536 * -Sclence, being human enquiry, can.-hear no answer except an answer

couched somehow in human tones. Primitive man stood in the mountains
and shouted against a cliff; the echo brought back his own voice, and he
believed in a disembodied spirit. The scientist of to-day stands counting
out loud in the face of the unknown. Numbers come back to him—and
he believes in the Great Mathematician. —RIcHARD HUGHES

exist a rational number @, which is less and a rational number a, W. )
is greater than every number of the interval A, then A is called a finit
interval; there then exist infinitely many numbers in the same co
as g, and infinitely many in the same condition as a,; the whole dom:
R breaks up into three parts 4;, 4, A, and there enter two per fec
definite rational or irrational numbers a,, a, which may be called res
tively the lower and upper (or the less and greater) limits of the in er
the lower limit a, is determined by the cut for which the system A4 f
the first class and the upper a, by the cut for which the system
forms the second class. Of every rational or irrational number «
,cﬁ.imms ay and a, it may be said that it lies within the interval A. I
numbers of an interval 4 are also numbers of an interval B, the
called a portion of B. A ,

Still lengthier considerations seem to loom up when we attempt to
the numerous theorems of the arithmetic of rational numbers (as,
the theorem (a + b)c = ac + bc) to any real numbers. This, howe
not the case. It is easy to see that it all reduces to showing that the
metic operations possess a certain continuity. What I mean by this
ment may be expressed in the form of a general theorem: v :

“If the number X is the result of an operation performed on the n
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Definition of Number
By BERTRAND RUSSELL

. [Fora commentary on, and an autobiographical article by, Bertrand Russell, see
pages 377-391.]

. 'THE question. “What is a number?” is one which has been often asked,

but has only been correctly answered in our own time. The answer was
.given by Frege in 1884, in his QE:&S%.«: der Arithmetik.* Although
this book is quite short, not difficult, and of the very highest importance,
it attracted almost no attention, and the definition of number which it
contains remained practically unknown until it was rediscovered by the
present author in 1901.

a, B, v, . . . and X lies within the interval L, then intervals A, B, . In seeking a definition of number, the first thing to be clear about is
can be taken within which lie the numbers a, B, v, . . . such what we may call the grammar of our inquiry. Many philosophers, when
result of the same operation in which the numbers a, 8, v, . ‘m:».wa.mbm H.o define E.:b@mﬁ are really setting to work to define plurality,
replaced by arbitrary numbers of the intervals 4, B, C, . . . is alw. Wwhich is quite a different thing. Number is what is characteristic of num-

bers, as man is what is characteristic of men. A plurality is not an instance
.-of number, but of some particular number. A trio of men, for example,
is an instance of the number 3, and the number 3 is an instance of num-
ber; but the trio is not an instance of number. This ‘point may seem -
elementary and scarcely worth mentioning; vet it has proved too subtle
for the philosophers, with few exceptions,

- A particular number is not identical with any collection of terms having
that number: the number 3 is not identical with the trio consisting of
“‘Brown, Jones, and Robinson. The number 3 is something which all trios
have in common, and which distinguishes them from other collections.
" A number is something that characterises certain collections, namely,

those that have that number. - 4

Instead of speaking of a “collection,” we shall as a rule speak of a
class,” or sometimes a “set.” Other words used in mathematics for the
same thing are “aggregate” and “manifold.” We shall have much to say
“later on about classes. For the present, we will say as little as possible.
" But there are some remarks that must be made immediately.

