we can reformulate (1.6.7) in the following theorem.

Theorem 1.6.6. The Bessel function Jpx; ς, λq satisfies the following linear differential

equation of order d ` 1

(1.6.16)
d`1
ÿ

j“1

Vd`1, jpλqx jwp jq
`
`

Vd`1,0pλq ´ S d`1pςqpipd ` 1qqd`1xd`1
˘

w “ 0,
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where

S d`1pςq “
d`1
ź

`“1

ς`, Vd`1, jpλq “
d´ j`1
ÿ

m“0

A j,d´ j´m`1pd ` 1qmσmpλq,

σmpλq denotes the elementary symmetric polynomial in λ of degree m, with σ1pλq “ 0, and

A j,m is recurrently defined in Definition 1.6.2 (3) and explicitly given in Lemma 1.6.5. We

shall call the equation (1.6.16) a Bessel equation of index λ, or simply a Bessel equation if

the index λ is given.

For a given index λ, (1.6.16) only provides two Bessel equations. The sign S d`1pςq

determines which one of the two Bessel equations a Bessel function Jpx; ς, λq satisfies.

Definition 1.6.7. We call S d`1pςq “
śd`1

`“1 ς` the sign of the Bessel function Jpx; ς, λq as

well as the Bessel equation satisfied by Jpx; ς, λq.

Finally, we collect some simple facts on Vd`1, jpλq in the following lemma, which will

play important roles later in the study of Bessel equations. See (1.6.14) in Lemma 1.6.4

and Lemma 1.6.3 (3).

Lemma 1.6.8. We have

(1).
řd`1

j“0 Vd`1, jpλqr´pd ` 1qλd`1s j “ 0.

(2). Vd`1,dpλq “
1
2dpd ` 1q.

Remark 1.6.9. If we define

Jpx; ς, λq “ J
`

pd ` 1q´1x; ς, pd ` 1q´1λ
˘

,

then this normalized Bessel function satisfies a differential equation with coefficients free

of powers of pd ` 1q, that is,

d`1
ÿ

j“1

Vd`1, jpλqx jwp jq
`
`

Vd`1,0pλq ´ S d`1pςqid`1xd`1
˘

w “ 0,
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with

Vd`1, jpλq “
d´ j`1
ÿ

m“0

A j,d´ j´m`1σmpλq.

In particular, if d “ 1, λ “ pλ,´λq, then the two normalized Bessel equations are

x2 d2w
dx2 ` x

dw
dx
`
`

´λ2
˘ x2

˘

w “ 0.

These are exactly the Bessel equation and the modified Bessel equation of index λ.

1.7. Bessel equations

The theory of linear ordinary differential equations with analytic coefficientsIX will be

employed in this section to study Bessel equations.

Subsequently, we shall use z instead of x to indicate complex variable. For ς P t`,´u

and λ P Ln´1, we introduce the Bessel differential operator

(1.7.1) ∇ς,λ “

n
ÿ

j“1

Vn, jpλqz j d j

dz j ` Vn,0pλq ´ ςpinqnzn.

The Bessel equation of index λ and sign ς may be written as

(1.7.2) ∇ς,λpwq “ 0.

We shall study Bessel equations on the Riemann surface U associated with log z, that

is, the universal cover of C r t0u. Each element in U is represented by a pair px, ωq with

modulus x P R` and argument ω P R, and will be denoted by z “ xeiω “ elog x`iω with

some ambiguity. Conventionally, define zλ “ eλ log z for z P U, λ P C, z “ e´ log z, and

moreover let 1 “ e0, ´1 “ eπi and ˘i “ e˘
1
2πi.

First of all, since Bessel equations are nonsingular on U, all the solutions of Bessel

equations are analytic on U.

IX[CL, Chapter 4, 5] and [Was, Chapter II-V] are the main references that we follow, and the reader is
referred to these books for terminologies and definitions.
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Each Bessel equation has only two singularities at z “ 0 and z “ 8. According to the

classification of singularities, 0 is a regular singularity, so the Frobenius method gives rise

to solutions of Bessel equations developed in series of ascending powers of z, or possibly

logarithmic sums of this kind of series, whereas 8 is an irregular singularity of rank one,

and therefore one may find certain formal solutions that are the asymptotic expansions of

some actual solutions of Bessel equations.

When studying the asymptotic expansions for the Bessel equation (1.7.2), it is more

convenient to consider its corresponding system of differential equations,

(1.7.3) w1 “ Bpz; ς, λqw,

with

Bpz; ς, λq “

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 ¨ ¨ ¨ ¨ ¨ ¨ 1
´Vn,0pλqz´n ` ςpinqn ´Vn,1pλqz´n`1 ¨ ¨ ¨ ¨ ¨ ¨ ´Vn,n´1pλqz´1

˛

‹

‹

‹

‹

‹

‚

.

A simple but important observation is as follows.

Lemma 1.7.1. Let ς P t`,´u and a be an integer. If ϕpzq is a solution of the Bessel

equation of sign ς, then ϕ
`

eπi a
n z
˘

satisfies the Bessel equation of sign p´qaς.

Variants of Lemma 1.7.1, Lemma 1.7.3, 1.7.9 and 1.7.21, will play important roles later

in §1.8 when we study the connection formulae for various kinds of Bessel functions.

1.7.1. Bessel functions of the first kind

The indicial equation associated with ∇ς,λ is given as below,

n
ÿ

j“0

rρs jVn, jpλq “ 0.
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Let Pλpρq denote the polynomial on the left of this equation. Lemma 1.6.8 (1) along with

the symmetry of Vn, jpλq yields the following identity,

n
ÿ

j“0

r´nλ`s jVn, jpλq “ 0,

for each ` “ 1, ..., n. Therefore,

Pλpρq “
n
ź

`“1

pρ` nλ`q.

Consider the formal series
8
ÿ

m“0

cmzρ`m,

where the index ρ and the coefficients cm, with c0 ‰ 0, are to be determined. It is easy to

see that

∇ς,λ

8
ÿ

m“0

cmzρ`m
“

8
ÿ

m“0

cmPλpρ` mqzρ`m
´ ςpinqn

8
ÿ

m“0

cmzρ`m`n.

If the following equations are satisfied

cmPλpρ` mq “ 0, n ą m ě 1,

cmPλpρ` mq ´ ςpinqncm´n “ 0, m ě n,
(1.7.4)

then

∇ς,λ

8
ÿ

m“0

cmzρ`m
“ c0Pλpρqzρ.

Given ` P t1, ..., nu. Choose ρ “ ´nλ` and let c0 “
śn

k“1 Γ pλk ´ λ` ` 1q´1. Suppose, for

the moment, that no two components of nλ differ by an integer. Then Pλp´nλ` ` mq ‰ 0

for any m ě 1 and c0 ‰ 0, and hence the system of equations (1.7.4) is uniquely solvable.

It follows that

(1.7.5)
8
ÿ

m“0

pςinqmznp´λ``mq

śn
k“1 Γ pλk ´ λ` ` m` 1q

is a formal solution of the differential equation (1.7.2).
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Now suppose that λ P Ln´1 is unrestricted. The series in (1.7.5) is absolutely conver-

gent, locally uniformly convergent with respect to λ, and hence gives rise to an analytic

function of z on the Riemann surface U, as well as an analytic function of λ. We denote by

J`pz; ς, λq the analytic function given by the series (1.7.5) and call it a Bessel function of

the first kind. It is evident that J`pz; ς, λq is an actual solution of (1.7.2).

Definition 1.7.2. Let Dn´1 denote the set of λ P Ln´1 such that no two components of λ

differ by an integer. We call an index λ generic if λ P Dn´1.

When λ P Dn´1, all the J`pz; ς, λq constitute a fundamental set of solutions, since the

leading term in the expression (1.7.5) of J`pz; ς, λq does not vanish. However, this is no

longer the case if λ R Dn´1. Indeed, if λ` ´ λk is an integer, k ‰ `, then J`pz; ς, λq “

pςinqλ`´λk Jkpz; ς, λq. There are other solutions arising as certain logarithmic sums of series

of ascending powers of z. Roughly speaking, powers of log z may occur in some solutions.

For more details the reader may consult [CL, §4.8].

Lemma 1.7.3. Let a be an integer. We have

J`
`

eπi a
n z; ς, λ

˘

“ e´πiaλ` J`pz; p´qaς, λq.

Remark 1.7.4. If n “ 2, then we have the following formulae according to [Wat, 3.1 (8),

3.7 (2)],

J1pz;`, λ,´λq “ J´2λp2zq, J2pz;`, λ,´λq “ J2λp2zq,

J1pz;´, λ,´λq “ I´2λp2zq, J2pz;´, λ,´λq “ I2λp2zq.
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1.7.2. The analytic continuation of Jpx; ς, λq

For any given λ P Ln´1, since Jpx; ς, λq satisfies the Bessel equation of sign S npςq, it

admits a unique analytic continuation Jpz; ς, λq onto U. Recall the definition

Jpx; ς, λq “
1

2πi

ż

C

Gps; ς, λqx´nsds, x P R`,

where Gps; ς, λq “
śn

k“1 Γps´ λkqe
`

1
4ςkps´ λkq

˘

and C is a suitable contour.

Let ς “ S npςq. For the moment, let us assume that λ is generic. For ` “ 1, ..., n and

m “ 0, 1, 2, ..., Gps; ς, λq has a simple pole at λ` ´ m with residue

p´q
m 1

m!
e
ˆ
řn

k“1 ςkpλ` ´ λk ´ mq
4

˙

ź

k‰`

Γpλ` ´ λk ´ mq “

πn´1e
ˆ

´

řn
k“1 ςkλk

4

˙

e
ˆ
řn

k“1 ςkλ`

4

˙

˜

ź

k‰`

1
sin pπpλ` ´ λkqq

¸

pςinqm

śn
k“1 Γpλk ´ λ` ` m` 1q

.

Here we have used Euler’s reflection formula for the Gamma function. Applying Cauchy’s

residue theorem, Jpx; ς, λq is developed into an absolutely convergent series on shifting the

contour C far left, and, in view of (1.7.5), we obtain

Jpz; ς, λq “ πn´1Epς, λq
n
ÿ

`“1

E`pς, λqS `pλqJ`pz; ς, λq, z P U,(1.7.6)

with

Epς, λq “ e
ˆ

´

řn
k“1 ςkλk

4

˙

, Elpς, λq “ e
ˆ
řn

k“1 ςkλl

4

˙

, S lpλq “
ź

k‰l

1
sin pπpλl ´ λkqq

.

Because of the possible vanishing of sin pπpλ` ´ λkqq, the definition of S `pλq may fail to

make sense if λ is not generic. In order to properly interpret (1.7.6) in the non-generic case,

one has to pass to the limit, that is,

(1.7.7) Jpz; ς, λq “ πn´1Epς, λq ¨ lim
λ1Ñλ

λ1 PDn´1

n
ÿ

`“1

E`pς, λ
1
qS `pλ

1
qJ`pz; ς, λ1q.

We recollect the definitions of L˘pςq and n˘pςq introduced in Proposition 1.2.9.
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Definition 1.7.5. Let ς P t`,´un. We define L˘pςq “ t` : ς` “ ˘u and n˘pςq “ |L˘pςq|.

The pair of integers pn`pςq, n´pςqq is called the signature of ς, as well as the signature of

the Bessel function Jpz; ς, λq.

With Definition 1.7.5, we reformulate (1.7.6, 1.7.7) in the following lemma.

Lemma 1.7.6. We have

Jpz; ς, λq “ πn´1Epς, λq
n
ÿ

`“1

E`pς, λqS `pλqJ`
`

z; p´qn´pςq, λ
˘

,

with Epς, λq “ e
´

´1
4

ř

kPL`pςq`
1
4

ř

kPL´pςq λk

¯

, E`pς, λq “ e
`

1
4pn`pςq ´ n´pςqqλ`

˘

and

S `pλq “ 1{
ś

k‰` sin pπpλ` ´ λkqq. When λ is not generic, the right hand side is to be

replaced by its limit.

Remark 1.7.7. In view of Proposition 1.2.7 and Remark 1.7.4, Lemma 1.7.6 is equivalent

to the connection formulae in (1.1.12, 1.1.13) (see [Wat, 3.61(5, 6), 3.7 (6)]).

Remark 1.7.8. In the case when λ “ 1
n

`

n´1
2 , ...,´ n´1

2

˘

, the formula in Lemma 1.7.6

amounts to splitting the Taylor series expansion of einξpςqx in (1.2.15) according to the

residue class of indices modulo n. To see this, one requires the multiplicative formula

of the Gamma function (1.2.16) as well as the trigonometric identity

n´1
ź

k“1

sin
ˆ

kπ
n

˙

“
n

2n´1 .

Using Lemma 1.7.3 and 1.7.6, one proves the following lemma, which implies that the

Bessel function Jpz; ς, λq is determined by its signature up to a constant multiple.

Lemma 1.7.9. Define H˘pz; λq “ Jpz;˘, ...,˘, λq. Then

Jpz; ς, λq “ e

˜

˘

ř

`PL¯pςq λ`

2

¸

H˘

´

e˘πi
n¯pςq

n z; λ
¯

.
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Remark 1.7.10. We have the following Barnes type integral representation,

(1.7.8) Jpz; ς, λq “
1

2πi

ż

C1
Gps; ς, λqz´nsds, z P U,

where C1 is a contour that starts from and returns to ´8 after encircling the poles of the

integrand counter-clockwise. Compare [Wat, §6.5]. Lemma 1.7.9 may also be seen from

this integral representation.

When ´n´pςq
n π ă arg z ă n`pςq

n π, the contour C1 may be opened out to the vertical line

pσq, with σ ą maxtRe λ`u. Thus

(1.7.9) Jpz; ς, λq “
1

2πi

ż

pσq

Gps; ς, λqz´nsds, ´
n´pςq

n
π ă arg z ă

n`pςq
n

π.

On the boundary rays arg z “ ˘n˘pςq
n π, the contour pσq should be shifted to C defined as in

§1.2.1, in order to secure convergence.

The contour integrals in (1.7.8, 1.7.9) absolutely converge, locally uniformly in both

z and λ. To see these, one uses Stirling’s formula to examine the behaviour of the inte-

grand Gps; ς, λqz´ns on integral contours, where for (1.7.8) a transformation of Gps; ς, λq

by Euler’s reflection formula is required.

1.7.3. Asymptotics for Bessel equations and Bessel functions of the sec-
ond kind

Subsequently, we proceed to investigate the asymptotics at infinity for Bessel equations.

Definition 1.7.11. For ς P t`,´u and a positive integer N, we let XNpςq denote the set of

N-th roots of ς1.X

Before delving into our general study, let us first consider the prototypical example

given in Proposition 1.2.9.

XUnder certain circumstances, it is suitable to view an element ξ of XNpςq as a point in U instead of
Cr t0u. This however should be clear from the context.
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Proposition 1.7.12. For any ξ P X2np`q, the function z´
n´1

2 einξz is a solution of the Bessel

equation of index 1
n

`

n´1
2 , ...,´n´1

2

˘

and sign ξ n.

Proof. When Im ξ ě 0, this can be seen from Proposition 1.2.9 and Theorem 1.6.6. For

arbitrary ξ, one makes use of Lemma 1.7.1. Q.E.D.

Formal solutions of Bessel equations at infinity

Following [CL, Chapter 5], we shall consider the system of differential equations (1.7.3).

We have

Bp8; ς, λq “

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1
ςpinqn 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‚

.

If one let Xnpςq “ tξ1, ..., ξnu, then the eigenvalues of Bp8; ς, λq are inξ1, ..., inξn. The

conjugation by the following matrix diagonalizes Bp8; ς, λq,

T “
1
n

¨

˚

˚

˝

1 pinξ1q
´1 ¨ ¨ ¨ pinξ1q

´n`1

1 pinξ2q
´1 ¨ ¨ ¨ pinξ2q

´n`1

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

1 pinξnq
´1 ¨ ¨ ¨ pinξnq

´n`1

˛

‹

‹

‚

,

T´1
“

¨

˚

˚

˝

1 1 ¨ ¨ ¨ 1
inξ1 inξ2 ¨ ¨ ¨ inξn

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

pinξ1q
n´1 pinξ2q

n´1 ¨ ¨ ¨ pinξnq
n´1

˛

‹

‹

‚

.

Thus, the substitution u “ Tw turns the system of differential equations (1.7.3) into

(1.7.10) u1 “ Apzqu,

where Apzq “ T Bpz; ς, λqT´1 is a matrix of polynomials in z´1 of degree n,

Apzq “
n
ÿ

j“0

z´ jA j,
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with

A0 “ ∆ “ diag pinξ`q
n
`“1 ,

A j “ ´i´ j`1n´ jVn,n´ jpλq
´

ξkξ
´ j
`

¯n

k,`“1
, j “ 1, ..., n.

(1.7.11)

It is convenient to put A j “ 0 if j ą n. The dependence on ς, λ and the ordering of the

eigenvalues have been suppressed in our notations in the interest of brevity.

Suppose pΦ is a formal solution matrix for (1.7.10) of the form

pΦpzq “ PpzqzReQz,

where P is a formal power series in z´1,

Ppzq “
8
ÿ

m“0

z´mPm,

and R, Q are constant diagonal matrices. Since

pΦ1 “ P1zReQz
` z´1PRzReQz

` PzRQeQz
“
`

P1 ` z´1PR` PQ
˘

zReQz,

the differential equation (1.7.10) yields

8
ÿ

m“0

z´m´1PmpR´ mIq `
8
ÿ

m“0

z´mPmQ “

˜

8
ÿ

j“0

z´ jA j

¸˜

8
ÿ

m“0

z´mPm

¸

,

where I denotes the identity matrix. Comparing the coefficients of various powers of z´1,

it follows that pΦ is a formal solution matrix for (1.7.10) if and only if R, Q and Pm satisfy

the following equations

P0Q´ ∆P0 “ 0

Pm`1Q´ ∆Pm`1 “

m`1
ÿ

j“1

A jPm´ j`1 ` PmpmI ´ Rq, m ě 0.
(1.7.12)

A solution of the first equation in (1.7.12) is given by

(1.7.13) Q “ ∆, P0 “ I.
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Using (1.7.13), the second equation in (1.7.12) for m “ 0 becomes

(1.7.14) P1∆´ ∆P1 “ A1 ´ R.

Since ∆ is diagonal, the diagonal entries of the left side of (1.7.14) are zero, and hence the

diagonal entries of R must be identical with those of A1. In view of (1.7.11) and Lemma

1.6.8 (2), we have

A1 “ ´
1
n

Vn,n´1pλq ¨
`

ξkξ
´1
`

˘n
k,`“1 “ ´

n´ 1
2

`

ξkξ
´1
`

˘n
k,`“1 ,

and therefore

(1.7.15) R “ ´
n´ 1

2
I.

Let p1,k` denote the pk, `q-th entry of P1. It follows from (1.7.11, 1.7.14) that

(1.7.16) inpξ` ´ ξkqp1,k` “ ´
n´ 1

2
ξkξ

´1
` , k ‰ `.

The off-diagonal entries of P1 are uniquely determined by (1.7.16). Therefore, a solution

of (1.7.14) is

(1.7.17) P1 “ D1 ` Po
1,

where D1 is any diagonal matrix and Po
1 is the matrix with diagonal entries zero and pk, `q-

th entry p1,k`, k ‰ `. To determine D1, one resorts to the second equation in (1.7.12) for

m “ 1, which, in view of (1.7.13, 1.7.15, 1.7.17), may be written as

P2∆´ ∆P2 ´

ˆ

A1 `
n´ 1

2

˙

D1 ´
n` 1

2
Po

1 “ A1Po
1 ` A2 ` D1.

The matrix on the left side has zero diagonal entries. It follows that D1 must be equal to

the diagonal part of ´A1Po
1 ´ A2.
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In general, using (1.7.13, 1.7.15), the second equation in (1.7.12) may be written as

(1.7.18) Pm`1∆´ ∆Pm`1 “

m`1
ÿ

j“1

A jPm´ j`1 `

ˆ

m`
n´ 1

2

˙

Pm, m ě 0.

Applying (1.7.18), an induction on m implies that

Pm “ Dm ` Po
m, m ě 1,

where Dm and Po
m are inductively defined as follows. Put D0 “ I. Let mDm be the diagonal

part of

´

m`1
ÿ

j“2

A jDm´ j`1 ´

m
ÿ

j“1

A jPo
m´ j`1,

and let Po
m`1 be the matrix with diagonal entries zero such that Po

m`1∆ ´ ∆Po
m`1 is the

off-diagonal part of

m`1
ÿ

j“1

A jDm´ j`1 `

m
ÿ

j“1

A jPo
m´ j`1 `

ˆ

m`
n´ 1

2

˙

Po
m.

In this way, an inductive construction of the formal solution matrix of (1.7.10) is completed

for the given initial choices Q “ ∆, P0 “ I.

With the observations that A j is of degree j in λ for j ě 2 and that A1 is constant, we

may show the following lemma using an inductive argument.

Lemma 1.7.13. The entries of Pm are symmetric polynomial in λ. If m ě 1, then the off-

diagonal entries of Pm have degree at most 2m ´ 2, whereas the degree of each diagonal

entry is exactly 2m.

The first row of T´1
pΦ constitute a fundamental system of formal solutions of the Bessel

equation (1.7.2). Some calculations yield the following proposition, where for derivatives

of order higher than n´ 1 the differential equation (1.7.2) is applied.
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Proposition 1.7.14. Let ς P t`,´u and ξ P Xnpςq. There exists a unique sequence of

symmetric polynomials Bmpλ; ξq in λ of degree 2m and coefficients depending only on m, ξ

and n, normalized so that B0pλ; ξq “ 1, such that

(1.7.19) einξzz´
n´1

2

8
ÿ

m“0

Bmpλ; ξqz´m

is a formal solution of the Bessel equation of sign ς (1.7.2). We shall denote the formal

series in (1.7.19) by pJpz; λ; ξq. Moreover, the j-th formal derivative pJp jqpz; λ; ξq is also of

the form as (1.7.19), but with coefficients depending on j as well.

Remark 1.7.15. The above arguments are essentially adapted from the proof of [CL, Chap-

ter 5, Theorem 2.1]. This construction of the formal solution and Lemma 1.7.13 will be

required later in § 1.7.4 for the error analysis.

However, This method is not the best for the actual computation of the coefficients

Bmpλ; ξq. We may derive the recurrent relations for Bmpλ; ξq by a more direct but less

suggestive approach as follows.

The substitution w “ einξzz´
n´1

2 u transforms the Bessel equation (1.7.2) into

n
ÿ

j“0

W jpz; λqup jq
“ 0,

where W jpz; λq is a polynomial in z´1 of degree n´ j,

W jpz; λq “
n´ j
ÿ

k“0

W j,kpλqz´k,

with

W0,0pλq “ pinξqn ´ ςpinqn “ 0,

W j,kpλq “
pinξqn´ j´k

j!pn´ j´ kq!

k
ÿ

r“0

pn´ rq!
pk ´ rq!

„

´
n´ 1

2



k´r
Vn,n´rpλq, p j, kq ‰ p0, 0q.
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We have

W0,1pλq “ pinξqn´1

ˆ

n
ˆ

´
n´ 1

2

˙

Vn,npλq ` Vn,n´1pλq

˙

“ 0,

but W1,0pλq “ npinξqn´1 is nonzero. Some calculations show that Bmpλ; ξq satisfy the

following recurrence relations

pm´ 1qW1,0pλqBm´1pλ; ξq “
mintm,nu
ÿ

k“2

Bm´kpλ; ξq
k
ÿ

j“0

W j,k´ jpλqrk ´ ms j, m ě 2.

If n “ 2, for a fourth root of unity ξ “ ˘1,˘i one may calculate in this way to obtain

Bmpλ,´λ; ξq “

`

1
2 ´ 2λ

˘

m

`

1
2 ` 2λ

˘

m

p4iξqmm!
.

Bessel functions of the second kind

Bessel functions of the second kind are solutions of Bessel equations defined according

to their asymptotic expansions at infinity. We shall apply several results in the asymptotic

theory of ordinary differential equations from [Was, Chapter IV].

Firstly, [Was, Theorem 12.3] implies the following lemma.

Lemma 1.7.16 (Existence of solutions). Let ς P t`,´u, ξ P Xnpςq, and S Ă U be an open

sector with vertex at the origin and a positive central angle not exceeding π. Then there

exists a solution of the Bessel equation of sign ς (1.7.2) that has the asymptotic expansion

pJpz; λ; ξq defined in (1.7.19) on S. Moreover, each derivative of this solution has the formal

derivative of pJpz; λ; ξq of the same order as its asymptotic expansion.

For two distinct ξ, ξ1 P Xnpςq, the ray emitted from the origin on which

Re ppiξ ´ iξ1qzq “ ´Im ppξ ´ ξ1qzq “ 0

is called a separation ray.
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We first consider the case n “ 2. It is clear that the separation rays constitute either the

real or the imaginary axis and thus separate Cr t0u into two half-planes. Accordingly, we

define S˘1 “ tz : ˘Im z ą 0u and S˘i “ tz : ˘Re z ą 0u.

In the case n ě 3, there are 2n distinct separation rays in Crt0u given by the equations

arg z “ argpiξ1q, ξ1 P X2np`q.

These separation rays divide Cr t0u into 2n many open sectors

(1.7.20) S˘ξ “
!

z : 0 ă ˘
´

arg z´ argpiξq
¯

ă
π

n

)

, ξ P Xnpςq.

In both sectors S`ξ and S´ξ we have

(1.7.21) Re piξzq ă Re piξ1zq for all ξ1 P Xnpςq, ξ
1
‰ ξ.

Let Sξ be the sector on which (1.7.21) is satisfied. It is evident that

(1.7.22) Sξ “
!

z :
ˇ

ˇ

ˇ
arg z´ argpiξq

ˇ

ˇ

ˇ
ă
π

n

)

.

Lemma 1.7.17. Let ς P t`,´u and ξ P Xnpςq.

(1. Existence of asymptotics). If n ě 3, on the sector S˘ξ , all the solutions of the

Bessel equation of sign ς have asymptotic representation a multiple of pJpz; λ; ξ1q for some

ξ1 P Xnpςq. If n “ 2, the same assertion is true with S˘ξ replaced by Sξ.

(2. Uniqueness of the solution). There is a unique solution of the Bessel equation of sign

ς that possesses pJpz; λ; ξq as its asymptotic expansion on Sξ or any of its open subsector,

and we shall denote this solution by Jpz; λ; ξq. Moreover, Jp jqpz; λ; ξq „ pJp jqpz; λ; ξq on Sξ

for any j ě 0.

Proof. (1) follows directly from [Was, Theorem 15.1].
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For n “ 2, since (1.7.21) holds for the sector Sξ, (2) is true according to [Was, Corollary

to Theorem 15.3]. Similarly, if n ě 3, (2) is true with Sξ replaced by S˘ξ . Thus there exists

a unique solution of the Bessel equation of sign ς possessing pJpz; λ; ξq as its asymptotic

expansion on S˘ξ or any of its open subsector. For the moment, we denote this solution by

J˘pz; λ; ξq. On the other hand, because Sξ has central angle 2
nπ ă π, there exists a solution

Jpz; λ; ξqwith asymptotic pJpz; λ; ξq on a given open subsector S Ă Sξ due to Lemma 1.7.16.

Observe that at least one of SXS`ξ and SXS´ξ is a nonempty open sector, say SXS`ξ ‰ Ø,

then the uniqueness of Jpz; λ; ξq follows from that of J`pz; λ; ξq along with the principle of

analytic continuation. Q.E.D.

Proposition 1.7.18. Let ς P t`,´u, ξ P Xnpςq, ϑ be a small positive constant, say 0 ă

ϑ ă 1
2π, and define

(1.7.23) S1ξpϑq “
!

z :
ˇ

ˇ

ˇ
arg z´ argpiξq

ˇ

ˇ

ˇ
ă π`

π

n
´ ϑ

)

.

Then Jpz; λ; ξq is the unique solution of the Bessel equation of sign ς that has the asymptotic

expansion pJpz; λ; ξq on S1ξpϑq. Moreover, Jp jqpz; λ; ξq „ pJp jqpz; λ; ξq on S1ξpϑq for any j ě 0.

Proof. Following from Lemma 1.7.16, there exists a solution of the Bessel equation of sign

ς that has the asymptotic expansion pJpz; λ; ξq on the open sector

S˘ξ pϑq “
!

z :
π

n
´ ϑ ă ˘

´

arg z´ argpiξq
¯

ă π`
π

n
´ ϑ

)

.

On the nonempty open sector Sξ X S˘ξ pϑq this solution must be identical with Jpz; λ; ξq

by Lemma 1.7.17 (2) and hence is equal to Jpz; λ; ξq on Sξ Y S˘ξ pϑq due to the principle

of analytic continuation. Therefore, the region of validity of the asymptotic Jpz; λ; ξq „

pJpz; λ; ξq may be widened from Sξ onto S1ξpϑq “ Sξ Y S`ξ pϑq Y S´ξ pϑq. In the same way,

Lemma 1.7.16 and 1.7.17 (2) also imply that Jp jqpz; λ; ξq „ pJp jqpz; λ; ξq on S1ξpϑq. Q.E.D.
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Corollary 1.7.19. Let ς P t`,´u. All the Jpz; λ; ξq, with ξ P Xnpςq, form a fundamental

set of solutions of the Bessel equation of sign ς.

Remark 1.7.20. If n “ 2, by [Wat, 3.7 (8), 3.71 (18), 7.2 (1, 2), 7.23 (1, 2)] we have

the following formula of Jpz; λ,´λ; ξq, with ξ “ ˘1,˘i, and the corresponding sector on

which its asymptotic expansion is valid

Jpz; λ,´λ; 1q “
?
πieπiλHp1q

2λ p2zq, S11pϑq “ tz : ´π` ϑ ă arg z ă 2π´ ϑu ;

Jpz; λ,´λ;´1q “
?
´πie´πiλHp2q

2λ p2zq, S1´1pϑq “ tz : ´2π` ϑ ă arg z ă π´ ϑu ;

Jpz; λ,´λ; iq “
2
?
π

K2λp2zq, S1ipϑq “
"

z : | arg z| ă
3
2
π´ ϑ

*

;

Jpz; λ,´λ;´iq “ 2
?
πI2λp2zq ´

2i
?
π

e2πiλK2λp2zq,

S1´ipϑq “

"

z : ´
1
2
π` ϑ ă arg z ă

5
2
π´ ϑ

*

.

Lemma 1.7.21. Let ξ P X2np`q. We have

Jpz; λ; ξq “ p˘ξq
n´1

2 Jp˘ξz; λ;˘1q,

and Bmpλ; ξq “ p˘ξq´mBmpλ;˘1q.

Proof. By Lemma 1.7.1, p˘ξq
n´1

2 Jp˘ξz; λ;˘1q is a solution of one of the two Bessel equa-

tions of index λ. In view of Proposition 1.7.14 and Lemma 1.7.17 (2), it possesses pJpz; λ; ξq

as its asymptotic expansion on Sξ and hence must be identical with Jpz; λ; ξq. Q.E.D.

Terminology 1.7.22. For ξ P X2np`q, Jpz; λ; ξq is called a Bessel function of the second

kind.

Remark 1.7.23. The results in this section do not provide any information on the asymp-

totics near zero of Bessel functions of the second kind, and therefore their connections with

Bessel functions of the first kind can not be clarified here. We shall nevertheless find the
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connection formulae between the two kinds of Bessel functions later in §1.8, appealing to

the asymptotic expansion of the H-Bessel function H˘pz; λq on the half-plane H˘ that we

showed earlier in §1.5.

1.7.4. Error Bounds for asymptotic expansions

The error bound for the asymptotic expansion of Jpz; λ; ξq with dependence on λ is

always desirable for potential applications in analytic number theory. However, the au-

thor does not find any general results on the error analysis for differential equations of

order higher than two. We shall nevertheless combine and generalize the ideas from [CL,

§5.4] and [Olv, §7.2] to obtain an almost optimal error estimate for the asymptotic expan-

sion of the Bessel function Jpz; λ; ξq. Observe that both of their methods have drawbacks

for generalizations. [Olv] hardly uses the viewpoint from differential systems as only the

second-order case is treated, whereas [CL, §5.4] is restricted to the positive real axis for

more clarified expositions.

Preparations

We retain the notations from §1.7.3. For a positive integer M denote by PpMq the poly-

nomial in z´1,

PpMqpzq “
M
ÿ

m“0

z´mPm,

and by pΦpMq the truncation of pΦ,

pΦpMqpzq “ PpMqpzqz´
n´1

2 e∆z.

By Lemma 1.7.13, we have |z´mPm| Îm,n C
2m|z|´m, so P´1

pMq exists as an analytic function

for |z| ą c1C
2, where c1 is some constant depending only on M and n. Moreover,

(1.7.24)
ˇ

ˇPpMqpzq
ˇ

ˇ ,
ˇ

ˇ

ˇ
P´1
pMqpzq

ˇ

ˇ

ˇ
“ OM,np1q, |z| ą c1C

2.
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Let ApMq and EpMq be defined by

ApMq “ pΦ1
pMq

pΦ´1
pMq, EpMq “ A´ ApMq.

ApMq and EpMq are clearly analytic for |z| ą c1C
2. Since

EpMqPpMq “ APpMq ´
ˆ

P1
pMq ´

n´ 1
2

z´1PpMq ` PpMq∆
˙

,

it follows from the construction of pΦ in §1.7.3 that EpMqPpMq is a polynomial in z´1 of the

form
řM`n

m“M`1 z´mEm so that

EM`1 “ Po
M`1∆´ ∆Po

M`1,

Em “

mintm,nu
ÿ

j“m´M

A jPm´ j, M ` 1 ă m ď M ` n.

Therefore, in view of Lemma 1.7.13, |EM`1| ÎM,n C
2M and |Em| Îm,n C

m`M for M ` 1 ă

m ď M ` n. It follows that |EpMqpzqPpMqpzq| ÎM,n C
2Mz´M´1 for |z| ą c1C

2, and this,

combined with (1.7.24), yields

(1.7.25) |EpMqpzq| “ OM,n
`

C
2M
|z|´M´1

˘

.

By the definition of ApMq, for |z| ą c1C
2, pΦpMq is a fundamental matrix of the system

(1.7.26) u1 “ ApMqu.

We shall regard the differential system (1.7.10), that is,

(1.7.27) u1 “ Au “ ApMqu` EpMqu,

as a nonhomogeneous system with (1.7.26) as the corresponding homogeneous system.

Construction of a solution

Given ` P t1, ..., nu, let

pϕpMq,`pzq “ ppMq,`pzqz´
n´1

2 einξ`z
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be the `-th column vector of the matrix pΦpMq, where ppMq,` is the `-th column vector of

PpMq. Using a version of the variation-of-constants formula and the method of successive

approximations, we shall construct a solution ϕpMq,` of (1.7.10), for z in some suitable

domain, satisfying

(1.7.28)
ˇ

ˇϕpMq,`pzq
ˇ

ˇ “ OM,n

´

|z|´
n´1

2 eRe pinξ`zq
¯

,

and

(1.7.29)
ˇ

ˇϕpMq,`pzq ´ pϕpMq,`pzq
ˇ

ˇ “ OM,n

´

C
2M
|z|´M´ n´1

2 eRe pinξ`zq
¯

,

with the implied constant in (1.7.29) also depending on the chosen domain.

Step 1. Constructing the domain and the contours for the integral equation. For C ě

c1C
2 and 0 ă ϑ ă 1

2π, define the domain DpC;ϑq Ă U by

DpC;ϑq “ tz : |arg z| ď π, |z| ą Cu Y
"

z : π ă |arg z| ă
3
2
π´ ϑ, Re z ă ´C

*

.

For k ‰ ` let ωp`, kq “ argpiξ` ´ iξkq “ argpiξ`q ` argp1´ ξkξ`q, and define

Dξ`pC;ϑq “
č

k‰`

eiωp`,kq
¨ DpC;ϑq.

With the observation that

!

argp1´ ξkξ`q : k ‰ `
)

“

"ˆ

1
2
´

a
n

˙

π : a “ 1, ..., n´ 1
*

,

it is straightforward to show that Dξ`pC;ϑq “ iξ`D1pC;ϑq, where D1pC;ϑq is defined to be

the union of the sector
!

z : |arg z| ď
π

2
`
π

n
, |z| ą C

)

and the following two domains
!

z :
π

2
`
π

n
ă arg z ă π`

π

n
´ ϑ, Im

´

e´
1
nπiz

¯

ą C
)

,

!

z : ´π´
π

n
` ϑ ă arg z ă ´

π

2
´
π

n
, Im

´

e
1
nπiz

¯

ă ´C
)

.
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C

z
|z|

Cpzq

| arg z| ď π

ϑ C
z

Re z

´Re z

Cpzq

π ă arg z ă 3
2π´ ϑ

Figure 1.1: Cpzq Ă DpC;ϑq

π
n

z

C1pzq

| arg z| ď 1
2π`

1
nπ

ϑ

π
n

z
C1pzq

1
2π`

1
nπ ă arg z ă π` 1

nπ´ ϑ

Figure 1.2: C1pzq Ă D1pC;ϑq
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For z P DpC;ϑq we define a contour Cpzq Ă DpC;ϑq that starts from 8 and ends at

z; see Figure 1.1. For z P DpC;ϑq with | arg z| ď π, the contour Cpzq consists of the part

of the positive axis where the magnitude exceeds |z| and an arc of the circle centered at

the origin of radius |z|, with angle not exceeding π and endpoint z. For z P DpC;ϑq with

π ă | arg z| ă 3
2π´ ϑ, the definition of the contour Cpzq is modified so that the circular arc

has radius ´Re z instead of |z| and ends at Re z on the negative real axis, and that Cpzq also

consists of a vertical line segment joining Re z and z. The most crucial property that Cpzq

satisfies is the nonincreasing of Re ζ along Cpzq.

