1. (5 points) Using divisiblity tests, determine for each of the following integers (written in the usual, base 10, way) whether it is divisible by (i) 7 (ii) 13 . Explain!
a. 490735357707
b. 169130403130

Sol. to 1a: We break it up into blocks of three:

$$
490|735| 357 \mid 707
$$

For (i)(divisibility by 7) we need to find

$$
490-735+357-707 \quad(\bmod 7)
$$

Most people first found

$$
490-735+357-707=-595
$$

and then took it $(\bmod 7)$ getting zero (and some people complained that they can't use a calculator!, these are simple addition/subtraction problems!). But people who do not like to calculate could have done $(\bmod 7)$ for each individual number and realized that they are all 0 !

Ans. to $1 \mathrm{a}(\mathrm{i}): 490735357707$ is divisible by 7
For $1 \mathrm{a}(\mathrm{ii})$, it is the same way, but now we take it $(\bmod 13)$.

First way: Again we get -495 . Since $495(\bmod 13)=10$, it is not divisible by by 13 .
Second way: $490 \quad(\bmod 13)=9,735 \quad(\bmod 13)=7,357 \quad(\bmod 13)=6,707 \quad(\bmod 13)=5$ So

$$
490-735+357-707 \quad(\bmod 13)=9-7+6-5=3
$$

So it is not divisible by 13 .
Sol. to b: We break it up into blocks of three:
169|130|403|130

The alternating sum is

$$
(169+403)-(130+130)=312
$$

Since 312 is not divisible by 7,169130403130 is not divisible by 7 , but since 312 is divisible by 13 , 169130403130 is divisible by 13 .

Ans. to $\mathbf{1 b}(\mathbf{i})$: not divisible by 7. Ans. to $\mathbf{1 b}(\mathbf{i i})$: divisible by 13 .
2. (5 points)

What day of the week is
(i) Oct. 24, 2014
(ii) Oct. 24, 2015
(iii) Oct. 24, 2016
(iv) Oct. 24, 2017
(v) Oct. 24, 2018

Sol. of 2: Every non-leap year, it advances by 1 day $($ since $365(\bmod 7)=1)$. In a leap year (after Feb. 29), it advances by 2 days.

So, since today is Thursday, (i) Friday (ii) Sat. (iii) Monday (since 2016 is a leap year, and Oct. is after Feb. 29)) (iv) Tues. (v) Wed.

