Quiz # 7 for Dr. Z.'s Number Theory | NAME: (print!) | |---| | E-MAIL ADDRESS: (print!) | | 1. (3 points) Using the formula, find $\phi(3003)$. | | | | | | | | | | | | 2. (3 points) State and prove Euler's Classical Formula for the sum-over-divisors of n of ϕ . | | | | | | | | | | | | 3. (4 points) For the following prime p and q (let $n=pq$) public key e , and encrypted message c | | (i) Check that e is an OK key, i.e. that it is coprime to $\phi(n)$. | | (ii) Find the deciphering key, d , such that $de \equiv 1 \pmod{\phi(n)}$ | | (iii) Suppose Alice sent you the encrypted message c . Check that this is an OK message (coprime to n), and if it is find her original message?, m | | p=3 , $q=5$, $e=5$, $c=7$ | | |