The linear recurrence operator annihilating the series of coefficients of th\ e Onsager series is 3 3 2 n (4 n + 9) 2 (n + 1) (16 n + 71 n + 95 n + 35) N - ------------------- + --------------------------------------- 3 3 (4 n + 15) (n + 6) (4 n + 15) (n + 6) 3 2 2 (n + 2) (52 n + 367 n + 952 n + 888) N - ----------------------------------------- 3 (4 n + 15) (n + 6) 2 3 4 (n + 3) (9 n + 54 n + 76) N + ------------------------------- 3 (4 n + 15) (n + 6) 3 2 4 (n + 4) (52 n + 569 n + 2164 n + 2844) N + ------------------------------------------- 3 (4 n + 15) (n + 6) 3 2 5 2 (n + 5) (16 n + 217 n + 971 n + 1435) N 6 - -------------------------------------------- + N 3 (4 n + 15) (n + 6) and in Maple notation -n^3*(4*n+9)/(4*n+15)/(n+6)^3+2*(n+1)*(16*n^3+71*n^2+95*n+35)/(4*n+15)/(n+6)^3* N-(n+2)*(52*n^3+367*n^2+952*n+888)/(4*n+15)/(n+6)^3*N^2+4*(n+3)*(9*n^2+54*n+76) /(4*n+15)/(n+6)^3*N^3+(n+4)*(52*n^3+569*n^2+2164*n+2844)/(4*n+15)/(n+6)^3*N^4-2 *(n+5)*(16*n^3+217*n^2+971*n+1435)/(4*n+15)/(n+6)^3*N^5+N^6