Solutions to Quiz \# 3 for Dr. Z.'s Number Theory Course for Oct. 10, 2013

1. (6 points) Find out whether it is possible to express 1 as a linear combination $1=11 \cdot m+27 \cdot n$ for some integers m and n, and if it is, find them.

Sol. to 1: $\operatorname{gcd}(27,11)=\operatorname{gcd}(11,5)=\operatorname{gcd}(5,1)=\operatorname{gcd}(1,0)=1$. So $\operatorname{gcd}(27,11)=1$ and it is possible. Now let's do it.

$$
\mathbf{2 7}=2 \cdot \mathbf{1 1}+5
$$

so

$$
\begin{gathered}
5=\mathbf{2 7}-2 \cdot \mathbf{1 1} \\
\mathbf{1 1}=2 \cdot 5+1
\end{gathered}
$$

so

$$
\begin{gathered}
1=\mathbf{1 1}-2 \cdot 5=\mathbf{1 1}-2 \cdot(\mathbf{2 7}-2 \cdot \mathbf{1 1}) \\
=\mathbf{1 1}-2 \cdot \mathbf{2 7}+4 \cdot \mathbf{1 1}=5 \cdot \mathbf{1 1}-2 \cdot \mathbf{2 7}
\end{gathered}
$$

So

$$
1=5 \cdot \mathbf{1 1}+(-2) \cdot \mathbf{2 7}
$$

Ans.: $m=5 \quad n=-2$.
Comment: Most people got it right. One student wrote $n=2$. Make sure that the sign is correct.
2.(4 points) Find $11^{16}(\bmod 13)$

Sol. to 2

$$
11^{2} \quad \bmod \quad 13=121 \quad \bmod \quad 13=4
$$

(since $121=13 \cdot 9+4)$.

$$
\begin{gathered}
11^{4}=4^{2} \quad \bmod \quad 13=16 \quad \bmod \quad 13=3 \\
11^{8}=3^{2} \quad \bmod \quad 13=9 \\
11^{16}=9^{2} \quad \bmod \quad 13=81 \quad \bmod \quad 13=3
\end{gathered}
$$

(since $81=13 \cdot 6+3)$.
Ans.: $11^{16} \equiv 3 \quad(\bmod 13)$.
Comment: A faster way (done by Richard Wong) is to first use the fact that

$$
11 \equiv-2 \quad(\bmod 13)
$$

and that $(-1)^{16}=1$. So we have

$$
11^{16} \quad(\bmod 13) \equiv(-2)^{16} \quad(\bmod 13) \equiv 2^{16} \quad(\bmod 13)
$$

Now things are a bit simpler (coputationally)

$$
\begin{gathered}
2^{2} \bmod 13=4 \\
2^{4} \bmod 13=4^{2} \bmod 13=3 \\
2^{8} \bmod 13=3^{2} \bmod 13=9=-4 \bmod 13 \\
(-4)^{2} \bmod 13=16 \bmod 13=3
\end{gathered}
$$

The trick is that whenver you encounter an integer i than half the modulo m, replace it by by its 'negative' $-(m-i)$.

