[1, 1, 2], vs. , [1, 1, 1] using WhoWon [true, .9975e-1, .6982] Using Findrec and Asy: 2 3 4 n + 1 (4 n + 7) N (3 n + 8) N (5 n + 18) N (n + 4) N gu := [[- ---------- - ----------- + ------------ + ------------- - ---------- 64 (n + 6) 64 (n + 6) 64 (n + 6) 32 (n + 6) 4 (n + 6) 5 7 5 (n + 4) N (3 n + 16) N 8 + ------------ - ------------- + N , 8 (n + 6) 2 (n + 6) 1/2 23 39 2 1/2 [1/2, 1/2, 3/8, 5/16, 1/4, 7/32, ---, ---], [-------, (1/n) 128 256 1/2 8 Pi 1/2 1/2 1/2 1/2 53 (1/n) 16417 (1/n) 5001455 (1/n) 9178962219 (1/n) + ----------- + -------------- + ---------------- + ------------------- 32 n 2 3 4 2048 n 65536 n 8388608 n 1/2 2 5588292140907 (1/n) n + 1 (4 n + 9) N (5 n + 28) N + ----------------------]], [---------- + ----------- + ------------- 5 64 (8 + n) 64 (8 + n) 64 (8 + n) 268435456 n 3 4 5 6 7 3 (n + 5) N (n + 6) N (n - 1) N (n + 7) N (n + 9) N 8 + ------------ - ---------- - ---------- - ---------- - ---------- + N , 32 (8 + n) 8 (8 + n) 8 (8 + n) 2 (8 + n) 2 (8 + n) 190 cosh(---) 1/2 11 21 19 281 1/2 211 (1/n) [1/2, 1/2, 3/8, 3/8, --, --, --, 9/32], [---------, (1/n) + ------------ 32 64 64 1/2 224 n Pi 1/2 1/2 1/2 77863 (1/n) 24843625 (1/n) 6608533419 (1/n) + -------------- + ----------------- + ------------------- 2 3 4 14336 n 458752 n 8388608 n 1/2 4055389443147 (1/n) + ----------------------]]] 5 268435456 n 2 3 4 n + 1 (4 n + 7) N (3 n + 8) N (5 n + 18) N (n + 4) N [[- ---------- - ----------- + ------------ + ------------- - ---------- 64 (n + 6) 64 (n + 6) 64 (n + 6) 32 (n + 6) 4 (n + 6) 5 7 5 (n + 4) N (3 n + 16) N 8 + ------------ - ------------- + N , 8 (n + 6) 2 (n + 6) 1/2 23 39 2 1/2 [1/2, 1/2, 3/8, 5/16, 1/4, 7/32, ---, ---], [-------, (1/n) 128 256 1/2 8 Pi 1/2 1/2 1/2 1/2 53 (1/n) 16417 (1/n) 5001455 (1/n) 9178962219 (1/n) + ----------- + -------------- + ---------------- + ------------------- 32 n 2 3 4 2048 n 65536 n 8388608 n 1/2 2 5588292140907 (1/n) n + 1 (4 n + 9) N (5 n + 28) N + ----------------------]], [---------- + ----------- + ------------- 5 64 (8 + n) 64 (8 + n) 64 (8 + n) 268435456 n 3 4 5 6 7 3 (n + 5) N (n + 6) N (n - 1) N (n + 7) N (n + 9) N 8 + ------------ - ---------- - ---------- - ---------- - ---------- + N , 32 (8 + n) 8 (8 + n) 8 (8 + n) 2 (8 + n) 2 (8 + n) 190 cosh(---) 1/2 11 21 19 281 1/2 211 (1/n) [1/2, 1/2, 3/8, 3/8, --, --, --, 9/32], [---------, (1/n) + ------------ 32 64 64 1/2 224 n Pi 1/2 1/2 1/2 77863 (1/n) 24843625 (1/n) 6608533419 (1/n) + -------------- + ----------------- + ------------------- 2 3 4 14336 n 458752 n 8388608 n 1/2 4055389443147 (1/n) + ----------------------]]] 5 268435456 n [[-1/64*(n+1)/(n+6)-1/64*(4*n+7)/(n+6)*N+1/64*(3*n+8)/(n+6)*N^2+1/32*(5*n+18)/( n+6)*N^3-1/4*(n+4)/(n+6)*N^4+5/8*(n+4)/(n+6)*N^5-1/2*(3*n+16)/(n+6)*N^7+N^8, [1 /2, 1/2, 3/8, 5/16, 1/4, 7/32, 23/128, 39/256], [1/8*2^(1/2)/Pi^(1/2), (1/n)^(1 /2)+53/32/n*(1/n)^(1/2)+16417/2048/n^2*(1/n)^(1/2)+5001455/65536/n^3*(1/n)^(1/2 )+9178962219/8388608/n^4*(1/n)^(1/2)+5588292140907/268435456/n^5*(1/n)^(1/2)]], [1/64*(n+1)/(8+n)+1/64*(4*n+9)/(8+n)*N+1/64*(5*n+28)/(8+n)*N^2+3/32*(n+5)/(8+n) *N^3-1/8*(n+6)/(8+n)*N^4-1/8*(n-1)/(8+n)*N^5-1/2*(n+7)/(8+n)*N^6-1/2*(n+9)/(8+n )*N^7+N^8, [1/2, 1/2, 3/8, 3/8, 11/32, 21/64, 19/64, 9/32], [cosh(190/281)/Pi^( 1/2), (1/n)^(1/2)+211/224/n*(1/n)^(1/2)+77863/14336/n^2*(1/n)^(1/2)+24843625/ 458752/n^3*(1/n)^(1/2)+6608533419/8388608/n^4*(1/n)^(1/2)+4055389443147/ 268435456/n^5*(1/n)^(1/2)]]] -------------------------------- This took, 20.741, seconds.