We also define a contour C1pzq for z P D1pC;ϑq of a similar shape as C pzq illustrated in

Figure 1.2.

Step 2. Solving the integral equation via successive approximations. We first split pΦ´1
pMq

into n parts

pΦ´1
pMq “

n
ÿ

k“1

Ψ
pkq
pMq,

where the j-th row of Ψ
pkq
pMq is identical with the k-th row of pΦ´1

pMq, or identically zero,

according as j “ k or not.

The integral equation to be considered is the following

(1.7.30) upzq “ pϕpMq,`pzq `
ÿ

k‰`

ż z

8eiωp`,kq
Kkpz, ζqupζqdζ `

ż z

8iξ`

K`pz, ζqupζqdζ,

where

Kkpz, ζq “ pΦpMqpzqΨ
pkq
pMqpζqEpMqpζq, z, ζ P Dξ`pC;ϑq, k “ 1, ..., n,

the integral in the sum is integrated on the contour eiωp`,kqC
`

e´iωp`,kqz
˘

, whereas the last

integral is on the contour iξ`C
1 p´iξ`zq. Clearly, all these contours lie in Dξ`pC;ϑq. Most

importantly, we note thatRe ppiξ`´iξkqζq is a negative multiple ofRe
`

e´iωp`,kqζ
˘

and hence

is nondecreasing along the contour eiωp`,kqC
`

e´iωp`,kqz
˘

.
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By direct verification, it follows that if upzq “ ϕpzq satisfies (1.7.30), with the integrals

convergent, then ϕ satisfies (1.7.27).

In order to solve (1.7.30), define the successive approximations

ϕ0
pzq ” 0,

ϕα`1
pzq “ pϕpMq,`pzq`

ÿ

k‰`

ż z

8eiωp`,kq
Kkpz, ζqϕαpζqdζ `

ż z

8iξ`

K`pz, ζqϕαpζqdζ.
(1.7.31)

The p j, rq-th entry of the matrix pΦpMqpzqΨ
pkq
pMqpζq is given by

´

pΦpMqpzqΨ
pkq
pMqpζq

¯

jr
“
`

PpMqpzq
˘

jk

´

P´1
pMqpζq

¯

kr

ˆ

z
ζ

˙´
n´1

2

einξkpz´ζq.

It follows from (1.7.24, 1.7.25) that

(1.7.32) |Kkpz, ζq| ď c2C
2M
|z|´

n´1
2 |ζ|´M´1` n´1

2 eRe pinξkpz´ζqq,

for some constant c2 depending only on M and n. Furthermore, we may appropriately

choose c2 such that

(1.7.33)
ż z

8iξ`

|ζ|
´M´1

|dζ| ,
ż z

8eiωp`,kq
|ζ|
´M´1

|dζ| ď c2C´M, k ‰ `.

According to (1.7.31), ϕ1pzq “ pϕpMq,`pzq “ ppMq,`pzqz´
n´1

2 einξ`z, so

ˇ

ˇϕ1
pzq ´ ϕ0

pzq
ˇ

ˇ “
ˇ

ˇϕ1
pzq

ˇ

ˇ ď c2|z|´
n´1

2 eRe pinξ`zq, z P Dξ`pC;ϑq.

We shall show by induction that for all z P Dξ`pC;ϑq

(1.7.34)
ˇ

ˇϕαpzq ´ ϕα´1
pzq

ˇ

ˇ ď c2
`

nc2
2C

2MC´M
˘α´1

|z|´
n´1

2 eRe pinξ`zq.

Let z P Dξ`pC;ϑq. Assume that (1.7.34) holds. From (1.7.31) we have

ˇ

ˇϕα`1
pzq ´ ϕαpzq

ˇ

ˇ ď
ÿ

k‰`

Rk ` R`,
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with

Rk “

ż z

8eiωp`,kq
|Kkpz, ζq|

ˇ

ˇϕαpζq ´ ϕα´1
pζq

ˇ

ˇ |dζ| ,

R` “

ż z

8iξ`

|K`pz, ζq|
ˇ

ˇϕαpζq ´ ϕα´1
pζq

ˇ

ˇ |dζ| .

It follows from (1.7.32, 1.7.34) that Rk has bound

c2
2C

2M
`

nc2
2C

2MC´M
˘α´1

|z|´
n´1

2 eRe pinξ`zq
ż z

8eiωp`,kq
|ζ|´M´1eRe pinpξ`´ξkqpζ´zqq |dζ| .

Since Re ppiξ` ´ iξkqζq is nondecreasing on the integral contour,

Rk ď c2
2C

2M
`

nc2
2C

2MC´M
˘α´1

|z|´
n´1

2 eRe pinξ`zq
ż z

8eiωp`,kq
|ζ|´M´1 |dζ| ,

and (1.7.33) further yields

Rk ď c2nα´1
`

c2
2C

2MC´M
˘α
|z|´

n´1
2 eRe pinξ`zq.

Similar arguments show that R` has the same bound as Rk. Thus (1.7.34) is true with α

replaced by α` 1.

Set the constant C “ cC2 such that cM ě 2nc2
2. Then nc2

2C
2MC´M ď 1

2 , and therefore

the series
ř8

α“1pϕ
αpzq ´ ϕα´1pzqq absolutely and locally uniformly converges. The limit

function ϕpMq,`pzq satisfies (1.7.28) for all z P Dξ`pC;ϑq. More precisely,

(1.7.35)
ˇ

ˇϕpMq,`pzq
ˇ

ˇ ď 2c2|z|´
n´1

2 eRe pinξ`zq, z P Dξ`pC;ϑq.

Using a standard argument for successive approximations, it follows that ϕpMq,` satisfies the

integral equation (1.7.30) and hence the differential system (1.7.27).

The proof of the error bound (1.7.29) is similar. Since ϕpMq,`pzq is a solution of the

integral equation (1.7.30), we have

ˇ

ˇϕpMq,`pzq ´ pϕpMq,`pzq
ˇ

ˇ ď
ÿ

k‰`

S k ` S `,
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where

S k “

ż z

8eiωp`,kq
|Kkpz, ζq|

ˇ

ˇϕpMq,`pζq
ˇ

ˇ |dζ| , S ` “

ż z

8iξ`

|K`pz, ζq|
ˇ

ˇϕpMq,`pζq
ˇ

ˇ |dζ| .

With the observation that |ζ| ě sinϑ ¨ |z| for z P Dξ`pC;ϑq and ζ on the integral contours

given above, we may replace (1.7.33) by the following

(1.7.36)
ż z

8iξ`

|ζ|
´M´1

|dζ| ,
ż z

8eiωp`,kq
|ζ|
´M´1

|dζ| ď c2|z|´M, k ‰ `,

with c2 now also depending on ϑ.

The bounds (1.7.32, 1.7.35) of Kkpz, ζq and ϕpMq,`pzq along with (1.7.36) yield

S k ď 2c2
2C

2M
|z|´

n´1
2 eRe pinξ`zq

ż z

8eiωp`,kq
|ζ|´M´1eRe pinpξ`´ξkqpζ´zqq |dζ|

ď 2c2
2C

2M
|z|´

n´1
2 eRe pinξ`zq

ż z

8eiωp`,kq
|ζ|´M´1 |dζ|

ď 2c3
2C

2M
|z|´M´ n´1

2 eRe pinξ`zq.

Again, the second inequality follows from the fact that Re ppiξ` ´ iξkqζq is nondecreasing

on the integral contour. Similarly, S ` has the same bound as S k. Thus (1.7.29) is proven

and can be made precise as below

(1.7.37)
ˇ

ˇϕpMq,`pzq ´ pϕpMq,`pzq
ˇ

ˇ ď 2nc3
2C

2M
|z|´M´ n´1

2 eRe pinξ`zq, z P Dξ`pC;ϑq.

Conclusion

Restricting to the sector S˘ξ` X tz : |z| ą Cu Ă Dξ`pC;ϑq, with S˘ξ` replaced by Sξ` if

n “ 2, each ϕpMq,` has an asymptotic representation a multiple of pϕk for some k according

to Lemma 1.7.17 (1). Since Re piξ`zq ă Re piξ jzq for all j ‰ `, the bound (1.7.28) forces

k “ `. Therefore, for any positive integer M, ϕpMq,` is identical with the unique solution ϕ`

of the differential system (1.7.10) with asymptotic expansion pϕ` on S˘ξ` (see Lemma 1.7.17).
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Replacing ϕpMq,` by ϕ` and absorbing the M-th term of pϕpMq,` into the error bound, we may

reformulate (1.7.37) as the following error bound for ϕ`

(1.7.38)
ˇ

ˇϕ`pzq ´ pϕpM´1q,`pzq
ˇ

ˇ “ OM,ϑ,n

´

C
2M
|z|´M´ n´1

2 eRe pinξ`zq
¯

, z P Dξ`pC;ϑq.

Moreover, in view of the definition of the sector S1ξ`pϑq given in (1.7.23), we have

(1.7.39) S1ξ`pϑq X
"

z : |z| ą
C

sinϑ

*

Ă Dξ`pC;ϑq.

Thus, the following theorem is finally established by (1.7.38) and (1.7.39).

Theorem 1.7.24. Let ς P t`,´u, ξ P Xnpςq, 0 ă ϑ ă 1
2π, S1ξpϑq be the sector defined as in

(1.7.23), and M be a positive integer. Then there exists a constant c, depending only on M,

ϑ and n, such that

(1.7.40) Jpz; λ; ξq “ einξzz´
n´1

2

˜

M´1
ÿ

m“0

Bmpλ; ξqz´m
` OM,ϑ,n

`

C
2M
|z|´M

˘

¸

for all z P S1ξpϑq such that |z| ą cC2. Similar asymptotic is valid for all the derivatives of

Jpz; λ; ξq, where the constant c and the implied constant of the error estimate are allowed

to depend on the order of the derivative.

Finally, we remark that, since Bmpλ; ξqz´m is of size Om,n pC
2m|z|´mq, the error bound in

(1.7.40) is optimal, given that ϑ is fixed.

1.8. Connections between various types of Bessel functions

Recall from §1.5.4 that the asymptotic expansion in Theorem 1.5.11 remains valid

for the H-Bessel function H˘pz; λq on the half-plane H˘ “ tz : 0 ď ˘ arg z ď πu (see

(1.5.11)). With the observations that H˘pz; λq satisfies the Bessel equation of sign p˘qn,

that the asymptotic expansions of
?

np˘2πiq´
n´1

2 H˘pz; λq and Jpz; λ;˘1q have exactly the
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same form and the same leading term due to Theorem 1.5.11 and Proposition 1.7.14, and

that S˘1 “
 

z :
`

1
2 ´

1
n

˘

π ă ˘ arg z ă
`

1
2 `

1
n

˘

π
(

Ă H˘, Lemma 1.7.17 (2) implies the

following theorem.

Theorem 1.8.1. We have

H˘
pz; λq “ n´

1
2 p˘2πiq

n´1
2 Jpz; λ;˘1q,

and Bmpλ;˘1q “ p˘iq´mBmpλq.

Remark 1.8.2. Bmpλ;˘1q can only be obtained from certain recurrence relations in §1.7.3

from the differential equation aspect. On the other hand, using the stationary phase method,

(1.5.9) in §1.5.3 yields an explicit formula of Bmpλq. Thus, Theorem 1.8.1 indicates that the

recurrence relations for Bmpλ;˘1q are actually solvable!

As consequences of Theorem 1.8.1, we can establish the connections between vari-

ous Bessel functions, that is, Jpz; ς, λq, J`pz; ς, λq and Jpz; λ; ξq. Recall that Jpz; ς, λq has

already been expressed in terms of J`pz; ς, λq in Lemma 1.7.6.

1.8.1. Relations between Jpz; ς, λq and Jpz; λ; ξq

Jpz; ς, λq is equal to a multiple of H˘

´

e˘πi
n¯pςq

n z; λ
¯

in view of Lemma 1.7.9, whereas

Jpz; λ; ξq is a multiple of Jp˘ξz; λ;˘1q due to Lemma 1.7.21. Furthermore, the equality, up

to constant, between H˘pz; λq and Jpz; λ;˘1q has just been established in Theorem 1.8.1.

We then arrive at the following corollary.

Corollary 1.8.3. Let L˘pςq “ t` : ς` “ ˘u and n˘pςq “ |L˘pςq| be as in Definition 1.7.5.

Let cpς, λq “ e
´

¯n´1
8 ˘

pn´1qn˘pςq
4n ¯ 1

2

ř

`PL˘pςq λ`

¯

and ξpςq “ ¯e¯πi
n˘pςq

n . Then

Jpz; ς, λq “
p2πq

n´1
2 cpς, λq
?

n
Jpz; λ; ξpςqq.

Here, it is understood that arg ξpςq “ n´pςq
n π “ π´

n`pςq
n π.
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Corollary 1.8.3 shows that Jpz; ς, λq should really be categorized in the class of Bessel

functions of the second kind. Moreover, the asymptotic behaviours of the Bessel functions

Jpz; ς, λq are classified by their signatures pn`pςq, n´pςqq. Therefore, Jpz; ς, λq is uniquely

determined by its signature up to a constant multiple.

1.8.2. Relations connecting the two kinds of Bessel functions

From Lemma 1.7.21 and Theorem 1.8.1, one sees that Jpz; λ; ξq is a constant multiple

of H`pξz; λq. On the other hand, H`pz; λq can be expressed in terms of Bessel functions of

the first kind in view of Lemma 1.7.6. Finally, using Lemma 1.7.3, the following corollary

is readily established.

Corollary 1.8.4. Let ς P t`,´u. If ξ P Xnpςq, then

Jpz; λ; ξq “
?

n
ˆ

´
πiξ
2

˙
n´1

2 n
ÿ

`“1

´

iξ
¯nλ`

S `pλqJ`pz; ς, λq,

with S `pλq “ 1{
ś

k‰` sin pπpλ` ´ λkqq. According to our convention, we have p´iξq
n´1

2 “

e
n´1

2 p´
1
2πi`i arg ξq and

´

iξ
¯nλ`

“ e
1
2πinλ`´inλ` arg ξ. When λ is not generic, the right hand side

should be replaced by its limit.

We now fix an integer a and let ξ j “ eπi 2 j`a´2
n P Xn pp´q

aq, with j “ 1, ..., n. It follows

from Corollary 1.8.4 that

Xpz; λq “
?

n
´π

2

¯
n´1

2
e´

1
4πipn´1q

¨ DVpλqS pλqEpλqYpz; λq,

with

Xpz; λq “ pJ pz; λ; ξ jqq
n
j“1 , Ypz; λq “ pJ` pz; p´qa, λqqn`“1 ,

D “ diag
´

ξ
n´1

2
j

¯n

j“1
, Epλq “ diag

´

eπip 1
2 n´aqλ`

¯n

`“1
, S pλq “ diag pS `pλqq

n
`“1 ,

75



Vpλq “
`

e´2πip j´1qλ`
˘n

j, `“1 .

Observe that Vpλq is a Vandermonde matrix.

Lemma 1.8.5. For an n-tuple x “ px1, ..., xnq P Cn we define the Vandermonde matrix

V “

´

x j´1
`

¯n

j, `“1
. For d “ 0, 1, ..., n ´ 1 and m “ 1, ..., n, let σm,d denote the elementary

symmetric polynomial in x1, ...,xxm, ..., xn of degree d, and let τm “
ś

k‰mpxm ´ xkq. If x

is generic in the sense that all the components of x are distinct, then V is invertible, and

furthermore, the inverse of V is pp´qn´ jσm,n´ jτ
´1
m q

n
m, j“1.

Proof of Lemma 1.8.5. It is a well-known fact that V is invertible whenever x is generic. If

one denotes by wm, j the pm, jq-th entry of V´1, then

n
ÿ

j“1

wm, jx
j´1
` “ δm,`.

The Lagrange interpolation formula implies the following identity of polynomials

n
ÿ

j“1

wm, jx j´1
“

ź

k‰m

x´ xk

xm ´ xk
.

Identifying the coefficient of x j´1 on both sides yields the desired formula of wm, j. Q.E.D.

Corollary 1.8.6. Let a be a given integer. For j “ 1, ..., n define ξ j “ eπi 2 j`a´2
n . For

d “ 0, 1, ..., n´ 1 and ` “ 1, ..., n, let σ`,dpλq denote the elementary symmetric polynomial

in e´2πiλ1 , ...,{e´2πiλ` , ..., e´2πiλn of degree d. Then

J` pz; p´qa, λq “
e

3
4πipn´1q

?
np2πq

n´1
2

eπip 1
2 n`a´2qλ`

n
ÿ

j“1

p´q
n´ jξ

´
n´1

2
j σ`,n´ jpλqJ pz; λ; ξ jq .

Proof. Choosing x` “ e´2πiλ` in Lemma 1.8.5, one sees that if λ is generic then the matrix

Vpλq is invertible and its inverse is given by

`

p´2iq1´n
¨ p´q

n´ jσ`,n´ jpλqeπipn´2qλ`S `pλq
˘n

`, j“1 .

Some straightforward calculations then complete the proof. Q.E.D.

76



Remark 1.8.7. In view of Proposition 1.2.7, Remark 1.7.4 and 1.7.20, when n “ 2, Corol-

lary 1.8.4 corresponds to the connection formulae ([Wat, 3.61(5, 6), 3.7 (6)]),

Hp1q
ν pzq “

J´νpzq ´ e´πiνJνpzq
i sinpπνq

, Hp2q
ν pzq “

eπiνJνpzq ´ J´νpzq
i sinpπνq

,

Kνpzq “
π pI´νpzq ´ Iνpzqq

2 sinpπνq
, πIνpzq ´ ieπiνKνpzq “

πi pe´πiνIνpzq ´ eπiνI´νpzqq
2 sinpπνq

,

whereas Corollary 1.8.6, with a “ 0 or 1, amounts to the formulae (see [Wat, 3.61(1, 2),

3.7 (6)])

Jνpzq “
Hp1q
ν pzq ` Hp2q

ν pzq
2

, J´νpzq “
eπiνHp1q

ν pzq ` e´πiνHp2q
ν pzq

2
,

Iνpzq “
ieπiνKνpzq ` pπIνpzq ´ ieπiνKνpzqq

π
, I´νpzq “

ie´πiνKνpzq ` pπIνpzq ´ ieπiνKνpzqq
π

.

1.9. H-Bessel functions and K-Bessel functions, II

In this concluding section, we apply Theorem 1.7.24 to improve the results in §1.5 on

the asymptotics of Bessel functions Jpx; ς, λq and the Bessel kernel Jpλ,δqp˘xq for x Ï C2.

1.9.1. Asymptotic expansions of H-Bessel functions

The following proposition is a direct consequence of Theorem 1.7.24 and 1.8.1.

Proposition 1.9.1. Let 0 ă ϑ ă 1
2π.

(1). Let M be a positive integer. We have

H˘
pz; λq “ n´

1
2 p˘2πiq

n´1
2 e˘inzz´

n´1
2

˜

M´1
ÿ

m“0

p˘iq´mBmpλqz´m
` OM,ϑ,n

`

C
2M
|z|´M

˘

¸

,
(1.9.1)

for all z P S1
˘1pϑq such that |z| ÏM,ϑ,n C

2.

(2). Define Wpz;˘, λq “
?

np˘2πiq´
n´1

2 e¯inzH˘pz; λq. Let M ´ 1 ě j ě 0. We have

(1.9.2) Wp jq
pz;˘, λq “ z´

n´1
2

˜

M´1
ÿ

m“ j

p˘iq j´mBm, jpλqz´m
` OM,ϑ, j,n

`

C
2M´2 j

|z|´M
˘

¸

,
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for all z P S1
˘1pϑq such that |z| ÏM,ϑ,n C

2.

Observe that

H˘ “ tz P C : 0 ď ˘ arg z ď πu

Ă S1˘1pϑq “

"

z P U : ´
ˆ

1
2
´

1
n

˙

π´ ϑ ă ˘ arg z ă
ˆ

3
2
`

1
n

˙

π` ϑ

*

.

Fixing ϑ and restricting to the domain tz P H˘ : |z| ÏM,n C
2u, Proposition 1.9.1 improves

Theorem 1.5.11.

1.9.2. Exponential decay of K-Bessel functions

Now suppose that Jpz; ς, λq is a K-Bessel function so that 0 ă n˘pςq ă n. Since

R` Ă S1
ξpςq
pϑq, Corollary 1.8.3 and Theorem 1.7.24 imply that Jpx; ς, λq, as well as all its

derivatives, is not only a Schwartz function at infinity, which was shown in Theorem 1.5.6,

but also a function of exponential decay on R`.

Proposition 1.9.2. If Jpx; ς, λq is a K-Bessel function, then for all x Ïn C
2

Jp jq
px; ς, λq Î j,n x´

n´1
2 e´πImΛpς,λq´nIpςqx,

where Λpς, λq “ ¯
ř

lPL˘pςq λl and Ipςq “ Im ξpςq “ sin
´

n˘pςq
n π

¯

ą 0. In particular, we

have

Jp jq
px; ς, λq Î j,n x´

n´1
2 eπI´n sinp 1

nπqx,

for all K-Bessel functions Jpx; ς, λq with given λ, where I “ max t|Im λl|u.

1.9.3. The asymptotic of the Bessel kernel Jpλ,δq

In comparison with Theorem 1.5.13, we have the following proposition.

Theorem 1.9.3. Let notations be as in Theorem 1.5.13. Then, for x ÏM,n C
2, we have

W˘,p jq
λ pxq “

M´1
ÿ

m“ j

B˘m, jpλqx
´m
` OM, j,n

`

C
2M x´M

˘

,
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and

E˘,p jq
pλ,δq

pxq “ O j,n

´

x´
n´1

2 exp
`

πI´ 2πn sin
`

1
nπ
˘

x
˘

¯

,

with I “ max t|Im λl|u.

1.A. An alternative approach to asymptotic expansions

When n “ 3, the application of Stirling’s asymptotic formula in deriving the asymptotic

expansion of s Hankel transform was first found in [Mil, §4]. The asymptotic was later

formulated more explicitly in [Li1, Lemma 6.1], where the author attributed the arguments

in her proof to [Ivi]. Furthermore, using similar ideas as in [Mil], [Blo] simplified the

proof of [Li1, Lemma 6.1] (see the proof of [Blo, Lemma 6]). This method using Stirling’s

asymptotic formula is however the only known approach so far in the literature.

Closely following [Blo], we shall prove the asymptotic expansions of H-Bessel func-

tions H˘px; λq of any rank n by means of Stirling’s asymptotic formula.

From (1.2.5, 1.2.3) we have

(1.A.1) H˘
px; λq “

1
2πi

ż

C

˜

n
ź

`“1

Γps´ λ`q

¸

e
´

˘
ns
4

¯

x´nsds.

In view of the condition
řn

`“1 λ` “ 0, Stirling’s asymptotic formula yields

n
ź

`“1

Γps´ λ`q “ n´nsΓ

ˆ

ns´
n´ 1

2

˙

exp

˜

M
ÿ

m“0

Cmpλqs´m

¸

p1` RM`1psqq

for some constants Cmpλq and remainder term RM`1psq “ Oλ,M,n p|s|´M´1q. Using the

Taylor expansion for the exponential function and some straightforward algebraic manipu-

lations, the right hand side can be written as

n´ns
M
ÿ

m“0

rCmpλqΓ

ˆ

ns´
n´ 1

2
´ m

˙

´

1` rRM`1,mpsq
¯
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for certain constants rCmpλq and similar functions rRM`1,mpsq “ Oλ,M,n p|s|´M´1q. Suitably

choosing the contour C, it follows from (1.2.13) that

1
2πi

ż

C

Γ

ˆ

ns´
n´ 1

2
´ m

˙

e
´

˘
ns
4

¯

pnxq´nsds

“
e
`

˘
`

n´1
8 ` 1

4m
˘˘

npnxq
n´1

2 `m
¨

1
2πi

ż

nC´ n´1
2 ´m

Γpsqe
´

˘
s
4

¯

pnxq´sds “
p˘iq

n´1
2 `m

n
n`1

2 `m
¨

e˘inx

x
n´1

2 `m
.

As for the error estimate, let us assume x ě 1. Insert the part containing rRM`1,mpsq into

(1.A.1) and shift the contour to the vertical line of real part 1
npM´

1
2q`

1
2 . By Stirling’s for-

mula, the integral remains absolutely convergent and is of size Oλ,M,n
`

x´M´ n´1
2
˘

. Absorbing

the last main term into the error, we arrive at the following asymptotic expansion

H˘
px; λq “ e˘inxx´

n´1
2

˜

M´1
ÿ

m“0

C˘m pλqx
´m
` Oλ,M,n

`

x´M
˘

¸

, x ě 1,(1.A.2)

where C˘m pλq is some constant depending on λ.

Remark 1.A.1. For the analytic continuation H˘pz; λq, we have the Barnes type integral

representation as in Remark 1.7.10. This however does not yield an asymptotic expansion

of H˘pz; λq along with the above method. The obvious issue is with the error estimate, as

|z´ns| is unbounded on the integral contour if |z| Ñ 8.

Finally, we make some comparisons between the three asymptotic expansions (1.A.2),

(1.5.11) and (1.9.1) obtained from

- Stirling’s asymptotic formula,

- the method of stationary phase,

- the asymptotic method of ordinary differential equations.
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Recall that C “ max t|λ`|u ` 1, R “ max t|Re λ`|u. Firstly, the admissible domains of

these asymptotic expansions are

tx P R` : x ě 1u,

tz P C : |z| ě C, 0 ď ˘ arg z ď πu ,
"

z P U : |z| ÏM,ϑ,n C
2, ´

ˆ

1
2
´

1
n

˙

π´ ϑ ă ˘ arg z ă
ˆ

3
2
`

1
n

˙

π` ϑ

*

,

respectively. The range of argument is extending while that of modulus is reducing. Sec-

ondly, the error estimates are

Oλ,M,n

´

x´M´ n´1
2

¯

, OR,M,n
`

C
2M
|z|´M

˘

, OM,ϑ,n

´

C
2M
|z|´M´ n´1

2

¯

,

respectively. Thus, in the error estimate, the dependence of the implied constant on λ is

improving in all aspects.
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Chapter 2

Hankel Transforms and Fundamental Bessel
Kernels

2.1. Introduction

In this chapter, we shall study Hankel transformsXI as well as their integral kernels,

called fundamental Bessel kernelsXII, over an archimedean field. These Hankel transforms

are the archimedean constituent of the Voronoı̆ summation formula over a number field.

2.1.1. Analytic theory

Let n be a positive integer. In the case n ě 3 Hankel transforms of rank n over R

have been investigated in the work of Miller and Schmid [MS1, MS3, MS4] on the Voronoı̆

summation formula for GLnpZq. The notion of automorphic distributionsXIII is used for

their proof of this formula, and is also used to derive the analytic continuation and the

functional equation of the L-function of a cuspidal GLnpZq-automorphic representation of

XIThey are called Bessel transforms in some literatures, for instance, [IT]. However, this type of integral
transforms should actually be attributed to Hermann Hankel. Moreover, we shall reserve the term Bessel
transforms for the transforms shown in the Kuznetsov trace formula.

XIIThe adjective fundamental is added for the distinction from the Bessel functions for GLn in the Kuznetsov
formula, and will be dropped when no confusion occurs.

XIIIAccording to Stephen Miller, the origin of automorphic distributions can be traced back to the 19th
century in the work of Siméon Poisson on Poisson’s integral for harmonic functions on either the unit disk or
the upper half-plane.
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GLnpRq. As the foundation of automorphic distributions, the harmonic analysis over R

is studied in [MS3] from the viewpoint of the signed Mellin transforms. As explained in

[MS2], the cases n “ 1, 2 can also be incorporated into their framework. Furthermore,

it is shown in Chapter 1 that all Hankel transforms over R admit integral kernels, which

can be partitioned into combinations of the so-called fundamental Bessel functions. These

Bessel functions are studied from two approaches via their formal integral representations

and Bessel differential equations.

In §2.2 - 2.8, we shall establish the analytic theory of Hankel transforms and their

Bessel kernels over C. The study of Hankel transforms for GLnpCq from the perspective

of [MS3] is complete to some extent. On the other hand, Bessel functions in Chapter 1

play a fundamental role in our study of Bessel kernels over C, for instance, in finding

their asymptotic expansions. Although our main focus is on the theory over C, the theory

of Hankel transforms over R extracted from [MS3] as well as some treatments of Bessel

kernels over R will also be included for the sake of comparison.

The sections §2.2 - 2.8 are outlined as follows.

In the preliminary section §2.2, some basic notions are introduced, such as gamma

factors, Schwartz spaces, the Fourier transform and Mellin transforms. The three kinds of

Mellin transforms M, MR and MC are first defined over the Schwartz spaces over R` “

p0,8q, Rˆ “ Rr t0u and Cˆ “ Cr t0u respectively.

In §2.3, the definitions of the Mellin transforms M, MR and MC are extended onto

certain function spaces SsispR`q, SsispRˆq and SsispCˆq respectively. We shall precisely

characterize their image spaces Msis, M R
sis and M C

sis under their corresponding Mellin trans-

forms. In spite of their similar constructions, the analysis of the Mellin transform MC is

much more elaborate than that of MR or M.
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In §2.4, based on gamma factors and Mellin transforms, we shall construct Hankel

transforms upon suitable subspaces of the Ssis function spaces just introduced in §2.3 and

study their Bessel kernels. It turns out that all these Bessel kernels can be formulated in

terms of the Bessel functions in Chapter 1.

In §2.5, we shall first introduce the Schmid-Miller transforms in companion with the

Fourier transform and then use them to establish a Fourier type integral transform expres-

sion of a Hankel transform.

In §2.6, we shall introduce certain integrals, derived from the Fourier type integral

transforms given in §2.5, that represents Bessel kernels. When the field is real, these inte-

grals never absolutely converge and are closely connected to the formal integrals studied

in Chapter 1. In the complex case, however, some range of index can be found where such

integrals are absolutely convergent.

The last two sections §2.7 and §2.8 are devoted to Bessel kernels over C. In §2.7, we

shall prove two connection formulae that relate a Bessel kernel over C to the two kinds

of Bessel functions of positive sign. These kinds of Bessel functions arise in the study

of Bessel equations in §1.7. In §2.8, as a consequence of the second connection formula

above, we shall derive the asymptotic expansion of a Bessel kernel over C from Theorem

1.7.24.

2.1.2. Representation theory

The work of Miller and Schmid is extended by Ichino and Templier [IT] to any irre-

ducible cuspidal automorphic representation of GLn, n ě 2, over an arbitrary number field
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K. The Voronoı̆ summation formula for GLn follows from the global theory of GLnˆGL1-

Rankin-Selberg L-functions. For an archimedean completion K3 of K, the defining iden-

tities of the Hankel transform associated with an infinite dimensional irreducible unitary

generic representation of GLnpK3q are reformulations of the corresponding local functional

equations for GLn ˆ GL1-Rankin-Selberg zeta integrals over K3.

In §2.A, we shall first recollect the definition of the Hankel transform associated with

an infinite dimensional irreducible admissible generic representation of GLnpFq for an

archimedean field F in [IT]. We stress that this definition actually works for any irreducible

admissible representation of GLnpFq, including n “ 1. We shall then give a detailed discus-

sion on Hankel transforms of rank n over F using the Langlands classification for GLnpFq.

2.1.3. Distribution theory

Although such a theory can be formulated, we shall not touch here the theory of Mellin

transforms over Cˆ from the perspective of distributions as in [MS3]. It is very likely

that this will lead to the theory of automorphic distributions on GLnpCq with respect to

congruence subgroups, as well as the Voronoı̆ summation formula for cuspidal automorphic

representations of GLnpCq. The Voronoı̆ summation formula in this generality is already

covered by [IT], but this approach would still be of its own interest.

2.1.4. Applications

When n “ 2, there are numerous applications in analytic number theory of the Voronoı̆

summation formula and the Kuznetsov trace formula over Q, which include subconvex-

ity, non-vanishing of automorphic L-functions and estimates for shifted convolution sums.

The Voronoı̆ summation formula for GL3pZq is used to establish subconvexity in [Li2] as

well. In order to work over an arbitrary number field, one also needs to understand Hankel
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transforms and Bessel kernels at least for GL2pCq. We hope that the present paper and its

sequel will make these problems over a number field more approachable from the analytic

perspective.

2.2. Notations and preliminaries

2.2.1. Gamma factors

1.

We define the gamma factor

(2.2.1) Gps,˘q “ Γpsqe
´

˘
s
4

¯

.

For pς, λq “ pς1, ..., ςn, λ1, ..., λnq P t`,´u
n ˆ Cn let

(2.2.2) Gps; ς, λq “
n
ź

`“1

Gps´ λ`, ς`q.

2.

For δ P Z{2Z “ t0, 1u, we define the gamma factor

(2.2.3) Gδpsq “ iδπ
1
2´s Γ

`

1
2ps` δq

˘

Γ
`

1
2p1´ s` δq

˘ “

$

’

&

’

%

2p2πq´sΓpsq cos
´πs

2

¯

, if δ “ 0,

2ip2πq´sΓpsq sin
´πs

2

¯

, if δ “ 1.

Here, we have used the duplication formula and Euler’s reflection formula of the Gamma

function,

Γp1´ sqΓpsq “
π

sinpπsq
, ΓpsqΓ

ˆ

s`
1
2

˙

“ 21´2s?πΓp2sq.

Let pµ, δq “ pµ1, ..., µn, δ1, ..., δnq P Cn ˆ pZ{2Zqn and define

(2.2.4) Gpµ,δqpsq “
n
ź

`“1

Gδ`ps´ µ`q.

One observes the following simple functional relation

(2.2.5) Gpµ,δqp1´ sqGp´µ,δqpsq “ p´1q|δ|.
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3.

For m P Z, we define the gamma factor

(2.2.6) Gmpsq “ i|m|p2πq1´2s Γ
`

s` 1
2 |m|

˘

Γ
`

1´ s` 1
2 |m|

˘ .

Let pµ,mq “ pµ1, ..., µn,m1, ...,mnq P Cn ˆ Zn and define

(2.2.7) Gpµ,mqpsq “
n
ź

`“1

Gm`
ps´ µ`q.

We have the functional relation

(2.2.8) Gpµ,mqp1´ sqGp´µ,mqpsq “ p´1q|m|.

Relations between the three types of gamma factors

We first observe that

Gδpsq “ p2πq´s
`

Gps,`q ` p´qδGps,´q
˘

.

Hence

(2.2.9) Gpµ,δqpsq “
ÿ

ςPt`,´un

ςδp2πq|µ|´nsGps; ς,µq, ςδ “
n
ź

`“1

ςδ`` , |µ| “
n
ÿ

`“1

µ`.

Euler’s reflection formula and certain trigonometric identities yield

iGmpsq “ i|m|`12p2πq´2sΓ

ˆ

s`
|m|
2

˙

Γ

ˆ

s´
|m|
2

˙

sin
ˆ

π

ˆ

s´
|m|
2

˙˙

“ Gδpmq`1

ˆ

s´
|m|
2

˙

G0

ˆ

s`
|m|
2

˙

“ Gδpmq

ˆ

s´
|m|
2

˙

G1

ˆ

s`
|m|
2

˙

,

(2.2.10)

with δpmq “ mpmod 2q. Therefore, Gpµ,mqpsq may be viewed as a certain Gpη,δqpsq of

doubled rank.
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Lemma 2.2.1. Suppose that pµ,mq P Cn ˆ Zn and pη, δq P C2n ˆ pZ{2Zq2n are subjected

to one of the following two sets of relations

η2`´1 “ µ` `
|m`|

2
, η2` “ µ` ´

|m`|

2
, δ2`´1 “ δpmq ` 1, δ2` “ 0;(2.2.11)

η2`´1 “ µ` `
|m`|

2
, η2` “ µ` ´

|m`|

2
, δ2`´1 “ δpmq, δ2` “ 1.(2.2.12)

Then inGpµ,mqpsq “ Gpη,δqpsq.

Stirling’s formula

Fix s0 P C, and let | arg s| ă π ´ ε, 0 ă ε ă π. We have the following asymptotic as

|s| Ñ 8

log Γps0 ` sq „
ˆ

s0 ` s´
1
2

˙

log s´ s`
1
2

logp2πq.

If one writes s0 “ ρ0 ` it0 and s “ ρ` it, ρ ě 0, then the right hand side is equal to
ˆ

ρ0 ` ρ´
1
2

˙

log
a

t2 ` ρ2 ´ pt0 ` tq arctan
ˆ

t
ρ

˙

´ ρ`
1
2

logp2πq

` ipt0 ` tq log
a

t2 ` ρ2 ´ it ` i
ˆ

ρ0 ` ρ´
1
2

˙

arctan
ˆ

t
ρ

˙

,

and therefore

(2.2.13) |Γps0 ` sq| „
?

2π
`

t2
` ρ2

˘
1
2pρ0`ρ´

1
2q e´pt0`tq arctanpt{ρq´ρ.

