[1, 2, 2], vs. , [1, 1, 1] using WhoWon [true, .814343e-1, .5701] Using Findrec and Asy: 2 3 n + 1 (2 n - 3) N (7 n + 38) N 7 (n + 4) N gu := [[----------- - ----------- - ------------- + ------------ 128 (n + 7) 128 (n + 7) 128 (n + 7) 32 (n + 7) 4 5 6 7 8 (7 n + 24) N 5 (n + 5) N 5 (n + 4) N 3 N (2 n + 13) N 9 - ------------- - ------------ + ------------ + ---- - ------------- + N , 32 (n + 7) 16 (n + 7) 8 (n + 7) 4 n + 7 1/2 11 17 3 1/2 [1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 1/16, ---, ---], [--------, (1/n) 256 512 1/2 12 Pi 1/2 1/2 1/2 1/2 (1/n) 3207 (1/n) 505925 (1/n) 306293701 (1/n) + -------- - ------------- - --------------- - ------------------ 16 n 2 3 4 512 n 8192 n 524288 n 1/2 2 3 51153348561 (1/n) n + 1 3 N N (n + 13) N - --------------------]], [---------- + ---------- + ---- - ----------- 5 64 (n + 8) 64 (n + 8) 64 32 (n + 8) 8388608 n 4 5 6 7 (n + 6) N (n - 1) N (n + 7) N (n + 9) N 8 + ---------- - ---------- - ---------- - ---------- + N , 8 (n + 8) 8 (n + 8) 2 (n + 8) 2 (n + 8) 1/2 15 55 7 3 1/2 [1/2, 1/2, 3/8, 5/16, 9/32, 1/4, --, ---], [--------, (1/n) 64 256 1/2 12 Pi 1/2 1/2 1/2 1/2 39 (1/n) 441 (1/n) 198845 (1/n) 11291579 (1/n) + ----------- + ------------ + --------------- + ----------------- 112 n 2 3 4 512 n 57344 n 524288 n 1/2 1477779663 (1/n) + -------------------]]] 5 8388608 n 2 3 4 n + 1 (2 n - 3) N (7 n + 38) N 7 (n + 4) N (7 n + 24) N [[----------- - ----------- - ------------- + ------------ - ------------- 128 (n + 7) 128 (n + 7) 128 (n + 7) 32 (n + 7) 32 (n + 7) 5 6 7 8 5 (n + 5) N 5 (n + 4) N 3 N (2 n + 13) N 9 - ------------ + ------------ + ---- - ------------- + N , 16 (n + 7) 8 (n + 7) 4 n + 7 1/2 11 17 3 1/2 [1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 1/16, ---, ---], [--------, (1/n) 256 512 1/2 12 Pi 1/2 1/2 1/2 1/2 (1/n) 3207 (1/n) 505925 (1/n) 306293701 (1/n) + -------- - ------------- - --------------- - ------------------ 16 n 2 3 4 512 n 8192 n 524288 n 1/2 2 3 51153348561 (1/n) n + 1 3 N N (n + 13) N - --------------------]], [---------- + ---------- + ---- - ----------- 5 64 (n + 8) 64 (n + 8) 64 32 (n + 8) 8388608 n 4 5 6 7 (n + 6) N (n - 1) N (n + 7) N (n + 9) N 8 + ---------- - ---------- - ---------- - ---------- + N , 8 (n + 8) 8 (n + 8) 2 (n + 8) 2 (n + 8) 1/2 15 55 7 3 1/2 [1/2, 1/2, 3/8, 5/16, 9/32, 1/4, --, ---], [--------, (1/n) 64 256 1/2 12 Pi 1/2 1/2 1/2 1/2 39 (1/n) 441 (1/n) 198845 (1/n) 11291579 (1/n) + ----------- + ------------ + --------------- + ----------------- 112 n 2 3 4 512 n 57344 n 524288 n 1/2 1477779663 (1/n) + -------------------]]] 5 8388608 n [[1/128*(n+1)/(n+7)-1/128*(2*n-3)/(n+7)*N-1/128*(7*n+38)/(n+7)*N^2+7/32*(n+4)/( n+7)*N^3-1/32*(7*n+24)/(n+7)*N^4-5/16*(n+5)/(n+7)*N^5+5/8*(n+4)/(n+7)*N^6+3/4*N ^7-(2*n+13)/(n+7)*N^8+N^9, [1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 1/16, 11/256, 17/ 512], [1/12*3^(1/2)/Pi^(1/2), (1/n)^(1/2)+1/16/n*(1/n)^(1/2)-3207/512/n^2*(1/n) ^(1/2)-505925/8192/n^3*(1/n)^(1/2)-306293701/524288/n^4*(1/n)^(1/2)-51153348561 /8388608/n^5*(1/n)^(1/2)]], [1/64*(n+1)/(n+8)+3/64/(n+8)*N+1/64*N^2-1/32*(n+13) /(n+8)*N^3+1/8*(n+6)/(n+8)*N^4-1/8*(n-1)/(n+8)*N^5-1/2*(n+7)/(n+8)*N^6-1/2*(n+9 )/(n+8)*N^7+N^8, [1/2, 1/2, 3/8, 5/16, 9/32, 1/4, 15/64, 55/256], [7/12*3^(1/2) /Pi^(1/2), (1/n)^(1/2)+39/112/n*(1/n)^(1/2)+441/512/n^2*(1/n)^(1/2)+198845/ 57344/n^3*(1/n)^(1/2)+11291579/524288/n^4*(1/n)^(1/2)+1477779663/8388608/n^5*(1 /n)^(1/2)]]] -------------------------------- This took, 24.694, seconds.