Quiz \# 10 for Dr. Z.'s Number Theory Course for Dec. 5, 2013

NAME: (print!)

E-MAIL ADDRESS: (print!) \qquad

1. An extremely distinct partition of n is a sequence of integers

$$
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)
$$

such that

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{t}=n
$$

and

$$
\lambda_{1}-\lambda_{2} \geq 2 \quad \lambda_{2}-\lambda_{3} \geq 2 \quad, \ldots, \quad, \lambda_{t-1}-\lambda_{t} \geq 2
$$

and

$$
\lambda_{t}>0
$$

Let $q(n)$ be the number of partitions of n, and $q(n, k)$ be the number of exteremely distinct partitions of n whose largest part is k.
(i) (5 points) Explain why

$$
q(n, k)=\sum_{r=1}^{k-2} q(n-k, r)
$$

and, of course

$$
q(n, n)=1
$$

(ii) Use the above recurrence, and

$$
q(n)=\sum_{k=1}^{n} q(n, k)
$$

to compute $q(n)$ for $1 \leq n \leq 5$.