Lemma 2.2.2. We have

Gps; ς, λq Îλ,a,b,rp|Im s| ` 1qnpRe s´ 1
2q´Re |λ|,(2.2.14)

for all s P Sra, bsr
Ťn

`“1

Ť

κPN Brpλ` ´ κq, with small r ą 0,

Gpµ,δqpsq Îµ,a,b,rp|Im s| ` 1qnpRe s´ 1
2q´Re |µ|,(2.2.15)
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for all s P Sra, bsr
Ťn

`“1

Ť

κPN Brpµ` ´ δ` ´ 2κq, and

(2.2.16) Gpµ,mq psq Îµ,a,b,r

n
ź

`“1

p|Im s| ` |m`| ` 1q2Re s´2Re µ`´1,

for all 2s P Sra, bsr
Ťn

`“1

Ť

κPN Brp2µ` ´ |m`| ´ 2κq.

In other words, if λ and µ are given, then Gps; ς, λq, Gpµ,δqpsq and Gpµ,mqpsq are all of

moderate growth with respect to Im s, uniformly on vertical strips (with bounded width),

and moreover Gpµ,mqpsq is also of uniform moderate growth with respect to m.

2.2.2. Basic notions for R`, Rˆ and Cˆ

Define R` “ p0,8q, Rˆ “ Rr t0u and Cˆ “ Cr t0u. We observe the isomorphisms

Rˆ – R` ˆ t`,´u (– R` ˆ Z{2Z) and Cˆ – R` ˆ R{2πZ, the latter being realized via

the polar coordinate z “ xeiφ.

1.

Let | | denote the ordinary absolute value on either R or C, and set } }R “ | | for R and

} } “ } }C “ | |
2 for C. Let dx be the Lebesgue measure on R, and let dˆx “ |x|´1dx be

the standard choice of the multiplicative Haar measure on Rˆ. Similarly, let dz be twice

the ordinary Lebesgue measure on C, and choose the standard multiplicative Haar measure

dˆz “ }z}´1dz on Cˆ. Moreover, in the polar coordinate, one has dˆz “ 2dˆxdφ. For

x P Rˆ the sign function sgnpxq is equal to x{|x|, whereas for z P Cˆ we introduce the

notation rzs “ z{|z|.

Henceforth, we shall let F be either R or C, and occasionally let x, y denote elements in

F even if F “ C.
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2.

For δ P Z{2Z, we define the space C8δ pRˆq of all smooth functions ϕ P C8pRˆq

satisfying the parity condition

(2.2.17) ϕp´xq “ p´qδϕpxq.

Observe that a function ϕ P C8δ pRˆq is determined by its restriction on R`, namely, ϕpxq “

sgnpxqδϕp|x|q. Therefore,

(2.2.18) C8δ pRˆq “ sgnpxqδC8pR`q “
 

sgnpxqδϕp|x|q : ϕ P C8pR`q
(

.

For a smooth function ϕ P C8pRˆq, we define ϕδ P C8pR`q by

(2.2.19) ϕδpxq “
1
2

`

ϕpxq ` p´qδϕp´xq
˘

, x P R`.

Clearly,

(2.2.20) ϕpxq “ ϕ0p|x|q ` sgnpxqϕ1p|x|q.

For m P Z, we define the space C8m pCˆq of all smooth functions ϕ P C8pCˆq satisfying

(2.2.21) ϕ
´

xeiφ
¨ eiφ1

¯

“ eimφ1ϕ
`

xeiφ
˘

.

A function ϕ P C8m pCˆq is determined by its restriction on R`, namely, ϕpzq “ rzsmϕp|z|q,

or, in the polar coordinate, ϕpxeiφq “ eimφϕpxq. Therefore,

(2.2.22) C8m pRˆq “ rzsmC8pR`q “
 

rzsmϕp|z|q “ eimφϕpxq : ϕ P C8pR`q
(

.

For a smooth function ϕ P C8pCˆq, we let ϕm P C8pR`q denote the m-th Fourier coeffi-

cient of ϕ given by

(2.2.23) ϕmpxq “
1

2π

ż 2π

0
ϕ
`

xeiφ
˘

e´imφdφ.
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One has the Fourier expansion of ϕ,

(2.2.24) ϕ
`

xeiφ
˘

“
ÿ

mPZ

ϕmpxqeimφ.

3.

Subsequently, we shall encounter various subspaces of C8pFˆq, with F “ R,C, for

instance, S pFq, S pFˆq, SsispFˆq, S
pµ,δq

sis pRˆq and S
pµ,mq

sis pCˆq. Here, we list three central

questions that will be the guidelines of our investigations of these function spaces.

For now, we let D be a subspace of C8pFˆq. For F “ R (respectively F “ C), we shall

add a superscript or subscript δ (respectively m) to the notation of D, say Dδ (respectively

Dm), to denote the space of ϕ P D satisfying (2.2.17) (respectively (2.2.21)). In view of

(2.2.18) (respectively (2.2.22)), there is a subspace of C8pR`q, say Eδ (respectively Em),

such that Dδ “ sgnpxqδEδ (respectively Dm “ rzsmEm).

Firstly, we are interested in the question,

“ How to characterize the space Eδ (respectively Em)?”.

Moreover, the subspaces D Ă C8pFˆq that we shall consider always satisfy the follow-

ing two hypotheses,

- ϕ P D implies ϕδ P Eδ for F “ R (respectively, ϕ P D implies ϕm P Em for F “ C),

and

- D is closed under addition.

For F “ R, under these two hypotheses, it follows from (2.2.20) that

D “ D0 ‘ D1 – E0 ˆ E1.
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For F “ C, in view of (2.2.24), the map that sends ϕ to the sequence tϕmu of its Fourier

coefficients is injective. The second question arises,

“ What is the image of D in
ś

mPZ Em under this map?”, or equivalently,

“ What conditions should a sequence tϕmu P
ś

mPZ Em satisfy in order for the Fourier

series defined by (2.2.24) giving a function ϕ P D?”.

Finally, after introducing the Mellin transform MF, we shall focus on the question,

“ What is the image of D under the Mellin transform MF?”.

2.2.3. Schwartz spaces

We say that a function ϕ P C8pR`q is smooth at zero if all of its derivatives admit

asymptotics as below,

(2.2.25) ϕpαqpxq “ α!aα ` Oα pxq as x Ñ 0, for any α P N, with aα P C.

Remark 2.2.3. Consequently, one has the asymptotic expansion ϕpxq „
ř8

κ“0 aκxκ, which

means that ϕpxq “
řA

κ“0 aκxκ ` OA pxA`1q as x Ñ 0 for any A P N. It is not required that

the series
ř8

κ“0 aκxκ be convergent for any x P Rˆ.

Actually, (2.2.25) is equivalent to the following

(2.2.26) ϕpαqpxq “
α`A
ÿ

κ“α

aκrκsαxκ´α ` Oα,A
`

xA`1
˘

as x Ñ 0, for any α, A P N.

Another observation is that, for a given constant 1 ą ρ ą 0, (2.2.25) is equivalent to

the following seemingly weaker statement,

ϕpαqpxq “ α!aα ` Oα,ρ pxρq as x Ñ 0, for any α P N, with aα P C.(2.2.27)
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Let C8pR`q denote the subspace of C8pR`q consisting of smooth functions on R` that

are also smooth at zero.

Let S pR`q denote the space of functions in C8pR`q that rapidly decay at infinity along

with all of their derivatives. Let S pFq denote the Schwartz space on F, with F “ R,C.

Let S pR`q denote the space of Schwartz functions on R`, that is, smooth functions

on R` whose derivatives rapidly decay at both zero and infinity. Similarly, we denote by

S pFˆq the space of Schwartz functions on Fˆ.

The following lemma provides criteria for characterizing functions in these Schwartz

spaces, especially functions in S pCq or S pCˆq in the polar coordinate. Its proof is left as

an easy excise in analysis for the reader.

Lemma 2.2.4. Let notations be as above.

(1.1). Let ϕ P C8pR`q satisfy the asymptotics (2.2.25). Then ϕ P S pR`q if and only if

ϕ also satisfies

(2.2.28) xα`βϕpαqpxq Îα,β 1 for all α, β P N.

(1.2). A smooth function ϕ on R` belongs to S pR`q if and only if ϕ satisfies (2.2.28)

with β P N replaced by β P Z.

Let ϕ P S pR`q and aα be as in (2.2.25). Then ϕ P S pR`q if and only if aα “ 0 for all

α P N.

(2.1). A smooth function ϕ on Rˆ extends to a function in S pRq if and only if

- ϕ satisfies (2.2.28) with xα`β replaced by |x|α`β, and

- all the derivatives of ϕ admit asymptotics

(2.2.29) ϕpαqpxq “ α!aα ` Oα p|x|q as x Ñ 0, for any α P N, with aα P C.
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(2.2). Let ϕ be a smooth function on Rˆ. Then ϕ P S pRˆq if and only if ϕ satisfies

(2.2.28) with xα`β replaced by |x|α`β and β P N by β P Z.

Suppose ϕ P S pRq, then ϕ P S pRˆq if and only if ϕpαqp0q “ 0 for all α P N, or

equivalently, aα “ 0 for all α P N, with aα given in (2.2.29).

(3.1). Write Bx “ B{Bx and Bφ “ B{Bφ. In the polar coordinate, a smooth function

ϕ pxeiφq P C8pCˆq extends to a function in S pCq if and only if

- ϕ pxeiφq satisfies

(2.2.30) xα`βBαx B
γ
φϕ

`

xeiφ
˘

Îα,β,γ 1 for all α, β, γ P N,

- all the partial derivatives of ϕ admit asymptotics

(2.2.31) xαBαx B
β
φϕ

`

xeiφ
˘

“
ÿ

|m|ďα`β

ÿ

|m|ďκďα`β
κ”mpmod 2q

am,κrκsαpimqβxκeimφ
` Oα,β

`

xα`β`1
˘

as x Ñ 0, for any α, β P N, with am,κ P C for κ ě |m| and κ ” mpmod 2q.

Let ϕ P S pCq and ϕm be the m-th Fourier coefficient of ϕ given by (2.2.23), then it

follows from (2.2.30, 2.2.4) that

- ϕm satisfies

xα`βϕpαqm pxq Îα,β,A p|m| ` 1q´A for all α, β, A P N,(2.2.32)

- all the derivatives of ϕm admit asymptotics

(2.2.33) ϕ
pαq
m pxq “

α`A
ÿ

κ“α

am,κrκsαxκ´α ` Oα,A
`

p|m| ` 1q´AxA`1
˘

as x Ñ 0, for any given α, A P N, with am,κ P C satisfying am,κ “ 0 if either

κ ă |m| or κ ı mpmod 2q.
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Observe that (2.2.4) is equivalent to the following two conditions,

(2.2.34) ϕ
pαq
m pxq “ α!am,α ` Oα pxq as x Ñ 0, for any α ě |m|, with am,α P C satisfying

am,α “ 0 if α ı mpmod 2q,

(2.2.35) for any given α, A P N, ϕpαqm pxq “ Oα,A pp|m| ` 1q´AxA`1q as x Ñ 0, if |m| ą

α` A.

In particular, ϕm P S pR`q.

Conversely, if a sequence tϕmu of functions in C8pR`q satisfies (2.2.32), (2.2.4) and

(2.2.4), then the Fourier series defined by tϕmu, that is, the right hand side of (2.2.24), is a

Schwartz function on C.

(3.2). In the polar coordinate, a smooth function ϕ pxeiφq P C8pCˆq is a Schwartz

function on Cˆ if and only if ϕ satisfies (2.2.30) with β P N by β P Z.

Let ϕ P S pCˆq and ϕm be the m-th Fourier coefficient of ϕ, then it is necessary that ϕm

satisfies (2.2.32) with β P N replaced by β P Z. In particular, ϕm P S pR`q.

Conversely, if a sequence tϕmumPZ of functions in C8pR`q satisfies the condition (2.2.32)

with β P N replaced by β P Z, then the Fourier series defined by tϕmu gives rise to a

Schwartz function on Cˆ.

Let ϕ P S pCq and am,κ be given in (2.2.4), (2.2.4) or (2.2.4). ϕ P S pCˆq if and only if

am,κ “ 0 for all m P Z, κ P N.

Some subspaces of S pR`q

In the following, we introduce several subspaces of S pR`q which are closely related

to S pRq and S pCq.
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We first define for δ P Z{2Z the subspace C8δ pR`q Ă C8pR`q of functions with an

asymptotic expansion of the form
ř8

κ“0 aκxδ`2κ at zero.

Remark 2.2.5. A question arises, “whether C8pR`q “ C80 pR`q `C81 pR`q?”.

The answer is affirmative.

To see this, we define the space C8δ pRq of smooth functions ϕ on R satisfying (2.2.17).

One has sgnpxqδϕp|x|q P C8δ pRq if ϕ P C8δ pR`q, and conversely, ϕæR` P C8δ pR`q if

ϕ P C8δ pRq. Thus, with the simple observation C8pRq “ C80 pRq ‘ C81 pRq, one sees that

C80 pR`q `C81 pR`q is the subspace of C8pR`q consisting of functions on R` that admit a

smooth extension onto R.

On the other hand, the Borel theorem ([Nar, 1.5.4]), which is a special case of the Whit-

ney extension theorem ([Nar, 1.5.5, 1.5.6]), states that for any sequence taαu of constants

there exists a smooth function ϕ P C8pRq such that ϕpαqp0q “ α!aα. Clearly, this theorem

of Borel implies our assertion above.

In §2.3.1, we shall give an alternative proof of this using the Mellin transform. See

Remark 2.3.5.

We define SδpR`q “ S pR`q XC8δ pR`q. The following identity is obvious

SδpR`q “ xδS0pR`q.

In view of Lemma 2.2.4 (1.2), we have S0pR`q XS1pR`q “ S pR`q.

If we let SδpRq be the space of functions ϕ P S pRq satisfying (2.2.17), then

SδpRq “ sgnpxqδSδpR`q “
!

sgnpxqδϕp|x|q : ϕ P SδpR`q
)

.

Clearly, S pRq “ S0pRq ‘S1pRq.
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We define the subspace SmpR`q Ă SδpmqpR`q, with δpmq “ mpmod 2q, of functions

with an asymptotic expansion of the form
ř8

κ“0 aκx|m|`2κ at zero. We have

SmpR`q “ x|m|S0pR`q.

If we define SmpCq to be the space of ϕ P S pCq satisfying (2.2.21), then

SmpCq “ rzsmSmpR`q “
!

rzsmϕp|z|q “ eimφϕpxq : ϕ P SmpR`q
)

.

The last two paragraphs in Lemma 2.2.4 (3.1) can be recapitulated as below

S pCq –ÝÑ

#

tϕmu P
ź

mPZ

SmpR`q : ϕm satisfies (2.2.32, 2.2.4, 2.2.4)

+

� SmpR`q,

where the first map sends ϕ P S pCq to the sequence tϕmu of its Fourier coefficients, and

the second is the m-th projection. According to Lemma 2.2.4 (3.1), the first map is an

isomorphism, and the second projection is surjective.

SδpRˆq and SmpCˆq

Let δ P Z{2Z and m P Z. We define SδpRˆq “ S pRˆq X SδpRq and SmpCˆq “

S pCˆq XSmpCq. Clearly, SδpRˆq “ sgnpxqδS pR`q and SmpCˆq “ rzsmS pR`q.

2.2.4. The Fourier transform

According to the local theory in Tate’s thesis for an archimedean local field F, the

Fourier transform pϕ “ Fϕ of a Schwartz function ϕ P S pFq is defined by

(2.2.36) pϕpyq “
ż

F
ϕpxqep´Λpxyqqdx,

with

(2.2.37) Λpxq “

$

&

%

x, if F “ R;

Trpxq “ x` x, if F “ C.
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The Schwartz space S pFq is invariant under the Fourier transform. Moreover, with our

choice of measure in §2.2.2, the following inversion formula holds

(2.2.38) p

pϕpxq “ ϕp´xq, x P F.

2.2.5. The Mellin transforms M, Mδ and Mm

Corresponding to R`, Rˆ and Cˆ, there are three kinds of Mellin transforms M, Mδ

and Mm.

Definition 2.2.6 (Mellin transforms).

(1). The Mellin transform Mϕ of a Schwartz function ϕ P S pR`q is given by

(2.2.39) Mϕpsq “
ż

R`
ϕpxqxsdˆx.

(2). For δ P Z{2Z, the (signed) Mellin transform Mδϕ with order δ of a Schwartz

function ϕ P S pRˆq is defined by

(2.2.40) Mδϕpsq “
ż

Rˆ
ϕpxqsgnpxqδ|x|sdˆx.

Moreover, define MR “ pM0,M1q.

(3). For m P Z, the Mellin transform Mmϕ with order m of a Schwartz function ϕ P

S pCˆq is defined by

(2.2.41) Mmϕpsq “
ż

Cˆ
ϕpzqrzsm}z}

1
2 s dˆz “ 2

ż 8

0

ż 2π

0
ϕ
`

xeiφ
˘

eimφdφ ¨ xsdˆx.

Moreover, define MC “
ś

mPZM´m.

Observation 2.2.1. For ϕ P S pRˆq, we have

(2.2.42) Mδϕpsq “ 2Mϕδpsq, δ P Z{2Z.
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Similarly, for ϕ P S pCˆq, we have

(2.2.43) M´mϕpsq “ 4πMϕmpsq, m P Z.

The relations (2.2.42) and (2.2.43) reflect the identities Rˆ – R` ˆ t`,´u and Cˆ –

R` ˆ R{2πZ respectively.

Lemma 2.2.7 (Mellin inversions). Let σ be real. Denote by pσq the vertical line from

σ´ i8 to σ` i8.

(1). For ϕ P S pR`q, we have

(2.2.44) ϕpxq “
1

2πi

ż

pσq

Mϕpsqx´sds.

(2). For ϕ P S pRˆq, we have

(2.2.45) ϕpxq “
1

4πi

ÿ

δPZ{2Z

sgnpxqδ
ż

pσq

Mδϕpsq|x|´sds.

(3). For ϕ P S pCˆq, we have

(2.2.46) ϕpzq “
1

8π2i

ÿ

mPZ

rzs´m
ż

pσq

Mmϕpsq}z}´
1
2 sds,

or, in the polar coordinate,

(2.2.47) ϕ
`

xeiφ
˘

“
1

8π2i

ÿ

mPZ

e´imφ
ż

pσq

Mmϕpsqx´sds.

Definition 2.2.8.

(1). Let Hrd denote the space of all entire functions Hpsq on the complex plane that

rapidly decay along vertical lines, uniformly on vertical strips.

(2). Define H R
rd “ Hrd ˆHrd.

(3). Let H C
rd be the subset of

ś

Z Hrd consisting of sequences tHmpsqu of entire func-

tions in Hrd satisfying the following condition,

99



(2.2.48) for any given α, A P N and vertical strip Sra, bs,

Hmpsq Îα,A,a,b p|m| ` 1q´A
p|Im s| ` 1q´α for all s P Sra, bs.

Corollary 2.2.9.

(1). The Mellin transform M and its inversion establish an isomorphism between

S pR`q and Hrd.

(2). For each δ P Z{2Z, Mδ establishes an isomorphism between SδpRˆq and Hrd.

Hence, MR establishes an isomorphism between S pRˆq and H R
rd .

(3). For each m P Z, M´m establishes an isomorphism between SmpCˆq and Hrd.

Moreover, MC establishes an isomorphism between S pCˆq and H C
rd .

Proof. (1) is a well-known consequence of Lemma 2.2.7 (1), whereas (2) directly follows

from (1) and Lemma 2.2.7 (2). As for (3), in addition to (1) and Lemma 2.2.7 (3), Lemma

2.2.4 (3.2) is also required for the rapid decay in m. Q.E.D.

2.3. The function spaces SsispR`q, SsispRˆq and SsispCˆq

The goal of this section is to extend the definitions of the Mellin transforms M, MF and

generalize the settings in §2.2.5 to the function spaces SsispR`q, Msis, SsispFˆq and M F
sis.

These spaces are much more sophisticated than S pR`q, Hrd, S pFˆq and H F
rd but most

suitable for investigating Hankel transforms over R` and Fˆ.

We shall first construct the function spaces SsispR`q, Msis and establish an isomor-

phism between them using the Mellin transform M. Based on these, we shall then turn to

the spaces SsispFˆq, M F
sis and the Mellin transform MF. The case F “ R has been worked

out in [MS3, §6]. Since Rˆ – R` ˆ t`,´u is simply two copies of R`, the properties of

SsispRˆq and M R
sis are in substance the same as those of SsispR`q and Msis. In the case
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F “ C, SsispCˆq and M C
sis can be constructed in a parallel way. The study on Cˆ is how-

ever much more elaborate, since Cˆ – R` ˆ R{2πZ and the analysis on the circle R{2πZ

is also taken into account.

2.3.1. The spaces SsispR`q and Msis

The spaces x´λplog xq jS pR`q and M λ, j
sis

Let λ P C and j P N.

We define

x´λplog xq jS pR`q “
!

x´λplog xq jϕpxq : ϕ P S pR`q
)

.

We say that a meromorphic function Hpsq has a pole of pure order j ` 1 at s “ λ if

the principal part of Hpsq at s “ λ is aps´ λq´ j´1 for some constant a P C. Of course,

Hpsq does not have a genuine pole at s “ λ if a “ 0. We define the space M λ, j
sis of all

meromorphic functions Hpsq on the complex plane such that

- the only possible singularities of Hpsq are poles of pure order j ` 1 at the points in

λ´ N “ tλ´ κ : κ P Nu, and

- Hpsq decays rapidly along vertical lines, uniformly on vertical strips, that is,

(2.3.1) for any given α P N, vertical strip Sra, bs and r ą 0,

Hpsq Îλ, j,α,a,b,r p|Im s| ` 1q´α for all s P Sra, bsr
Ť

κPN Brpλ´ κq.

The constructions of the Mellin transform M and its inversion (2.2.39, 2.2.44) iden-

tically extend from S pR`q onto S λ, j
sis pR`q, except that the conditions Re s ą Re λ and

σ ą Re λ are required to guarantee convergence.
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Lemma 2.3.1. Let λ P C and j P N. The Mellin transform M and its inversion establish

an isomorphism of between x´λplog xq jS pR`q and M λ, j
sis .

This lemma is essentially [MS3, Lemma 6.13, Corollary 6.17]. Nevertheless, we shall

include its proof as the reference for the constructions of N C,λ, j
sis and M C

sis in §2.3.3 as well

as the proof of Lemma 2.3.8.

Proof. Let υpxq “ x´λplog xq jϕpxq for some ϕ P S pR`q. Suppose that the derivatives

of ϕ satisfy (2.2.26) and (2.2.28), that is, asymptotic expansions at zero and the Schwartz

condition at infinity.

Claim 1. Let

Hpsq “Mυpsq “
ż 8

0
υpsqxs´1dx, Re s ą Re λ.

Then H admits a meromorphic continuation onto the whole complex plane. The only

singularities of H are poles of pure order j ` 1 at the points in λ ´ N. More precisely,

Hpsq has a pole at s “ λ ´ κ of principal part p´q j j!aκps´ λ` κq´ j´1. Moreover, H

decays rapidly along vertical lines, uniformly on vertical strips. To be concrete, we have

(2.3.2) for any given α, A P N, b ě a ą Re λ´ α´ A´ 1 and r ą 0,

Hpsq Îλ, j,α,A,a,b,r p|Im s| ` 1q´α for all s P Sra, bsr
Ťα`A

κ“0 Brpλ´ κq.

We remark that (2.3.1) and (2.3.2) are equivalent.

Proof of Claim 1. In view of M px´λplog xq jϕpxqq psq “M pplog xq jϕpxqq ps´ λq, one

may assume λ “ 0. As such, υpxq “ plog xq jϕpxq.

Let A P N. We have for Re s ą 0

Mυpsq “
ż 1

0
plog xq j

˜

ϕpxq ´
A
ÿ

κ“0

aκxκ
¸

xs´1dx`
A
ÿ

κ“0

p´q j j!aκ
ps` κq

j`1

`

ż 8

1
plog xq jϕpxqxs´1dx.

(2.3.3)
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Here, we have used
ż 1

0
plog xq jxs´1dx “

p´q j j!
s j`1 , Re s ą 0.

In view of ϕpxq ´
řA

κ“0 aκxκ “ OApxA`1q, the first integral in (2.3.3) converges in the half-

plane ts : Re s ą ´A´ 1u. The last integral converges for all s on the whole complex

plane due to the rapid decay of ϕ. Thus Hpsq “ Mυpsq admits a meromorphic extension

onto ts : Re s ą ´A´ 1u and, since A was arbitrary, onto the whole complex plane, with

poles of pure order j` 1 at the points in ´N.

For any given α P N, repeating partial integration α times to the defining integral of

Mυpsq yields

p´q
α
psqαMυpsq “Mυpαqps` αq.

In view of this, we first expand Mυpαqps ` αq according to the expansion of υpαqpxq “

pd{dxqα
`

plog xq j
ϕpxq

˘

. We then write each term in the expansion of Mυpαqps ` αq in the

same fashion as (2.3.3) and apply (2.2.26) and (2.2.28) to estimate the first and the last

integral respectively. We conclude that

Mυpsq Î j,α,A,a,b
1

|psqα|

˜

1`
α`A
ÿ

κ“0

ˆ

1
|s` κ|

` ...`
1

|s` κ| j`1

˙

¸

,

for all s P Sra, bs, with b ě a ą ´α´ A´ 1. In particular, (2.3.2) is proven.

Let H P M λ, j
sis . Suppose that the principal part of Hpsq at s “ λ ´ κ is equal to

p´q j j!aκps` λ` κq´ j´1 and that Hpsq satisfies the condition (2.3.2).

Claim 2. If we denote by υpxq the following integral

υpxq “
1

2πi

ż

pσq

Hpsqx´sds, σ ą Re λ,

then all the derivatives of ϕpxq “ xλplog xq´ jυpxq satisfy the asymptotics in (2.2.27) at zero

and rapidly decay at infinity.
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Proof of Claim 2. Again, let us assume λ “ 0.

Let 1 ą ρ ą 0. We left shift the contour of integration from pσq to p´ρq. When

moving across s “ 0, we obtain a0plog xq j in view of Cauchy’s differentiation formulaXIV.

It follows that

υpxq “ a0plog xq j
`

1
2πi

ż

p´ρq

Hpsqx´sds.

Using (2.3.2) with r small, say r ă ρ, to estimate the above integral, we arrive at

υpxq “ a0plog xq j
` O pxρq “ plog xq j pa0 ` Opxρqq , as x Ñ 0.

Thus ϕpxq “ plog xq´ jυpxq satisfies the asymptotic (2.2.27) with α “ 0. For the general

case α P N, we have

(2.3.4) υpαqpxq “ p´qα
1

2πi

ż

pσq

psqαHpsqx´s´αds.

Shifting the contour from pσq to p´α ´ ρq and following the same lines of arguments

as above, combined with some straightforward algebraic manipulations, one may show

(2.2.27) by an induction.

We are left to show the Schwartz condition for ϕpxq “ plog xq´ jυpxq, or equiva-

lently, that for υpxq. Indeed, the bound (2.2.28) for υpαqpxq follows from right shifting

the contour of the integral in (2.3.4) to the vertical line pβq and applying the estimates in

(2.3.2). Q.E.D.

XIVRecall Cauchy’s differentiation formula,

f p jqpζq “
j!

2πi

¿

BBrpζq

f psq
ps´ ζq j`1 ds,

where f is a holomorphic function on a neighborhood of the closed disc Brpζq centered at ζ, and the integral is
taken counter-clockwise on the circle BBrpζq. In the present situation, this formula is applied for f psq “ x´s.
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The spaces SsispR`q and Msis

Let λ, λ1 P C. We write λ ď1 λ
1 if λ1 ´ λ P N and λ „1 λ

1 if λ1 ´ λ P Z. Observe that

“ď1” and “„1” define an order relation and an equivalence relation on C respectively.

Define

SsispR`q “
ÿ

λPC

ÿ

jPN

x´λplog xq jS pR`q,

where the sum
ř

λPC
ř

jPN is in the algebraic sense. It is clear that λ ď1 λ
1 if and only if

x´λplog xq jS pR`q Ď x´λ
1

plog xq jS pR`q. One also observes that x´λplog xq jS pR`q X

x´λ
1

plog xq j1S pR`q “ S pR`q if either j ‰ j1 or λ 1 λ
1. Therefore,

SsispR`q{S pR`q “
à

ωPC{„1

à

jPN
lim
ÝÑ
λPω

´

x´λplog xq jS pR`q
¯

L

S pR`q.(2.3.5)

Here the direct limit lim
ÝÑλPω

is taken on the totally ordered set pω,ď1q and may be simply

viewed as the union
Ť

λPω. More precisely, each function υ P SsispR`q can be expressed

as a sum

υpxq “ υ0
pxq `

ÿ

λPΛ

N
ÿ

j“0

x´λplog xq jυλ, jpxq,

with Λ Ă C a finite set such that λ 1 λ
1 for any two distinct points λ, λ1 P Λ, N P N,

υ0 P S pR`q and υλ, j P S pR`q. This expression is unique up to addition of Schwartz

functions in S pR`q.

On the other hand, we define the space Msis of all meromorphic functions H satisfying

the following conditions,

- the poles of H lie in a finite number of sets λ´ N,

- the orders of the poles of H are uniformly bounded, and

- H decays rapidly along vertical lines, uniformly on vertical strips.

105



Appealing to certain Gamma identities for the Gamma function in [MS3, Lemma 6.24],

one may show, in the same way as [MS3, Lemma 6.35], that

Msis “
ÿ

λPC

ÿ

jPN

M λ, j
sis .

We have M λ, j
sis Ď M λ1, j

sis if and only if λ ď1 λ
1, and M λ, j

sis XM λ1, j1

sis “ Hrd if either j ‰ j1 or

λ  λ1. Therefore

(2.3.6) Msis{Hrd “
à

ωPC{„1

à

jPN
lim
ÝÑ
λPω

M λ, j
sis

L

Hrd.

The following lemma is a direct consequence of Lemma 2.3.1.

Lemma 2.3.2. The Mellin transform M is an isomorphism between SsispR`q and Msis

which respects their decompositions (2.3.5) and (2.3.6).

More refined decompositions of SsispR`q and Msis

Alternatively, we define an order relation on C, λ ď2 λ
1 if λ1 ´ λ P 2N, as well as an

equivalence relation, λ „2 λ
1 if λ1 ´ λ P 2Z.

Define N λ, j
sis in the same way as M λ, j

sis with λ ´ N replaced by λ ´ 2N. Under the

isomorphism via M in Lemma 2.3.1, N λ, j
sis is then isomorphic to x´λplog xq jS0pR`q.

According to [MS3, Lemma 6.35], we have the following decomposition,

(2.3.7) M λ, j
sis {Hrd “ N λ, j

sis {Hrd ‘N λ´1, j
sis {Hrd.

Inserting this into (2.3.6), we obtain the following refined decomposition of Msis{Hrd

à

ωPC{„1

à

jPN
lim
ÝÑ
λPω

´

N λ, j
sis

L

Hrd ‘N λ´1, j
sis

L

Hrd

¯

“
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

N λ, j
sis

L

Hrd.

Under the isomorphism via M in Lemma 2.3.2, the reflection of this refinement on the

decomposition of SsispR`q{S pR`q is

à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

´

x´λplog xq jS0pR`q
¯

L

S pR`q.
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Lemma 2.3.3. We have the following refinements of the decompositions (2.3.5, 2.3.6),

SsispR`q{S pR`q “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

´

x´λplog xq jS0pR`q
¯

L

S pR`q.(2.3.8)

(2.3.9) Msis{Hrd “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

N λ, j
sis

L

Hrd.

The Mellin transform M respects these two decompositions.

Corollary 2.3.4. Let δ P Z{2Z and m P Z, and recall the definitions of SδpR`q and

SmpR`q in §2.2.3.

(1). The Mellin transform M respects the following decompositions,

SsispR`q{S pR`q “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

´

x´λplog xq jSδpR`q
¯

L

S pR`q,(2.3.10)

(2.3.11) Msis{Hrd “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

N λ´δ, j
sis

L

Hrd.

(2). The Mellin transform M respects the following decompositions,

SsispR`q{S pR`q “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

´

x´λplog xq jSmpR`q
¯

L

S pR`q,(2.3.12)

(2.3.13) Msis{Hrd “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

N
λ´|m|, j

sis

L

Hrd.

Proof. These follow from Lemma 2.3.3 in conjunction with xδS0pR`q “ SδpR`q and

x|m|S0pR`q “ SmpR`q. Q.E.D.

Remark 2.3.5. Set λ “ 0 and j “ 0 in (2.3.7). It follows from the isomorphism M the

decomposition as below,

S pR`q{S pR`q “ S0pR`q{S pR`q ‘ xS0pR`q{S pR`q.

Since xS0pR`q “ S1pR`q, one obtains S pR`q “ S0pR`q ` S1pR`q and therefore

C8pR`q “ C80 pR`q `C81 pR`q. See Remark 2.2.5.
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2.3.2. The spaces SsispRˆq and M R
sis

Following [MS3, (6.10)], we write pλ, δq ď pλ1, δ1q if λ1 ´ λ P N and λ1 ´ λ ” δ1 `

δpmod 2q and pλ, δq „ pλ1, δ1q if λ1´λ´pδ1`δq P 2Z. Again, these define an order relation

and an equivalence relation on Cˆ Z{2Z.

The space SsispRˆq

According to [MS3, Definition 6.4] and [MS3, Lemma 6.35], define

SsispRˆq “
ÿ

δPZ{2Z

ÿ

λPC

ÿ

jPN

sgnpxqδ|x|´λplog |x|q jS pRq.

We have the following decomposition,

SsispRˆq{S pRˆq “
à

ωPCˆZ{2Z{„

à

jPN
lim
ÝÑ
pλ,δq Pω

`

sgnpxqδ|x|´λplog |x|q jS pRq
˘ L

S pRˆq.

It follows from sgnpxq|x|S pRq “ xS pRq Ă S pRq that

SsispRˆq{S pRˆq “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

`

|x|´λplog |x|q jS pRq
˘ L

S pRˆq.

We let S δ
sispR

ˆq denote the space of functions υ P SsispRˆq satisfying the parity condition

(2.2.17). Clearly, SsispRˆq “ S 0
sispR

ˆq ‘S 1
sispR

ˆq. Then,

S δ
sispR

ˆ
q{SδpRˆq “

à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

`

|x|´λplog |x|q jSδpRq
˘ L

SδpRˆq,

where SδpRq and SδpRˆq are defined in §2.2.3 and §2.2.3 respectively. Since SδpRq “

sgnpxqδSδpR`q,

(2.3.14) S δ
sispR

ˆ
q{SδpRˆq “

à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

´

sgnpxqδ|x|´λplog |x|q jSδpR`q
¯

L

SδpRˆq.

Consequently, |x|´δSδpR`q “ S0pR`q and S0pR`q{S pR`q ‘ |x|S0pR`q{S pR`q “

S pR`q{S pR`q (see Remark 2.3.5) yields

(2.3.15) S δ
sispR

ˆ
q{SδpRˆq “

à

ωPC{„1

à

jPN
lim
ÝÑ
λPω

´

sgnpxqδ|x|´λplog |x|q jS pR`q
¯

L

SδpRˆq.
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In particular,

S δ
sispR

ˆ
q “ sgnpxqδSsispR`q “

 

sgnpxqδυp|x|q : υ P SsispR`q
(

.

The space M R
sis

We simply define M R
sis “ Msis ˆMsis.

Isomorphism between SsispRˆq and M R
sis via the Mellin transform MR

Let υ P SsispRˆq. Since υδ P SsispR`q, the identity

Mδυpsq “ 2Mυδpsq

extends the definition of the Mellin transform Mδ onto the space SsispRˆq. Therefore, as a

consequence of Lemma 2.3.1, Lemma 2.3.2 and Corollary 2.3.4 (1), the following lemma

is readily established.

Lemma 2.3.6. For δ P Z{2Z, the Mellin transform Mδ establishes an isomorphism be-

tween the spaces S δ
sispR

ˆq and Msis which respects their decompositions (2.3.15) and

(2.3.6) as well as (2.3.14) and (2.3.11). Therefore, MR “ pM0,M1q establishes an iso-

morphism between SsispRˆq “ S 0
sispR

ˆq ‘S 1
sispR

ˆq and M R
sis “ Msis ˆMsis.

An alternative decomposition of S δ
sispR

ˆq

The following lemma follows from Corollary 2.3.4 (1) (compare [MS3, Corollary 6.17]).

Lemma 2.3.7. Let δ P Z{2Z. The Mellin transform Mδ respects the following decomposi-

tions,

S δ
sispR

ˆ
q{SδpRˆq

“
à

ωPCˆZ{2Z{„

à

jPN
lim
ÝÑ
pλ,εq Pω

`

sgnpxqε |x|´λplog |x|q jSε`δpRq
˘ L

SδpRˆq,
(2.3.16)

109



(2.3.17) Msis{Hrd “
à

ωPCˆZ{2Z{„

à

jPN
lim
ÝÑ
pλ,εq Pω

N
λ´pε`δq, j

sis

L

Hrd.

