On the Sequence enuerating Monomer-Dimer Tilings of an , 2, by , 2 n, rectangle with Monomer Density, 1/2 Definition: Let s(n) be the number of Monomer-Dimer Tilings of an , 2, by , 2 n, rectangle with monomer density, 1/2 in other words, there are , 2 n, monomers and , n, dimers . The first, 40, terms are [4, 29, 234, 1982, 17266, 153190, 1376770, 12492245, 114187660, 1049883133, 9699127442, 89958450168, 837142603118, 7812580075084, 73090224445226, 685264230399038, 6436937423661874, 60566198366788934, 570733434816490002, 5385453494993166648, 50879254856162770278, 481215960411301946464, 4555938590521017527594, 43173507650928728396122, 409473681834988404005746, 3886647642539955768448190, 36918105787794853599345522, 350910215148472208648638832, 3337525855931869660050973966, 31761939199222935520931198124, 302431221897478581988762556682, 2881167714769772358226784808405, 27461179282353633657132636191620, 261858206520098121168998194083685, 2498033493426418424939090815809866, 23839933317681498984351847203841034, 227602496009742790996855400041479138, 2173729295836480637102448712389487998, 20767407121932693511913432103600399714, 198472349624607055189750926412824112813] n 9.676287316 The asymptotics of the sequence, numerically is, ------------ 1/2 n Theorem: Let infinity ----- \ n f(x) = ) s(n) x / ----- n = 0 Then f(x)=P satisfies the following algebraic equation 2 2 x 2 4 (23 x + 1) (x - 1) P --- + (1/27 + 10/9 x + 1/27 x ) P - ----------------------- 27 27 / 76 2 140 3 4\ 4 + |- 5/27 - -- x + 406/9 x - --- x + x | P = 0 \ 27 27 / and in Maple format 2/27*x+(1/27+10/9*x+1/27*x^2)*P-4/27*(23*x+1)*(x-1)*P^2+(-5/27-76/27*x+406/9*x^ 2-140/27*x^3+x^4)*P^4 = 0 The exact value of the connective constant, derived numerically above is 1 ---------------------------------------------------------- 4 3 2 RootOf(27 _Z - 140 _Z + 1218 _Z - 76 _Z - 5, index = 1) and in floating-point 9.6778602034987359177 This ends this article, that took, 2.124, to generate.