1. (i) (2 pts.) Define $\sigma_{2}(n)$ (ii) (2 pts.) State the formula for $\sigma_{2}(n)$ in terms of the expression of n as a product of prime powers (iii) (2 pts.) Verify it for $n=15$ by using the definition and the formula

Sol. to 1:
(i)

$$
\sigma_{2}(n):=\sum_{d \mid n} d^{2}
$$

(ii) If

$$
n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

is the factorization of n into products of prime powers guaranteed by the Fundamental Theorem of Arithmetic, then

$$
\sigma_{2}(n)=\prod_{i=1}^{k}\left(1+p_{i}^{2}+p_{i}^{4}+\ldots+p_{i}^{2 \alpha_{i}}\right)
$$

Another way (summing the geometric series) is

$$
\sigma_{2}(n)=\prod_{i=1}^{k} \frac{p_{i}^{2 \alpha_{i}+2}-1}{p_{i}^{2}-1}
$$

(iii) Since

$$
\operatorname{Div}(15)=\{1,3,5,15\}
$$

From the definition

$$
\sigma_{2}(15)=1^{2}+3^{2}+5^{2}+15^{2}=1+9+25+225=260
$$

From the formula, since $15=3^{1} \cdot 5^{1}$,

$$
\sigma_{2}(15)=\left(1+3^{2}\right) \cdot\left(1+5^{2}\right)=10 \cdot 26=260
$$

Yea!
2. (4 pts.) Prove that if p is a prime, and $2^{p}-1$ is also a prime, then

$$
2^{p-1} \cdot\left(2^{p}-1\right)
$$

is a perfect number.

Sol. of 2: Since both 2 and $2^{p}-1$ are prime, it follows from the formula for $\sigma(n)$, that

$$
\sigma\left(2^{p-1} \cdot\left(2^{p}-1\right)\right)=\left(1+2+\ldots+2^{p-1}\right) \cdot\left(1+\left(2^{p}-1\right)\right)
$$

By the famous geometric series formula

$$
1+q+\ldots+q^{N}=\frac{q^{N+1}-1}{q-1}
$$

with $q=2$ and $N=p-1$ we have

$$
1+2+\ldots+2^{p-1}=\frac{2^{p-1+1}-1}{2-1}=2^{p}-1
$$

By the famous theorem

$$
1+(N-1)=N
$$

applied to $N=2^{p}-1$, we have

$$
1+\left(2^{p}-1\right)=2^{p}
$$

Going back above we have

$$
\sigma\left(2^{p-1} \cdot\left(2^{p}-1\right)\right)=\left(2^{p}-1\right) \cdot\left(2^{p}\right)=2 \cdot\left(2^{p-1}\left(2^{p}-1\right)\right)
$$

Hence $n=2^{p-1}\left(2^{p}-1\right)$ satisfies the condition

$$
\sigma(n)=2 n
$$

that this means that n is perfect. QED.