2.3.3. The spaces SsispCˆq and M C
sis

We write pλ,mq ď pλ1,m1q if λ1 ´ λ P |m1 ´ m| ` 2N and pλ,mq „ pλ1,m1q if λ1 ´ λ ´

|m1 ´ m| P 2Z. These define an order relation and an equivalence relation on Cˆ Z.

The space SsispCˆq

In parallel to §2.3.2, we first define

SsispCˆq “
ÿ

mPZ

ÿ

λPC

ÿ

jPN

rzs´m
|z|´λplog |z|q jS pCq.

We have the following decomposition,

SsispCˆq{S pCˆq “
à

ωPCˆZ{„

à

jPN
lim
ÝÑ

pλ,mq Pω

`

rzs´m
|z|´λplog |z|q jS pCq

˘ L

S pCˆq.

It follows from rzs|z|S pCq “ zS pCq Ă S pCq that

(2.3.18) SsispCˆq{S pCˆq “
à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

`

|z|´λplog |z|q jS pCq
˘ L

S pCˆq.

We let S m
sispC

ˆq denote the space of functions υ P SsispCˆq satisfying (2.2.21). Then,

S m
sispC

ˆ
q{SmpCˆq “

à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

`

|z|´λplog |z|q jSmpCq
˘ L

SmpCˆq,

where SmpCq and SmpCˆq are defined in §2.2.3 and §2.2.3 respectively. Since SmpCq “

rzsmSmpR`q,

(2.3.19) S m
sispC

ˆ
q{SmpCˆq “

à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

´

rzsm|z|´λplog |z|q jSmpR`q
¯

L

SmpCˆq.

Consequently, |z|´|m|SmpR`q “ S0pR`q and S0pR`q{S pR`q ‘ |z|S0pR`q{S pR`q “

S pR`q{S pR`q yields

(2.3.20) S m
sispC

ˆ
q{SmpCˆq “

à

ωPC{„1

à

jPN
lim
ÝÑ
λPω

´

rzsm|z|´λplog |z|q jS pR`q
¯

L

SmpCˆq.
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In particular,

S m
sispC

ˆ
q “ rzsmSsispR`q “ trzsmυp|z|q : υ P SsispR`qu .

The space M C
sis

For λ P C and j P N, we define the space N C,λ, j
sis of all sequences tHmpsqu of meromor-

phic functions such that

- the only singularities of Hm are poles of pure order j`1 at the points in λ´|m|´2N,

- Each Hm decays rapidly along vertical lines, uniformly on vertical strips (see (2.3.1)),

and

- Hmpsq also decays rapidly with respect to m, uniformly on vertical strips, in the sense

that

(2.3.21) for any given α, A P N and vertical strip Sra, bs,

Hmpsq Îλ, j,α,A,a,b p|m|`1q´Ap|Im s|`1q´α for all s P Sra, bs, if |m| ą Re λ´a.

Observe that the first two conditions amount to Hm P N
λ´|m|, j

sis . Therefore, N C,λ, j
sis Ă

ś

mPZ N
λ´|m|, j

sis .

Define the space M C
sis of all sequences tHmu of meromorphic functions such that

- the poles of each Hm lie in λ´ |m| ´ 2N, for a finite number of λ,

- the orders of the poles of Hm are uniformly bounded,

- Each Hm decays rapidly along vertical lines, uniformly on vertical strips, and

- Hm decays rapidly with respect to m, uniformly on vertical strips.
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Using the refined Stirling’s asymptotic formula (2.2.13) in place of [MS3, (6.22)] and the

following bound in place of [MS3, (6.23)]
ˇ

ˇ

ˇ

ˇ

ˇ

Γp jq
`

1
2ps´ λ` |m|q

˘

Γ
`

1
2ps` |m|q

˘

ˇ

ˇ

ˇ

ˇ

ˇ

Îλ, j,a,b,r p|Im s| ` |m| ` 1q´
1
2Re λ

for λ P C, j P N, s P Sra, bsr
Ť

κě|m|
κ”mpmod 2q

Brpλ´ κq, with r ą 0, we may follow the same

lines of the proofs of [MS3, Lemma 6.24] and [MS3, Lemma 6.35] to show that

M C
sis “

ÿ

λPC

ÿ

jPN

N C,λ, j
sis ,

and consequently

(2.3.22) M C
sis{H

C
rd “

à

ωPC{„2

à

jPN
lim
ÝÑ
λPω

N C,λ, j
sis

L

H C
rd .

Isomorphism between SsispCˆq and M C
sis via the Mellin transform MC

For υ P SsispCˆq, its m-th Fourier coefficient υm is a function in SsispR`q. Hence the

identity

M´mυpsq “ 4πMυmpsq

extends the definition of the Mellin transform M´m onto the space SsispCˆq.

Lemma 2.3.8. For m P Z, the Mellin transform M´m establishes an isomorphism between

the spaces S m
sispC

ˆq and Msis which respects their decompositions (2.3.20) and (2.3.6)

as well as (2.3.19) and (2.3.13). Furthermore, MC “
ś

mPZM´m establishes an isomor-

phism between |z|´λplog |z|q jS pCq and N C,λ, j
sis for any λ P C and j P N, and hence an

isomorphism between SsispCˆq and M C
sis which respects their decompositions (2.3.18) and

(2.3.22).

Proof. For υ P S m
sispC

ˆq, one has υ pxeiφq “ eimφυmpxq and υm P SsispR`q. Thus the first

assertion follows immediately from Lemma 2.3.2 and Corollary 2.3.4 (2).
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Now let ϕ P S pCq and υpzq “ |z|´λplog |z|q jϕpzq. Clearly, their m-th Fourier coef-

ficients are related by υmpxq “ x´λplog xq jϕmpxq. Since ϕm P SmpR`q, it follows from

Corollary 2.3.4 (2) that Hm “ M´mυ “ 4πMυm lies in N
λ´|m|, j

sis , and therefore we are left

to show (2.3.21). Recall that in the proof of Lemma 2.3.1 we turned to verify (2.3.2) instead

of (2.3.1). Likewise, it is more convenient to verify the following equivalent statement of

(2.3.21),

(2.3.23) for any given α, A P N, b ě a ą Re λ´ α´ A´ 1,

Hmpsq Îλ, j,α,A,a,b p|m| ` 1q´Ap|Im s| ` 1q´α for all s P Sra, bs, if |m| ą α` A.

According to Lemma 2.2.4 (3.1), ϕm satisfies the conditions (2.2.32, 2.2.4). Suppose

|m| ą α` A. One directly applies (2.2.32) and (2.2.4) to bound the following integral by a

constant multiple of p|m| ` 1q´A,

p´q
α
ps´ λqαMυmpsq “

ż 8

0

dα

dxα
`

plog xq jϕmpxq
˘

xs´λ`α´1dx.

This proves (2.3.23) for Hm “ 4πMυm. Therefore, the sequence tM´mυu belongs to

N C,λ, j
sis .

Conversely, let tHmu P N C,λ, j
sis , and let 4πυm be the Mellin inversion of Hm,

υmpxq “
1

8π2i

ż

pσq

Hmpsqx´sds, σ ą Re λ´ |m|.

Since Hm P N
λ´|m|, j

sis , Corollary 2.3.4 (2) implies that υmpxq P x´λplog xq jSmpR`q and

hence ϕmpxq “ xλplog xq´ jυmpxq lies in SmpR`q. This proves (2.2.4). Similar to the proof

of Lemma 2.3.1, right shifting of the contour of integration combined with (2.3.23) yields

(2.2.32), whereas left shifting combined with (2.3.23) yields (2.2.4)XV.

The proof of the second assertion is completed. Q.E.D.

XV Actually, Oα,A
`

p|m| ` 1q´AxA`1
˘

in (2.2.4) should be replaced by Oα,A,ρ
`

p|m| ` 1q´AxA`ρ
˘

, 1 ą ρ ą
0. Moreover, one observes that the left contour shift here does not cross any pole.
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An alternative decomposition of S m
sispC

ˆq

The following lemma follows from Corollary 2.3.4 (2).

Lemma 2.3.9. Let m P Z. The Mellin transform M´m respects the following decomposi-

tions,

S m
sispC

ˆ
q{SmpCˆq

“
à

ωPCˆZ{„

à

jPN
lim
ÝÑ
pλ,kq Pω

`

rzs´k
|z|´λplog |z|q jSm`kpCq

˘ L

SmpCˆq,
(2.3.24)

(2.3.25) Msis{Hrd “
à

ωPCˆZ{„

à

jPN
lim
ÝÑ
pλ,kq Pω

N
λ´|m`k|, j

sis

L

Hrd.

2.4. Hankel transforms and their Bessel kernels

This section is arranged as follows. We start with the type of Hankel transforms over

R` whose kernels are the (fundamental) Bessel functions studied in Chapter 1. After this,

we introduce two auxiliary Hankel transforms and Bessel kernels over R`. Finally, we

proceed to construct and study Hankel transforms and their Bessel kernels over Fˆ, with

F “ R,C.

Definition 2.4.1. Let pX,ďq be an ordered set satisfying the condition that

(2.4.1) “λ ď λ1 or λ1 ď λ” is an equivalence relation.

We denote the above equivalence relation by λ „ λ1. Given λ “ pλ1, ..., λnq P Xn, the set

t1, ...nu is partitioned into several pair-wise disjoint subsets Lα, α “ 1, ..., A, such that

λ` „ λ`1 if and only if `, `1 are in the same Lα.
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σ

λ` ´ κ`

Cd
pλ,κq

λ`
C1λ

Figure 2.1: Cd
pλ,κq

and C1λ

Each Λα “ tλ`u`PLα
XVI is a totally ordered set. Let Bα “ |Λ

α| and label the elements of Λα

in the descending order, λα,1 ą ... ą λα,Bα . For λα,β P Λα, let Mα,β denote the multiplicity of

λα,β in λ, that is, Mα,β “ |t` : λ` “ λα,βu|, and define Nα,β “
řβ

γ“1 Mα,γ “ |t` : λα,β ď λ`u|.

λ is called generic if λ`  λ`1 for any ` ‰ `1.

We recall that the ordered sets pC,ď1q, pC,ď2q, pCˆZ{2Z,ďq and pCˆZ,ďq defined

in §2.3 all satisfy (2.4.1).

Definition 2.4.2. Let d “ 1 or 2, λ P Cn and κ P Nn. Put σ ă d
2 `

1
npRe |λ|´1q and choose

a contour Cd
pλ,κq

(see Figure 2.1) such that

- Cd
pλ,κq

is upward directed from σ´ i8 to σ` i8,

- all the sets λ` ´ κ` ´ N lie on the left side of Cpλ,κq, and

- if s P Cd
pλ,κq

and |Im s| is sufficiently large, say |Im s| ´ max t|Im λ`|u Ï 1, then

Re s “ σ.
XVIHere, tλ`u`PLα is considered as a set, namely, λ` are counted without multiplicity.
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For λ P C, we denote Cλ “ C1
pλ,0q. For pµ, δq P Cn ˆ pZ{2Zqn, we denote Cpµ,δq “ C1

pµ,δq
.

For pµ,mq P Cn ˆ Zn, we denote Cpµ,mq “
1
2 ¨ C

2
p2µ,}m}q.

Definition 2.4.3. For λ P Cn, choose a contour C1λ illustrated in Figure 2.1 such that

- C1λ starts from and returns to ´8 counter-clockwise,

- C1λ consists two horizontal infinite half lines,

- C1λ encircles all the sets λ` ´ N, and

- Im s Î maxt|Im λ`|u ` 1 for all s P C1λ.

2.4.1. The Hankel transform Hpς,λq and the Bessel function Jpx; ς, λq

The definition of Hpς,λq

Consider the ordered set pC,ď1q. For λ P Cn, let notations λα,β, Bα, Mα,β and Nα,β be as

in Definition 2.4.1. We define the following subspace of SsispR`q,

S λ
sispR`q “

A
ÿ

α“1

Bα
ÿ

β“1

Nα,β´1
ÿ

j“0

x´λα,βplog xq jS pR`q.

Proposition 2.4.4. Let pς, λq P t`,´un ˆ Cn. Suppose υ P S pR`q. Then there exists a

unique function Υ P S λ
sispR`q satisfying the following identity,

(2.4.2) MΥpsq “ Gps; ς, λqMυp1´ sq.

We call Υ the Hankel transform of υ over R` of index pς, λq and write Hpς,λqυ “ Υ.

Proof. Recall the definition of Gps; ς, λq given by (2.2.1, 2.2.2),

Gps; ς, λq “ e
ˆ
řn

`“1 ς`ps´ λ`q

4

˙ n
ź

`“1

Γ ps´ λ`q .
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The product in the above expression may be rewritten as below

A
ź

α“1

Bα
ź

β“1

Γ ps´ λα,βq
Mα,β .

Thus the singularities of Gps; ς, λq are poles at the points in λα,1´N, α “ 1, ..., A. More pre-

cisely, Gps; ς, λq has a pole of pure order Nα,β at λ P λα,1 ´N if one let β “ max
 

β1 : λ ď1

λα,β1
(

. Moreover, in view of (2.2.14) in Lemma 2.2.2, Gps; ς, λq is of uniform moderate

growth on vertical strips.

On the other hand, according to Corollary 2.2.9 (1), Mυp1´sq uniformly rapidly decays

on vertical strips.

Therefore, the product Gps; ς, λqMυp1´ sq on the right hand side of (2.4.2) is a mero-

morphic function in the space
řA

α“1

řBα
β“1

řNα,β´1
j“0 M

λα,β, j
sis . We conclude from Lemma 2.3.2

that (2.4.2) uniquely determines a function Υ in S λ
sispR`q. Q.E.D.

The Bessel function Jpx; ς, λq

The integral kernel Jpx; ς, λq of Hpς,λq.

Suppose υ P S pR`q. By the Mellin inversion, we have

(2.4.3) Υpxq “
1

2πi

ż

pσq

Gps; ς, λqMυp1´ sqx´sds, σ ą max tRe λ`u .

It is an iterated double integral as below

Υpxq “
1

2πi

ż

pσq

ż 8

0
υpyqy´sdy ¨Gps; ς, λqx´sds.

We now shift the integral contour to Cλ defined in Definition 2.4.2. Using (2.2.14) in

Lemma 2.2.2, one shows that the above double integral becomes absolutely convergent

after this contour shift. Therefore, on changing the order of integrals, one obtains

(2.4.4) Υpxq “
ż 8

0
υpyqJ

´

pxyq
1
n ; ς, λ

¯

dy.
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Here Jpx; ς, λq is the (fundamental) Bessel function defined by the Barnes-Mellin type in-

tegral

(2.4.5) Jpx; ς, λq “
1

2πi

ż

Cλ

Gps; ς, λqx´nsds,

which is categorized as a Bessel function of the second kind (see Chapter 1).

Remark 2.4.5. The expression (2.4.4) of the Hankel transform together with properties of

the Bessel function Jpx; ς, λq may also yield Υ P S λ
sispR`q.

The Schwartz condition on Υ at infinity follows from either the rapid decay or the

oscillation of Jpx; ς, λq as well as its derivatives (see §1.5, §1.9).

As for the singularity type of Υ at zero, we first assume that λ is generic. We express

Jpx; ς, λq as a combination of Bessel functions of the first kind (see §1.7.1, 1.7.2). Then the

type of singularities of Υ at zero is reflected by the leading term in the series expansions

of Bessel functions of the first kind. For nongeneric λ the occurrence of powers of log x

follows from either solving the Bessel equations using the Frobenius method or taking the

limit of the above expression of Jpx; ς, λq with respect to the index λ.

Shifting the index of Jpx; ς, λq.

Lemma 2.4.6. Let pς, λq P t`,´un ˆ Cn and λ P C. Recall that en denotes the n-tuple

p1, ..., 1q. Then

(2.4.6) Jpx; ς, λ´ λen
q “ xnλJpx; ς, λq.

Regularity of Jpx; ς, λq.

According to §1.6, 1.7, Jpx; ς, λq satisfies a differential equation with analytic coeffi-

cients. Therefore, Jpx; ς, λq admits an analytic continuation from R` onto U, and in par-

ticular is real analytic. Here, we shall take an alternative viewpoint from Remark 1.7.10,
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that is the following Barnes type integral representation,

(2.4.7) Jpζ; ς, λq “
1

2πi

ż

C1
λ

Gps; ς, λqζ´nsds, ζ “ xeiω
P U, x P R`, ω P R,

with the integral contour given in Definition 2.4.3. One first rewrites Gps,˘q using Euler’s

reflection formula,

Gps,˘q “
πe

`

˘1
4 s
˘

sinpπsqΓp1´ sq
,

Then Stirling’s formula (2.2.13) yields,

Gp´ρ` it; ς, λq Îλ,r enρρ´npρ` 1
2q´Re |λ|,

for all ´ρ ` it R
Ťn

`“1

Ť

κPN Brpλ` ´ κq satisfying ρ Ï 1 and t Î maxt|Im λ`|u ` 1. It

follows that the contour integral in (2.4.7) converges absolutely and locally uniformly in ζ,

and hence Jpζ; ς, λq is analytic in ζ.

Moreover, given any bounded open subset of Cn, one fixes a single contour C1 “ C1λ for

all λ in this set and verifies the uniform convergence of the integral in the λ aspect. Then

follows the analyticity of Jpζ; ς, λq with respect to λ.

Lemma 2.4.7. Jpx; ς, λq admits an analytic continuation Jpζ; ς, λq from R` onto U. In

particular, Jpx; ς, λq is a real analytic function of x on R`. Moreover, Jpζ; ς, λq is an

analytic function of λ on Cn.

The rank-one and rank-two cases.

Example 2.4.8. According to Proposition 1.2.4, if n “ 1, then

Jpx;˘, 0q “ e˘ix.

For n “ 2, from Proposition 1.2.7 we have

Jpx;˘,˘, λ,´λq “ ˘πie˘πiλHp1,2q
2λ p2xq, Jpx;˘,¯, λ,´λq “ 2e¯πiλK2λp2xq,
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where, for ν P C, Hp1q
ν , Hp2q

ν are the Hankel functions, and Kν is the K-Bessel function (the

modified Bessel function of the second kind).

2.4.2. The Hankel transforms hpµ,δq, hpµ,mq and the Bessel kernels jpµ,δq,
jpµ,mq

Consider the ordered set pC,ď2q and define λα,β, Bα, Mα,β and Nα,β as in Definition 2.4.1

corresponding to λ P Cn. We define the following subspace of SsispR`q

(2.4.8) T λ
sispR`q “

A
ÿ

α“1

Bα
ÿ

β“1

Nα,β´1
ÿ

j“0

x´λα,βplog xq jS0pR`q.

The definition of hpµ,δq

The following proposition provides the definition of the Hankel transform hpµ,δq, which

maps T ´µ´δ
sis pR`q onto T µ´δ

sis pR`q bijectively.

Proposition 2.4.9. Let pµ, δq P CnˆpZ{2Zqn. Suppose υ P T ´µ´δ
sis pR`q. Then there exists

a unique function Υ P T µ´δ
sis pR`q satisfying the following identity,

(2.4.9) MΥpsq “ Gpµ,δqpsqMυp1´ sq.

We call Υ the Hankel transform of υ over R` of index pµ, δq and write hpµ,δqυ “ Υ. Fur-

thermore, we have the Hankel inversion formula

(2.4.10) hpµ,δqυ “ Υ, hp´µ,δqΥ “ p´q|δ|υ.

Proof. Recall the definition of Gpµ,δq given by (2.2.3, 2.2.4),

Gpµ,δqpsq “ i|δ|πnp 1
2´sq`|µ|

śn
`“1 Γ

`

1
2ps´ µ` ` δ`q

˘

śn
`“1 Γ

`

1
2p1´ s` µ` ` δ`q

˘ ,

where |δ| “
ř

` δ` P N, with each δ` viewed as a number in the set t0, 1u Ă N.
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We write µ˘ “ ˘µ ´ δ. Since µ`` ` µ´` “ ´2δ` P t0,´2u, the partition tLαu
A
α“1 of

t1, ..., nu and Bα in Definition 2.4.1 are the same for both µ` and µ´. Let µ˘α,β, M˘

α,β and

N˘α,β be the notations in Definition 2.4.1 corresponding to µ˘. Then the Gamma quotient

above may be rewritten as follows,

śA
α“1

śBα
β“1 Γ

´

1
2

´

s´ µ`α,β

¯¯M`α,β

śA
α“1

śBα
β“1 Γ

´

1
2

´

1´ s´ µ´α,β

¯¯M´α,β
.

Thus, at each point µ P µ`α,1´2N the product in the numerator contributes to Gpµ,δqpsq a pole

of pure order N`α,β, with β “ max
!

β1 : µ ď2 µ
`

α,β1

)

, whereas at each point µ P ´µ´α,1`2N`

1 the denominator contributes a zero of order N´α,β, with β “ max
!

β1 : 1´ µ ď2 µ
´

α,β1

)

.

Moreover, (2.2.15) in Lemma 2.2.2 implies that Gpµ,δqpsq is of uniform moderate growth on

vertical strips.

On the other hand, according to Lemma 2.3.3, the Mellin transform Mυ lies in the

space
řA

α“1

řBα
β“1

řN´α,β´1

j“0 N
µ´α,β, j

sis . In particular, the poles of Mυp1´sq are dominated by the

zeros contributed from the denominator of the Gamma quotient. Furthermore, Mυp1 ´ sq

uniformly rapidly decays on vertical strips.

We conclude that the product Gpµ,δqpsqMυp1´ sq on the right hand side of (2.4.9) lies in

the space
řA

α“1

řBα
β“1

řN`α,β´1

j“0 N
µ`α,β, j

sis , and hence Υ P T µ´δ
sis pR`q, with another application

of Lemma 2.3.3.

Finally, the Hankel inversion formula (2.4.10) is an immediate consequence of the func-

tional relation (2.2.5) of gamma factors. Q.E.D.

The definition of hpµ,mq

The following proposition provides the definition of the Hankel transform hpµ,mq, which

maps T
´2µ´}m}

sis pR`q onto T
2µ´}m}

sis pR`q bijectively.
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Proposition 2.4.10. Let pµ,mq P Cn ˆ Zn. Suppose υ P T
´2µ´}m}

sis pR`q. Then there exists

a unique function Υ P T
2µ´}m}

sis pR`q satisfying the following identity,

(2.4.11) MΥp2sq “ Gpµ,mqpsqMυp2p1´ sqq.

We call Υ the Hankel transform of υ over R` of index pµ,mq and write hpµ,mqυ “ Υ.

Moreover, we have the Hankel inversion formula

(2.4.12) hpµ,mqυ “ Υ, hp´µ,mqΥ “ p´q|m|υ.

Proof. We first rewrite (2.4.11) as follows,

MΥpsq “ Gpµ,mq
´ s

2

¯

Mυp2´ sq.

From (2.2.6, 2.2.7), we have

Gpµ,mq
´ s

2

¯

“ i|}m}|πnp1´sq`2|µ|

śn
`“1 Γ

`

1
2ps´ 2µ` ` |m`|q

˘

śn
`“1 Γ

`

1
2p2´ s` 2µ` ` |m`|q

˘ ,

where |}m}| “
řn

`“1 |m`| according to our notations. We can now proceed to apply the

same arguments in the proof of Proposition 2.4.9. Here, one uses (2.2.16) and (2.2.8)

instead of (2.2.15) and (2.2.5) respectively. Q.E.D.

The Bessel kernel jpµ,δq

The definition of jpµ,δq.

For pµ, δq P Cn ˆ pZ{2Zqn, we define the Bessel kernel jpµ,δq,

(2.4.13) jpµ,δqpxq “
1

2πi

ż

Cpµ,δq

Gpµ,δqpsqx´sds.

We call the integral in (2.4.13) a Barnes-Mellin type integral. It is clear that

(2.4.14) jpµ´µen,δqpxq “ xµ jpµ,δqpxq.
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In view of (2.2.9), we have

(2.4.15) jpµ,δqpxq “ p2πq|µ|
ÿ

ςPt`,´un

ςδJ
`

2πx
1
n ; ς,µ

˘

.

Regularity of jpµ,δq.

It follows from (2.4.15) and Lemma 2.4.7 that jpµ,δqpxq admits an analytic continuation

jpµ,δqpζq, which is also analytic with respect to µ. Moreover, jpµ,δqpζq has the following

Barnes type integral representation,

(2.4.16) jpµ,δqpζq “
1

2πi

ż

C1
µ´δ

Gpµ,δqpsqζ´sds, ζ P U.

To see the convergence, the following formula is required

(2.4.17) Gδpsq “

$

’

’

’

&

’

’

’

%

πp2πq´s

sin
`

1
2πs

˘

Γp1´ sq
, if δ “ 0,

πip2πq´s

cos
`

1
2πs

˘

Γp1´ sq
, if δ “ 1.

The integral kernel of hpµ,δq.

Suppose υ P T ´µ´δ
sis pR`q. In order to proceed in the same way as in §2.4.1, one needs

to assume that pµ, δq satisfies the condition

(2.4.18) min tRe µ` ` δ`u ` 1 ą max tRe µ` ´ δ`u .

Then,

(2.4.19) hpµ,δqυpxq “
ż 8

0
υpyq jpµ,δqpxyqdy.

Here, it is required for the convergence of the integral over dy that the contour Cpµ,δq in

(2.4.13) is chosen to lie in the left half-plane ts : Re s ă min tRe µ` ` δ`u ` 1u. According

to Definition 2.4.2, this choice of Cpµ,δq is permissible due to our assumption (2.4.18).

If one assumes υ P S pR`q, then (2.4.19) remains valid without requiring the condition

(2.4.18).
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The rank-one and rank-two examples.

Example 2.4.11. If n “ 1, we have

(2.4.20) jp0,0qpxq “ 2 cosp2πxq, jp0,1qpxq “ 2i sinp2πxq.

If n “ 2, we are particularly interested in the following Bessel kernel,

(2.4.21) jp 1
2 m,´ 1

2 m, δpmq`1,0qpxq “ jp 1
2 m,´ 1

2 m, δpmq,1qpxq “ 2πim`1Jmp4π
?

xq,

with m P N. For ν P C, Jν is the J-Bessel function (the Bessel function of the first kind).

The Bessel kernel jpµ,mq

The definition of jpµ,mq.

For pµ,mq P Cn ˆ Zn define the Bessel kernel jpµ,mq by

(2.4.22) jpµ,mqpxq “
1

2πi

ż

Cpµ,mq

Gpµ,mqpsqx´2sds.

The integral in (2.4.22) is called a Barnes-Mellin type integral. We have

(2.4.23) jpµ´µen,mqpxq “ x2µ jpµ,mqpxq.

In view of Lemma 2.2.1, if pη, δq P C2nˆpZ{2Zq2n is related to pµ,mq P CnˆZn via either

(2.2.11) or (2.2.12), then

(2.4.24) in jpµ,mqpxq “ jpη,δq
`

x2
˘

.

Regularity of jpµ,mq.

In view of (2.4.24), the regularity of jpµ,mq follows from that of jpη,δq. Alternatively, this

may be seen from

(2.4.25) jpµ,mqpζq “
1

2πi

ż

C1
µ´ 1

2 }m}

Gpµ,mqpsqζ´2sds, ζ P U.
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To see the convergence, the following formula is required

(2.4.26) Gmpsq “
πi|m|p2πq1´2s

sin
`

π
`

s` 1
2 |m|

˘˘

Γ
`

1´ s´ 1
2 |m|

˘

Γ
`

1´ s` 1
2 |m|

˘ .

The integral kernel of hpµ,mq.

Suppose υ P T
´2µ´}m}

sis pR`q. We assume that pµ,mq satisfies the following condition

(2.4.27) min
 

Re µ` `
1
2 |m`|

(

` 1 ą max
 

Re µ` ´
1
2 |m`|

(

.

Then

(2.4.28) hpµ,mqυpxq “
ż 8

0
υpyq jpµ,mqpxyq ¨ 2ydy,

It is required for convergence that the integral contour Cpµ,mq in (2.4.22) lies in the left

half-plane
 

s : Re s ă min
 

Re µ` `
1
2 |m`|

(

` 1
(

. This is guaranteed by (2.4.27).

Moreover, if one assumes υ P S pR`q, then (2.4.28) holds true for any index pµ,mq.

The rank-one case.

Example 2.4.12. If n “ 1, in view of (2.4.21) and (2.4.24), we have for m P Z

(2.4.29) jp0,mqpxq “ 2πi|m|J|m|p4πxq “ 2πimJmp4πxq.

where the second equality follows from the identity J´mpxq “ p´qmJmpxq.

Auxiliary bounds for jpµ,m`menq.

Lemma 2.4.13. Let pµ,mq P Cn ˆ Zn and m P Z. Put

A “ n
`

maxtRe µ`u ` 1
2 maxt|m`|u ´

1
2

˘

´ Re |µ| ` 1
2 |}m}|,

B` “ ´2 mintRe µ`u `maxt|m`|u `max
 

1
n ´

1
2 , 0

(

,

B´ “ ´2 maxtRe µ`u ´maxt|m`|u.
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Fix ε ą 0. Denote by en the n-tuple p1, ..., 1q. We have the following estimate

jpµ,m`menqpxq Îpµ,mq, ε, n

˜

2πex
1
n

|m| ` 1

¸n|m|

p|m| ` 1qA`nε max
 

xB``2ε , xB´´2ε
(

.(2.4.30)

Proof. Let

ρm “ max
 

Re µ` ´
1
2 |m` ` m|

(

,

σm “ min
 

1
2 `

1
n

`

Re |µ| ´ 1
2 |}m` men}| ´ 1

˘

, ρm
(

.

Choose the contour Cm “ Cpµ,m`menq (see Definition 2.4.2) such that

- if s P Cm and Im s is sufficiently large, then Re s “ σm ´ ε, and

- Cm lies in the vertical strip Srσm ´ ε, ρm ` εs.

We first assume that |m| is large enough so that

n
`

ρm ` ε ´ 1
2

˘

´ Re |µ| ´ 1
2 |}m` men}| ă 0.

For the sake of brevity, we write y “ p2πqnx. We first bound
ˇ

ˇ jpµ,m`menqpxq
ˇ

ˇ by

p2πqn`Re |µ|
ż

Cm

y´2Re s
n
ź

`“1

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
`

s´ µ` `
1
2 |m` ` m|

˘

Γ
`

1´ s` µ` `
1
2 |m` ` m|

˘

ˇ

ˇ

ˇ

ˇ

ˇ

|ds|.

With the observations that for s P Cm

- Re s P rσm ´ ε, ρm ` εs,

-
ˇ

ˇRe s´ µ` `
1
2 |m` ` m|

ˇ

ˇ Îpµ,mq 1,

-
ˇ

ˇ

`

1´ Re s` µ` `
1
2 |m` ` m|

˘

´ |m|
ˇ

ˇ Îpµ,mq 1,

126



in conjunction with Stirling’s formula (2.2.13), we have the following estimate

jpµ,m`menqpxq Î pµ,mq, n, ε max
 

y´2σm`2ε , y´2ρm´2ε
(

ż

Cm

p|Im s| ` 1qnpRe s´ 1
2q´Re |µ|`

1
2 |}m`men}|

e´n|m|
`
a

pIm sq2 ` m2 ` 1
˘np 1

2´Re sq`Re |µ|` 1
2 |}m`men}|

|ds|

ď max
 

y´2σm`2ε , y´2ρm´2ε
(

en|m|
p|m| ` 1qnpρm`ε´

1
2q´Re |µ|´

1
2 |}m`men}|

ż

Cm

p|Im s| ` 1qnpRe s´ 1
2q´Re |µ|`

1
2 |}m`men}|

|ds|.

For s P Cm, we have Re s “ σm ´ ε if Im s is sufficiently large, and our choice of σm

implies n
`

σm ´ ε ´ 1
2

˘

´Re |µ| ` 1
2 |}m` men}| ď ´1´ nε, then it follows that the above

integral converges and is of size Opµ,mq,ε,np1q.

Finally, note that both´2σm`2ε and´2ρm´2ε are close to |m|, whereas the exponent

of p|m| ` 1q, that is n
`

ρm ` ε ´ 1
2

˘

´ Re |µ| ´ 1
2 |}m` men}|, is close to ´n|m|. Thus the

following bounds yield (2.4.30),

|m| ` B´ ď ´2ρm ď ´2σm ď |m| ` B`,

n
`

ρm ´
1
2

˘

´ Re |µ| ´ 1
2 |}m` men}| ď ´n|m| ` A.

When |m| is small, we have the following estimate that also implies (2.4.30),

jpµ,m`menqpxq Îpµ,mq, ε, n max
 

y´2σm`2ε , y´2ρm´2ε
(

en|m|.

Q.E.D.

Using the formula (2.4.26) of Gmpsq instead of (2.2.6) and the Barnes type integral

representation (2.4.25) for jpµ,m`menqpζq instead of the Barnes-Mellin type integral repre-

sentation (2.4.22) for jpµ,m`menqpxq, similar arguments in the proof of Lemma 2.4.13 imply

the following lemma.

Lemma 2.4.14. Let pµ,mq P Cn ˆ Zn and m P Z. Put

A “ n
`

maxtRe µ`u ` 1
2 maxt|m`|u ´

1
2

˘

´ Re |µ| ` 1
2 |}m}|,
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B “ ´2 maxtRe µ`u ´maxt|m`|u, C “ 2 maxt|Im µ`|u.

Fix X ą 0 and ε ą 0. Then

jpµ,m`menq

`

xeiω
˘

Îpµ,mq, X, ε, n

˜

2πex
1
n

|m| ` 1

¸n|m|

p|m| ` 1qA`nεxB`2εe|ω|pC`2εq

for all x ă X.

2.4.3. The Hankel transform Hpµ,δq and the Bessel kernel Jpµ,δq

The definition of Hpµ,δq

Consider the ordered set pCˆZ{2Z,ďq and define pµα,β, δα,βq “ pµ, δqα,β, Bα, Mα,β and

Nα,β as in Definition 2.4.1 corresponding to pµ, δq P pCˆZ{2Zqn. We define the following

subspaces of SsispRˆq,

(2.4.31) S
pµ,δq,δ

sis pRˆq “
A
ÿ

α“1

Bα
ÿ

β“1

Nα,β´1
ÿ

j“0

sgnpxqδα,β |x|´µα,βplog |x|q jSδα,β`δpRq.

S
pµ,δq

sis pRˆq “S
pµ,δq,0

sis pRˆq ‘S
pµ,δq,1

sis pRˆq

“

A
ÿ

α“1

Bα
ÿ

β“1

Nα,β´1
ÿ

j“0

sgnpxqδα,β |x|´µα,βplog |x|q jS pRq.
(2.4.32)

From the definition (2.4.8) of T λ
sispR`q, together with SδpRq “ sgnpxqδSδpR`q and

SδpR`q “ xδS0pR`q, we have

(2.4.33) S
pµ,δq,δ

sis pRˆq “ sgnpxqδT µ´pδ`δenq

sis pR`q.

The following theorem gives the definition of the Hankel transform Hpµ,δq, which maps

S
p´µ,δq

sis pRˆq onto S
pµ,δq

sis pRˆq bijectively.

Theorem 2.4.15. Let pµ, δq P Cn ˆ pZ{2Zqn. Suppose υ P S
p´µ,δq

sis pRˆq. Then there exists

a unique function Υ P S
pµ,δq

sis pRˆq satisfying the following two identities,

(2.4.34) MδΥpsq “ Gpµ,δ`δenqpsqMδυp1´ sq, δ P Z{2Z.
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We call Υ the Hankel transform of υ over Rˆ of index pµ, δq and write Hpµ,δqυ “ Υ.

Moreover, we have the Hankel inversion formula

(2.4.35) Hpµ,δqυpxq “ Υpxq, Hp´µ,δqΥpxq “ p´q|δ|υpp´qnxq.

Proof. Recall that

Mδυpsq “ 2Mυδpsq.

In view of (2.4.33), one has υδ P T
´µ´pδ`δenq

sis pR`q. Applying Proposition 2.4.9, there is a

unique function Υδ P T
µ´pδ`δenq

sis pR`q satisfying

MΥδpsq “ Gpµ,δ`δenqpsqMυδp1´ sq.

According to (2.4.33), Υpxq “ Υ0p|x|q`sgnpxqΥ1p|x|q lies in S
pµ,δq,0

sis pRˆq‘S
pµ,δq,1

sis pRˆq “

S
pµ,δq

sis pRˆq. Clearly, Υ satisfies (2.4.34). Moreover, (2.4.35) follows immediately from

(2.4.10) in Proposition 2.4.9. Q.E.D.

Corollary 2.4.16. Let pµ, δq P CnˆpZ{2Zqn and δ P Z{2Z. Suppose ϕ P T
´µ´pδ`δenq

sis pR`q

and υpxq “ sgnpxqδϕp|x|q. Then

Hpµ,δqυp˘xq “ p˘qδhpµ,δ`δenqϕpxq, x P R`.

The Bessel kernel Jpµ,δq

Let pµ, δq P Cn ˆ pZ{2Zqn. We define

Jpµ,δq p˘xq “
1
2

ÿ

δPZ{2Z

p˘q
δ jpµ,δ`δenqpxq, x P R`,(2.4.36)

or equivalently,

Jpµ,δq pxq “
1
2

ÿ

δPZ{2Z

sgnpxqδ jpµ,δ`δenqp|x|q, x P Rˆ.(2.4.37)

Some properties of Jpµ,δq are summarized as below.
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Proposition 2.4.17. Let pµ, δq P Cn ˆ pZ{2Zqn.

