Solutions to the Attendance Quiz \# 8 for Dr. Z.'s Number Theory Course for Sept. 30, 2013

1. Use the Euclidea algoithm to find $\operatorname{gcd}(49,140)$

Sol. to 1: Since $140=2 \cdot 49+42$, we have

$$
\operatorname{gcd}(140,49)=\operatorname{gcd}(49,42)
$$

Since $49=1 \cdot 42+7$, so $r=7$, and we have

$$
\operatorname{gcd}(49,42)=\operatorname{gcd}(42,7)
$$

Since $42=7 \cdot 6+0, r=0$, and the gcd is 7 .
Ans. to 1: $\operatorname{gcd}(140,49)=7$
2. Find out whether it is possible to express 1 as a linear combination $1=m 35+n 9$ for some integers m and n, and if it is, find it.

Sol.to 2:

$\mathbf{3 5}=3 \cdot \mathbf{9}+8$ so $r=8$ and

$$
\operatorname{gcd}(35,9)=\operatorname{gcd}(9,8) \quad, \quad 8=\mathbf{3 5}-3 \cdot \mathbf{9}
$$

Now $9=1 \cdot 8+1$ so $r=1$ and

$$
\begin{aligned}
& \operatorname{gcd}(9,8)=\operatorname{gcd}(8,1) \quad, 1=\mathbf{9}-1 \cdot 8 \\
& =\mathbf{9}-(\mathbf{3 5}-3 \cdot \mathbf{9})=4 \cdot \mathbf{9}-\mathbf{3 5}
\end{aligned}
$$

Now $8=8 \cdot 1+0$ so $r=0$ and the previous r (namely 1) is the gcd, and

$$
1=4 \cdot \mathbf{9}-\mathbf{3 5}
$$

Ans. to 2: It is possible to express 1 as a linear combination of 9 and $35: 1=-\mathbf{3 5}+4 \cdot \mathbf{9}$. So $m=-1$ and $n=4$.

