Solutiosn to Quiz \# 6 for Dr. Z.'s Number Theory Course for Oct. 31,, 2013

Version of Nov. 1, 2013 (a quicker way to do \#1)

1. (4 points) Illustrate the proof of Wilson's theorem for $p=19$.

Sol. to 1: We have to "pair up" all the 16 integers in

$$
\{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17\}
$$

into pairs that multiply together to 1 modulo 19. Let's find 2 a room-mate

$$
\left[2^{-1}\right]_{19}=10
$$

So $2 \cdot 10 \equiv 1 \quad(\bmod 19)$ so $\{2,10\}$ are happy roomates. But this implies immediatedly that $\{-2,-10\}$, alias $\{17,9\}$ are roomates too! We cross these four integers out, leaving the 12 integers

$$
\{3,4,5,6,7,8,11,12,13,14,15,16\}
$$

Let's find 3 a room-mate

$$
\left[3^{-1}\right]_{19}=13
$$

So $3 \cdot 13 \equiv 1 \quad(\bmod 19)$, so $\{3,13\}$ are happy roomates. But this implies immediatedly that $\{-3,-13\}$, alias $\{16,6\}$ are also roomates! We cross them out, leaving the 8 integers

$$
\{4,5,7,8,11,12,14,15\}
$$

Let's find 4 a room-mate

$$
\left[4^{-1}\right]_{19}=5
$$

So $4 \cdot 5 \equiv 1(\bmod 19)$, so $\{4,5\}$ are happy roomates. But this implies immediatedly that $\{-4,-5\}$, alias $\{15,14\}$ are also roomates! We cross these four integers out, leaving the 4 integers

$$
\{7,8,11,12\}
$$

Let's find 7 a room-mate

$$
\left[7^{-1}\right]_{19}=11
$$

So $7 \cdot 11 \equiv 1 \quad(\bmod 19)$, so $\{7,11\}$ are happy roomates. But this implies immediatedly that $\{-7,-11\}$, alias $\{12,8\}$ are also roomates! And we are done with the room assignments! Of course $1(18)=-1 \quad(\bmod 19)$. So using the commutativity of multiplication

$$
\begin{gathered}
18!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \\
=(1 \cdot 18)(2 \cdot 10)(17 \cdot 9)(3 \cdot 13)(16 \cdot 6)(4 \cdot 5)(15 \cdot 14)(7 \cdot 11)(12 \cdot 8) \\
\equiv(-1)(1)^{8} \quad(\bmod 19) \equiv-1 \quad(\bmod 19) .
\end{gathered}
$$

2. (3 points) How many (circular) necklaces are there of length p, with a colors? Explain!

Sol. to 2: The number of circular necklaces is

$$
\frac{a^{p}-a}{p}+a
$$

Let's look at all the linear necklaces of length p with a colors. Obviously, there are a^{p} of them. But a of them are 'boring' (only using one color). So there are $a^{p}-a$ interesting linear necklaces. But for each of them, once you make them circular, they can be arranged into families of p each, where each of them yields the same circular necklace (because the only periods can be of length 1 and p since p is a prime). So there are $\left(a^{p}-a\right) / p$ circular necklaces that are non-monochromatic. Adding back the a monochromatic necklaces gives the answer.
3. (3 points) Use the Miller-Rabin primality test to investigage whether the integer 15 is prime or composite, by picking one random a 's between 2 and 13 .

Sol. to 3:

$$
14=2^{1} \cdot 7
$$

so $s=1$ and $d=7$.

We pick $a=2$ (the easiest), and do

$$
2^{7} \text { modulo } 15
$$

the usual way.

$$
\begin{aligned}
2^{1} & =2 \text { modulo } 15=2 \\
2^{2} & =2^{2} \text { modulo } 15=4 \\
2^{4} & =4^{2} \text { modulo } 15=1
\end{aligned}
$$

So

$$
2^{7}=2^{4+2+1}=2^{4} \cdot 2^{2} \cdot 2=1 \cdot 4 \cdot 2=8 \text { modulo } 15 .
$$

Some people stopped here. WRONG! If you get ±-1, then you stop and output 'probably prime', but if it is not, you keep going.

$$
2^{14}=8^{2} \text { modulo } 15=4
$$

since this is not ± 1, we output definitely composite.
Ans. to 3: According to the Miller-Rabin test, 15 is definitely not prime.

