Solutions to the Attendance Quiz # 8 for Dr. Z.'s Number Theory Course for Sept. 30, 2013

1. Use the Euclidea algoithm to find gcd(49, 140)

Sol. to 1: Since $140 = 2 \cdot 49 + 42$, we have

$$gcd(140, 49) = gcd(49, 42)$$
.

Since $49 = 1 \cdot 42 + 7$, so r = 7, and we have

$$qcd(49,42) = qcd(42,7)$$
.

Since $42 = 7 \cdot 6 + 0$, r = 0, and the gcd is 7.

Ans. to 1: gcd(140, 49) = 7

2. Find out whether it is possible to express 1 as a linear combination 1 = m35 + n9 for some integers m and n, and if it is, find it.

Sol.to 2:

 $35 = 3 \cdot 9 + 8$ so r = 8 and

$$gcd(35,9) = gcd(9,8)$$
 , $8 = 35 - 3 \cdot 9$.

Now $9 = 1 \cdot 8 + 1$ so r = 1 and

$$gcd(9,8) = gcd(8,1)$$
 , $1 = 9 - 1 \cdot 8$

$$= 9 - (35 - 3 \cdot 9) = 4 \cdot 9 - 35$$
.

Now $8 = 8 \cdot 1 + 0$ so r = 0 and the previous r (namely 1) is the gcd, and

$$1 = 4 \cdot 9 - 35$$
 .

Ans. to 2: It is possible to express 1 as a linear combination of 9 and 35: $1 = -35 + 4 \cdot 9$. So m = -1 and n = 4.