(1). Let pµ, δq P Cˆ Z{2Z. We have

Jpµ´µen,δ´δenqpxq “ sgnpxqδ|x|µJpµ,δqpxq.

(2). Jpµ,δqpxq is a real analytic function of x on Rˆ as well as an analytic function of µ

on Cn.

(3). Assume that µ satisfies the condition

(2.4.38) min tRe µ`u ` 1 ą max tRe µ`u .

Then for υ P S
p´µ,δq

sis pRˆq

(2.4.39) Hpµ,δqυpxq “
ż

Rˆ
υpyqJpµ,δqpxyqdy.

Moreover, if υ P S pRˆq, then (2.4.39) remains true for any index µ P Cn.

Example 2.4.18. For n “ 1, we have

Jp0,0qpxq “ epxq.

For n “ 2, (2.4.15) and (2.4.36) yield

Jpµ,´µ,δ,0qp˘xq “ J
`

2π
?

x;`,˘, µ,´µ
˘

` p´q
δJ

`

2π
?

x;´,¯, µ,´µ
˘

for x P R`, µ P C and δ P Z{2Z. In view of Example 2.4.8, for x P R`, we have

Jpµ,´µ,δ,0qpxq “

$

’

’

&

’

’

%

´
π

sinpπµq

`

J2µp4π
?

xq ´ J´2µp4π
?

xq
˘

, if δ “ 0,

πi
cospπµq

`

J2µp4π
?

xq ` J´2µp4π
?

xq
˘

, if δ “ 1,

where the right hand side is replaced by its limit if 2µ P δ` 2Z, and

Jpµ,´µ,δ,0qp´xq “

$

&

%

4 cospπµqK2µp4π
?

xq, if δ “ 0,

´ 4i sinpπµqK2µp4π
?

xq, if δ “ 1.

Observe that for m P N

Jp 1
2 m,´ 1

2 m, δpmq`1,0qpxq “ 2πim`1Jmp4π
?

xq, Jp 1
2 m,´ 1

2 m, δpmq`1,0qp´xq “ 0.
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2.4.4. The Hankel transform Hpµ,mq and the Bessel kernel Jpµ,mq

The definition of Hpµ,mq

Consider now the ordered set pC ˆ Z,ďq and define p2µα,β,mα,βq “ p2µ,mqα,β, Bα,

Mα,β and Nα,β as in Definition 2.4.1 corresponding to p2µ,mq P pC ˆ Zqn. We define the

following subspace of SsispCˆq,

S
pµ,mq

sis pCˆq “
A
ÿ

α“1

Bα
ÿ

β“1

Nα,β´1
ÿ

j“0

rzs´mα,β}z}´µα,βplog |z|q jS pCq.(2.4.40)

The projection via the m-th Fourier coefficient maps S
pµ,mq

sis pCˆq onto the space

(2.4.41) S
pµ,mq,m

sis pCˆq “
A
ÿ

α“1

Bα
ÿ

β“1

Nα,β´1
ÿ

j“0

rzs´mα,β}z}´µα,βplog |z|q jSmα,β`mpCq.

From the definition (2.4.8) of T λ
sispR`q, along with SmpCq “ rzsmSmpR`q and SmpR`q “

x|m|S0pR`q, we have

(2.4.42) S
pµ,mq,m

sis pCˆq “ rzsmT
2µ´}m`men}

sis pR`q.

The following theorem gives the definition of the Hankel transform Hpµ,mq, which maps

S
p´µ,´mq

sis pCˆq onto S
pµ,mq

sis pCˆq bijectively.

Theorem 2.4.19. Let pµ,mq P Cn ˆ Zn. Suppose υ P S
p´µ,´mq

sis pCˆq. Then there exists a

unique function Υ P S
pµ,mq

sis pCˆq satisfying the following sequence of identities,

(2.4.43) M´mΥp2sq “ Gpµ,m`menqpsqMmυp2p1´ sqq, m P Z.

We call Υ the Hankel transform of υ over Cˆ of index pµ,mq and write Hpµ,mqυ “ Υ.

Moreover, we have the Hankel inversion formula

(2.4.44) Hpµ,mqυpzq “ Υpzq, Hp´µ,´mqΥpzq “ p´q|m|υpp´qnzq.
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Proof. Recall that

Mmυpsq “ 4πMυ´mpsq.

In view of (2.4.42), we have υ´m P T
´2µ´}m`men}

sis pR`q. Applying Proposition 2.4.10, we

infer that there is a unique function Υm P T
2µ´}m`men}

sis pR`q satisfying

MΥmp2sq “ Gpµ,m`menqpsqMυ´mp2p1´ sqq.

According to Lemma 2.3.8, in order to show that the Fourier series Υ pxeiφq “
ř

Υmpxqeimφ

lies in S
pµ,mq

sis pCˆq, it suffices to verify that Gpµ,m`menqpsqMυ´mp2p1 ´ sqq rapidly decays

with respect to m, uniformly on vertical strips. This however follows from the uniform

rapid decay of Mυ´mp2p1 ´ sqq along with the uniform moderate growth of Gpµ,m`menqpsq

((2.2.16) in Lemma 2.2.2) in the m aspect on vertical strips.

Finally, (2.4.12) in Proposition 2.4.10 implies (2.4.44). Q.E.D.

Corollary 2.4.20. Let pµ,mq P Cn ˆ Zn and m P Z. Suppose ϕ P T
´2µ´}m`men}

sis pR`q and

υpzq “ rzs´mϕp|z|q. Then

Hpµ,mqυ
`

xeiφ
˘

“ eimφhpµ,m`menqϕpxq, x P R`, φ P R{2πZ.

The Bessel kernel Jpµ,mq

For pµ,mq P Cn ˆ Zn, we define

(2.4.45) Jpµ,mq
`

xeiφ
˘

“
1

2π

ÿ

mPZ

jpµ,m`menqpxqeimφ,

or equivalently,

(2.4.46) Jpµ,mq pzq “
1

2π

ÿ

mPZ

jpµ,m`menqp|z|qrzsm.

Lemma 2.4.13 secures the absolute convergence of this series.
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Proposition 2.4.21. Let pµ,mq P Cn ˆ Zn.

(1). Let pµ,mq P Cˆ Z. We have

Jpµ´µen,m´menqpzq “ rzsm}z}µJpµ,mqpzq.

(2). Jpµ,mqpzq is a real analytic function of z on Cˆ as well as an analytic function of µ

on Cn.

(3). Assume that µ satisfies the following condition

(2.4.47) min tRe µ`u ` 1 ą max tRe µ`u .

Suppose υ P S
p´µ,´mq

sis pCˆq. Then

(2.4.48) Υ
`

xeiφ
˘

“

ż 8

0

ż 2π

0
υ
`

yeiθ
˘

Jpµ,mq
`

xeiφyeiθ
˘

¨ 2ydθdy,

or equivalently,

(2.4.49) Υpzq “
ż

Cˆ
υpuqJpµ,mqpzuqdu.

Moreover, (2.4.48) and (2.4.49) still hold true for any index µ P C if υ P S pCˆq.

Proof. (1). This is clear.

(2). In (2.4.45), with abuse of notation, we view x and φ as complex variables on U

and C{2πZ respectively, jpµ,m`menqpxq and eimφ as analytic functions. Then Lemma 2.4.14

implies that the series in (2.4.45) is absolutely convergent, locally uniformly with respect

to both x and φ, and therefore Jpµ,mq pxeiφq is an analytic function of x and φ. In particular,

Jpµ,mqpzq is a real analytic function of z on Cˆ.

Moreover, in Lemma 2.4.13, we may allow µ to vary in an ε-ball in Cn and choose

the implied constant in the estimate to be uniformly bounded with respect to µ. This im-

plies that the series in (2.4.45) is convergent locally uniformly in the µ aspect. Therefore,

Jpµ,mqpzq is an analytic function of µ on Cn.
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(3). It follows from (2.4.42) that υ´m P T
´2µ´}m`men}

sis pR`q. Moreover, one observes

that pµ,m`menq satisfies the condition (2.4.27) due to (2.4.47). Therefore, in conjunction

with Proposition 2.4.10, (2.4.28) implies

Υmpxq “ 2
ż 8

0
υ´mpyq jpµ,m`menq pxyq ydy.

Hence

Υ
`

xeiφ
˘

“
ÿ

mPZ

Υmpxqeimφ
“

ÿ

mPZ

1
π

ż 8

0

ż 2π

0
υ
`

yeiθ
˘

jpµ,m`menq pxyq eimpφ`θqydθdy.

The estimate of jpµ,m`menq in Lemma 2.4.13 implies that the above series of integrals con-

verges absolutely. On interchanging the order of summation and integration, one obtains

(2.4.48) in view of the definition (2.4.45) of Jpµ,mq.

Note that in the case υ P S pCˆq, one has υ´m P S pR`q, and therefore (2.4.28) can be

applied unconditionally. Q.E.D.

Example 2.4.22. Let n “ 1. From (2.4.29), we have

jp0,mqpxq “

$

&

%

p´q
d2πJ2dp4πxq, if |m| “ 2d,

p´q
d2πiJ2d`1p4πxq, if |m| “ 2d ` 1.

The following expansions ([Wat, 2.22 (3, 4)])

cospx cos φq “ J0pxq ` 2
8
ÿ

d“1

p´q
d J2dpxq cosp2dφq,

sinpx cos φq “ 2
8
ÿ

d“0

p´q
d J2d`1pxq cospp2d ` 1qφq,

imply

Jp0,0q
`

xeiφ
˘

“ cosp4πx cos φq ` i sinp4πx cos φq “ ep2x cos φq,

or equivalently,

Jp0,0qpzq “ epz` zq.
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We remark that the two expansions [Wat, 2.22 (3, 4)] can be incorporated into

eix cos φ
“

8
ÿ

m“´8

imJmpxqeimφ.

2.4.5. Concluding remarks

Connection formulae

From the various connection formulae (2.4.15, 2.4.24, 2.4.45, 2.4.46) which have been

derived so far, one can connect the Bessel kernel Jpµ,mqpzq to the Bessel functions Jpx; ς, λq

of doubled rank 2n. However, in contrast to the expression of Jpµ,δqp˘xq by a finite sum of

J
`

2πx
1
n ; ς,µ

˘

(see (2.4.15, 2.4.36, 2.4.37)), which enables us to reduce the study of Jpµ,δqpxq

to that of Jpx; ς, λq given in Chapter 1, these connection formulae yield an expression of

Jpµ,mq pxeiφq in terms of an infinite series involving the Bessel functions J
`

2πx
1
n ; ς, λ

˘

of

rank 2n, so a similar reduction for Jpµ,mqpzq does not exist from this approach.

In §2.7, we shall prove two alternative connection formulae that relate Jpµ,mqpzq to the

two kinds of Bessel functions of rank n and positive sign. These kinds of Bessel functions

arise in §1.7 as solutions of the Bessel equation of positive sign.

Asymptotics of Bessel kernels

Using the connection formulae between the Bessel kernel Jpµ,δqpxq and Bessel functions

Jpx; ς, λq along with the asymptotics of the latter, the asymptotic of Jpµ,δqpxq is readily

established in Theorem 1.5.13 and 1.9.3. With the help of the second connection formula

for Jpµ,mqpzq in §2.7.2, we shall present in §2.8 the asymptotic of Jpµ,mqpzq as an application

of the asymptotic expansions of Bessel functions of the second kind (Theorem 1.7.24).
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Normalizations of indices

Usually, it is convenient to normalize the indices in Jpx; ς, λq, jpµ,δqpxq, jpµ,mqpxq, Jpµ,δqpxq

and Jpµ,mqpzq so that λ,µ P Ln´1. Furthermore, without loss of generality, the assumptions

δn “ 0 and mn “ 0 may also be imposed for Jpµ,δqpxq and Jpµ,mqpzq respectively. These

normalizations are justified by Lemma 2.4.6, (2.4.14), (2.4.23), Proposition 2.4.17 (1) and

2.4.21 (1).

2.5. Fourier type integral transforms

In this section, we shall introduce an alternative perspective of Hankel transforms. We

shall first show how to construct Hankel transforms from the Fourier transform and Miller-

Schmid transforms. From this, we shall express the Hankel transforms Hpµ,δq and Hpµ,mq

in terms of certain Fourier type integral transforms, assuming that the components of Reµ

are strictly decreasing.

2.5.1. The Fourier transform and rank-one Hankel transforms

For either F “ R or F “ C, we have seen in Example 2.4.18 and 2.4.22 that Jp0,0q is

exactly the inverse Fourier kernel, namely

Jp0,0qpxq “ epΛpxqq, x P F,

with Λpxq defined by (2.2.37). Therefore, in view of Proposition 2.4.17 (3) and 2.4.21

(3), Hp0,0q is precisely the inverse Fourier transform over the Schwartz space S
p0,0q

sis pFˆq “

S pFq. The following lemma is a consequence of Theorem 2.4.15 and 2.4.19.
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Lemma 2.5.1. Let υ P S pFq. If F “ R, then the Fourier transform pυ of υ can be deter-

mined by the following two identities

Mδpυpsq “ p´qδGδpsqMδυp1´ sq, δ P Z{2Z.

If F “ C, then the Fourier transform pυ of υ can be determined by the following sequence

of identities

M´mpυp2sq “ p´qmGmpsqMmυp2p1´ sqq, m P Z.

It is convenient for our purpose to introduce the renormalize rank-one Hankel trans-

forms Spµ,εq and Spµ,kq as follows.

Lemma 2.5.2. Let pµ, εq P Cˆ Z{2Z and pµ, kq P Cˆ Z.

(1). For υpxq P sgnpxqε |x|µS pRq, define Spµ,εqυpxq “ |x|µHpµ,εqυpxq. Then

(2.5.1) MδSpµ,εqυpsq “ Gε`δpsqMδυp1´ s´ µq, δ P Z{2Z,

and Spµ,εq sends sgnpxqε |x|µS pRq onto sgnpxqεS pRq bijectively. Furthermore,

Spµ,εqυpxq “ sgnpxqε
ż

Rˆ
sgnpyqε |y|´µυpyqepxyqdy “ sgnpxqεFϕ p´xq,

with ϕpxq “ sgnpxqε |x|´µυpxq P S pRq.

(2). For υpzq P rzsk}z}µS pCq, define Spµ,kqυpzq “ }z}µHpµ,kqυpzq. Then

(2.5.2) M´mSpµ,kqυp2sq “ Gk`mpsqMmυp2p1´ s´ µqq, m P Z.

and Spµ,kq sends rzsk}z}µS pCq onto rzs´kS pCq bijectively. Furthermore,

Spµ,kqυpzq “ rzs´k
ż

Cˆ
rus´k

}u}´µυpuqepzu` zuqdu “ rzs´kFϕ p´zq,

with ϕpzq “ rzs´k}z}´µυpzq P S pCq.
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Lemma 2.5.3. Let pµ, εq P Cˆ Z{2Z and pµ, kq P Cˆ Z.

(1). Let δ P Z{2Z. Suppose that ϕpxq P xµSδ`εpR`q and υpxq “ sgnpxqδϕp|x|q. Then

Spµ,εqυp˘xq “ p˘qδ
ż

R`
y´µϕpyq jp0,δ`εqpxyqdy

“

$

’

’

&

’

’

%

p˘q
ε2
ż

R`
y´µϕpyq cospxyqdy, if δ “ ε,

p˘q
ε`12i

ż

R`
y´µϕpyq sinpxyqdy, if δ “ ε ` 1.

The transform Spµ,εq is a bijective map from sgnpxqε |x|µSδpRq onto sgnpxqεSδpRq.

(2). Let m P Z. Suppose that ϕpxq P x2µS´m´kpR`q and υpzq “ rzs´mϕp|z|q. Then

Spµ,kqυ
`

xeiφ
˘

“ 2eimφ
ż

R`
y1´2µϕpyq jp0,m`kqpxyqdy

“ 4πim`keimφ
ż

R`
y1´2µϕpyqJm`kp4πxyqdy.

The transform Spµ,kq is a bijective map from rzsk}z}µSmpCq onto rzs´kS´mpCq.

2.5.2. Miller-Schmid transforms

In [MS1, §6], certain transforms over R, which play an important role in the proof of

the Voronoı̆ summation formula in their subsequent work [MS3, MS4], are introduced by

Miller and Schmid. Here, we shall first recollect their construction of these transforms with

slight modifications, and then define similar transforms over C in a parallel way.

The Miller-Schmid transform Tpµ,εq

Lemma 2.5.4. Let pµ, εq P Cˆ Z{2Z.

(1). For any υ P SsispRˆq there is a unique function Υ P SsispRˆq satisfying the

following two identities,

(2.5.3) MδΥpsq “ Gε`δpsqMδυps` µq, δ P Z{2Z.
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We write Υ “ Tpµ,εqυ and call Tpµ,εq the Miller-Schmid transform over R of index pµ, εq.

(2). Let λ P C. Suppose υpxq P sgnpxqδ|x|´λplog |x|q jS pRq. If Re λ ă Re µ´ 1
2 , then

Tpµ,εqυpxq “ sgnpxqε
ż

Rˆ
sgnpyqε |y|´µυ

`

y´1
˘

epxyqdˆy “ sgnpxqεFϕ p´xq,(2.5.4)

with ϕpxq “ sgnpxqε |x|´µ´1υpx´1q.

(3). Suppose that Re λ ă Re µ. Then the integral in (2.5.4) is absolutely convergent

and (2.5.4) remains valid for any υpxq P sgnpxqδ|x|´λplog |x|q jS pRq.

(4). Suppose that Re µ ą 0. Define the function space

TsispRˆq “
ÿ

δPZ{2Z

ÿ

Re λď0

ÿ

jPN

sgnpxqδ|x|´λplog |x|q jS pRq.

Then the transform Tpµ,εq sends TsispRˆq into itself. Moreover, (2.5.4) also holds true for

any υ P TsispRˆq, wherein the integral absolutely converges.

Proof. Following the ideas in the proofs of Proposition 2.4.9 and Theorem 2.4.15, one may

prove (1). Actually, the case here is much easier!

As for (2), we have

Tpµ,εqυpxq “
1

4πi

ÿ

δPZ{2Z

ż

Rˆ
υpyq|y|µ ¨ sgnpxyqδ

ż

Cp0,δ`εq

Gδ`εpsq|y|s|x|´sdsdˆy

“

ż

Rˆ
υpyq|y|µJp0,εq

`

xy´1
˘

dˆy,

provided that the double integral is absolutely convergent. In order to guarantee the con-

vergence of the integral over dˆy, the integral contour Cp0,δ`εq is required to lie in the right

half-plane ts : Re s ą Re pλ´ µqu. In view of Definition 2.4.2, such a choice of Cp0,δ`εq is

permissible since Re pλ ´ µq ă ´ 1
2 according to our assumption. Finally, the change of

variables from y to y´1, along with the formula Jp0,εqpxq “ sgnpxqεepxq, yields (2.5.4).

For the case Re λ ă Re µ in (3), the absolute convergence of the integral in (2.5.4) is

obvious. The validity of (2.5.4) follows from the analyticity with respect to µ.
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Observe that, under the isomorphism established by MR in Lemma 2.3.6, TsispRˆq

corresponds to the subspace of M R
sis consisting of pairs of meromorphic functions pH0,H1q

such that the poles of both H0 and H1 lie in the left half-plane ts : Re s ď 0u (see Lemma

2.3.7). Then the first assertion in (4) is clear, since the map that corresponds to Tpµ,εq

is given by pH0,H1q ÞÑ pGεpsqH0ps ` µq,Gε`1psqH1ps ` µqq and sends the subspace of

M R
sis described above into itself. The second assertion in (4) immediately follows from

(3). Q.E.D.

Similar to Lemma 2.5.3 (1), we have the following lemma.

Lemma 2.5.5. Let pµ, εq P CˆZ{2Z be such that Re µ ą 0. For δ P Z{2Z define T δ
sispR

ˆq

to be the space of functions in TsispRˆq satisfying the condition (2.2.17). For υ P T δ
sispR

ˆq,

we write υpxq “ sgnpxqδϕp|x|q. Then

Tpµ,εqυp˘xq “ p˘qδ
ż

R`
y´µϕ

`

y´1
˘

jp0,δ`εqpxyqdˆy

“

$

’

’

&

’

’

%

p˘q
δ2
ż

R`
y´µϕ

`

y´1
˘

cospxyqdˆy, if δ “ ε,

p˘q
δ2i

ż

R`
y´µϕ

`

y´1
˘

sinpxyqdˆy, if δ “ ε ` 1.

The transform Tpµ,εq sends T δ
sispR

ˆq into itself.

The Miller-Schmid transform Tpµ,kq

In parallel to Lemma 2.5.4, the following lemma defines the Miller-Schmid transform

Tpµ,kq over C and gives its connection to the Fourier transform over C.

Lemma 2.5.6. Let pµ, kq P Cˆ Z.

(1). For any υ P SsispCˆq there is a unique function Υ P SsispCˆq satisfying the

following sequence of identities,

(2.5.5) M´mΥp2sq “ Gm`kpsqM´mυp2ps` µqq, m P Z.
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We write Υ “ Tpµ,kqυ and call Tpµ,kq the Miller-Schmid transform over C of index pµ, kq.

(2). Let λ P C. If Re λ ă 2Re µ, then for any υpzq P rzsm|z|´λplog |z|q jS pCq we have

Tpµ,kqυpzq “ rzsk
ż

Cˆ
rusk}u}´µυ

`

u´1
˘

epzu` zuqdˆu “ rzskFϕ p´zq,(2.5.6)

with ϕpzq “ rzsk}z}´µ´1υ pz´1q.

(3). When Re λ ă 2Re µ, the integral in (2.5.6) is absolutely convergent for any υpzq P

rzsm|z|´λplog |z|q jS pCq.

(4). Suppose that Re µ ą 0. Define the function space

TsispCˆq “
ÿ

mPZ

ÿ

Re λď0

ÿ

jPN

rzsm|z|´λplog |z|q jS pCq.

Then the transform Tpµ,kq sends TsispCˆq into itself. Moreover, (2.5.4) also holds true for

any υ P TsispCˆq, wherein the integral absolutely converges.

Proof. Following literally the same ideas in the proof of Lemma 2.5.4, one may show this

lemma without any difficulty. We only remark that, via the isomorphism MC in Lemma

2.3.8, TsispCˆq corresponds to the subspace of M C
sis consisting of sequences tHmu such

that the poles of each Hm lie in the left half-plane
 

s : Re s ď mintM ´ |m|, 0u
(

for some

M P N (see Lemma 2.3.9). Q.E.D.

Lemma 2.5.7. Let pµ, kq P Cˆ Z be such that Re µ ą 0. For m P Z define T m
sispC

ˆq to be

the space of functions in TsispCˆq satisfying the condition (2.2.21). For υ P T m
sispC

ˆq, we

write υpzq “ rzsmϕp|z|q. Then

Tpµ,kqυ
`

xeiφ
˘

“ 2eimφ
ż

R`
y´2µϕ

`

y´1
˘

jp0,m`kqpxyqdˆy

“ 4πim`keimφ
ż

R`
y´2µϕ

`

y´1
˘

Jm`kp4πxyqdˆy.

The transform Tpµ,kq sends T m
sispC

ˆq into itself.
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2.5.3. Fourier type integral transforms

In the following, we shall derive the Fourier type integral transform expressions for

Hpµ,δq and Hpµ,mq from the Fourier transform (more precisely, the renormalized rank-one

Hankel transforms) and the Miller-Schmid transforms.

The Fourier type transform expression for Hpµ,δq

Let pµ, δq P Cn ˆ pZ{2Zqn. Following [MS3, (6.51)], for υpxq P sgnpxqδn |x|µnS pRq,

we consider

(2.5.7) Υpxq “ |x|´µ1Tpµ1´µ2,δ1q ˝ ... ˝Tpµn´1´µn,δn´1q ˝ Spµn,δnqυpxq.

According to Lemma 2.5.2 (1) and Lemma 2.5.4 (1), Spµn,δnqυ lies in sgnpxqδnS pRq(Ă

SsispRˆq), whereas each Miller-Schmid transform sends SsispRˆq into itself. Thus, one

can apply the Mellin transform Mδ to both sides of (2.5.7). Using (2.5.1) and (2.5.3), some

calculations show that the application of Mδ converts (2.5.7) exactly into (2.4.34) which

defines Hpµ,δq. Therefore, Υ “ Hpµ,δqυ.

Theorem 2.5.8. [MS4, (1.3)]. Let pµ, δq P Cn ˆ pZ{2Zqn be such that Re µ1 ą ... ą

Re µn´1 ą Re µn. Suppose υpxq P sgnpxqδn |x|µnS pRq. Then

(2.5.8) Hpµ,δqυpxq “
1
|x|

ż

Rˆn
υ
´ x1...xn

x

¯

˜

n
ź

`“1

sgnpx`qδ` |x`|´µ`e px`q

¸

dxn...dx1,

where the integral converges when performed as iterated integral in the indicated order

dxndxn´1...dx1, starting from dxn, then dxn´1, ..., and finally dx1.

Proof. We first observe that Spµn,δnqυ P sgnpxqδnS pRq Ă TsispRˆq. For each ` “ 1, ..., n´1,

since Re pµ`´ µ``1q ą 0, Lemma 2.5.4 (4) implies that the transform Tpµ`´µ``1,δ`q sends the

space TsispRˆq into itself. According to Lemma 2.5.2 (1) and Lemma 2.5.4 (3), Spµn,δnq and
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all the Tpµ`´µ``1,δ`q in (2.5.7) may be expressed as integral transforms, which are absolutely

convergent. From these, the right hand side of (2.5.7) turns into the integral,

ż

Rˆn
sgnpxqδ1 |x|´µ1e pxy1q

˜

n´1
ź

`“1

sgnpy`qδ``1`δ` |y`|µ``1´µ`´1e
`

y´1
` y``1

˘

¸

sgnpynq
δn |yn|

´µnυpynqdyn...dy1,

which converges as iterated integral. Our proof is completed upon making the change of

variables x1 “ xy1, x``1 “ y´1
` y``1, ` “ 1, ..., n´ 1. Q.E.D.

We have the following corollary to Theorem 2.5.8, which can also be seen from Lemma

2.5.3 (1) and Lemma 2.5.5.

Corollary 2.5.9. Let pµ, δq P Cn ˆ pZ{2Zqn and δ P Z{2Z. Assume that Re µ1 ą ... ą

Re µn´1 ą Re µn. Let ϕpxq P xµnSδ`δnpR`q and υpxq “ sgnpxqδϕp|x|q. Then

(2.5.9) Hpµ,mqυ p˘xq “
p˘qδ

x

ż

Rn
`

ϕ
´ x1...xn

x

¯

˜

n
ź

`“1

x´µ`` jp0,δ``δqpx`q

¸

dxn...dx1,

with x P R`. Here the iterated integration is performed in the indicated order.

The Fourier type transform expression for Hpµ,mq

Let pµ,mq P Cn ˆ Zn. For υpzq P rzsmn}z}µnS pCq, using Lemma 2.5.2 (2) and Lemma

2.5.6 (1), especially (2.5.2) and (2.5.5), one may show that

(2.5.10) Hpµ,mqυpzq “ }z}´µ1Tpµ1´µ2,m1q ˝ ... ˝Tpµn´1´µn,mn´1q ˝ Spµn,mnqυpzq.

Theorem 2.5.10. Let pµ,mq P Cn ˆ Zn be such that Re µ1 ą ... ą Re µn´1 ą Re µn.

Suppose υpzq P rzsmn}z}µnS pCq. Then

(2.5.11) Hpµ,mqυpzq “
1
}z}

ż

Cˆn

˜

n
ź

`“1

rz`s´m`}z`}´µ`e pz` ` z`q

¸

υ

ˆ

z1...zn

z

˙

dzn...dz1,

where the integral converges when performed as iterated integral in the indicated order.
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Proof. One applies the same arguments in the proof of Theorem 2.5.8 using Lemma 2.5.2

(2) and Lemma 2.5.6 (3, 4). Q.E.D.

Lemma 2.5.3 (2) and Lemma 2.5.7 yield the following corollary.

Corollary 2.5.11. Let pµ,mq P Cn ˆ Zn and m P Z. Assume that Re µ1 ą ... ą Re µn´1 ą

Re µn. Let ϕpxq P x2µnS´m´mnpR`q and υpzq “ rzs´mϕp|z|q. Then

(2.5.12) Hpµ,mqυ
`

xeiφ
˘

“ 2n eimφ

x2

ż

Rn
`

ϕ
´ x1...xn

x

¯

˜

n
ź

`“1

x´2µ``1
` jp0,m``mqpx`q

¸

dxn...dx1,

with x P R` and φ P R{2πZ. Here the iterated integration is performed in the indicated

order.

2.6. Integral representations of Bessel kernels

In Chapter 1, when n ě 2, the formal integral representation of the Bessel function

Jpx; ς,µq is obtained in symbolic manner from the Fourier type integral in Theorem 2.5.8,

where the assumption Re µ1 ą ... ą Re µn is simply ignored. It is however more straight-

forward to derive the formal integral representation of the Bessel kernel Jpµ,δqpxq from

Theorem 2.5.8. This should be well understood, since Jpµ,δqpxq is a finite combination

of J
´

2π|x|
1
n ; ς,µ

¯

.

Similarly, Theorem 2.5.10 also yields a formal integral representation of Jpµ,mqpzq. It

turns out that one can naturally transform this formal integral into an integral that is abso-

lutely convergent, given that the index µ satisfies certain conditions. The main reason for

the absolute convergence is that jp0,mqpxq “ 2πimJmp4πxq (see (2.4.29)) decays proportion-

ally to 1?
x at infinity (in comparison, jp0,δqpxq is equal to either 2 cosp2πxq or 2i sinp2πxq).

Assumptions and notations

Let n ě 2. Assume that µ P Ln´1.
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Notation 2.6.1. Let d “ n ´ 1. Let the pairs of tuples, µ P Ld and ν P Cd, δ P pZ{2Zqd`1

and ε P pZ{2Zqd, m P Zd`1 and k P Zd, be subjected to the following relations

ν` “ µ` ´ µd`1, ε` “ δ` ` δd`1, k` “ m` ´ md`1,

for ` “ 1, ..., d.

Instead of Hankel transforms, we shall be interested in their Bessel kernels. Therefore,

it is convenient to further assume that the weight functions are Schwartz, namely, ϕ P

S pR`q and υ P S pFˆq. According to (2.4.19, 2.4.28), Proposition 2.4.17 (3) and 2.4.21

(3), for such Schwartz functions ϕ and υ,

hpµ,δqϕpxq “
ż

R`
ϕpyq jpµ,δqpxyqdy, hpµ,mqϕpxq “ 2

ż

R`
ϕpyq jpµ,mqpxyqydy,(2.6.1)

Hpµ,δqυpxq “
ż

Rˆ
υpyqJpµ,δqpxyqdy, Hpµ,mqυpzq “

ż

Cˆ
υpuqJpµ,mqpzuqdu,(2.6.2)

with the index pµ, δq P Cn ˆ pZ{2Zqn or pµ,mq P Cn ˆ Zn being arbitrary.

2.6.1. The formal integral Jν,εpx,˘q

To motivate the definition of Jν,εpx,˘q, we shall do certain operations on the Fourier

type integral (2.5.8) in Theorem 2.5.8. In the meanwhile, we shall forget the assumption

Re µ1 ą ... ą Re µn, which is required for convergence.

Upon making the change of variables, xn “ px1...xn´1q
´1xy, x` “ |xy|

1
n y´1

` , ` “

1, ..., n´ 1, one converts (2.5.8) into

Hpµ,δqυpxq “
ż

Rˆn
υ pyq sgnpxyqδn

˜

n´1
ź

`“1

sgnpy`qδ``δn |y`|µ`´µn´1

¸

e

˜

|xy|
1
n

˜

sgnpxyq ¨ y1...yn´1 `

n´1
ÿ

`“1

y´1
`

¸¸

dydyn´1...dy1.
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In symbolic notation, moving the integral over dy to the outermost place and comparing the

resulting integral with the right hand side of the first formula in (2.6.2), the Bessel kernel

Jpµ,δqpxq is then represented by the following formal integral over dyn´1...dy1,

sgnpxqδn

ż

Rˆ n´1

˜

n´1
ź

`“1

sgnpy`qδ``δn |y`|µ`´µn´1

¸

e

˜

|x|
1
n

˜

sgnpxq ¨ y1...yn´1 `

n´1
ÿ

`“1

y´1
`

¸¸

dyn´1...dy1.

We define the formal integral

Jν,εpx,˘q “
ż

Rˆd

˜

d
ź

`“1

sgnpy`qε` |y`|ν`´1

¸

eixp˘y1...yd`
řd
`“1 y´1

` qdyd...dy1, x P R`.(2.6.3)

Thus, in view of Notation 2.6.1, we have Jpµ,δqp˘xq “ p˘qδd`1 Jν,ε
`

2πx
1

d`1 ,˘
˘

in symbolic

notation.

2.6.2. The formal integral jν,δpxq

For ν P Cd and δ P pZ{2Zqd`1, we define the formal integral

jν,δpxq “
ż

Rd
`

jp0,δd`1q pxy1...ydq

d
ź

`“1

yν`´1
` jp0,δ`q

`

xy´1
`

˘

dyd...dy1, x P R`.(2.6.4)

We may derive the symbolic identity jpµ,δqpxq “ jν,δ
`

x
1

d`1
˘

from Corollary 2.4.16 and 2.5.9,

combined with the first formula in (2.6.1).

2.6.3. The integral Jν,kpx, uq

First of all, proceeding in the same way as in §2.6.1, from the Fourier type integral

(2.5.11) in Theorem 2.5.10, the symbolic equality Jpµ,mq pxeiφq “ e´imd`1φJν,k
`

2πx
1

d`1 , eiφ
˘

can be deduced, with the definition of the formal integral,

Jν,kpx, uq “
ż

Cˆd

˜

d
ź

`“1

ru`sk`}u`}ν`´1

¸

eixΛpuu1...ud`
řd
`“1 u´1

` qdud...du1,

x P R`, u P C, |u| “ 1.

(2.6.5)
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Here, we recall that Λpzq “ z` z.

In the polar coordinate, we write u` “ y`eiθ` and u “ eiφ. Moving the integral over the

torus pR{2πZqd inside, in symbolic manner, the integral above turns into

2d
ż

Rd
`

ż

pR{2πZqd

˜

d
ź

l“1

y2νl´1
l

¸

ei
řd

l“1 klθl`2ixpy1...yd cosp
řd

l“1 θl`φq`
řd

l“1 y´1
l cos θlqdθd...dθ1dyd...dy1.

Let us introduce the following definitions

Θkpθ, y; x, φq “ 2xy1...yd cos
´

řd
`“1 θ` ` φ

¯

`

d
ÿ

`“1

`

k`θ` ` 2xy´1
` cos θ`

˘

,(2.6.6)

Jkpy; x, φq “
ż

pR{2πZqd
eiΘkpθ,y;x,φqdθ,(2.6.7)

p2νpyq “
d
ź

`“1

y2ν`´1
` ,(2.6.8)

with y “ py1, ..., ydq, θ “ pθ1, ..., θdq. Then (2.6.5) can be symbolically rewritten as

(2.6.9) Jν,k
`

x, eiφ
˘

“ 2d
ż

Rd
`

p2νpyqJkpy; x, φqdy, x P R`, φ P R{2πZ.

Theorem 2.6.2. Let pµ,mq P Ld ˆZd`1 and pν, kq P Cd ˆZd satisfy the relations given in

Notation 2.6.1. Suppose ν P
Ť

aPr´ 1
2 ,0s

 

ν P Cd : ´1
2 ă 2Re ν` ` a ă 0 for all ` “ 1, ..., d

(

.

(1). The integral in (2.6.9) converges absolutely. Subsequently, we shall therefore use

(2.6.9) as the definition of Jν,k px, eiφq.

(2). We have the (genuine) identity

Jpµ,mq
`

xeiφ
˘

“ e´imd`1φJν,k
`

2πx
1

d`1 , eiφ
˘

.

2.6.4. The integral jν,mpxq

Let us consider the integral jν,mpxq defined by

jν,mpxq “ 2d
ż

Rd
`

jp0,md`1q pxy1...ydq

d
ź

`“1

y2ν`´1
` jp0,m`q

`

xy´1
`

˘

dyd...dy1,(2.6.10)

with ν P Cd and m P Zd`1.
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Absolute convergence of jν,mpxq

In contrast to the real case, where the integral jν,δpxq never absolutely converges, jν,mpxq

is actually absolutely convergent, if each component of ν lies in certain vertical strips of

width at least 1
4 .

Definition 2.6.3. For a, b P Rd such that a` ă b` for all ` “ 1, ..., d, we define the open

hyper-strip Sdpa, bq “
 

ν P Cd : Re ν` P pa`, b`q
(

. We write Sdpa, bq “ Sdpaed, bedq for

simplicity.

Proposition 2.6.4. Let pν,mq P Cd ˆ Zd`1. The integral jν,mpxq defined above by (2.6.10)

absolutely converges if ν P
Ť

aPr´ 1
2 ,|md`1|s

Sd
`

1
2

`

´1
2 ´ a

˘

ed, 1
2

`
›

›md
›

›´ aed
˘˘

, where md “

pm1, ...,mdq and
›

›md
›

› “ p|m1|, ..., |md|q.

