1. Using the first way, find the unique x between 0 and 20 such that

$$x \equiv 2 \pmod{3}, \quad x \equiv 4 \pmod{7}.$$

2. Using the second way (the formula) find the unique x between 0 and 62 such that

$$x \equiv 4 \pmod{7}, \quad x \equiv 2 \pmod{9}.$$