Consider all configurations where the White Queens are located in the follow\ ing two pengagons inside the unit square [0,1]x[0,1] [[0, 0], [a, a], [a, a + b - e], [a - e, a + b - e], [0, b], [0, 0]] and [[v0, 0], [v0 + c, 0], [v0 + c, c - 2 f + d], [v0 + c - f, c - f + d], [v0, d], [v0, 0]] then the Black Queens are located in the two pentagons [[v0, 1], [a, 1], [a, v0 + 2 c - 2 f + d - a], v0 v0 [---- + d/2 - b/2 + c - f, ---- + d/2 + b/2 + c - f], [v0, v0 + b], [v0, 1] 2 2 ] and [[1, 1], [v0 + c, v0 + c], [v0 + c, a + b - e], [a + b - e + v0 - d, a + b - e], [1, 1 + d - v0], [1, 1]] The area of the White Queens region is 2 2 e c 2 a b - ---- + c d + ---- - f 2 2 and the area of the Black Queens region is 2 2 3 c 7 v0 v0 b 2 -d + 2 v0 - a - a b - c d - ---- + 2 c f - ----- - ---- + a v0 - a + 2 a d 2 4 2 2 3 b d 3 b v0 d + 3 a c - 2 a f + ----- - ---- + 2 b c - b f + ---- - 2 v0 c + v0 f + f d 2 4 2 2 2 3 d e 2 - ---- + a e + b e - e d - e c - ---- - f 4 2 Optimally, these should be the same. Maximizing them under this constaint sh\ ows that the maximal area (for each of them) is 7/48 and it is achieved with the following configuration for White followed by Bl\ ack [[[[0, 0], [1/4, 1/4], [1/4, 1/2], [1/6, 1/2], [0, 1/3], [0, 0]], [[1/2, 0], [3/4, 0], [3/4, 1/4], [2/3, 1/3], [1/2, 1/6], [1/2, 0]]], [ [[1/2, 1], [1/4, 1], [1/4, 3/4], [1/3, 2/3], [1/2, 5/6], [1/2, 1]], [[1, 1], [3/4, 3/4], [3/4, 1/2], [5/6, 1/2], [1, 2/3], [1, 1]]]]