NAME: (print!) \qquad

E-MAIL ADDRESS: (print!)

1. (3 points) Using the formula, find $\phi(3003)$.
2. (3 points) State and prove Euler's Classical Formula for the sum-over-divisors of n of ϕ.
3. (4 points) For the following prime p and q (let $n=p q$) public key e, and encrypted message c
(i) Check that e is an OK key, i.e. that it is coprime to $\phi(n)$.
(ii) Find the deciphering key, d, such that $d e \equiv 1(\bmod \phi(n))$
(iii) Suppose Alice sent you the encrypted message c. Check that this is an OK message (coprime to n), and if it is find her original message?, m
$p=3 \quad, \quad q=5 \quad, \quad e=5 \quad, \quad c=7$
