Quiz # 7 for Dr. Z.’s Number Theory Course for Nov. 7, 2013

NAME: (print!) ______________________________________

E-MAIL ADDRESS: (print!) ________________________________

1. (3 points) Using the formula, find $\phi(3003)$.

2. (3 points) State and prove Euler’s Classical Formula for the sum-over-divisors of n of ϕ.

3. (4 points) For the following prime p and q (let $n = pq$) public key e, and encrypted message c
 (i) Check that e is an OK key, i.e. that it is coprime to $\phi(n)$.
 (ii) Find the deciphering key, d, such that $de \equiv 1 \pmod{\phi(n)}$
 (iii) Suppose Alice sent you the encrypted message c. Check that this is an OK message (coprime to n), and if it is find her original message?, m

 $p = 3 \quad , \quad q = 5 \quad , \quad e = 5 \quad , \quad c = 7$