To show this, we first recollect some well-known facts concerning Jmpxq, as jp0,mqpxq “

2πimJmp4πxq in view of (2.4.29).

Firstly, for m P N, we have the Poisson-Lommel integral representation (see [Wat, 3.3

(1)])

Jmpxq “

`

1
2 x
˘m

Γ
`

m` 1
2

˘

Γ
`

1
2

˘

ż π

0
cospx cos θq sin2m θdθ.

This yields the bound

(2.6.11) |Jmpxq| ď

?
π
`

1
2 x
˘|m|

Γ
`

|m| ` 1
2

˘ ,

for m P Z. Secondly, the asymptotic expansion of Jmpxq (see [Wat, 7.21 (1)]) provides the

estimate

(2.6.12) Jmpxq Îm x´
1
2 .

Combining these, we then arrive at the following lemma.
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Lemma 2.6.5. Let m be an integer.

(1). We have the estimates

jp0,mqpxq Îm x|m|, jp0,mqpxq Îm x´
1
2 .

(2). More generally, for any a P
“

´1
2 , |m|

‰

, we have the estimate

jp0,mqpxq Îm xa.

Proof of Proposition 2.6.4. We divide R` “ p0,8q into the union of two intervals, I´ Y

I` “ p0, 1s Y r1,8q. Accordingly, the integral in (2.6.10) is partitioned into 2d many

integrals, each of which is supported on some hyper-cube I% “ I%1ˆ...ˆI%d for % P t`,´ud.

For each such integral, we estimate jp0,m`q

`

xy´1
`

˘

using the first or the second estimate in

Lemma 2.6.5 (1) according as %` “ ` or %` “ ´ and apply the bound in Lemma 2.6.5 (2)

for jp0,md`1qpxy1...ydq. In this way, for any a P
“

´1
2 , |md`1|

‰

, one has

2d
ż

Rd
`

ˇ

ˇ jp0,md`1q pxy1...ydq
ˇ

ˇ

d
ź

`“1

ˇ

ˇy2ν`´1
` jp0,m`q

`

xy´1
`

˘
ˇ

ˇ dyd...dy1

Î
ÿ

%Pt`,´ud

x
ř

`PL`p%q
|m`|´

1
2 |L´p%q|`aI2ν`aed ,mdp%q,

with the auxiliary definition

Iλ,kp%q “
ż

I%

¨

˝

ź

`PL`p%q

yRe λ`´|k`|´1
`

˛

‚

¨

˝

ź

`PL´p%q

yRe λ`´
1
2

`

˛

‚dyd...dy1, pλ, kq P Cd
ˆ Zd,

and L˘p%q “ t` : %` “ ˘u. The implied constant depends only on m and d. It is clear

that all the integrals I2ν`aed ,mdp%q absolutely converge if ´1
2 ă 2Re ν` ` a ă |m`| for all

` “ 1, ..., d. The proof is then completed. Q.E.D.
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Remark 2.6.6. When d “ 1, one may apply the two estimates in Lemma 2.6.5 (1) to

jp0,m2qpxyq in the similar fashion as jp0,m1q pxy´1q. Then

2
ż 8

0

ˇ

ˇy2ν´1 jp0,m1q

`

xy´1
˘

jp0,m2q pxyq
ˇ

ˇdy

Îm1,m2 x|m1|´
1
2

ż 8

1
y2Re ν´|m1|´

3
2 dy` x|m2|´

1
2

ż 1

0
y2Re ν`|m2|´

1
2 dy.

Since both integrals above absolutely converge if ´|m2| ´
1
2 ă 2Re ν ă |m1| `

1
2 , this also

proves Proposition 2.6.4 in the case d “ 1.

Equality between jpµ,mqpxq and jν,m
`

x
1

d`1
˘

Proposition 2.6.7. Let pν,mq P Cd ˆ Zd`1 be as in Proposition 2.6.4 so that the integral

jν,mpxq absolutely converges. Suppose that µ P Ld and ν P Cd satisfy the relations given in

Notation 2.6.1. Then we have the identity

jpµ,mqpxq “ jν,m
`

x
1

d`1
˘

.

Proof. Some change of variables turns the integral in Corollary 2.5.11 into

2d`1eimφ
ż

Rd`1
`

ϕpyq jp0,md`1q

´

pxyq
1

d`1 y1...yd

¯

d
ź

`“1

y2ν`´1
` jp0,m`q

´

pxyq
1

d`1 y´1
`

¯

ydydyd...dy1.

Corollary 2.4.20 and 2.5.11, along with the second formula in (2.6.1), yield

2
ż

R`
ϕpyq jpµ,mqpxyqydy “

2d`1
ż

Rd`1
`

ϕpyq jp0,md`1q

´

pxyq
1

d`1 y1...yd

¯

d
ź

`“1

y2ν`´1
` jp0,m`q

´

pxyq
1

d`1 y´1
`

¯

ydydyd...dy1,

for any ϕ P S pR`q, provided that Re µ1 ą ... ą Re µd`1 or equivalently Re ν1 ą ... ą

Re νd ą 0. In view of Proposition 2.6.4, the integral on the right hand side is absolute con-

vergent at least when 1
4 ą Re ν1 ą ... ą Re νd ą 0. Therefore, the asserted equality holds
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on the domain
 

ν P Cd : 1
4 ą Re ν1 ą ... ą Re νd ą 0

(

and remains valid on the whole do-

main of convergence for jν,mpxq given in Proposition 2.6.4 due to the principle of analytic

continuation. Q.E.D.

An auxiliary lemma

Lemma 2.6.8. Let pν,mq P Cd ˆ Zd`1 and m P Z. Set A “ max`“1,...,d`1 t|m`|u. Suppose

ν P
Ť

aPr´ 1
2 ,0s

Sd
`

´1
4 ´

1
2a,´1

2a
˘

. We have the estimate

2d
ż

Rd
`

ˇ

ˇ jp0,md`1`mq pxy1...ydq
ˇ

ˇ

d
ź

l“1

ˇ

ˇy2νl´1
l jp0,ml`mq

`

xy´1
l

˘
ˇ

ˇ dyd...dy1

Îm, d

ÿ

%‰ %´

ˆ

2πex
|m| ` 1

˙|L`p%q||m|

p|m| ` 1q2|L´p%q|`A|L`p%q|

x´
1
2 |L´p%q| max

!

x|L`p%q|A, x´|L`p%q|A´
1
2

)

`

ˆ

2πex
|m| ` 1

˙|m|

p|m| ` 1qAx´
d
2 max

 

xA, x´A
(

,

where % P t`,´ud, %´ “ p´, ...,´q and L˘p%q “ t` : %` “ ˘u.

Firstly, we require the bound (2.6.11) for Jmpxq. Secondly, we observe that when

x ě p|m| ` 1q2 the bound (2.6.12) for Jmpxq can be improved so that the implied con-

stant becomes absolute. This follows from the asymptotic expansion of Jmpxq given in

[Olv, §7.13.1]. Moreover, we have Bessel’s integral representation (see [Wat, 2.2 (1)])

Jmpxq “
1

2π

ż 2π

0
cos pmθ ´ x sin θq dθ,

which yields the bound

(2.6.13) |Jmpxq| ď 1.

We then have the following lemma (compare [HM, Proposition 8]).
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Lemma 2.6.9. Let m be an integer.

(1). The following two estimates hold

jp0,mqpxq Î
p2πxq|m|

Γ
`

|m| ` 1
2

˘ , jp0,mqpxq Î
|m| ` 1
?

x
,

with absolute implied constants.

(2). For any a P
“

´1
2 , 0

‰

we have the estimate

jp0,mqpxq Î
`

p|m| ` 1q´2x
˘a
,

with absolute implied constant.

Proof of Lemma 2.6.8. Our proof here is similar to that of Proposition 2.6.4, except that

- Lemma 2.6.9 (1) and (2) are applied in place of Lemma 2.6.5 (1) and (2) respectively

to bound jp0,m``mq
`

xy´1
`

˘

and jp0,md`1`mq pxy1...ydq, and

- the first estimate in Lemma 2.6.9 (1) is used for jp0,md`1`mq pxy1...ydq in the case % “

%´.

In this way, one obtains the following estimate

2d
ż

Rd
`

ˇ

ˇ jp0,md`1`mq pxy1...ydq
ˇ

ˇ

d
ź

`“1

ˇ

ˇy2ν`´1
` jp0,m``mq

`

xy´1
`

˘
ˇ

ˇ dyd...dy1

Î
ÿ

%‰%´

ś

`PL´p%qp|m` ` m| ` 1q1´2a

ś

`PL`p%q Γ
`

|m` ` m| ` 1
2

˘

p|m` ` m| ` 1q2a

p2πxq
ř

`PL`p%q
|m``m|´ 1

2 |L´p%q|`aI2ν`aed ,md`medp%q

`

śd
`“1p|m` ` m| ` 1q

Γ
`

|md`1 ` m| ` 1
2

˘ p2πxq´
d
2`|md`1`m|I2ν`|md`1`m|edp%´q,

XVIIwith a P
“

´1
2 , 0

‰

. Now the implied constant above depends only on d. Suppose

that ´1
2 ´ a ă 2Re ν` ă ´a for all ` “ 1, ..., d, then the integrals I2ν`aed ,md`medp%q and

XVIIWhen % “ %´, k does not occur in the definition of Iλ,kp%´q and is therefore suppressed from the
subscript.
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I2ν`|md`1`m|edp%´q are absolutely convergent and of size Od

´

ś

`PL`p%qp|m` ` m| ` 1q´1
¯

and Od
`

p|md`1 ` m| ` 1q´d
˘

respectively. A final estimation using Stirling’s asymptotic

formula yields our asserted bound. Q.E.D.

Remark 2.6.10. In the case d “ 1, modifying over the ideas in Remark 2.6.6, one may

show the slightly improved estimate

2
ż 8

0

ˇ

ˇy2ν´1 jp0,m1`mq
`

xy´1
˘

jp0,m2`mq pxyq
ˇ

ˇdy

Îm1,m2

ˆ

2πex
|m| ` 1

˙|m|

p|m| ` 1qAx´
1
2 max

 

xA, x´A
(

,

given that |Re ν| ă 1
4 , with A “ max t|m1|, |m2|u.

2.6.5. The series of integrals Jν,mpx, uq

We define the following series of integrals,

Jν,mpx, uq “
1

2π

ÿ

mPZ

um jν,m`menpxq

“
2d´1

π

ÿ

mPZ

um
ż

Rd
`

jp0,md`1`mq pxy1...ydq

d
ź

`“1

y2ν`´1
` jp0,m``mq

`

xy´1
`

˘

dyd...dy1,

(2.6.14)

with x P R` and u P C, |u| “ 1.

Absolute convergence of Jν,mpx, uq

We have the following direct consequence of Lemma 2.6.8.

Proposition 2.6.11. Let pν,mq P Cd ˆ Zd`1. The series of integrals Jν,mpx, uq defined by

(2.6.14) is absolutely convergent if ν P
Ť

aPr´ 1
2 ,0s

Sd
`

´1
4 ´

1
2a,´1

2a
˘

.

Equality between Jpµ,mq pxeiφq and Jν,m
`

x
1

d`1 , eiφ
˘

In view of Proposition 2.6.7 along with (2.4.45) and (2.6.14), the following proposition

is readily established.
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Proposition 2.6.12. Let pν,mq P Cd ˆ Zd`1. Suppose that ν satisfies the condition in

Proposition 2.6.11 so that Jν,mpx, uq is absolutely convergent. Then, given that µ and ν

satisfy the relations in Notation 2.6.1, we have the identity

Jpµ,mq
`

xeiφ
˘

“ Jν,m
`

x
1

d`1 , eiφ
˘

,

with x P R` and φ P R{2πZ.

2.6.6. Proof of Theorem 2.6.2

Lemma 2.6.13. Let k P Zd and recall the integral Jkpy; x, φq defined by (2.6.6, 2.6.7). We

have the following absolutely convergent series expansion of Jkpy; x, φq

(2.6.15) Jkpy; 2πx, φq “
1

2π

ÿ

mPZ

eimφ jp0,mq pxy1...ydq

d
ź

`“1

jp0,k``mq
`

xy´1
`

˘

.

Proof. In view of Example 2.4.22, we have the integral representation

jp0,mqpxq “
ż

R{2πZ
eimθ`4πix cos θdθ

as well as the Fourier series expansion

e4πix cos φ
“

1
2π

ÿ

mPZ

jp0,mqpxqeimφ.

Therefore

1
2π

ÿ

mPZ

eimφ jp0,mq pxy1...ydq

d
ź

`“1

jp0,k``mq
`

xy´1
`

˘

“
1

2π

ÿ

mPZ

eimφ jp0,mq pxy1...ydq

ż

pR{2πZqd
eim

řd
`“1 θ`ei

řd
`“1pik`θ`4πixy´1

`
cos θ`qdθd...dθ1

“

ż

pR{2πZqd

˜

1
2π

ÿ

mPZ

eimp
řd
`“1 θ``φq jp0,mq pxy1...ydq

¸

ei
řd
`“1pik`θ`4πixy´1

`
cos θ`qdθd...dθ1

“

ż

pR{2πZqd
e4πixy1...yd cosp

řd
`“1 θ``φqei

řd
`“1pik`θ`4πixy´1

`
cos θ`qdθd...dθ1.
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The absolute convergence required for the validity of each equality above is justified by the

first estimate of jp0,mqpxq in Lemma 2.6.9 (1). The proof is completed, since the last line is

exactly the definition of Jkpy; 2πx, φq. Q.E.D.

Inserting the series expansion of Jkpy; 2πx, φq in Lemma 2.6.13 into the integral in

(2.6.9) and interchanging the order of integration and summation, one arrives exactly at

the series of integrals Jν,pk,0q px, eiφq “ e´imd`1φJν,m px, eiφq. The first assertion on absolute

convergence in Theorem 2.6.2 follows immediately from Proposition 2.6.11, whereas the

identity in the second assertion is a direct consequence of Proposition 2.6.12.

2.6.7. The rank-two case (d “ 1)

The real case

The formal integral representation Jν,εp2π
?

x,˘q of the Bessel kernel Jp 1
2 ν,´

1
2 νq,pε,0q

p˘xq

is reduced to the following integral representations of classical Bessel functions

˘πie˘
1
2πiνHp1,2q

ν p2xq “
ż 8

0
yν´1e˘ixpy`y´1qdy, 2e˘

1
2πiνKνp2xq “

ż 8

0
yν´1e˘ixpy´y´1qdy,

which are only (conditionally) convergent when |Re ν| ă 1 (see §1.2.3).

The complex case

Lemma 2.6.14. Let k P Z. Recall from (2.6.6, 2.6.7) the definition

Jkpy; x, φq “
ż 2π

0
eikθ`2ixy´1 cos θ`2ixy cospθ`φqdθ, x, y P p0,8q, φ P r0, 2πq.

Define Ypy, φq “ |y´1 ` yeiφ| “
a

y´2 ` 2 cos φ` y2, Φpy, φq “ argpy´1 ` yeiφq and

Epy, φq “ eiΦpy,φq. Then

(2.6.16) Jkpy; x, φq “ 2πikEpy, φq´kJk p2xYpy, φqq .
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Proof. (2.6.16) follows immediately from the identity

2πikJkpxq “
ż 2π

0
eikθ`ix cos θdθ,

along with the observation

y´1 cos θ ` y cospθ ` φq “ Re
`

y´1eiθ
` yeipθ`φq

˘

“ Ypy, φq cos pθ ` Φpy, φqq .

Q.E.D.

Proposition 2.6.15. Let ν P C and k P Z. Recall the definition of Jν,k px, eiφq given by

(2.6.9). Then

(2.6.17) Jν,k
`

x, eiφ
˘

“ 4πik
ż 8

0
y2ν´1

“

y´1
` yeiφ

‰´k
Jk
`

2x
ˇ

ˇy´1
` yeiφ

ˇ

ˇ

˘

dy,

with x P p0,8q and φ P r0, 2πq. Here, we recall the notation rzs “ z{|z|. The integral in

(2.6.17) converges when |Re ν| ă 3
4 and the convergence is absolute if and only if |Re ν| ă

1
4 . Moreover, it is analytic with respect to ν on the open vertical strip S

`

´3
4 ,

3
4

˘

.

Proof. (2.6.17) follows immediately from Lemma 2.6.14.

As for the convergence, since one arrives at an integral of the same form with ν, φ

replaced by ´ν,´φ if the variable is changed from y to y´1, it suffices to consider the

integral
ż 8

2
y2ν´1e´ikΦpy,φqJk p2xYpy, φqq dy,

for Re ν ă 3
4 . We have the following asymptotic of Jkpxq (see [Wat, 7.21 (1)])

Jkpxq “
ˆ

2
πx

˙
1
2

cos
`

x´ 1
2kπ´ 1

4π
˘

` Ok

´

x´
3
2

¯

.

The error term contributes an absolutely convergent integral when Re ν ă 3
4 , whereas the

integral coming from the main term absolutely converges if and only if Re ν ă 1
4 . We are
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now reduced to the integral
ż 8

2
y2ν´1e´ikΦpy,φq pxYpy, φqq´

1
2 e˘2ixYpy,φqdy.

In order to see the convergence, we split out e˘2ixy from e˘2ixYpy,φq and put fν,kpy; x, φq “

y2ν´1e´ikΦpy,φq pxYpy, φqq´
1
2 e˘2ixpYpy,φq´yq. Partial integration turns the above integral into

¯
1

2ix
3
2

ˆ

22ν´1e´ikΦp2,φqYp2, φq´
1
2 e˘2ixYp2,φq

`

ż 8

2
pB fν,k{Byq py; x, φqe˘2ixydy

˙

.

Some calculations show that pB fν,k{Byq py; x, φq Îν,k,x y2Re ν´ 5
2 for y ě 2, and hence the inte-

gral in the second term is absolutely convergent when Re ν ă 3
4 . With the above arguments,

the analyticity with respect to ν is obvious. Q.E.D.

Corollary 2.6.16. Let µ P S
`

´3
8 ,

3
8

˘

and m P Z. We have

(2.6.18) Jpµ,´µ,m,0q
`

xeiφ
˘

“ 4πim
ż 8

0
y4µ´1

“

y´1
` yeiφ

‰´m
Jm

`

4π
?

x
ˇ

ˇy´1
` yeiφ

ˇ

ˇ

˘

dy,

with x P p0,8q and φ P r0, 2πq. The integral in (2.6.18) converges if |Re µ| ă 3
8 and

absolutely converges if and only if |Re µ| ă 1
8 .

Proof. From Theorem 2.6.2, we see that (2.6.18) holds for S
`

´1
8 ,

1
8

˘

. In view of Proposi-

tion 2.6.15, the right hand side of (2.6.18) is analytic in µ on S
`

´3
8 ,

3
8

˘

, and therefore it is

allowed to extend the domain of equality from S
`

´1
8 ,

1
8

˘

onto S
`

´3
8 ,

3
8

˘

. Q.E.D.

2.7. Two connection formulae for Jpµ,mqpzq

In this section, we shall prove two formulae for Jpµ,mqpzq in connection with the two

kinds of Bessel functions of rank n and positive sign. These Bessel functions arise as

solutions of Bessel equations in §1.7 and their relations have been unraveled in §1.8.2. Our

motivation is based on the following self-evident identity for the rank-one example

epz` zq “ epzqepzq.
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2.7.1. The first connection formula

For ς P t`,´u, λ P Cn and ` “ 1, ..., n, we define the following series of ascending

powers of z (see §1.7.1)

(2.7.1) J`pz; ς, λq “
8
ÿ

m“0

pςinqmznp´λ``mq

śn
k“1 Γ pλk ´ λ` ` m` 1q

, z P U.

J`pz; ς, λq is called a Bessel function of the first kind, n , ς and λ its rank, sign and index,

respectively. Since the definition (2.7.1) is valid for any λ P Cn, the assumption λ P Ln´1

that we imposed in Chapter 1 is rather superfluous. Also, we have the following formula in

the same fashion as (2.4.6) in Lemma 2.4.6,

(2.7.2) J` pz; ς, λ´ λenq “ znλJ`pz; ς, λq.

Theorem 2.7.1. Let pµ,mq P Ln´1 ˆ Zn. We have

Jpµ,mqpzq “
`

2π2
˘n´1

n
ÿ

`“1

S `pµ,mqJ`
´

2πz
1
n ;`,µ` 1

2 m
¯

J`
´

2πz
1
n ;`,µ´ 1

2 m
¯

,(2.7.3)

with S `pµ,mq “
ś

k‰`p˘iqm`´mk{ sin
`

π
`

µ` ´ µk ˘
1
2pm` ´ mkq

˘˘

. Here, z
1
n is the principal

n-th root of z, that is pxeiφq
1
n “ x

1
n e

1
n iφ. The expression on the right hand side of (2.7.3) is

independent on the choice of the argument of z modulo 2π. It is understood that the right

hand side should be replaced by its limit if pµ,mq is not generic with respect to the order

ď on Cˆ Z in the sense of Definition 2.4.1.

Proof. Recall from (2.2.6, 2.2.7, 2.4.22, 2.4.45) that

Jpµ,mq
`

xeiφ
˘

“p2πqn´1
8
ÿ

m“´8

i
řn

k“1 |mk`m|eimφ

1
2πi

ż

Cpµ,m`menq

˜

n
ź

`“1

Γ
`

s´ µ` `
1
2 |m` ` m|

˘

Γ
`

1´ s` µ` `
1
2 |m` ` m|

˘

¸

pp2πqnxq´2s ds.

Assume first that pµ,mq is generic with respect to the order ď on C ˆ Z. The sets of

poles of the gamma factors in the above integral are
 

µ` ´
1
2 |m` ` m| ´ α

(

αPN, ` “ 1, ..., n.
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With the generic assumption, the integrand has only simple poles. We left shift the integral

contour of each integral in the series and pick up the residues from these poles. The contri-

bution from the residues at the poles of the `-th gamma factor is the following absolutely

convergent double series,

p2πqn´1
8
ÿ

m“´8

i
řn

k“1 |mk`m|eimφ
8
ÿ

α“0

p´qα pp2πqnxq´2µ``|m``m|`2α

α!pα` |m` ` m|q!

ź

k‰`

Γ
`

µ` ´ µk ´
1
2p|m` ` m| ´ |mk ` m|q ´ α

˘

Γ
`

1´ µ` ` µk `
1
2p|m` ` m| ` |mk ` m|q ` α

˘ .

Euler’s reflection formula of the Gamma function turns this into

p2π2q
n´1

ś

k‰` im`´mk sin
`

π
`

µ` ´ µk ´
1
2pm` ´ mkq

˘˘

8
ÿ

m“´8

in|m``m|eimφ
8
ÿ

α“0

p´qnα pp2πqnxq´2µ``|m``m|`2α

śn
k“1

ś

˘ Γ
`

1´ µ` ` µk `
1
2p|m` ` m| ˘ |mk ` m|q ` α

˘ .

We now interchange the order of summations, truncate the sum over m between ´m` and

´m` ` 1 and make the change of indices β “ α ` |m` ` m|. With the observation that, no

matter what mk is, one of 1
2p|m` ` m| ` |mk ` m|q and 1

2p|m` ` m| ´ |mk ` m|q is equal to

1
2pm` ´ mkq and the other to |m` ` m| ´ 1

2pm` ´ mkq if m ě ´m` ` 1, whereas the signs in

front of the two 1
2pm` ´ mkq are changed if m ď ´m`, the double series in the expression

above turns into

8
ÿ

α“0

8
ÿ

β“α`1

inpα`βqeipβ´α´m`qφ pp2πqnxq´2µ``α`β

śn
k“1 Γ

`

1´ µ` ` µk `
1
2pm` ´ mkq ` α

˘

Γ
`

1´ µ` ` µk ´
1
2pm` ´ mkq ` β

˘

`

8
ÿ

α“0

8
ÿ

β“α

inpα`βqeipα´β´m`qφ pp2πqnxq´2µ``α`β

śn
k“1 Γ

`

1´ µ` ` µk ´
1
2pm` ´ mkq ` α

˘

Γ
`

1´ µ` ` µk `
1
2pm` ´ mkq ` β

˘ ,

which is then equal to

8
ÿ

α“0

8
ÿ

β“0

inpα`βqeipβ´α´m`qφ pp2πqnxq´2µ``α`β

śn
k“1 Γ

`

1´ µ` ` µk `
1
2pm` ´ mkq ` α

˘

Γ
`

1´ µ` ` µk ´
1
2pm` ´ mkq ` β

˘ .
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This double series is clearly independent on the choice of φ modulo 2π, and splits exactly

as the product

J`
`

2πx
1
n e

1
n iφ;`,µ` 1

2 m
˘

J`
`

2πx
1
n e´

1
n iφ;`,µ´ 1

2 m
˘

.

This proves (2.7.3) in the case when pµ,mq is generic. As for the nongeneric case, one just

passes to the limit. Q.E.D.

2.7.2. The second connection formula

According to §1.7.3, Bessel functions of the second kind are solutions of Bessel equa-

tions defined according to their asymptotics at infinity. To remove the restriction λ P Ln´1

on the definition of Jpz; λ; ξq, with ξ a 2n-th root of unity, we simply impose the additional

condition

(2.7.4) J pz; λ´ λen; ξq “ znλJpz; λ; ξq.

Remark 2.7.2. Let ξ be an n-th root of ς1. We may also use the following formula as an

alternative definition of J pz; λ; ξq (compare Corollary 1.8.4)

(2.7.5) Jpz; λ; ξq “
?

n
´π

2

¯
n´1

2
p´iξq

n´1
2 `|λ|

n
ÿ

`“1

´

iξ
¯nλ`

S `pλqJ`pz; ς, λq.

where p´iξq
n´1

2 `|λ| “ ep
n´1

2 `|λ|qp´
1
2πi`i arg ξq and

´

iξ
¯nλ`

“ e
1
2πinλ`´inλ` arg ξ by convention, and

S `pλq “ 1{
ś

k‰` sin pπpλ` ´ λkqq.

Given an integer a, define ξa, j “ e2πi j`a´1
n , j “ 1, ..., n. Let σ`,dpλq, d “ 0, 1, ..., n ´ 1,

` “ 1, ..., n, denote the elementary symmetric polynomial in e´2πiλ1 , ...,{e´2πiλ` , ..., e´2πiλn of

degree d. It follows from Corollary 1.8.6 that

J`pz;`, λq “
e

3
4πippn´1q`2|λ|q

?
np2πq

n´1
2

eπip 1
2 n`2a´2qλ`

n
ÿ

j“1

p´q
n´ jξ

´
n´1

2 ´|λ|

a, j σ`,n´ jpλqJ pz; λ; ξa, jq .

(2.7.6)
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In addition, we shall require the definition

τ`pλq “
ź

k‰`

`

e´2πiλm ´ e´2πiλk
˘

“ p´2iqn´1e´πi|λ|e´πipn´2qλ`
ź

k‰`

sin pπpλ` ´ λkqq .

We introduce the column vectors of the two kinds of Bessel functions

Xpz; λq “ pJ`pz;`, λqqn`“1 , Yapz; λq “ pJpz; λ; ξa, jqq
n
j“1 ,

and the matrices

Σpλq “ pσ`,n´ jpλqq
n
`, j“1 ,

Eapλq “ diag
´

eπip 1
2 n`2a´2qλ`

¯n

`“1
, Dapλq “ diag

´

p´q
n´ jξ

´
n´1

2 ´|λ|

a, j

¯n

j“1
.

Then the formula (2.7.6) may be written as

(2.7.7) Xpz; λq “
e

3
4πippn´1q`2|λ|q

?
np2πq

n´1
2

¨ EapλqΣpλqDapλqYapz; λq.

We now formulate (2.7.3) as

Jpµ,mqpzq “ p´q|m|e´
1
2πipn´1q

`

4π2
˘n´1

¨
tX

´

2πz
1
n ; λ`

pµ,mq

¯

S pµ,mqX
´

2πz
1
n ; λ´

pµ,mq

¯

,(2.7.8)

with λ˘
pµ,mq “ µ˘ 1

2 m and

S pµ,mq “ diag
ˆ

τ`

´

λ˘
pµ,mq

¯´1
e´πippn´2qµ`¯m`q

˙n

`“1
.

We insert into (2.7.8) the formulae of X
´

2πz
1
n ; λ`

pµ,mq

¯

and X
´

2πz
1
n ; λ´

pµ,mq

¯

given by (2.7.7),

with λ “ λ`
pµ,mq, a “ 0 in the former and λ “ λ´

pµ,mq, a “ 1 ´ r, for r “ 0, 1, ..., n, in the

latter. Then follows the formula

Jpµ,mqpzq “ p´qpn´1q`|m| p2πq
n´1

n
tY0

´

2πz
1
n ; λ`

pµ,mq

¯

D0

´

λ`
pµ,mq

¯

tΣpµ,mqRpµ,mqΣpµ,mqD1´r

´

λ´
pµ,mq

¯

Y1´r

´

2πz
1
n ; λ´

pµ,mq

¯

,

(2.7.9)
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where

Σpµ,mq “ Σ
´

λ`
pµ,mq

¯

“ Σ
´

λ´
pµ,mq

¯

,

Rpµ,mq “ E0

´

λ`
pµ,mq

¯

S pµ,mqE1´r

´

λ´
pµ,mq

¯

“ diag
ˆ

τ`

´

λ˘
pµ,mq

¯´1
e´2πirλ˘

pµ,mq,`

˙n

`“1
.

We are therefore reduced to computing the matrix tΣpµ,mqRpµ,mqΣpµ,mq. For this, we have the

following lemma.

Lemma 2.7.3. Let x “ px1, ..., xnq P Cn be a generic n-tuple in the sense that all its compo-

nents are distinct. Let σ`,d, respectively σd, denote the elementary symmetric polynomial

in x1, ..., px`, ..., xn, respectively x1, ..., xn, of degree d, and let τ` “
ś

h‰`px` ´ xhq. Define

the matrices Σ “ pσ`,n´ jq
n
`, j“1, X “ diag px`q

n
`“1 and T “ diag

`

τ´1
`

˘n
`“1. Then, for any

r “ 0, 1, ..., n, the matrix tΣXrTΣ can be written as

ˆ

p´qn´rA 0
0 p´qn´r`1B

˙

,

where

A “

¨

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 σn
... . .

.
. .
. ...

0 . .
.

. .
.

σn´r`2

σn ¨ ¨ ¨ σn´r`2 σn´r`1

˛

‹

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˚

˝

σn´r´1 σn´r´2 ¨ ¨ ¨ σ0

σn´r´2 . .
.

. .
.

0
... . .

.
. .
. ...

σ0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‚

.

More precisely, the pk, jq-th entry ak, j, k, j “ 1, ..., r, of A is given by

ak, j “

$

&

%

σn`r´k´ j`1 if k ` j ě r ` 1,

0 if otherwise,

whereas the pk, jq-th entry bk, j, k, j “ 1, ..., n´ r, of B is given by

bk, j “

$

&

%

σn´r´k´ j`1 if k ` j ď n´ r ` 1,

0 if otherwise.
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Proof of Lemma 2.7.3. Appealing to the Lagrange interpolation formula, we find in Lemma

1.8.5 that the inverse of TΣ is equal to the matrix U “

´

p´qn´ jx j´1
`

¯n

j,`“1
. Therefore, it

suffices to show that

tΣXr
“

ˆ

p´qn´rA 0
0 p´qn´r`1B

˙

U.

This is equivalent to the following two collections of identities,

r
ÿ

j“r´k`1

p´q
r` jσn`r´k´ j`1x j´1

` “ σ`,n´kxr
`, k “ 1, ..., r,

n´r´k`1
ÿ

j“1

p´q
j´1σn´r´k´ j`1xr` j´1

` “ σ`,n´r´kxr
`, k “ 1, ..., n´ r,

which are further equivalent to

k
ÿ

j“1

p´q
k` jσn´ j`1x j´k´1

` “ σ`,n´k, k “ 1, ..., r,

k
ÿ

j“1

p´q
j´1σk´ jx

j´1
` “ σ`,k´1, k “ 1, ..., n´ r.

The last two identities can be easily seen, actually for all k “ 1, ..., n, from computing the

coefficients of xk´1 and x2n´k on the two sides of

ź

h‰`

px´ xhq “

˜

8
ÿ

p“0

xp
` x´p´1

¸

n
ź

h“1

px´ xhq,

pxn
´ xn

`q
ź

h‰`

px´ xhq “

˜

n
ÿ

p“1

xp´1
` xn´p

¸

n
ź

h“1

px´ xhq,

respectively. Q.E.D.

Applying Lemma 2.7.3 with x` “ e´2πiλ˘
pµ,mq,` “ p´qm`e´2πiµ` to the formula (2.7.9), we

arrive at the following theorem.

Theorem 2.7.4. Let pµ,mq P Ln´1ˆZn and r P t0, 1, .., nu. Define ξ j “ e2πi j´1
n , ζ j “ e2πi j´r

n ,

and denote by σd
pµ,mq the elementary symmetric polynomial in p´qm1e´2πiµ1 , ..., p´qmne´2πiµn
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of degree d, with j “ 1, ..., n and d “ 0, 1, ..., n. Then we have

Jpµ,mqpzq “ p´q|m|
p2πqn´1

n

ÿÿ

k, j“1,...,r
k` jěr`1

Ck, jpµ,mq

J
´

2πz
1
n ;µ` 1

2 m; ξk

¯

J
´

2πz
1
n ;µ´ 1

2 m; ζ j

¯

` p´q
|m| p2πq

n´1

n

ÿÿ

k, j“1,...,n´r
k` jďn´r`1

Dk, jpµ,mq

J
´

2πz
1
n ;µ` 1

2 m; ξr`k

¯

J
´

2πz
1
n ;µ´ 1

2 m; ζr` j

¯

.

(2.7.10)

with

Ck, jpµ,mq “ p´qr`k` j`1ξ
´

n´1
2 ´

1
2 |m|

k ζ
´

n´1
2 `

1
2 |m|

j σ
n`r´k´ j`1
pµ,mq ,(2.7.11)

Dk, jpµ,mq “ p´qr`k` jξ
´

n´1
2 ´

1
2 |m|

r`k ζ
´

n´1
2 `

1
2 |m|

r` j σ
n´r´k´ j`1
pµ,mq .(2.7.12)

Lemma 2.7.5. We retain the notations in Theorem 2.7.4. Moreover, we define Ipµq “

max t|Im µ`|u.

(1.1). For k “ 1, ..., r, we have Ck,r´k`1pµ,mq “ p´ξkq
|m|.

(1.2). Let k, j “ 1, ..., r be such that k` j ě r ` 2. Denote p “ k` j´ r ´ 1. We have

the estimate

|Ck, jpµ,mq| ď
ˆ

n
p

˙

exp p2πmin tn´ p, puIpµqq .

(2.1). For k “ 1, ..., n´ r, we have Dk,n´r´k`1pµ,mq “ p´ξk`rq
|m|.

(2.2). Let k, j “ 1, ..., n´ r be such that k ` j ď n´ r. Denote p “ n´ r ´ k ´ j` 1.

We have the estimate

|Dk, jpµ,mq| ď
ˆ

n
p

˙

exp p2πmin tn´ p, puIpµqq .

2.7.3. The rank-two case

Example 2.7.6. Let µ P C and m P Z.
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If we define

(2.7.13) Jµ,mpzq “ J´2µ´ 1
2 m pzq J´2µ` 1

2 m pzq ,

then

(2.7.14) Jµ,mpzq “ J´2µ´ 1
2 m pzq J´2µ` 1

2 m pzq ,

then

(2.7.15) Jpµ,´µ,m,0q pzq “

$

’

’

&

’

’

%

2π2

sinp2πµq
r
?

zs´m pJµ,mp4π
?

zq ´ J´µ,´mp4π
?

zqq if m is even,

2π2i
cosp2πµq

r
?

zs´m pJµ,mp4π
?

zq ` J´µ,´mp4π
?

zqq if m is odd,

which should be interpreted in the way as in Theorem 2.7.1. We remark that the generic

case is when 4µ P 2Z` m.

On the other hand, using the connection formulae ([Wat, 3.61 (1, 2)])

Jνpzq “
Hp1q
ν pzq ` Hp2q

ν pzq
2

, J´νpzq “
eπiνHp1q

ν pzq ` e´πiνHp2q
ν pzq

2
,

one obtains

(2.7.16) Jpµ,´µ,m,0qpzq “ π2ir
?

zs´m
´

e2πiµHp1q
µ,m p4π

?
zq ` p´qm`1e´2πiµHp2q

µ,m p4π
?

zq
¯

,

with the definition

(2.7.17) Hp1,2q
µ,m pzq “ Hp1,2q

2µ` 1
2 m
pzqHp1,2q

2µ´ 1
2 m
pzq .

2.8. The asymptotic expansion of Jpµ,mqpzq

The asymptotic of Jpµ,δqpxq has already been established in [Qi1, Theorem 5.13, 9.4].

In the following, we shall present the asymptotic expansion of Jpµ,mqpzq.

First of all, we have the following proposition on the asymptotic expansion of Jpz; λ; ξq,

which is in substance [Qi1, Theorem 7.27].
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Proposition 2.8.1. Let λ P Cn and define Cpλq “ max
 
ˇ

ˇλl ´
1
n |λ|

ˇ

ˇ` 1
(

. Let ξ be a 2n-th

root of unity. For a small positive constant ϑ, say 0 ă ϑ ă 1
2π, we define the sector

S1ξpϑq “
!

z :
ˇ

ˇ

ˇ
arg z´ argpiξq

ˇ

ˇ

ˇ
ă π`

π

n
´ ϑ

)

.