A class or collection may be defined in two ways that at first sight

1 The same answer is given more fully and with more a?&owaoa in his Grund-
gesetze der Arithmetik, vol. i, 1893.

number lying within the interval L.” The forbidding clumsiness, ho ,
which marks the statement of such a theorem convinces us that s
thing must be brought in as an aid to expression; this is, in fact, atta
in the most satisfactory way by introducing the ideas of variable ma;
tudes, functions, limiting values, and it would be best to base the d
tions of even the simplest arithmetic operations upon these ideas, 2 ma
which, however, cannot be carried further here.
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seem quite distinct. We may enumerate its members, as when we §
“The collection I mean is Brown, Jones, and Robinson.” Or we may mé€ !
tion a defining property, as when we speak of “mankind” or “the irihab
jtants of London.” The definition which enumerates is called a definition
by “extension,” and the one which mentions a defining property is om=0,
a definition by “intension.” Of these two kinds of definition, the one b
intension is logically more fundamental. This is shown by two considér
tions: (1) that the extensional definition can always be reduced to an
intensional one; (2) that the intensional one often cannot even theore
cally be reduced to the extensional one. Each of these pdints needs
word of explanation. , . .
(1) Brown, Jones, and Robinson all of them possess a certain prope
which is possessed by nothing else in the whole universe, namely, ti
property of being either Brown or Jones or Robinson. This property ca
be used to give a definition by intension of the class consisting of Brow
and Jones and Robinson. Consider such a formula as “x is Brown. o
is Jones or x is Robinson.” This formula will be true for just three x’
namely, Brown and Jones and Robinson. In this respect it RmmBEm.
cubic equation with its three roots. It may be taken as assigning a pro;
erty common to the members of the class consisting of these three
and peculiar to them. A similar treatment can obviously be applied ,wo
other class given in extension.
(2) It is obvious that in practice we can often know a great deal ab
a class without being able to enumerate its members. No one man coy
actually enumerate all men, or even all the inhabitants of London, ye a
great deal is known about each of these classes. This is enough to sho
that definition by extension is not necessary to knowledge about a clas
But when we come to consider infinite classes, we find that enumeration
is not even theoretically possible for beings who only live for a finite aim
We cannot enumerate all the natural numbers: they are 0, 1, 2; 3, and s !
on. At some point we must content ourselves with “and so on.” We

cannot enumerate all fractions or all irrational numbers, or all of mE\
other infinite collection. Thus our knowledge in regard to all such oo:wn.- :

tions can only.be derived from a definition by intension.

These remarks are relevant, when we are seeking the definition oﬂ.,
number, in three different ways. In the first place, numbers themselves

form an infinite collection, and cannot therefore be defined by enumera-
tion. In the second place, the collections having a given number of terms
themselves presumably form an infinite collection: it is to be presumed,

for example, that there are an infinite collection of trios in the world,"

for .if this were not the case the total number of things in the world
would be finite, which, though possible, seems unlikely. In the third place,
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wish to define “number” in such a way that infinite numbers may be
sssible; thus we must be able to speak of the number of terms in an
finite collection, and such a collection must be defined by intension, i.e.
property common to all its members and peculiar to them.

Or ‘many purposes, a class and a defining characteristic. of it are prac-
sally interchangeable. The vital difference between the two consists in
he fact that there is only one class having a given set of members,
ereas there are always many different characteristics by which a given

‘may be defined. Men may be defined as featherless bipeds, or as

onal animals, or (more correctly) by the traits by which Swift deline-
cs' the' Yahoos. Tt is this fact that a defining characteristic is never
1que Which makes classes useful; otherwise we could be content with
ithe properties common and peculiar to their members. Any one of these
Toperties can be used in place of the class whenever uniqueness is not
~fmiportant. :

, Returning now to the definition of number, it is clear that number is a
way of bringing together certain collections, namely, those that have a
given number of terms. We can suppose all couples in one bundle, all
trios in another, and so on. In this way we obtain various bundles of
collections, each bundle consisting of all the collections that have a cer-
tain number of terms. Each bundle is a class whose members are collec-
tions, i.e. classes; thus each is a class of classes. The bundle consisting of
all couples, for example, is a class of classes: each couple is a class with
* two members, and the whole bundle of couples is a class with an infinite
number of members, each of which is a class of two members.

