Solutions to Quiz \# 10 for Dr. Z.'s Number Theory Course for Dec. 5, 2013

1. An extremely distinct partition of n is a sequence of integers

$$
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)
$$

such that

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{t}=n
$$

and

$$
\lambda_{1}-\lambda_{2} \geq 2 \quad \lambda_{2}-\lambda_{3} \geq 2 \quad, \ldots, \quad, \lambda_{t-1}-\lambda_{t} \geq 2
$$

and

$$
\lambda_{t}>0
$$

Let $q(n)$ be the number of partitions of n, and $q(n, k)$ be the number of exteremely distinct partitions of n whose largest part is k.
(i) (5 points) Explain why

$$
q(n, k)=\sum_{r=1}^{k-2} q(n-k, r)
$$

and, of course

$$
q(n, n)=1 .
$$

(ii) Use the above recurrence, and

$$
q(n)=\sum_{k=1}^{n} q(n, k)
$$

to compute $q(n)$ for $1 \leq n \leq 5$.
Sol. to $\mathbf{1}(\mathbf{i})$: If you take an extremely disctinct partion of n with largest part k, and chop its head (that equals k), what remains is another such partion, but of the smaller number $n-k$, and whose largest part r, can be either 1 , or 2 , all the way to $r-2$ (it can't be $r-1$ or r).

Adding up all these options explains the recurrence.
Important Fact: If you have \sum_{a}^{b} and $a>b$ then the answer is always 0 .

$$
\begin{gathered}
q(1,1)=1 \\
q(2,1)=\sum_{r=1}^{-1} q(1, r)=0 \quad, \quad q(2,2)=1 \quad ; \\
q(3,1)=\sum_{r=1}^{-1} q(2, r)=0 \quad, \quad q(3,2)=\sum_{r=1}^{0} q(1, r)=0 \quad, \quad q(3,3)=1 \quad ;
\end{gathered}
$$

$$
\begin{gathered}
q(4,1)=\sum_{r=1}^{-1} q(3, r)=0 \quad, \quad q(4,2)=\sum_{r=1}^{0} q(2, r)=0 \quad, \quad q(4,3)=\sum_{r=1}^{1} q(1, r)=q(1,1)=1 \\
q(4,4)=1 \\
q(5,1)=\sum_{r=1}^{-1} q(4, r)=0 \quad, \quad q(5,2)=\sum_{r=1}^{0} q(3, r)=0 \quad, \quad q(5,3)=\sum_{r=1}^{1} q(2, r)=q(2,1)=0 \\
q(5,4)=\sum_{r=1}^{2} q(1, r)=q(1,1)+q(1,2)=1+0=1 \\
q(5,5)=1
\end{gathered}
$$

Finally

$$
\begin{gathered}
q(1)=q(1,1)=1 \\
q(2)=q(2,1)+q(2,2)=0+1=1 \\
q(3)=q(3,1)+q(3,2)+q(3,3)=0+0+1=1 \\
q(4)=q(4,1)+q(4,2)+q(4,3)+q(4,4)=0+0+1=1 \\
q(5)=q(5,1)+q(5,2)+q(5,3)+q(5,4)+q(5,5)=0+0+0+1+1=2
\end{gathered}
$$

Ans. to $1(\mathrm{ii}): ~ q(1)=1, q(2)=1, q(3)=1, q(4)=1, q(5)=2$.