For a positive integer A, we have the asymptotic expansion

Jpz; λ; ξq “ einξzz´
n´1

2 ´|λ|

˜

A´1
ÿ

α“0

piξq´αBα

`

λ´ 1
n |λ|e

n
˘

z´α ` OA, ϑ, n
`

Cpλq2A
|z|´A

˘

¸

for all z P S1ξpϑq such that |z| ÏA,ϑ,n Cpλq
2. Here Bαpλq is a certain symmetric polynomial

function in λ P Ln´1 of degree 2α, with B0pλq “ 1.

Lemma 2.8.2. Let r be a positive integer. Suppose that either n “ 2r or n “ 2r ´ 1. Put

ϑn “
1
n π if n “ 2r and ϑn “

1
2nπ if n “ 2r´ 1. For a given constant 0 ă ϑ ă ϑn define the

sector

Snpϑq “

$

’

’

&

’

’

%

"

z : ´
π

2
´
π

n
` ϑ ă arg z ă ´

π

2
`

3π
n
´ ϑ

*

if n “ 2r,
"

z : ´
π

2
´
π

n
` ϑ ă arg z ă ´

π

2
`

2π
n
´ ϑ

*

if n “ 2r ´ 1,

Let pµ,mq P Ln´1ˆZn and define Cpµ,mq “ max
 

|µl| ` 1,
ˇ

ˇml ´
1
n |m|

ˇ

ˇ` 1
(

. Define ξ j “

e2πi j´1
n and ζ j “ e2πi j´r

n for j “ 1, ..., n. Then, for any z P Snpϑq such that |z| ÏA,ϑ,n Cpµ,mq2,

we have

J
`

2πz;µ` 1
2 m; ξk

˘

J
`

2πz;µ´ 1
2 m; ζ j

˘

“
e pn pξkz` ζ jzqq
p2πqn´1|z|n´1rzs|m|

¨

˚

˝

ÿÿ

α, β“0,...,A´1
α`βďA´1

piξkq
´α
piζ jq

´βBα,βpµ,mqz´αz´β ` OA,ϑ,n
`

Cpµ,mq2A
|z|´A

˘

˛

‹

‚
,

with

Bα,βpµ,mq “ Bα

`

µ` 1
2 m´ 1

2n |m|e
n
˘

Bβ

`

µ´ 1
2 m` 1

2n |m|e
n
˘

, α, β P N,

where Bαpλq is the polynomial function in λ of degree 2α given in Proposition 2.8.1.
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Proof. Recall that, for an integer a, we defined ξa, j “ e2πi j`a´1
n . Note that ξ j “ ξ0, j and

ζ j “ ξ1´r, j. It is clear that

n
č

j“1

S1ξa, j
pϑq “

"

z : ´
π

2
´

2a` 1
n

π` ϑ ă arg z ă ´
π

2
´

2a´ 3
n

π´ ϑ

*

.

We denote this sector by S1apϑq. Observe that, when n “ 2r or 2r ´ 1, the intersection

S10pϑq X S11´rpϑq is exactly the sector Snpϑq. In other words, for all j “ 1, ..., n, z P S1ξ j
pϑq

and z P S1ζ j
pϑq both hold if z P Snpϑq. Therefore, Proposition 2.8.1 can be applied to yield

the asymptotic expansion of J
`

2πz;µ` 1
2 m; ξk

˘

J
`

2πz;µ´ 1
2 m; ζ j

˘

as above. Q.E.D.

Remark 2.8.3. In view of our choice of ϑ, the sector Snpϑq is of angle at least 2
n π, and

therefore the sector Snpϑq
n “ tzn : z P Snpϑqu covers the whole Cr t0u.

Lemma 2.8.4. Let notations be as in Lemma 2.8.2.

(1.1). For k “ 1, ..., r, we have

Im pξkz` ζr´k`1zq “ 0.

(1.2). Let k, j “ 1, ..., r be such that k ` j ě r ` 2. For any z P Snpϑq, we have

Im pξkz` ζ jzq ě 2 sin
ˆ

k ` j´ r ´ 1
n

π

˙

sinϑ ¨ |z|.

(2.1). For k “ 1, ..., n´ r, we have

Im pξk`rz` ζn´k`1zq “ 0.

(2.2). Let k, j “ 1, ..., n´ r be such that k ` j ď n´ r. For any z P Snpϑq, we have

Im pξk`rz` ζ j`rzq ě

$

’

’

&

’

’

%

2 sin
ˆ

n´ r ´ k ´ j` 1
n

π

˙

sinϑ ¨ |z|, if n “ 2r,

2 sin
ˆ

n´ r ´ k ´ j` 1
n

π

˙

sin
´π

n
` ϑ

¯

¨ |z|, if n “ 2r ´ 1.
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Proof. We shall only prove (1.1) and (1.2) in the case n “ 2r. The other cases follow in

exactly the same way.

Write z “ xeiφ. Since

ξkz` ζ jz “ xe2πi k´1
2r `iφ

` xe2πi j´r
2r ´iφ

“ xeπi k` j´r´1
2r

´

eπi k´ j`r´1
2r `iφ

` e´πi k´ j`r´1
2r ´iφ

¯

,

(1.1) is then obvious (we also note that ζr´k`1 “ ξk), whereas (1.2) is equivalent to

(2.8.1) cos
ˆ

k ´ j` r ´ 1
2r

π` φ

˙

ě sinϑ.

Observe that the condition z P S2rpϑq amounts to

ˇ

ˇ

ˇ
φ`

π

2
´

π

2r

ˇ

ˇ

ˇ
ă
π

r
´ ϑ.

Moreover, under our assumptions on k and j in (1.2), one has |k´ j| ď r´2. Consequently,

these yield the following estimate

ˇ

ˇ

ˇ

ˇ

k ´ j` r ´ 1
2r

π` φ

ˇ

ˇ

ˇ

ˇ

ď
r ´ 2

2r
π`

π

r
´ ϑ “

π

2
´ ϑ.

Thus (2.8.1) is proven. Q.E.D.

Remark 2.8.5. In cases other than those listed in Lemma 2.8.4, Im pξkz` ζ jzq can not

always be nonnegative for all z P Snpϑq. Fortunately, these cases are excluded from the

second connection formula for Jpµ,mqpzq in Theorem 2.7.4.

Now the asymptotic expansion of Jpµ,mq pzq can be readily established using Theorem

2.7.4 along with Lemma 2.7.5, 2.8.2 and 2.8.4.
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Theorem 2.8.6. Denote by Xn the set of n-th roots of unity. Let pµ,mq P Ln´1 ˆ Zn and

define Cpµ,mq “ max
 

|µl| ` 1,
ˇ

ˇml ´
1
n |m|

ˇ

ˇ` 1
(

. Let A be a positive integer. Then

Jpµ,mq pznq “
ÿ

ξPXn

e
`

n
`

ξz` ξz
˘˘

n|z|n´1rξzs|m|

¨

˚

˝

ÿÿ

α, β“0,...,A´1
α`βďA´1

i´α´βξ´α`βBα,βpµ,mqz´αz´β

˛

‹

‚

`OA,n
`

Cpµ,mq2A
|z|´A´n`1

˘

,

if |z| ÏA,n Cpµ,mq2, with the coefficient Bα,βpµ,mq given in Lemma 2.8.2.

We may also prove the following elaborate version of Theorem 2.8.6.

Theorem 2.8.7. Let notations be as in Lemma 2.8.2 and Theorem 2.8.6. Let Ipµq “

max t|Im µl|u. Then we may write

Jpµ,mq pznq “
ÿ

ξPXn

e
`

n
`

ξz` ξz
˘˘

n|z|n´1rξzs|m|
Wpµ,mq pz, ξq ` Epµ,mqpzq,

such that

Wpµ,mq pz, ξq “
ÿÿ

α, β“0,...,A´1
α`βďA´1

i´α´βξ´α´βBα,βpµ,mqz´αz´β ` OA,n
`

Cpµ,mq2A
|z|´A

˘

,

and

Epµ,mqpzq “ On
`

|z|´n`1 exp
`

2πIpµq ´ 4πn sin
`

1
n π

˘

sinϑ|z|
˘ ˘

,

for z P Snpϑq with |z| ÏA,n Cpµ,mq2. Moreover, Epµ,mqpzq ” 0 when n “ 1, 2.

2.A. Hankel transforms from the representation theoretic
viewpoint

We shall start with a brief review of Hankel transforms over an archimedean local

fieldXVIII in the work of Ichino and Templier [IT] on the Voronoı̆ summation formula. For

XVIIIFor a nonarchimedean local field, Hankel transforms can also be constructed in the same way.
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the theory of L-functions and local functional equations over a local field the reader is

referred to Cogdell’s survey [Cog]. We shall then discuss Hankel transforms using the

Langlands classification. For this, Knapp’s article [Kna] is used as our reference, with

some change of notations for our convenience.

Let F be an archimedean local field with normalized absolute value } } “ } }F defined

as in §2.2.2, and let ψ be a given additive character on F. Let ηpxq “ sgnpxq for x P Rˆ

and ηpzq “ rzs for z P Cˆ. We view η as a unitary character on Fˆ.

Suppose for the moment n ě 2. Let π be an infinite dimensional irreducible admissible

generic representation of GLnpFqXIX, andWpπ, ψq be the ψ-Whittaker model of π. Denote

by ωπ the central character of π. Recall that the γ-factor γps, π, ψq of π is given by

γps, π, ψq “ εps, π, ψq
Lp1´ s,rπq

Lps, πq

where rπ is the contragradient representation of π, εps, π, ψq and Lps, πq are the ε-factor and

the L-function of π respectively.

To a smooth compactly supported function w on Fˆ we associate a dual function rw on

Fˆ defined by [IT, (1.1)],
ż

Fˆ
rwpxqχpxq´1

}x}s´ n´1
2 dˆx

“ χp´1qn´1γp1´ s, πb χ, ψq
ż

Fˆ
wpxqχpxq}x}1´s´ n´1

2 dˆx,
(2.A.1)

for all s of real part sufficiently large and all unitary multiplicative characters χ of Fˆ.

(2.A.1) is independent of the chosen Haar measure dˆx on Fˆ, and uniquely defines rw in

terms of π, ψ and w. We shall let the Haar measure be given as in §2.2.2. We call rw the

Hankel transform of w associated with π.

XIXSince π is a local component of an irreducible cuspidal automorphic representation in [IT], [IT] also
assumes that π is unitary. However, if one only considers the local theory, this assumption is not necessary.
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According to [IT, Lemma 5.1], there exists a smooth Whitaker function W PWpπ, ψq

so that

(2.A.2) wpxq “ W
ˆˆ

x
In´1

˙˙

,

for all x P Fˆ. Denote by 4n the n-by-n permutation matrix whose anti-diagonal entries are

1, that is, the longest Weyl element of rank n, and define

4n,1 “

ˆ

1
4n´1

˙

.

In the theory of integral representations of Rankin-Selberg L-functions, (2.A.1) amounts to

the local functional equations of zeta integrals for πb χ, with

(2.A.3) rwpxq “ rW
ˆˆ

x
1

˙˙

“ W
ˆ

42

ˆ

x´1

1

˙˙

,

if n “ 2, and

(2.A.4) rwpxq “
ż

Fn´2

rW

¨

˝

¨

˝

x
y In´2

1

˛

‚4n,1

˛

‚dyψ,

if n ě 3, where rW PWprπ, ψ´1q is the dual Whittaker function defined by rWpgq “ Wp4n ¨

tg´1q, for g P GLnpFq, and dxψ denotes the self-dual additive Haar measure on F with

respect to ψ. See [IT, Lemma 2.3].

The constraint that π be infinite dimensional and generic is actually dispensable for

defining the Hankel transform via (2.A.1). In the following, we shall assume that π is any

irreducible admissible representation of GLnpFq. Moreover, we shall also include the case

n “ 1. It will be seen that, after renormalizing the functions w and rw, the Hankel transform

defined by (2.A.1) turns into the Hankel transform given by (2.4.34) or (2.4.43). For this,

we shall apply the Langlands classification for irreducible admissible representations of

GLnpFq.
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2.A.1. Hankel transforms over R

Suppose F “ R. Recall that } }R “ | | is the ordinary absolute value. For r P Rˆ let

ψpxq “ ψrpxq “ eprxq.

According to [Kna, §3, Lemma], every finite dimensional semisimple representation ϕ

of the Weil group of R may be decomposed into irreducible representations of dimension

one or two. The one-dimensional representations are parametrized by pµ, δq P C ˆ Z{2Z.

We denote by ϕpµ,δq the representation given by pµ, δq. ϕpµ,δq corresponds to the representa-

tion χpµ,δq “ ηδ| |µ of GL1pRq under the Langlands correspondence over R. The irreducible

two-dimensional representations are parametrized by pµ,mq P CˆN`. We denote by ϕpµ,mq

the representation given by pµ,mq. ϕpµ,mq corresponds to the representation Dm b | det |µR of

GL2pRq, where Dm denotes the discrete series representation of weight m.

In view of the formulae [Kna, (3.6, 3.7)]XX of L-functions and ε-factors, the definitions

of Gδ and Gm in (2.2.3) and (2.2.6), along with the formula (2.2.10), we deduce that

γps, ϕpµ,δq, ψq “ sgnprqδ|r|s`µ´
1
2 Gδp1´ s´ µq,(2.A.5)

whereas

γps, ϕpµ,mq, ψq “ sgnprqδpmq`1
|r|2s`2µ´1iGmp1´ s´ µq,(2.A.6)

and

γps, ϕpµ,mq, ψq “ γps, ϕpµ` 1
2 m, δpmq`1q, ψqγps, ϕpµ´ 1

2 m, 0q, ψq

“ γps, ϕpµ` 1
2 m, δpmqq, ψqγps, ϕpµ´ 1

2 m, 1q, ψq.
(2.A.7)

To ϕpµ,mq we shall attach either one of the following two parameters

(2.A.8)
`

µ` 1
2m, µ´ 1

2m, δpmq ` 1, 0
˘

,
`

µ` 1
2m, µ´ 1

2m, δpmq, 1
˘

.

XXThe formulae in [Kna, (3.6, 3.7)] are for ψ1. The relation between the epsilon factors εps, π, ψrq and
εps, π, ψq is given in [Tat, §3] (see in particular [Tat, (3.6.6)]).
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Remark 2.A.1. (2.A.7) reflects the isomorphism ϕp0,mq b ϕp0,1q – ϕp0,mq of representations

of the Weil group (here p0, 1q is an element of C ˆ Z{2Z), as well as the isomorphism

Dm b η – Dm of representations of GL2pRq.

For ϕ reducible, γps, ϕ, ψq is the product of the γ-factors of the irreducible constituents

of ϕ. Suppose ϕ is n-dimensional. It follows from (2.A.5, 2.A.6, 2.A.7) that there is a

parameter pµ, δq P Cn ˆ pZ{2Zqn attached to ϕ such that

(2.A.9) γps, ϕ, ψq “ sgnprq|δ||r|nps´ 1
2q`|µ|Gpµ,δqp1´ sq.

The irreducible constituents of ϕ are unique up to permutation, but, in view of the two

different parameters attached to ϕpµ,mq in (2.A.8), the parameter pµ, δq attached to ϕ may

not.

Suppose that π corresponds to ϕ under the Langlands correspondence over R. We have

γps, π, ψq “ γps, ϕ, ψq. It is known that π is an irreducible constituent of the principal series

representation unitarily induced from the character
Ân

`“1 χpµ`,δ`q of the Borel subgroup. In

particular,

ωπpxq “ sgnpxq|δ||x||µ|.(2.A.10)

Now let χ “ χp0,δq “ ηδ in (2.A.1), δ P Z{2Z. In view of (2.A.9) and (2.A.10), one has

the following expression of the γ-factor in (2.A.1),

(2.A.11) γp1´ s, πb ηδ, ψq “ ωπprq
`

sgnprqδ|r|
1
2´s

˘n
Gpµ,δ`δenqpsq.

Some calculations show that (2.A.1) is exactly translated into (2.4.34) if one let

υpxq “ ωπprqw
`

|r|´
n
2 x
˘

|x|´
n´1

2 ,

Υpxq “ rw
`

p´q
n´1sgnprqn|r|´

n
2 x
˘

|x|´
n´1

2 .

(2.A.12)

Then, (2.4.39) can be reformulated as

(2.A.13) rw
`

p´q
n´1x

˘

“ ωπprq|r|
n
2 |x|

n´1
2

ż

Rˆ
wpyqJpµ,δqprnxyq|y|1´

n´1
2 dˆy.
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2.A.2. Hankel transforms over C

Suppose F “ C. Recall that } }C “ } } “ | |2, where | | denotes the ordinary absolute

value. For r P Cˆ let ψpzq “ ψrpzq “ eprz` rzq.

The Langlands classification and correspondence for GLnpCq are less complicated.

First of all, the Weil group of C is simply Cˆ. Any n-dimensional semisimple repre-

sentation ϕ of the Weil group Cˆ is the direct sum of one-dimensional representations.

The one-dimensional representations are of the form χpµ,mq “ ηm} }µ, with pµ,mq P C ˆ Z.

In view of the formulae [Kna, (4.6, 4.7)] of Lps, χpµ,mqq and εps, χpµ,mq, ψq as well as the

definition of Gm in (2.2.6), we have

(2.A.14) γps, χpµ,mq, ψq “ rrsm}r}s`µ´ 1
2 Gmp1´ s´ µq.

Thus ϕ is parametrized by some pµ,mq P Cn ˆ Zn and

(2.A.15) γps, ϕ, ψq “ rrs|m|}r}nps´ 1
2q`|µ|Gpµ,mqp1´ sq.

This parametrization is unique up to permutation, in contrast to the case F “ R.

If π corresponds to ϕ under the Langlands correspondence over C, then γps, π, ψq “

γps, ϕ, ψq. Moreover, π is an irreducible constituent of the principal series representation

unitarily induced from the character
Ân

`“1 χpµ`,m`q of the Borel subgroup. Note that

ωπpzq “ rzs|m|}z}|µ|.(2.A.16)

Now let χ “ χp0,mq “ ηm in (2.A.1), m P Z. Then (2.A.15) and (2.A.16) imply

(2.A.17) γp1´ s, πb ηm, ψq “ ωπprq
`

rrsm}r}
1
2´s

˘n
Gpµ,m`menqpsq.

By putting

υpzq “ ωπprqw
`

}r}´
n
2 z
˘

}z}´
n´1

2 ,

Υpzq “ rw
`

p´q
n´1
rrs´n

}r}´
n
2 z
˘

}z}´
n´1

2 ,

(2.A.18)
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the identity (2.A.1) is translated into (2.4.43), and (2.4.49) can be reformulated as

(2.A.19) rw
`

p´q
n´1z

˘

“ ωπprq}r}
n
2 }z}

n´1
2

ż

Cˆ
w puq Jpµ,mqprnzuq}u}1´ n´1

2 dˆu.

2.A.3. Some new notations

Let π be an irreducible admissible representation of GLnpFq. For F “ R, respectively

F “ C, if π is parametrized by pµ, δq, respectively pµ,mq, we shall denote simply by Jπ

the Bessel kernel Jpµ,δq, respectively Jpµ,mq. Thus, (2.A.13) and (2.A.19) can be uniformly

combined into one formula

(2.A.20) rw
`

p´q
n´1x

˘

“ ωπprq}r}
n
2 }x}

n´1
2

ż

Fˆ
w pyq Jπprnxyq}y}1´ n´1

2 dˆy.

Proposition 2.4.17 (1) and 2.4.21 (1) are translated into the following lemma.

Lemma 2.A.2. Let π be an irreducible admissible representation of GLnpFq, and let χ be

a character on Fˆ. We have Jχbπpxq “ χ´1pxqJπpxq.

Remark 2.A.3. Let Zn denote the center of GLn. In view of Lemma 2.A.2, no gener-

ality will be lost if one only considers Jπ for irreducible admissible representations π of

GLnpFq{ZnpR`q.

Let ϕ be the n-dimensional semisimple representation of the Weil group of F corre-

sponding to π under the Langlands correspondence over F.

If F “ R, the function space S
pµ,δq

sis pRˆq depends on the choice of the parameter pµ, δq

attached to ϕ, if some discrete series ϕpµ,mq occurs in its decomposition. Thus, one needs to

redefine the function spaces for Hankel transforms according to the Langlands classification

rather than the above parametrization. For this, let n1, n2 P N, pµ1, δ1
q P Cn1 ˆ pZ{2Zqn1

and pµ2,m2q P Cn2 ˆNn2
` be such that n1 ` 2n2 “ n and ϕ “

Àn1
`“1 ϕpµ1

`
, δ1
`
q ‘

Àn2
`“1 ϕpµ1

`
,m2

`
q.
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We define the function space S π
sispR

ˆq “ S ϕ

sispR
ˆq to be

(2.A.21) S
p´µ1, δ1q

sis pRˆq `
ÿ

δPZ{2Z

sgnpxqδS p´µ2` 1
2 m2,0q

sis pRˆq,

where S
pµ, δq

sis pRˆq is defined by (2.4.32).

Lemma 2.A.4. S π
sispR

ˆq is the sum of S
p´µ,δq

sis pRˆq for all the parameters pµ, δq attached

to π.

Proof. For δ P Z{2Z and j P N, we have the inclusion

sgnpxqδ`δpmq|x|µ`
1
2 m
plog |x|q jS pRq Ă sgnpxqδ|x|µ´

1
2 m
plog |x|q jS pRq.

It follows that
ÿ

δPZ{2Z

´

sgnpxqδ`δpmq|x|µ`
1
2 m
plog |x|q jS pRq ` sgnpxqδ`1

|x|µ´
1
2 m
plog |x|q jS pRq

¯

“
ÿ

δPZ{2Z

sgnpxqδ|x|µ´
1
2 m
plog |x|q jS pRq.

Then it is easy to verify this lemma by definitions. Q.E.D.

If F “ C, we put

(2.A.22) S π
sispC

ˆ
q “ S ϕ

sispC
ˆ
q “ S

p´µ,´mq
sis pCˆq.

Let d “ rF : Rs. For each character χ on Fˆ{R` we define the Mellin transform Mχ of

a function υ P SsispFˆq by

(2.A.23) Mχυpsq “
ż

Fˆ
υpxqχpxq}x}

1
d sdˆx.

Theorem 2.A.5. Let π be an irreducible admissible representation of GLnpFq. Suppose

υ P S π
sispF

ˆq. Then there exists a unique rυ P S rπ
sispF

ˆq satisfying the following identity

Mχ´1rυpdsq “ γp1´ s, πb χ, ψ1qMχυpdp1´ sqq

176



for all characters χ on Fˆ{R`. We write Hπυ “ rυ and call rυ the normalized Hankel

transform of υ over Fˆ associated with π. Moreover, we have the Hankel inversion formula

Hπυpxq “ rυpxq, H
rπrυpxq “ ωπp´1qυpp´qnxq.

Proof. If F “ R, this follows from Theorem 2.4.15, combined with Lemma 2.A.4. If

F “ C, this is simply a translation of Theorem 2.4.19. Q.E.D.
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Chapter 3

Bessel functions for GL2pFq and GL3pFq

In this chapter, we shall retain the notations from §2.A.

3.1. Introduction

In §3.2, according to the theory of local functional equations for GL2 ˆ GL1-Rankin-

Selberg zeta integrals over F, we shall show that the action of the long Weyl element

on the Kirillov model of an infinite dimensional irreducible admissible representation of

GL2pFq is essentially a Hankel transform over F. It follows the consensus that for GL2pFq

the Bessel functions occurring in the Kuznetsov trace formula should coincide with those

in the Voronoı̆ summation formula. This will let us prove and generalize the Kuznetsov

trace formula for PSL2pZrisqzPSL2pCq in [BM]XXI, in the same way that [CPS] does for

the Kuznetsov trace formula for PSL2pZqzPSL2pRq in [Kuz].XXII Finally, summarizing

and combining several inversion formulae due to Kontorovich-Lebedev, Kuznetsov [Kuz],

Bruggeman-Motohashi [BM] and Lokvenec-Guleska [LG], we shall formulate the Bessel-

Plancherel formula for the Bessel functions attached to tempered representations of GL2pFq.

XXIIn an entirely different way, the formula and the integral representation of the Bessel function associated
with a principal series representation of PGL2pCq is discovered in [BM].
XXIIIn the framework of representation theory, we shall present in a subsequent article the Kuznetsov trace

formula for ΓzPGL2pCq for an arbitrary discrete subgroup Γ Ă PGL2pCq that is cofinite but not cocompact.
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In §3.3, we shall derive a formula for Bessel functions for GL3pFq in terms of certain

fundamental Bessel kernels. This is based on the local functional equations for GL3ˆGL2-

Rankin-Selberg zeta integrals along with the Bessel-Plancherel formula for GL2pFq. We

stress however that our derivation is rather formal, so a lot of work remains in giving this

formula a rigorous proof. Moreover, we are not concerned here with the analytic properties

of these Bessel functions. We shall leave these for future work.

3.2. Bessel functions for GL2pFq

Let π be an infinite dimensional irreducible admissible representation of GL2pFqXXIII.

Using (2.A.2, 2.A.3), one may rewrite (2.A.20) as follows,

(3.2.1) W
ˆˆ

1
x´1

˙˙

“ ωπprq}r}
ż

Fˆ
}xy}

1
2 Jπp´r2xyqW

ˆˆ

y
1

˙˙

dˆy,

for W PWpπ, ψrq. We define

(3.2.2) Jπ,ψrpxq “ ωπprq}r}
b

}x}Jπp´r2xq.

We call Jπ,ψpxq the Bessel function associated with π and ψ. The formula (3.2.1) then reads

(3.2.3) W
ˆˆ

1
x´1

˙˙

“

ż

Fˆ
Jπ,ψpxyqW

ˆˆ

y
1

˙˙

dˆy.

Moreover, with the observation

W
ˆˆ

1
x´1

˙˙

“ ωπpxq´1W
ˆˆ

x
1

˙

42

˙

,

(3.2.3) turns into

(3.2.4) W
ˆˆ

x
1

˙

42

˙

“ ωπpxq
ż

Fˆ
Jπ,ψpxyqW

ˆˆ

y
1

˙˙

dˆy.XXIV

XXIIIIt is well-known that a representation of GL2pFq satisfying these conditions is generic.
XXIVIn the real case, this identity is given in [CPS, Theorem 4.1]. Observe the different choice of long Weyl

element 4 “
ˆ

´1
1

˙

in [CPS, Theorem 4.1].
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Thus (3.2.4) indicates that the action of the Weyl element 42 on the Kirillov model

Kpπ, ψq “

"

wpxq “ W
ˆˆ

x
1

˙˙

: W PWpπ, ψq

*

is essentially a Hankel transform. From this perspective, the Hankel inversion formula

follows from the simple identity 42
2 “ I2. This may be seen from the following lemma.

Lemma 3.2.1. Let π be an irreducible admissible representation of GL2pFq. Then we have

J
rπpxq “ ωπpxqJπpxq.

Proof. This follows from some straightforward calculations using Proposition 2.4.17 (1)

and 2.4.21 (1). Q.E.D.

Remark 3.2.2. The representation theoretic viewpoint of Lemma 3.2.1 is the isomorphism

rπ – ω´1 b π. With this, Lemma 3.2.1 is a direct consequence of Lemma 2.A.2.

Finally, we shall summarize the formulae of the Bessel functions associated with in-

finite dimensional irreducible unitary representations of GL2pFq. First of all, in view of

Lemma 2.A.2 and Remark 2.A.3, one may assume without loss of generality that π is triv-

ial on Z2pR`q. Moreover, with the simple observation

(3.2.5) Jπ,ψrpxq “ ωπprqJπ,ψ1pr
2xq,

it is sufficient to consider the Bessel function Jπ “ Jπ,ψ1 associated with ψ1.

3.2.1. Bessel functions for GL2pRq

Under the Langlands correspondence, we have the following classification of infinite

dimensional irreducible unitary representations of GL2pRq{Z2pR`q.

- (principal series and the limit of discrete series) ϕpit,ε`δq‘ϕp´it,εq, with t P r0,8q and

ε, δ P Z{2Z,
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- (complementary series) ϕpt,εq ‘ ϕp´t,εq, with t P
`

0, 1
2

˘

and ε P Z{2Z,

- (discrete series) ϕp0,mq, with m P N`.

Here, in the first case, the corresponding representation is a limit of discrete series if t “ 0

and δ “ 1 and a principal series representation if otherwise. We shall write the correspond-

ing representations as ηε b π`pitq if δ “ 0, ηε b π´pitq if δ “ 1, ηε b πptq and σpmq,

respectively. We have

(3.2.6) ωπ`pitq “ 1, ωπ´pitq “ η, ωπptq “ 1, ωσpmq “ ηm`1.

As a consequence of Example 2.4.18, we have the following proposition.

Proposition 3.2.3.

(1). Let t P r0,8q. We have for x P R`

Jπ`pitqpxq “ 4 coshpπtq
?

xK2itp4π
?

xq,

Jπ`pitqp´xq “
πi

sinhpπtq
?

x
`

J2itp4π
?

xq ´ J´2itp4π
?

xq
˘

,

where it is understood that when t “ 0 the right hand side of the first formula should be

replaced by its limit, and

Jπ´pitqpxq “ 4 sinhpπtq
?

xK2itp4π
?

xq,

Jπ´pitqp´xq “
πi

coshpπtq
?

x
`

J2itp4π
?

xq ` J´2itp4π
?

xq
˘

.

(2). Let t P
`

0, 1
2

˘

. We have for x P R`

Jπptqpxq “ 4 cospπtq
?

xK2tp4π
?

xq,

Jπptqp´xq “ ´
π

sinpπtq
?

x
`

J2tp4π
?

xq ´ J´2tp4π
?

xq
˘

.

(3). Let m P N`. We have for x P R`

Jσpmqpxq “ 0, Jσpmqp´xq “ 2πim`1?xJm
`

4π
?

x
˘

.
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Remark 3.2.4. π`pitq, πptq and σp2d ´ 1q exhaust all the infinite dimensional irreducible

unitary representations of PGL2pRq. Their Bessel functions are also given in [CPS, Propo-

sition 6.1].

3.2.2. Bessel functions for GL2pCq

Under the Langlands correspondence, we have the following classification of infinite

dimensional irreducible unitary representations of GL2pCq{Z2pR`q.

- (principal series) χpit,k`d`δq ‘ χp´it,k´dq, with t P r0,8q, k, d P Z and δ P Z{2Z “

t0, 1u,

- (complementary series) χpt,k`dq ‘ χp´t,k´dq, with t P
`

0, 1
2

˘

, k P Z and d P Z.

We write the corresponding representations as ηkbπ`d pitq if δ “ 0, ηkbπ´d pitq if δ “ 1 and

ηk b πdptq, respectively. We have

(3.2.7) ωπ`d pitq
“ 1, ωπ´d pitq

“ η, ωπdptq “ 1.

According to Example 2.7.6, we have the following proposition.

Proposition 3.2.5. Recall the definitions (2.7.14, 2.7.17) of Jµ,mpzq and Hp1,2q
µ,m pzq in Example

2.7.6.

(1). Let t P r0,8q and d P Z. We have for z P Cˆ

Jπ`d pitq
pzq “ ´

2π2i
sinhp2πtq

|z| pJit,2dp4πi
?

zq ´ J´it,´2dp4πi
?

zqq

“ π2i|z|
´

e´2πtHp1q
it,2d p4πi

?
zq ´ e2πtHp2q

it,2d p4πi
?

zq
¯

,

Jπ´d pitq
pzq “

2π2

coshp2πtq

b

|z| z pJit,2d`1p4πi
?

zq ` J´it,´2d´1p4πi
?

zqq

“ π2
b

|z| z
´

e´2πtHp1q
it,2d`1 p4πi

?
zq ` e2πtHp2q

it,2d`1 p4πi
?

zq
¯

.
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(2). Let t P
`

0, 1
2

˘

and d P Z. We have for z P Cˆ

Jπdptqpzq “
2π2

sinp2πtq
|z| pJt,2dp4πi

?
zq ´ J´t,´2dp4πi

?
zqq

“ π2i|z|
´

e2πitHp1q
t,2d p4πi

?
zq ´ e´2πitHp2q

t,2d p4πi
?

zq
¯

.

In view of Corollary 2.6.16, we have the following integral representations of Jπ pxeiφq

unless π “ πdptq and t P
“

3
8 ,

1
2

˘

.

Proposition 3.2.6.

(1). Let t P r0,8q and d P Z. We have for x P R` and φ P R{2πZ

Jπ`d pitq
`

xeiφ
˘

“ 4πxeidφ
ż 8

0
y4it´1

“

y´1
´ yeiφ

‰´2d
J2d

`

4π
?

x
ˇ

ˇy´1
´ yeiφ

ˇ

ˇ

˘

dy,

Jπ´d pitq
`

xeiφ
˘

“ 4πixeidφ
ż 8

0
y4it´1

“

y´1
´ yeiφ

‰´2d´1
J2d`1

`

4π
?

x
ˇ

ˇy´1
´ yeiφ

ˇ

ˇ

˘

dy.

(2). Let t P
`

0, 3
8

˘

and d P Z. We have for x P R` and φ P R{2πZ

Jπdptq
`

xeiφ
˘

“ 4πxeidφ
ż 8

0
y4t´1

“

y´1
´ yeiφ

‰´2d
J2d

`

4π
?

x
ˇ

ˇy´1
´ yeiφ

ˇ

ˇ

˘

dy.

The integral on the right hand side converges absolutely only for t P
`

0, 1
8

˘

.

Remark 3.2.7. π`d pitq and πdptq exhaust all the infinite dimensional irreducible unitary

representations of PGL2pCq. Proposition 3.2.5 shows that the Bessel function for π`d pitq

actually coincide with that given in [BM]. More precisely, we have the equality Jπ`d pitqpzq “

2π2|z|K2it,´dp4πi
?

zq, with Kν,p given by [BM, (6.21), (7.21)]. Furthermore, the integral

representation of Jπ`d pitq in Proposition 3.2.6 (1) is tantamount to [BM, Theorem 12.1].

3.2.3. Comments on the Kuznetsov trace formula for PGL2pFq

In [Kuz], Kuznetsov proved his formula for PSL2pZqzH2 – PSL2pZqzPSL2pRq{K,

where H2 denotes the hyperbolic upper half-plane and K “ SOp2q{t˘1u. In the frame-

work of representation theory, Cogdell and Piatetski-Shapiro [CPS] proved this formula
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for an arbitrary Fuchsian group of the first kind Γ Ă PGL2pRq. Their computations use

the Whittaker and Kirillov models of an irreducible unitary representation of PGL2pRq.

They observe that the Bessel function occurring in the Kuznetsov trace formula should be

identified with the Bessel function for an irreducible unitary representations of PGL2pRq

given in [CPS, Theorem 4.1]. Note that the approach to Bessel functions for GL2pRq using

local functional equations for GL2 ˆ GL1-Rankin-Selberg zeta integrals over R is already

shown in [CPS, §8]. The Kuznetsov trace formula is derived in [CPS] from computing the

Fourier coefficients of a single Poincaré series in two different ways, first unfolding, and

second spectral decomposing in L2pΓzPGL2pRqq. On the other hand, many authors, in-

cluding Kuznetsov, approach this through a formula for the inner product of two Poincaré

series.

The Kuznetsov trace formula for PSL2pZrisqzPSL2pCq was given in [BM]. Let K “

SUp2q{t˘1u and let H3 denote the three dimensional hyperbolic upper half space. Their

analysis is on the space H3 ˆ K, which is isomorphic to PSL2pCq due to the Iwasawa de-

composition. The combination of the Jacquet and the Goodman-Wallach operators allows

them to treat all the K-aspects. Similar to [Kuz], the approach of [BM] is also from consid-

ering the inner product of two certain Poincaré series. It is remarked without proof in [BM,

§15] that their Bessel kernel should be interpreted as the Bessel function of an irreducible

unitary representation of PSL2pCq.

Our observation is that, since [CPS, Theorem 4.1] remains valid for an irreducible

unitary representation of PGL2pCq in view of (3.2.4), one may follow the same lines in

[CPS] to obtain the Kuznetsov trace formula for ΓzPGL2pCq, with Γ an arbitrary discrete

subgroup in PGL2pCq that is cofinite but not cocompact. In this way, we can avoid the very

difficult and complicated analysis in [BM]. This will be presented in a subsequent article.
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3.2.4. The Bessel-Plancherel formula for SL2pRq

Classical Bessel functions that occur in the Kontorovich-Lebedev and the Kuznetsov

inversion formulae are exactly the Bessel functions attached to irreducible unitary tempered

representations of SL2pRq. Combining these inversion formulae, we obtain an analogue

of Harish-Chandra’s Plancherel formula, which will be named as the Bessel-Plancherel

formula.

We have the following inversion formulae due to Kontorovich, Lebedev and Kuznetsov.

Lemma 3.2.8. Let f P C8c pR`q be a smooth compactly supported function on R`.

(1. The Kontorovich-Lebedev inversion formula) The Kontorovich-Lebedev transform

of f and its inversion are given as below,

θitp f q “
ż

R`
f pxqK2itpxqdˆx,

f pxq “
4
π2

ż

R
θitp f qK2itpxq sinhp2πtqtdt.