“How shall we decide whether two collections are to belong to the same
bundle? The answer that suggests itself is: “Find out how many members
«each has, and put them in the same bundle if they have the same number
“of ‘members.” But this presupposes that we have defined numbers, and
that we knew how to discover how many terms a collection has. We are

80 used to .the operation of counting that such-a presupposition might
easily ‘pass unnoticed. In ‘fact, ‘however, counting, though familiar, is
logically a very complex operation; moreover it is only available, as a
means of discovering how many terms a collection has, when the collec-
tion is finite. Our definition of number must not assume in advance that
all numbers are finite; and we cannot in any case, without a vicious circle, -
use ‘counting to define numbers, because numbers are used in. counting.
We need, therefore, some other method of deciding when two collections
have the same number of terms. ‘

In actual fact, it is simpler logically to find out whether two collections
have the same number of terms than it is to define what that number is.

An illustration will make this clear. If there were no polygamy or polyan-



540 wwl_.nzm N:.amz ion ,,& Number 541

dry anywhere in the world, it is clear that the number of husbands tiving
at any moment would be exactly the same as the number of wives. We m.o ” Gnverse domain.
not need a census to assure us of this, b.oH do we-need to know what is easy to prove (1) that every class is similar to itself, (2) that if a
the actual HE.BUQ. of rcwg.umm and of wives. We know the ncB‘cwH must s « is similar to a class 8, then g8 is similar to «, (3) that if « is similar
be the same in both collections, @wowwmo each husband has wnm.cﬁmn mb.a and B to v, then a is similar to . A relation is said to be reflexive
each wife has one husband. The relation of husband and wife is what is .

calied Honw.oum + when. if x has the rel w R ses the second, and transitive when it possesses the third. It is obvious
- Y o: . . . . ., . .
A relation is said to be “one-one” when, if x has the relation in questi a relation which is symmetrical and transitive must be reflexive

to y, no other term x” has the same relation to y, and x does not have Ew. ghout its domain. Relations which possess these properties are an
same relation to any term y’ other than y. When only the first of these
two conditions is fulfilled, the relation is called “one-many”; when only m of relations.
the second is fulfilled, it is called “many-one.” It should be observed that
the number 1 is not used in these definitions. :

In Christian countries, the relation of husband to wife is one-one; in
Mahometan countries it is one-many; in Tibet it is many-one. The relation
of father to son is one-many; that of son to father is many-one, but that
of eldest son to father is one-one. If n is any number, the relation of
n to n + 1 is one-one; so is the relation of n to 2n or to-3n. When we ar¢
considering only positive numbers, the relation of n to n? is one-one; but
when negative numbers are admitted, it becomes two-one, since n and®
—n have the same square. These instances should suffice to make clé
the notions of one-one, one-many, and many-one relations, which play
great part in the principles of mathematics, not only in relation to the
definition of numbers, but in many other connections.

Two classes are said to be “similar” when there is a-one-one relation;
which correlates the terms of the one class each with one term of the
other class, in the same manner in which the relation of marriage corr
lates husbands with wives. A few preliminary definitions will help us:to
state this definition more precisely. The class of those terms that have'a
given relation to something or other is called the domain of that relatiori
thus fathers are the domain of the relation of father to child, husbands
are the domain of the relation of husband to wife, wives are the domai
of the relation of wife to husband, and husbands and wives together aré’
the domain of the relation of marriage. The relation of wife to husband
is called the converse of the relation of husband to wife. Similarly less:
is the converse of greater, later'is the converse of earlier, and so om:
Generally, the converse of a given relation is that relation which holds
between y and x whenever the given relation holds between x and y. The
converse domain of a relation is the domain of its converse: thus the’
class of wives is the converse domain of the relation of husband to wife.
We may now state our definition of similarity as follows:—