(2. The Kuznetsov inversion formula) The Kuznetsov transforms of f are given as

below,

θ˘, itp f q “
ż

R`
f pxq pJ2itpxq ¯ J´2itpxqq dˆx,

θmp f q “
ż

R`
f pxqJmpxqdˆx.

Then, for x P R`

f pxq “ ´
ż

R
θ`, itp f q pJ2itpxq ´ J´2itpxqq

tdt
sinhp2πtq

`

8
ÿ

d“1

2p2d ´ 1qθ2d´1p f qJ2d´1pxq;

f pxq “
ż

R
θ´, itp f q pJ2itpxq ` J´2itpxqq

tdt
sinhp2πtq

`

8
ÿ

d“1

4dθ2dp f qJ2dpxq.
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Remark 3.2.9. Recall the following connection formula ([Wat, 3.7 (6)])

Kνpzq “
π pI´νpzq ´ Iνpzqq

2 sinpπνq
.

It follows that the Kontorovich-Lebedev inversion formula may be renormalized, in a simi-

lar fashion as the Kuznetsov inversion formula, into

rθitp f q “
ż

R`
f pxq pI2itpxq ´ I´2itpxqq dˆx,

f pxq “ ´
ż

R
rθitp f q pI2itpxq ´ I´2itpxqq

tdt
sinhp2πtq

.

The irreducible unitary tempered representations of SL2pRq are (the restrictions from

GL2pRq of) the unitary principal series π`pitq, π´pitq, with t P R, and the unitary discrete

series πpmq of weight m, with m P N`. It is convenient to view them as representations

on GL2pRq or rather GL2pRq{Z2pR`q (see §3.2.1), and their associated Bessel functions

are given in Proposition 3.2.3. A reformulation of Lemma 3.2.8 is the Bessel-Plancherel

formula for SL2pRq given as below.

Corollary 3.2.10 (The Bessel-Plancherel formula for SL2pRq). For a function f P C8c pR`q

we define

Θδ
˘, itp f q “

ż

R`
f pxqJπ˘pitq

`

p´q
δx
˘

dˆx, δ P Z{2Z,

Θmp f q “
ż

R`
f pxqJπpmqp´xqdˆx.

(1). We have

4π2x f pxq “
ż

R
Θ0
`, itp f qJπ`pitqpxq tanhpπtqtdt,

4π2x f pxq “
ż

R
Θ1
`, itp f qJπ`pitqp´xq tanhpπtqtdt `

8
ÿ

d“1

p2d ´ 1qΘ2d´1p f qJπp2d´1qp´xq.

(2). We have

4π2x f pxq “
ż

R
Θ0
´, itp f qJπ´pitqpxq cothpπtqtdt,

4π2x f pxq “ ´
ż

R
Θ1
´, itp f qJπ´pitqp´xq cothpπtqtdt ´

8
ÿ

d“1

2dΘ2dp f qJπp2dqp´xq.
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3.2.5. The Bessel-Plancherel formula for SL2pCq

When studying the Kuznetsov trace formula for PSL2pCq and SL2pCq, the Bessel-

Plancherel formula for SL2pCq is first discovered in [BM, §11] for the principal series

representations π`d pitq and later in [LG, §12] for π´d pitq. Again, for our purpose, we shall

see π˘d pitq as representations on GL2pCq (see §3.2.2).

We recall the definition (2.7.14),

Jµ,mpzq “ J´2µ´ 1
2 mpzqJ´2µ` 1

2 m pzq .

Following [BM, LG], we define

K`µ,dpzq “
1

sinp2πµq
pJµ,2dpzq ´ J´µ,´2dpzqq ,

K´µ,dpzq “
1

cosp2πµq
pJµ,2d`1pzq ` J´µ,´2d´1pzqq .

Lemma 3.2.11. Let f P C8c, evenpCˆq be an even smooth compactly supported function on

Cˆ. The Bruggeman-Motohashi transforms of f are given as below,

θ˘it,dp f q “
ż

Cˆ
f pzqK˘it,dpzqd

ˆz.

Then, for z P Cˆ

f pzq “
1
4

ÿ

dPZ

ż

R
K`it,dpzqθ

`

it,dp f q
`

d2
` 4t2

˘

dt,

f pzq “
1
4

ÿ

dPZ

ż

R
K´it,dpzqθ

´

it,dp f q
´

`

d ` 1
2

˘2
` 4t2

¯

dt.

According to Proposition 3.2.5, we have

Jπ`d pitq
pzq “ 2π2

|z|K`it,dp4πi
?

zq, Jπ´d pitq
pzq “ 2π2

b

|z| zK´it,dp4πi
?

zq.

The Bessel-Plancherel formula for SL2pCq is as follows.
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Corollary 3.2.12 (The Bessel-Plancherel formula for SL2pCq). Let f P C8c pCˆq be a

smooth compactly supported function on Cˆ. We define

Θ˘it,dp f q “
ż

Cˆ
f pzqJπ˘d pitq pzq dˆz.

Then, we have

32π4
|z|2 f pzq “

ÿ

dPZ

ż

R
Jπ`d pitq

pzqΘ`it,dp f q
`

d2
` 4t2

˘

dt,

32π4
|z|z f pzq “

ÿ

dPZ

ż

R
Jπ´d pitq

pzqΘ´it,dp f q
´

`

d ` 1
2

˘2
` 4t2

¯

dt.

3.3. Bessel functions for GL3pFq

Let us denote G2 “ GL2pFq and G3 “ GL3pFq. Let N2, respectively N2, be the unipo-

tent subgroup of G2 consisting of upper, respectively lower, triangular matrices with unity

on diagonals. Let A2 be the subgroup of diagonal matrices. Let X2 “ N242A2N2 be the

open Bruhat cell in G2. If we use the Bruhat coordinates

g “
ˆ

1 v
1

˙

42z
ˆ

a
1

˙ˆ

1 u
1

˙

on X2, the measure on X2 is dg “ }a}´1dˆadˆzdudv.

Let π be an infinite dimensional irreducible unitary admissible generic representation

of G3. The Bessel function Jπ,ψpgq associated with π and ψ is a real analytic function on X2

which satisfies the bi-ψ´1-variant condition

(3.3.1) Jπ,ψpvguq “ ψ´1
pvqψ´1

puqJπ,ψpgq, u, v P N2,

and the kernel formula

(3.3.2) W
ˆˆ

1
g

˙˙

“

ż

N2zG2

Jπ,ψ
`

hg´1
˘

W
ˆˆ

h
1

˙˙

dh, g P X2,
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for W PWpπ, ψq, where the definition of Jπ,ψ is extended trivially onto G2. By (3.3.1), it

suffices to know the values of Jπ,ψ on 42A2. Moreover, for r P Fˆ, we have

(3.3.3) Jπ,ψrpgq “ ωπprq}r}´1Jπ,ψ1

˜

r3

ˆ

r
1

˙

g
ˆ

r
1

˙´1
¸

.

Consequently, we only need to consider the Bessel function Jπ “ Jπ,ψ1 associated with ψ1.

Remark 3.3.1. In the non-archimedean case, our Bessel functions coincide with those

defined in [Bar1]. Indeed, if we let jπ,ψ denote the bi-ψ-variant Bessel function associated

with π given in [Bar1, Theorem 2.3], then Jπ,ψpgq “ jπ,ψ

ˆˆ

1
g´1

˙˙

, and the kernel

formula (3.3.2) is proved in [Bar2, Theorem 1.5].

3.3.1. The main identity

Rankin-Selberg zeta integrals for GL3 ˆ GL2

Let π and π1 be a pair of infinite dimensional irreducible unitary admissible generic

representations of G3 and G2 respectively. Without loss of generality, we assume that π and

π1 are trivial on the positive centers Z3pR`q and Z2pR`q respectively.

Let W PWpπ, ψq and W 1 PWpπ1, ψ´1q. The Rankin-Selberg zeta integrals are given

by

Ψps,W,W 1
q “

ż

N2zG2

W
ˆˆ

h
1

˙˙

W 1
phq} det h}s´ 1

2 dh,

and

rΨps, rW, rW 1
q “

ż

N2zG2

rW
ˆˆ

g
1

˙˙

rW 1
pgq} det g}s´ 1

2 dg

“

ż

N2zG2

W
ˆ

43

ˆ

tg´1

1

˙˙

W 1
`

42
tg´1

˘

} det g}s´ 1
2 dg.

These zeta integrals converge when Re s is sufficiently large and have meromorphic contin-

uations on the whole complex plane. The local Rankin-Selberg functional equation reads

(3.3.4) rΨp1´ s, rW, rW 1
q “ γps, πb π1, ψqΨps,W,W 1

q.
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We assume that W
ˆˆ

h
1

˙˙

is a compactly supported smooth function on N2zG2 so

that the zeta integral Ψps,W,W 1q on the right in (3.3.4) converges for all s. Therefore, we

have the following functional equation of zeta integrals,
ż

N2zG2

W
ˆ

43

ˆ

tg´1

1

˙˙

W 1
`

42
tg´1

˘

} det g}
1
2´sdg

“ γps, πb π1, ψq

ż

N2zG2

W
ˆˆ

h
1

˙˙

W 1
phq} det h}s´ 1

2 dh,
(3.3.5)

given that Re s is sufficiently small.

Formal derivation of the main identity

Observe that

43

ˆ

tg´1

1

˙

“

ˆ

1
42

tg´1

˙

and 42
tg´1 P X2 “ N242A2N2 if and only if g P N2A2N2. Since N2A2N2 is an open dense

cell in G2, the left hand side of (3.3.5) is equal to
ż

A2N2

W
ˆˆ

1
42

tg´1

˙˙

W 1
`

42
tg´1

˘

} det g}
1
2´sdg,

where N2zN2A2N2 is identified with A2N2. In view of the kernel formula (3.3.2), the left

hand side of (3.3.5) further turns into
ż

A2N2

ż

N2zG2

Jπ,ψ phtg42qW
ˆˆ

h
1

˙˙

dhW 1
`

42
tg´1

˘

} det g}
1
2´sdg

“

ż

N2zG2

W
ˆˆ

h
1

˙˙
ż

A2N2

Jπ,ψ
`

hg´1
42
˘

W 1 p42gq } det g}s´ 1
2 dg dh,

where we have interchanged the order of integrations and made the change of variables

from g to tg´1. Since W
ˆˆ

h
1

˙˙

assumes all compactly supported smooth functions on

N2zG2, it follows from comparing this double integral with the right hand side of (3.3.5)

that
ż

A2N2

Jπ,ψ
`

hg´1
42
˘

W 1 p42gq } det g}s´ 1
2 dg “ γps, πb π1, ψqW 1

phq} det h}s´ 1
2 ,
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which is valid for all h P N2zG2. In particular, choosing h “ 42, we arrive at

ż

A2N2

Jπ,ψ
`

42g´1
42
˘

W 1 p42gq } det g}s´ 1
2 dg “ γps, πb π1, ψqW 1

p42q.(3.3.6)

Remark 3.3.2. If we presume that the Bessel function Jπ,ψ is of moderate growth, then it

should be legitimate to change the order of integrations as above, provided that Re s is

sufficiently small.

We now recall the kernel formula (3.2.3),

W 1

ˆˆ

1
a

˙˙

“

ż

Fˆ
Jπ1,ψ´1pa´1bqW 1

ˆˆ

b
1

˙˙

dˆb.

From this, the right hand side of (3.3.6) is equal to

(3.3.7) γps, πb π1, ψq

ż

Fˆ
Jπ1,ψ´1 pbqW 1

ˆˆ

b
1

˙˙

dˆb.

Let Vπ1 denote the underlying space of π1. Suppose that W 1 “ W 1
31

is the image of 31 P Vπ1 in

the Whittaker modelWpπ1, ψ´1q. For convenience, we shall write g “ z´1

ˆ

a
1

˙ˆ

1 u
1

˙

,

with z, a P Fˆ and u P F, then

W 1
31
p42gq

“ W 1
31

ˆ

42z´1

ˆ

a
1

˙ˆ

1 u
1

˙˙

“ ωπ1pzq´1W 1

π1
´´

1 u
1

¯¯

31

ˆˆ

1
a

˙˙

“ ωπ1pzq´1
ż

Fˆ
Jπ1,ψ´1pa´1bqW 1

π1
´´

1 u
1

¯¯

31

ˆˆ

b
1

˙˙

dˆb

“ ωπ1pzq´1
ż

Fˆ
Jπ1,ψ´1pa´1bqW 1

31

ˆˆ

b
1

˙ˆ

1 u
1

˙˙

dˆb

“ ωπ1pzq´1
ż

Fˆ
Jπ1,ψ´1pa´1bqW 1

31

ˆˆ

1 bu
1

˙ˆ

b
1

˙˙

dˆb

“ ωπ1pzq´1
ż

Fˆ
Jπ1,ψ´1pa´1bqψ´1

pbuqW 1
31

ˆˆ

b
1

˙˙

dˆb.
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Inserting this into the integral in (3.3.6) and interchanging the order of integrations, it

follows that the left hand side of (3.3.6) is equal to

ż

Fˆ

ż

A2N2

ψ´1
pbuqJπ,ψ

`

42g´1
42
˘

Jπ1,ψ´1pa´1bqωπ1pzq´1
} det g}s´ 1

2 dgW 1

ˆˆ

b
1

˙˙

dˆb.

(3.3.8)

Since W 1

ˆˆ

b
1

˙˙

assumes all compactly supported smooth functions on Fˆ, it follows

from comparing (3.3.7) and (3.3.8) that

γps, πb π1, ψqJπ1,ψ´1pbq

“

ż

A2N2

ψ´1
pbuqJπ,ψ

`

42g´1
42
˘

Jπ1,ψ´1pa´1bqωπ1pzq´1
} det g}s´ 1

2 dg,
(3.3.9)

for any b P Fˆ.

Remark 3.3.3. Regarding 4pbq “ W 1

ˆˆ

b
1

˙˙

as a test function, then (3.3.9) should be

interpreted as an identity in the sense of distributions.

Conclusion

We choose ψ “ ψ1 and note that, in view of (3.2.5), Jπ1,ψ´1 and Jπ1,ψ1 only differ by

ωπ1p´1q. Therefore, with the notations Jπ1 “ Jπ1,ψ1 and Jπ “ Jπ,ψ1 , the identity (3.3.9) reads

γps, πb π1, ψ1qJπ1pbq “
ż

A2N2

ψ´1
1 pbuq Jπ

`

42g´1
42
˘

Jπ1pa´1bqωπ1pzq´1
} det g}s´ 1

2 dg,

(3.3.10)

with g “ z´1

ˆ

a
1

˙ˆ

1 u
1

˙

. The measure on A2N2 is }a}´1dˆadˆzdu. Changing the

variable z to
a

|a|z, we rewrite (3.3.10) as

γps, πbπ1, ψ1qJπ1pbq “
ż

Fˆ
Fπ,π1pz, bqωπ1pzq´1

}z}1´2sdˆz,(3.3.11)

with definitions

(3.3.12) Fπ,π1pz, bq “
ż

Fˆ
Gπpz, a, bqJπ1pa´1bq}a}´1dˆa,
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(3.3.13) Gπpz, a, bq “
ż

F
ψ´1

1 pbuqJπ
`

42g´1
42
˘

du, g “
1

a

|a|z

ˆ

a
1

˙ˆ

1 u
1

˙

.

Firstly, let us consider (3.3.13). Formal application of the Fourier inversion to (3.3.13)

yields

(3.3.14) Jπ
`

42g´1
42
˘

“

ż

F
Gπpz, a, bqψ1pbuqdb.

Let g “
1

a

|a|z

ˆ

a
1

˙ˆ

1 u
1

˙

. For u ‰ 0, we have 42g´142 P X2 and

42g´1
42 “

b

|a|z
ˆ

1
´u a´1

˙

“

ˆ

1 ´u´1

1

˙

42

b

|a|z
ˆ

´u
pauq´1

˙ˆ

1 ´pauq´1

1

˙

.

Thus, in view of (3.3.1), we have

Jπ
`

42g´1
42
˘

“ ψ1

ˆˆ

1`
1
a

˙

1
u

˙

Jπ

ˆ

42

b

|a|z
ˆ

´u
pauq´1

˙˙

.

Note that if a “ ´1 then

Jπ
`

42g´1
42
˘

“ Jπ

ˆ

42p´zq
ˆ

u
u´1

˙˙

,

and if a “ 1 then

Jπ
`

42g´1
42
˘

“ ψ1

ˆ

2
u

˙

Jπ

ˆ

42z
ˆ

´u
u´1

˙˙

.

Therefore, it follows from (3.3.14) that

Jπ

ˆ

42z
ˆ

u
u´1

˙˙

“

ż

F
Gπp´z,´1, bqψ1pbuqdb,

Jπ

ˆ

42z
ˆ

´u
u´1

˙˙

“ ψ1

ˆ

´
2
u

˙
ż

F
Gπpz, 1, bqψ1pbuqdb.

(3.3.15)

Remark 3.3.4. We should see the Fourier inverse transforms in (3.3.15) from the viewpoint

of distributions.

Remark 3.3.5. Each diagonal matrix in A2 can be uniquely written as either z
ˆ

u
u´1

˙

or z
ˆ

´u
u´1

˙

, if we choose z, u P Rˆ such that z ą 0 in the case F “ R, or, if we choose

z, u P Cˆ such that arg z P r0, πq in the case F “ C.
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3.3.2. Bessel functions for GL3pRq

Recall that we defined the character ηpaq “ sgnpaq on Rˆ. We consider two pairs of

representations π and π1 b ηδ, with δ P Z{2Z. Since ωπ1bηδ “ ωπ1 “ ω´1
π1

and Jπ1bηδpaq “

sgnpaqδJπ1paq (see Lemma 2.A.2 and (3.2.2)), we obtain by replacing π1 by π1bηδ in (3.3.11,

3.3.12) that

γps, πbπ1 b ηδ, ψ1qJπ1pbq “
ż

Rˆ
Fδ
π,π1pz, bqωπ1pzq|z|1´2sdˆz,(3.3.16)

with

(3.3.17) Fδ
π,π1pz, bq “

ż

Rˆ
Gπpz, a, bqJπ1pa´1bq sgnpaqδ|a|´1dˆa.

We divide the integral in (3.3.17) according to the partition Rˆ “ R` Y p´R`q. Similar

treatments to the variables z and b will be seen later. More precisely, if we define

Fπ,π1, εpz, bq “
ż

R`
Gπ pz, p´qεa, bq Jπ1

`

p´q
εa´1b

˘

a´1dˆa, ε P Z{2Z,(3.3.18)

then we have

Fδ
π,π1pz, bq “

ÿ

εPZ{2Z

p´q
εδFπ,π1, εpz, bq,

and hence

Fπ,π1, εpz, bq “
1
2

ÿ

δPZ{2Z

p´q
εδFδ

π,π1pz, bq.(3.3.19)

Mellin inversion

Suppose that the representations π and π1 are parametrized by pµ, δq “ pµi, δiqi“1,2,3

and pµ1, δ1q “ pµ1j, δ
1
jq j“1,2 respectively. We set pµ2, δ2q “ pµi ` µ1j, δi ` δ1jq i“1,2,3

j“1,2
, and let

Jπbπ1 “ Jpµ2,δ2q be the fundamental Bessel function defined in §2.4 and Cδ “ Cpµ2,δ2`δe6q
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be the contour given in Definition 2.4.2. We recall from (2.4.13, 2.4.36, 2.A.9) that, for

ε P Z{2Z and y P R`,

(3.3.20) Jπbπ1pp´qεyq “
1

4πi

ÿ

δPZ{2Z

p´q
εδ

ż

Cδ

γp1´ s, πb π1 b ηδ, ψ1qy´sds.

Combining (3.3.16, 3.3.20), we have

Jπbπ1pp´qεyqJπ1pbq

“
1

4πi

ÿ

δPZ{2Z

p´q
εδ

ż

Cδ

ż

Rˆ
Fδ
π,π1pz, bqωπ1pzq|z|2s´1dˆz y´sds

“
1

4πi

ÿ

δPZ{2Z

ÿ

γPZ{2Z

p´q
εδωπ1p´1qγ

ż

Cδ

ż

R`
Fδ
π,π1 pp´q

γz, bq z2s´1dˆz y´sds

“
1

8πi

ÿ

δPZ{2Z

ÿ

γPZ{2Z

p´q
εδωπ1p´1qγ

ż

Cδ

ż

R`

1
?

z
Fδ
π,π1 pp´q

γ
?

z, bq zsdˆz y´sds,

where for the last equality we have changed the variable z to
?

z. Recall the Mellin inver-

sion

ϕpyq “
1

2πi

ż

C

ż

R`
ϕpzqzsdˆz y´sds, y P R`.

Formally, it follows that

Jπbπ1pp´qεyqJπ1pbq “
1
4

ÿ

δPZ{2Z

ÿ

γPZ{2Z

p´qεδωπ1p´1qγ
?

y
Fδ
π,π1 pp´q

γ?y, bq .

Now, in view of (3.3.19), we have

Jπbπ1pp´qεyqJπ1pbq “
1
2

ÿ

γPZ{2Z

ωπ1p´1qγ
?

y
Fπ,π1, ε pp´q

γ?y, bq ,

and, if we let z “
?

y and insert the definition (3.3.18) of Fπ,π1, εpz, bq, this identity may be

rewritten as

zJπbπ1
`

p´q
εz2

˘

Jπ1pbq “
ż

R`
Gπ,π1 pz, p´qεa, bq Jπ1

`

p´q
εa´1b

˘

a´1dˆa,(3.3.21)

with

Gπ,π1pz, a, bq “
1
2

ÿ

γPZ{2Z

ωπ1p´1qγGπ pp´q
γz, a, bq , a, b P Rˆ, z P R`.
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Inversion using the Bessel-Plancherel formula

We are now ready to apply the Bessel-Plancherel formula for SL2pRq. Henceforth, the

representation π1 will therefore be restricted to irreducible unitary tempered representations

of SL2pRq.

Firstly, let us consider those π1 with trivial central character. Then π1 is either a unitary

principal series π`pitq or a unitary discrete series πp2d ´ 1q.

If we define

G`π pz, a, bq “
1
2

ÿ

γPZ{2Z

Gπ pp´q
γz, a, bq , a, b P Rˆ, z P R`,

then Gπ,π1pz, a, bq “ G`π pz, a, bq and (3.3.21) reads

zJπbπ1
`

p´q
εz2

˘

Jπ1pbq “
ż

R`
G`π pz, p´q

εa, bqJπ1
`

p´q
εa´1b

˘

a´1dˆa.

Upon replacing b by p´qδb, with b P R` and δ P Z{2Z, changing the variable a to a´1b

and interchanging two sides of the identity, we arrive at
ż

R`
G`π

`

z, p´qεa´1b, p´qδb
˘

Jπ1
`

p´q
ε`δa

˘

da “ bzJπbπ1
`

p´q
εz2

˘

Jπ1
`

p´q
δb
˘

.(3.3.22)

Observe that Jπp2d´1q is identically zero on R` and so is Jπbπp2d´1q on ´R`. Therefore,

except for pε, δq “ p0, 1q, the right hand side of (3.3.22) vanishes if π1 “ πp2d ´ 1q, and

hence there is no contribution from discrete series.

We define

Θε,δ
π,`,itpz, bq “ bzJπbπ`pitq

`

p´q
εz2

˘

Jπ`pitq
`

p´q
δb
˘

,

Θπ, 2d´1pz, bq “ bzJπbπp2d´1q
`

z2
˘

Jπp2d´1qp´bq.

Formally, the Bessel-Plancherel formula (Corollary 3.2.10 (1)) implies the following ex-

pression of G`π pz, p´q
εa, p´qδbq

G`π
`

z, p´qεa, p´qδb
˘

“ Prin`π, ε,δpz, a
´1b, bq ` Disc`π, ε,δpz, a

´1b, bq,
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with the principal part

Prin`π, ε,δpz, a, bq “
1

4π2a2

ż

R
Θε,δ
π,`,itpz, bqJπ`pitq

`

p´q
ε`δa

˘

tanhpπtqtdt,

and the discrete part

Disc`π, ε,δpz, a, bq “

$

’

&

’

%

1
4π2a2

8
ÿ

d“1

p2d ´ 1qΘπ, 2d´1pz, bqJπp2d´1qp´aq, if pε, δq “ p0, 1q,

0, if pε, δq ‰ p0, 1q.

Secondly, we consider those π1 with ωπ1 “ η. Then π1 is either a unitary principal series

π´pitq or a unitary discrete series πp2dq. We shall proceed in the same way as above. We

define

G´π pz, a, bq “
1
2

ÿ

γPZ{2Z

p´q
γGπ pp´q

γz, a, bq , a, b P Rˆ, z P R`.

It follows from (3.3.21) that, for b P R` and δ P Z{2Z,

ż

R`
G´π

`

z, p´qεa´1b, p´qδb
˘

Jπ1
`

p´q
ε`δa

˘

da “ bzJπbπ1
`

p´q
εz2

˘

Jπ1
`

p´q
δb
˘

.(3.3.23)

Thus if we define

Θε,δ
π,´,itpz, bq “ bzJπbπ´pitq

`

p´q
εz2

˘

Jπ´pitq
`

p´q
δb
˘

,

Θπ, 2dpz, bq “ bzJπbπp2dq
`

z2
˘

Jπp2dqp´bq,

then it follows formally from the Bessel-Plancherel formula (Corollary 3.2.10 (2)) that

G´π
`

z, p´qεa, p´qδb
˘

“ Prin´π, ε,δpz, a
´1b, bq ` Disc´π, ε,δpz, a

´1b, bq,

with the principal part

Prin´π, ε,δpz, a, bq “
p´qε`δ

4π2a2

ż

R
Θε,δ
π,´,itpz, bqJπ`pitq

`

p´q
ε`δa

˘

cothpπtqtdt,

and the discrete part

Disc´π, ε,δpz, a, bq “

$

’

&

’

%

´
1

4π2a2

8
ÿ

d“1

2dΘπ, 2d´1pz, bqJπp2dqp´aq, if pε, δq “ p0, 1q,

0, if pε, δq ‰ p0, 1q.
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Finally, it is easily seen that

Gπ pp´q
γz, a, bq “

ÿ

˘

p˘q
γG˘π pz, a, bq.

Conclusion

For z, b P R`, we define

Kε,δ
π,˘,itpz, bq “ zJπbπ˘pitq

`

p´q
εz2

˘

Jπ˘pitq
`

p´q
δ`1b

˘

Jπ˘pitq
`

p´q
ε`δ`1b

˘

,

Kπ,mpz, bq “ zJπbπpmq
`

z2
˘

Jπpmqpbq2,

Prin`π, ε,δpz, bq “
1

4π2

ż

R
Kε,δ
π,`,itpz, bq tanhpπtqtdt,

Prin´π, ε,δpz, bq “
1

4π2

ż

R
Kε,δ
π,´,itpz, bq cothpπtqtdt,

Disc`π, ε,δpz, bq “

$

’

&

’

%

1
4π2

8
ÿ

d“1

p2d ´ 1qKπ, 2d´1pz, bq, if pε, δq “ p0, 1q,

0, if pε, δq ‰ p0, 1q,

Disc´π, ε,δpz, bq “

$

’

&

’

%

1
4π2

8
ÿ

d“1

2dKπ, 2dpz, bq, if pε, δq “ p0, 1q,

0, if pε, δq ‰ p0, 1q,

and

Gε
π

`

z, p´qδb
˘

“
ÿ

˘

p´q
δ
`

Prin˘π, ε,δpz, bq ` Disc˘π, ε,δpz, bq
˘

.

By the formulation of Gπpz, a, bq in the last section, with Jπpbq replaced by
a

|b|Jπp´bq

(see (3.2.2)), as well as the pair of identities in (3.3.15), we find that

Jπ

ˆ

42z
ˆ

u
u´1

˙˙

“

ż

R
G1
πpz, bqψ1pbuqdb,

Jπ

ˆ

42z
ˆ

´u
u´1

˙˙

“ ψ1

ˆ

´
2
u

˙

¨

ż

R
G0
πpz, bqψ1pbuqdb,

with z P R` and u P Rˆ.
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3.3.3. Bessel functions for GL3pCq

Recall that we defined the character ηpaq “ ras on Cˆ. We consider the sequence π1bηm

of representations of G2, with m P Z. Since ωπ1bηm “ ωπ1η
2m and Jπ1bηmpaq “ ras´mJπ1paq

(see Lemma 2.A.2 and (3.2.2)), we obtain by replacing π1 by π1bηm in (3.3.11, 3.3.12) that

γps, πbπ1 b ηm, ψ1qJπ1pbq “
ż

Cˆ
Fm
π,π1pz, bqωπ1pzq´1

}z}1´2sdˆz,(3.3.24)

with

Fm
π,π1pz, bq “

ż

Cˆ
Gπpz, a, bqJπ1pa´1bq

“

az´2
‰m
}a}´1dˆa

“

ż

Cˆ
Gπ

`

z, arzs2, b
˘

Jπ1
`

a´1
rzs´2b

˘

rasm }a}´1dˆa.
(3.3.25)

Let a “ yeiθ, with y P R` and θ P R{2πZ, and write the integral in the second line of

(3.3.25) in the polar coordinate. For this, we define

Fπ,π1
`

z, eiθ, b
˘

“ 2
ż

R`
Gπ

`

z, yeiθ
rzs2, b

˘

Jπ1
`

y´1e´iθ
rzs´2b

˘

y´2dˆy,(3.3.26)

then we have

Fm
π,π1pz, bq “

ż

R{2πZ
Fπ,π1

`

z, eiθ, b
˘

eimθdθ

and hence the Fourier series expansion

(3.3.27) Fπ,π1
`

z, eiθ, b
˘

“
1

2π

ÿ

mPZ

e´imθFm
π,π1pz, bq.

Mellin inversion

Suppose pµ,mq “ pµi,miqi“1,2,3 and pµ1,m1q “ pµ1j,m
1
jq j“1,2 are the representation pa-

rameters of π and π1 respectively. Set pµ2,m2q “ pµi`µ
1
j,mi`m1jq i“1,2,3

j“1,2
. Let Jπbπ1 “ Jpµ2,m2q

be the fundamental Bessel function defined in 2.4, and Cm “ Cpµ2,m2`me6q be the contour
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given in Definition 2.4.2. We recall from (2.4.22, 2.4.45, 2.A.17) that, for y P R` and

θ P R{2πZ,

(3.3.28) Jπbπ1
`

yeiθ
˘

“
1

4π2i

ÿ

mPZ

eimθ
ż

Cm

γp1´ s, πb π1 b ηm, ψ1qy´2sds.

Combining (3.3.24, 3.3.28), we have

Jπbπ1
`

yeiθ
˘

Jπ1pbq

“
1

4π2i

ÿ

mPZ

eimθ
ż

Cm

ż

Cˆ
Fm
π,π1pz, bqωπ1pzq´1

}z}2s´1dˆz y´2sds

“
1

2π2i

ÿ

mPZ

eimθ
ż

R{2πZ
ωπ1

`

e´iφ
˘

ż

Cm

ż

R`
Fm
π,π1

`

xeiφ, b
˘

x4s´2dˆx y´2sds dφ

“
1

4π2i

ÿ

mPZ

eimθ
ż

R{2πZ
ωπ1

`

e´iφ
˘

ż

Cm

ż

R`

1
x

Fm
π,π1

`?
xeiφ, b

˘

x2sdˆx y´2sds dφ,

where for the last equality we have changed the variable x to
?

x. Recall the Mellin inver-

sion

ϕpyq “
1
πi

ż

C

ż

R`
ϕpxqx2sdˆx y´2sds, y P R`.

Formally, it follows that

Jπbπ1
`

yeiθ
˘

Jπ1pbq “
1

4π

ÿ

mPZ

eimθ
ż

R{2πZ

ωπ1 pe´iφq

y
Fm
π,π1

`?
yeiφ, b

˘

dφ.

In view of (3.3.27), we have

Jπbπ1
`

yeiθ
˘

Jπ1pbq “
1
2

ż

R{2πZ

ωπ1 pe´iφq

y
Fπ,π1

`?
yeiφ, e´iθ, b

˘

dφ.

Let x “
?

y, ω “ 2φ, and insert the definition (3.3.26) of Fπ,π1 pz, eiθ, bq, this identity may

be rewritten as

x2Jπbπ1
`

x2eiθ
˘

Jπ1pbq “ 2
ż

R{2πZ

ż

R`
Gπ,π1

`

xeiθ, ye´iω, b
˘

Jπ1
`

y´1eipθ´ωqb
˘

y´2dωdˆy,

(3.3.29)

with

Gπ,π1
`

xeiθ, yeiω, b
˘

“
1
4
ωπ1

´

e´
1
2 iω
¯

ÿ

γPZ{2Z

ωπ1p´1qγGπ

´

p´q
γxe

1
2 iω, yeipω´θq, b

¯

.
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Inversion using the Bessel-Plancherel formula

Firstly, let π1 “ π`d pitq. We define

G`π
`

xeiθ, yeiω, b
˘

“
1
4

ÿ

γPZ{2Z

Gπ

´

p´q
γxe

1
2 iω, yeipω´θq, b

¯

.

then (3.3.29) reads

x2Jπbπ`d pitq
`

x2eiθ
˘

Jπ`d pitq
pbq “ 2

ż

R{2πZ

ż

R`
G`π

`

xeiθ, yeiω, b
˘

Jπ`d pitq
`

y´1eipθ´ωqb
˘

y´2dωdˆy.

Let b “ reiφ, with r P R` and φ P R{2πZ. We change the variables y and ω to ry´1 and

θ ` φ´ ω, respective. After interchanging two sides of the identity, we arrive at

2
ż

R{2πZ

ż

R`
G`π

`

xeiθ, ry´1eipθ`φ´ωq, reiφ
˘

Jπ`d pitq
`

yeiω
˘

ydωdy

“ r2x2Jπbπ`d pitq
`

x2eiθ
˘

Jπ`d pitq
`

reiφ
˘

.

(3.3.30)

We denote the right hand side of (3.3.30) by Θ`it,d pxeiθ, reiφq and define

Prin`π
`

xeiθ, yeiω, reiφ
˘

“
1

32π4y4

ÿ

dPZ

ż

R
Jπ`d pitq

`

yeiω
˘

Θ`it,d

`

xeiθ, reiφ
˘ `

d2
` 4t2

˘

dt.

Then, in a formal manner, the Bessel-Plancherel formula (Corollary 3.2.12) implies that

G`π
`

xeiθ, yeiω, reiφ
˘

“ Prin`π
`

xeiθ, ry´1eipθ`φ´ωq, reiφ
˘

.

Secondly, let π1 “ π´d pitq. We define

G´π
`

xeiθ, yeiω, b
˘

“
1
4

e´
1
2 iω

ÿ

γPZ{2Z

p´q
γGπ

´

p´q
γxe

1
2 iω, yeipω´θq, b

¯

.

Applying similar arguments as above, it follows from (3.3.29) that

2
ż

R{2πZ

ż

R`
G´π

`

xeiθ, ry´1eipθ`φ´ωq, reiφ
˘

Jπ´d pitq
`

yeiω
˘

ydωdy

“ r2x2Jπbπ´d pitq
`

x2eiθ
˘

Jπ´d pitq
`

reiφ
˘

.

(3.3.31)
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Again, we denote the right hand side of (3.3.31) by Θ´it,d pxeiθ, reiφq and define

Prin´π
`

xeiθ, yeiω, reiφ
˘

“
eiω

32π4y4

ÿ

dPZ

ż

R
Jπ´d pitq

`

yeiω
˘

Θ´it,d

`

xeiθ, reiφ
˘

´

`

d ` 1
2

˘2
` 4t2

¯

dt.

It follows formally from the Bessel-Plancherel formula that

G´π
`

xeiθ, yeiω, reiφ
˘

“ Prin´π
`

xeiθ, ry´1eipθ`φ´ωq, reiφ
˘

.

Finally, if we let ω P r0, 2πq, then

Gπ

´

p´q
γxe

1
2 iω, yeiθ, reiφ

¯

“ 2G`π
`

xeipω´θq, yeiω, reiφ
˘

` p´q
γ2e

1
2 iωG´π

`

xeipω´θq, yeiω, reiφ
˘

.

Conclusion

For z, b P Cˆ such that arg z P r0, πq, we define

Kε
π,˘,it,dpz, bq “ |z|

2Jπbπ˘d pitq
`

p´q
εz2

˘

Jπ˘d pitqp´bqJπ˘d pitq pp´q
εbq ,

Prin`π, εpz, bq “
1

32π4

ÿ

dPZ

ż

R
Kε
π,`,it,dpz, bq

`

d2
` 4t2

˘

dt,

Prin´π, εpz, bq “
1

32π4

ÿ

dPZ

ż

R
Kε
π,´,it,dpz, bq

´

`

d ` 1
2

˘2
` 4t2

¯

dt,

and

Gε
π pz, bq “ 2Prin`π, εpz, bq ` 2 rbzsPrin´π, εpz, bq.

Then we have the formulae

Jπ

ˆ

42z
ˆ

u
u´1

˙˙

“

ż

C
ψ1pbuqG1

πpz, bqdb,

Jπ

ˆ

42z
ˆ

´u
u´1

˙˙

“ ψ1

ˆ

´
2
u

˙

¨

ż

C
ψ1pbuqG0

πpz, bqdb,

with z, u P Cˆ such that arg z P r0, πq.
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