One class is said to be “similar” to another when there is a one-one

It'is obvious to common sense that two finite classes have the same
mber of-terms if they are similar, but not otherwise. The act of count-
consists in establishing a one-one correlation between the set of
bjects counted and the natural numbers (excluding 0) that are used up
‘the process. Accordingly common sense concludes that there are as
many objects in the set to be counted as there are numbers up to the last
ber used in the counting. And we also know that, so long as we
ommsw ourselves to finite numbers, there are just » numbers from 1 up
. Hence it follows that the last number used. in counting a collection
he number of terms in the collection, provided the collection is finite.
wc:g result, besides being only applicable to finite collections, depends
tipon and assumes the fact that two classes which are similar have the
e number of terms; for what we do when we count (say) 10 objects
to show that the set of these objects is similar to the set of numbers
t0'10. The notion of similarity is logically presupposed in the operation
of ‘counting, and is logically simpler though less familiar. In counting, it is
‘essary to take the objects counted in a certain order, as first, second,
tird, etc., but order is not of the essence of number: it is an irrelevant
addition, an unnecessary complication from the logical point of view. The
nétion of similarity does not demand an order: for example, we saw that
e number of husbands is the same as the number of wives, without
having to establish an order of precedence among them. The notion of
ilarity also does not require that the classes which are similar should
. b¢ finite. Take, for mxmn%_m the natural numbers (excluding 0) on the
one hand, and the fractions which have 1 for their numerator on Sm
other hand: it is obvious that we can correlate 2 with %, 3 with 14, and
.mo on, thus proving that the two classes are similar.

_<Sw may thus use the notion of “similarity” to decide when two collec-
_tions are to belong to the same bundle, in the sense in which we were
asking this question earlier in this chapter. We want to make one bundle
containing the class that has no members: this will be for the number 0.
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nitions of this sort are in fact very common. The class of fathers,
or example, would have to be defined by first defining what it is to be
father of somebody; then the class of fathers will be all those who
‘modpmco%,m father. Similarly if we want to define square numbers
say), we must first define what we mean by saying that one number is
-square of another, and then define square numbers as those that
he squares of other numbers. This kind of procedure is very common,
d it is important to realise that it is legitimate and even often necessary.

Then we want a bundle of all the classes that have one member: th
be for the number 1. Then, for the number 2, we want a bundle ‘consis
of all couples; then one of all trios; and so on, Given any collectiof;
can define the bundle it is to belong to as being the class of all
collections that are “similar” to it. It is very easy to see that if
example) a collection has three members, the class of all those collect:
that are similar to it will be the class of trios. And whatever number
terms a collection may have, those collections that are “similar”
will have the same number of terms. We may take this as a definitiol
“having the same number of terms.” It is obvious that it gives re§
conformable to usage so long as we confine ourselves to finite collect
So far we have not suggested anything in the slightest degree parade:
ical. But when we come to the actual definition of numbers we. can
avoid what must at first sight seem a paradox, though this impression
soon wear off. We naturally think that the class-of couples (for examy
is something different from the number 2. But there.is no doubt
the class of couples: it is indubitable and not difficult to define, wh
the number 2, in any other sense, is a metaphysical entity about w
. we can never feel sure that it exists or that we have tracked it down.
therefore more prudent to content ourselves with the class of cou
which we are sure of, than to hunt for a problematical number 2 W
must always remain elusive. Accordingly we set up the follew
definition:— S
The number of a class is the class of all those classes that are sim
to it. , : ) . E
Thus the number of a couple will be the class of all couples. In: fa
the class of all couples will be the number 2, according to our definition
At the expense of a little oddity, this definition secures definiteness an
indubitableness; and it is not difficult to prove that numbers so define ,
have all the properties that we expect numbers to have.
We may now go on to define numbers in general as any one of the
bundles into which similarity collects classes. A number will be a set ¢
classes such as that any two are similar to each other, and none outside
the set are similar to any inside the set. In other words, a number (in
general) is any collection which is the number of one of its members; o1
more simply still:
A E,:Swmw is anything which is the number of some class.
Such a definition has a verbal appearance of being circular, but in fact
it is not. We define “the number of a given class” without using the notion
of number in general; therefore we may define number in general in
terms of “the number of a given class” without committing any logical
error.




